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ABSTRACT

We present the data model, architecture, and evaluation of

LightDB, a database management system designed to efficiently

manage virtual, augmented, and mixed reality (VAMR) video con-

tent. VAMR video differs from its two-dimensional counterpart

in that it is spherical with periodic angular dimensions, is nonuni-

formly and continuously sampled, and applications that consume

such videos often have demanding latency and throughput require-

ments. To address these challenges, LightDB treats VAMR video

data as a logically-continuous six-dimensional light field. Further-

more, LightDB supports a rich set of operations over light fields,

and automatically transforms declarative queries into executable

physical plans. We have implemented a prototype of LightDB and,

through experiments with VAMR applications in the literature, we

find that LightDB offers up to 4× throughput improvements com-

pared with prior work.
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1. INTRODUCTION
Over the last several years, advances in computing, network

hardware, and display technologies have generated increased inter-

est in immersive 3D virtual reality (VR) video applications. Aug-

mented and mixed reality (AR and MR, respectively) applications,

which intermix 3D video with the world around a viewer, have

gained similar attention. Collectively, these virtual, augmented,

and mixed-reality (VAMR) applications have become mainstream

and widely deployed on mobile and other consumer devices.

Managing VAMR data at scale is an increasingly critical chal-

lenge. While all video applications tend to be data-intensive and

time-sensitive, VAMR video applications are often particularly so.

For example, recent VR light field cameras, which sample every

visible light ray occurring within some volume of space, can pro-

duce up to a half terabyte per second of video data [42, 47]. For
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spherical panoramic VR videos (a.k.a. 360◦ videos), encoding one

stereoscopic frame of video can involve processing up to 18× more

bytes than an ordinary 2D video [30].

AR and MR video applications, on the other hand, often mix

smaller amounts of synthetic video with the world around a user.

Similar to VR, however, these applications have extremely de-

manding latency and throughput requirements since they must react

to the real world in real time.

To address these challenges, various specialized VAMR sys-

tems have been introduced for preparing and serving VAMR video

data (e.g., VRView [71], Facebook Surround 360 [20], YouTube

VR [75], Google Poly [25], Lytro VR [41], Magic Leap Cre-

ator [43]), with the goal of enabling developers to easily implement

their applications. Such systems, however, manage VAMR video

as if it were ordinary 2D video, which results in conceptual and

technical difficulties that we call the VAMR impedance mismatch:

developers who use current VAMR systems have to consider details

about data in its physical 2D format, and must manually account for

factors such as spherical projections (e.g., [11, 62]), angular period-

icity, video codec idiosyncrasies (e.g., [48]), and nonuniform sam-

pling [9]. This leads to brittle implementations that intermix appli-

cation logic with the plumbing required to address this impedance

mismatch. Not only that, unlike traditional video applications (e.g.,

surveillance monitoring and object identification) that process the

input iteratively by video frames, VAMR applications (e.g., visual-

ization and games) focus on the user, and need to reason about the

user’s current viewpoint, which further complicates their develop-

ment using today’s view-agnostic video processing systems.

Further compounding this impedance mismatch, current VAMR

systems are fixed to a particular 2D video layout. For instance,

we are aware of no current 360◦ system that is able to accept light

field data (we describe light fields in Section 2), nor any light field

system able to accept 360◦ video data. Incompatibilities even ex-

ist between 360◦ systems due to differing stereoscopic representa-

tions, video codecs, and incompatible spherical projections. Un-

fortunately, transforming data from one 2D format to another is

prohibitively expensive, and this limits interoperation between sys-

tems that otherwise would be compatible.

To address the VAMR impedance mismatch, we develop a sys-

tem that treats all types of VAMR video in a logically unified man-

ner. We introduce a unified data model containing a logical con-

struct that we call a temporal light field (TLF). A TLF captures

the degrees of freedom available to a human viewer in (potentially

augmented) virtual space, and serves as an abstraction over the var-

ious physical forms of VAMR video that have been proposed [11,

36, 62]. Modeling VAMR videos as TLFs allows developers to ex-

press their video operations as declarative queries over TLFs, and
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Figure 1: A typical 360◦ video ingest pipeline. In (a-b), an input

camera rig generates overlapping 2D images in every direction.

In (c-d) the 2D images are stitched into a spherical representa-

tion and then equirectangularly projected onto a 2D plane [30].

decouples the intent of a query from the plumbing and manual op-

timizations that developers need to implement when using existing

VAMR systems and 2D video processing frameworks such as FFm-

peg [8] and OpenCV [53]. As we show in this paper, declarative

queries also offer the opportunity to introduce query optimization

techniques that improve VAMR video workload performance.

To explore these ideas, we have built a prototype system called

LightDB. LightDB is a new database management system designed

to handle the storage, retrieval, and processing of both archived and

live VAMR video. It includes an implementation of our novel data

model over TLFs, a logical algebra, data storage, query optimiza-

tion, and execution components, along with a language that allows

developers to easily write declarative queries for VAMR workloads.

LightDB builds on recent work in multimedia [6, 31, 39, 58] and

multidimensional array processing [7, 12, 55, 54]. It combines the

state of the art in array-oriented systems (e.g., multidimensional

array representation, tiling) with recently-introduced optimizations

by the the multimedia and graphics communities such as motion-

constrained tile sets [48], and light field representations [36].

In addition to an implementation of the TLF data model,

LightDB exposes a declarative query language, VRQL, for devel-

opers to use. LightDB automatically selects an execution strategy

that takes advantage of a number of optimizations. We have used

VRQL to implement a variety of real-world workloads, with sig-

nificant improvement in resulting application performance as com-

pared to those implemented using existing VAMR systems.

In summary, we make the following contributions:

• We introduce the temporal light field (TLF) data model,

which unifies various physical forms of VAMR data under

a single logical abstraction (Sections 2 and 3).

• We introduce a logical algebra and query language (VRQL)

designed to operate over TLFs, and describe real-world

workloads using VRQL (Section 3).

• We describe the architecture of LightDB, a prototype system

that implements the TLF data model and VRQL. LightDB

comes with a no-overwrite storage manager, indexes, a phys-

ical algebra, and a simple rule-based query optimizer for op-

timizing VRQL queries (Section 4).

• We evaluate LightDB against other video processing frame-

works and array-oriented database management systems and

demonstrate that LightDB can offer up to a 500× increase in

frames per second (FPS) in our microbenchmarks, and up to

4× increase in FPS for real-world workloads (Section 5).

2. BACKGROUND
To support a broad range of VAMR applications, LightDB

ingests and processes two types of VAMR videos: spherical

panoramic (360◦) videos and light fields. We discuss the details

of each in this section.

Spherical Panoramas. One popular form of VR videos are

spherical panoramic videos (a.k.a 360◦ videos). These videos al-

low a viewer, while wearing a head-mounted display or using a

mobile device, to observe a scene from a fixed location at any an-

gle. Because a user may rapidly adjust the direction of view, the

critical variable for this format is the direction that a user is look-

ing. Spherical panoramic images are a special case of a 360◦ video

where the scene is captured at a single instant of time.

As shown in Figure 1, the common approach to generate 360◦

video is to use multiple input cameras and stitch the streams to-

gether using specialized software that approximates a spherical rep-

resentation. Rather than attempting to compress each sphere as

a three-dimensional construct, the typical approach projects each

sphere onto a two-dimensional plane using a projection function

and then applies 2D video compression. Common projections are

equirectangular (ER) [62], cubic [62], or equiangular cubic [11].

In addition, 360◦ images and videos may be monoscopic or

stereoscopic. Stereoscopic videos encode visual data from two

spatially-nearby points—the distance between a viewer’s eyes.

This encoding may be explicit, where two separate spheres are

mapped onto two planes and delivered to viewers as separate video

streams. Alternatively, if depth information is available (either

from the capture devices or by applying an estimation algorithm),

this may be encoded as a separate stream (i.e., a depth map [63])

and delivered to a viewer. The viewer uses the depth information

to generate and render stereoscopic spherical images locally. We

describe below how depth map metadata is embedded in a video.

Light Fields. A 360◦ video enables a user to look in any direc-

tion, but the user must remain static. A light field enables a user

to both look in any direction and move in space. Obviously, this

requires knowing the location and orientation of a viewer.

To enable such flexibility, a light field is a function that, for any

point in a given volume and for any viewing direction, returns the

color and amount of light flowing into a user’s eye. Building a light

field function requires a matrix of cameras to sample all of the light

flowing through a volume in space.

One method of encoding light field data is to use a light slab [36],

which encodes the color of each light ray by its intersection at

points (i, j) and (k, l) with two planes uv and st. Multiple light

slabs at various orientations are used to capture an entire volume.

For example, six slabs could be used to capture the light in a cube.

Figure 2(a), adapted from Levoy & Hanrahan [36], shows the uv
and st planes of a single slab.

As in 360◦ videos, data from the uv and st planes can be pro-

jected onto a single two-dimensional plane and compressed using

standard 2D video encoders. One common projection technique,

used by LightDB and shown in Figure 2(b), encodes each light ray

color as an array of arrays [36]. For a given light slab S, the in-

tersection (i, j) with the uv plane is used as a lookup in the outer

array, and the intersection (k, l) with the st plane is used to look up

the color in the nested array. Entry S[i, j][k, l] gives this color.

Figure 2(b) shows a 2×2 sampling of a light field (typical

light slabs have many more samples). The red and blue rays

illustrated in Figure 2(a) are highlighted respectively at entries

S[u=2, v=1][s=1, t=1] and S[u=2, v=1][s=1, t=2]. When a

viewer wishes to render a pixel for a user’s position and orienta-

tion, a corresponding light ray is retrieved from this representation.

To render rays that fall between samples, nearby rays are extracted

and an interpolation function approximates the original light ray.

When multiple light slabs are present, each is encoded into its own

physical array and multiple slabs may be used during interpolation.

Video Encoding & Streaming. Both types of VAMR video

described above are ultimately encoded using two-dimensional

codecs to reduce the amount of storage required. Modern video

codecs accept as input video frames that are temporal samples of

visual data, generally at frame rates of 30-150 frames per second.

Each frame is an independent image sampled at a point in time.
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Figure 2: Logical and physical encoding of a light slab with a

2×2 sampling of the uv and st planes. Two equivalent light

rays are highlighted in red and blue.
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Tile 1

Tile 3
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Figure 3: In (a), a frame is subdivided into three independently-

decodable tiles. Subfigure (b) shows its corresponding physical

representation, where an index points to the offset of each tile.

Video codecs (e.g., H264 [73], HEVC [69]) compress each frame

as an intra-frame (a.k.a. keyframe) or predicted frame. Keyframes

are compressed in isolation, and may be decoded independently

without reference to any other frame. Predictive frames have de-

pendencies on other frames, which often contain redundant visual

information, to improve compression performance. Each predicted

frame must be decoded in conjunction with its dependent frames.

Video codecs also use redundant information within each frame

to improve compression, by identifying regions with high similar-

ity and storing each region only once. While codecs may search

across the entire frame when looking for similar regions, it is of-

ten useful to restrict this search to tiles (sometimes called slices)

within a frame. While this technique—called motion constrained

tile sets—reduces compression performance, enables tiles to be

(de)compressed in parallel and allows other tiles (e.g., of different

qualities) to be substituted without affecting the rest of the frame.

As shown in Figure 3, a tile index allows for rapid identification of

the data region associated with each tile.

Many video codecs produce groups of pictures (GOPs) that are

independently decodable as a group and begin with a synchronizing

keyframe. This means that within a GOP, every predicted frame

depends only on frames within that GOP. GOPs are an important

part of adaptive streaming, which varies the quality of each GOP

delivered to a client based upon its current network conditions [65].

Finally, rather than streaming raw encoded video streams to

clients, videos are typically “muxed” into files such as the MPEG-4

Part-14 (MP4) [32] or WebM/Matroska [70] media container for-

mats. These “containers” standardize a flexible format for video

and audio metadata, support aggregation of multiple streams into a

single file structure (e.g., different camera perspectives), and allow

for data indexing. LightDB uses these features to improve query

performance (see Sections 4.1, 4.2 and 4.4).

LightDB extends the widely-supported MP4 file format, both in-

ternally and for sending/receiving data to/from external sources.

As illustrated in Figure 4, an MP4 file contains a forest of atoms

(often called “boxes”). An atom is a self-contained data unit that

contains information about media. Each atom is associated with a

four-character identifier that indicates its type and a variable-length

data region. For example, the trak atom holds metadata about a

media stream (e.g., its codec) and a pointer to media data. This me-

dia data may be embedded inside a mdat atom or stored externally.

A MP4 file may be associated with any number of tracks and

video streams. For example, for stereoscopic information, LightDB

stores visual information for the left and right eyes in separate

MP4 File

moov: metadata container

External Media File

GOP 1

GOP �⋮mdat: media data

GOP 1

GOP �⋮trak 1:

stss: GOP index

stsd: Codec, etc.

⋮
stream metadata trak 2:

stss: GOP index

stsd: Codec, etc.

⋮
stream metadata

Figure 4: Abridged MP4 layout showing atoms relevant to

LightDB. This MP4 file contains a moov atom holding media

metadata. This includes two trak atoms, each containing meta-

data about a single media stream. A stss atom provides a GOP

index over media data stored in a mdat atom or externally.

video streams. Additionally, if depth map information is available,

LightDB embeds it using a separate video stream.

The MP4 format defines one atom (named stss) that is useful

for efficient query execution in LightDB. This atom contains an

index of the GOPs in a video stream, and LightDB uses this to

efficiently look up the beginning of any GOP without needing to

linearly search through the encoded video data.

To be detailed in Section 4.1, LightDB relies on standard MP4

atoms, an atom drawn from the Spherical Video V2 RFC [67], and

a custom atom to store light field-specific metadata.

3. LIGHTDB MODEL
Existing database management systems specialized in the pro-

cessing of image and video data, including RasDaMan [7],

SciDB [12], and Oracle Multimedia [54], model image and video

data as multidimensional arrays. These arrays often have three di-

mensions: x, y, and t. As mentioned in Section 1, we find this

model ill-suited for VAMR applications. While standard spatio-

temporal dimensions can identify a pixel in a video stream, appli-

cations do not reason in those terms. For a VAMR application, the

fundamental concepts are the current location of the viewer and the

direction in which the viewer is looking. These concepts, illustrated

in Figure 5, are elegantly captured by the light-field abstraction pre-

sented in Section 2. Additionally, if a user observes the same object

from a different viewing angle, the value of the pixels representing

the object must change, which cannot be captured with spatiotem-

poral dimensions but can be captured with light fields.

3.1 Data Model
LightDB adopts light fields as the fundamental construct in its

data model. Because our light fields can change over time, we

use temporal light fields (TLFs) [2] to represent all data, whether

originally ingested as a light field or as a 360◦ video. Concretely,

we model data as multidimensional objects with both rectangular

and angular coordinates and six overall dimensions—three spatial

(x, y, z), two angular (θ, φ), and one temporal (t). The spatiotem-

poral dimensions capture a user’s position over time while the an-

gular dimensions capture the user’s viewing direction.

Definition 3.1 (Nullable temporal light field (TLF)). A TLF LV

is defined by a TLF function L(x, y, z, t, θ, φ) that determines the

color and luminance associated with light rays throughout a (pos-

sibly infinite) volume V ⊆ R
4 × Dθ × Dφ.1Application of L at

points not in V produces the null token ω.

1
The domain DTLF of a TLF is the product of the domains of each of its

dimensions. For the spatiotemporal dimensions x, y, z, and t, this is the
reals. The domain of angles θ and φ are respectively in the right-open range
[0, 2π) and [0, π), which we denote with Dθ and Dφ. Ranging φ over

[0, 2π) would be ambiguous. For example, (π
2
, π) and ( 3π

2
, 0) identify the

same point on a sphere.
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In the graphics community, the TLF function is called a plenop-

tic function [2]. Our TLF function formulation, which is equivalent

to that proposed by Adelson and Bergen [2], is a function from

position and orientation to a point in a user-specified color space

C (e.g., YUV or RGB). For example, consider a color space con-

taining the colors RED and BLUE at a fixed intensity and a volume

R defined by the points (−x, y0, z0) and (x, y1, z1) (without con-

straining time or angles). The following TLF, illustrated in Fig-

ure 6(a), defines a field RB in R that is RED for all x ≤ 0 and

BLUE otherwise:

RBR =

{

RED if x ≤ 0

BLUE otherwise
(1)

Data objects in LightDB take the form of nullable, temporal light

fields. Every TLF, L, in LightDB is associated with metadata that

includes a unique identifier and a bounding volume. We refer to

them as id(L) and V (L).
TLFs may further be partitioned into pieces for parallel process-

ing. For example, Figure 6(b) shows RB′ as a possible partitioning

of RBR, where one partition contains the RED light rays and an-

other contains the BLUE. Figure 6(c) shows a further subdivision

of RB′ into six equal-sized volumes with height y1−y0
3

.

LightDB requires that a TLF’s volume and partitions be a hyper-

rectangle. Partitioning information is also part of a TLF’s metadata.

Finally, TLF metadata includes a streaming flag to indicate

whether its ending time monotonically increases (i.e., it is stream-

ing) or is constant. For a TLF with this flag set, LightDB automat-

ically updates its ending time as new data arrives.

3.2 Algebra
LightDB’s query algebra is designed to enable a variety of op-

erations on different types of VAMR data to capture the logical

specifications of those operations while hiding their physical com-

plexities. For example, it abstracts the intricacies of physical video

formats such as resolution, continuousness, interpolation, geomet-

ric projection, and sampling. To allow for easy composition and

avoid the need for more complex transformations that produce or

operate over TLF tuples, each operator accepts zero or more TLFs

(along with other scalar parameters) and produces a single output

TLF. Since TLFs are nullable and defined in a 6D space, developers

need not be concerned with TLFs defined over different volumes.

The LightDB algebra exposes nineteen logical operators for ex-

pressing queries over TLFs. We classify them into three broad cat-

egories. First, we describe the data manipulation operators used to

manipulate TLFs stored in LightDB. Next, we present the ENCODE

and DECODE operators, which are used to transform an internal

TLF representation to and from an encoded representation (i.e., a

MP4 file). Finally, we describe the data definition operators used

to create, modify, and remove TLFs from the LightDB catalog.

As a running example to illustrate the operators, consider the

case of live, adaptive 360◦ video streaming applications that (1)

ingests a video from a camera rig, (2) overlays a watermark, (3)

performs contrast adjustment, (4) temporally partitions the result

into short segments to support adaptive streaming, and (5) encodes

each segment into a format suitable for a client device. Figure 7

shows a query plan for this application, and highlights several of

the logical operators that we describe in this section.

3.2.1 Data Manipulation

The data manipulation operators exposed by LightDB include:

Selection. The SELECT operator derives a “smaller” TLF from

its input. For example, the SELECT operator shown in Figure 7

spatially reduces the watermark W to a single point. Additionally,

Figure 6(a) illustrates selection over the TLF defined by Equation 1.

Similar to relational selection, this operator restricts the domain

of a TLF L to some subset R (i.e.,LR). Unlike in relational alge-

bra, TLF selection specifies a predicate over dimensions, with the

restriction that R be a well-defined hyperrectangle. We denote a

selection of TLF L over a hyperrectangle R as:

SELECT(L, [x, x′], [y, y′], [z, z′], [t, t′], [θ, θ′], [φ, φ′]) =LR

Alternatively, a developer might wish to discretize a TLF at a

regular interval (e.g., at 30 samples per second). The DISCRETIZE

operator performs this operation by sampling a TLF over some in-

terval ∆d along a given dimension d ∈ {x, y, z, t, θ, φ}. It pro-

duces a new TLF with every point not on the interval set to null:

DISCRETIZE(L,∆d = γ) =Ld∈{i·γ|i∈Z}

As an example, a developer might reduce the physical size of a

TLF by angular sampling at some resolution (e.g., 1920 × 1080)

by invoking DISCRETIZE(L,∆θ = 2π
1920

,∆φ = π
1080

).
Partitioning. The PARTITION operator “cuts” a TLF into equal-

sized, non-overlapping blocks along a given dimension. For exam-

ple, given an unpartitioned TLF L with duration of ten seconds.

PARTITION(L,∆t = 1) creates a TLF with ten one-second parti-

tions. Figures 6(b)–(c) show further examples.

Inversely, the FLATTEN operator removes a TLF’s partitions.

Merging. The UNION operator merges two or more TLFs into a

single TLF. For example, the union operator in Figure 7 overlays a

watermark on top of an ingested stream. Here the LAST built-in ag-

gregate is used to disambiguate overlapping light rays by preferring

the last element among the inputs (i.e., the watermark).

When inputs to UNION are non-overlapping, merging is unam-

biguous. However, an overlapping light ray may be present in one

or more of the inputs. To resolve this ambiguity, when two in-

puts Li and Lj are both non-null at point p, UNION applies a user-

supplied merge function m to disambiguate as follows:

UNION(L1, ..., Ln,m) = p 7→

{

Li(p) if ∀j 6=iLj(p) = ω

m(L1(p), ..., Ln(p)) otherwise

Transformation. The MAP operator transforms a TLF into a

new field defined within the same bounding volume as its input.

Given a transformation function f , the MAP operator produces a

new field with the color and luminance at each point replaced with

the one given by the application of f . For example, Figure 7 shows

use of the built-in SHARPEN filter.

The transformation function is parameterized by a point p and

the source TLF (i.e., it is a function f : (p, TLF ) → C), where C
is the color space of the TLF, and is defined as:

MAP(L, f) = p 7→ f(p, L)
The above formulation requires that the entire TLF L be avail-

able during every invocation of f . This restriction makes paral-

lelization difficult, since L may be expensive to transfer (e.g., CPU

to GPU). However, many transformations only need a small region

(i.e., a “stencil”) surrounding a point p. For example, a truncated

Gaussian blur convolution [62] only requires points within some

hyperrectangle R centered on p. In this case, we can omit non-

nearby TLF data when invoking f . This allows LightDB to paral-

lelize the transformation more efficiently.

To enable such parallelization, LightDB allows a developer to

optionally specify a neighborhood when executing a MAP trans-

formation. Formally, given a hyperrectangle stencil R, this MAP

overload produces a new TLF defined by:

MAP(L, f,R) = p 7→ f(p,LR+p)

A second transformation operator, INTERPOLATE, converts null

values into some new value given by a transformation func-

tion. Interpolation is useful to “fill in” parts of a TLF that
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(a) RBR at time t bounded by
(−x, y0, z0) and (+x, y1, z1).

(b) RB′: RBR partitioned on
x ≤ 0.

(c) RB′′: A further partition of
RB′ along the y axis.

Figure 6: A temporal light field (TLF) and two possible partitionings.

have been discretized due to encoding at a particular resolution.

For example, given a nearest-neighbor function nn that gives

the color of the closest non-null point in a TLF, the operation

INTERPOLATE(L, nn) produces a new TLF with all null values re-

placed by their closest color. Like MAP, the INTERPOLATE operator

offers an overload that accepts a stencil to improve performance.

Finally, the SUBQUERY operator performs an operation on each

partition in a TLF. For example, Section 3.5 shows use of SUB-

QUERY to encode a TLF’s partitions at different qualities.

SUBQUERY logically consists of both SELECT and UNION.

Given a subquery q, SUBQUERY executes it over each partition vol-

ume V1, ...Vn in a TLF L. It then unions each partial result into a

single output TLF. Formally, it produces a TLF defined as follows:

SUBQUERY(L, q,m) =

UNION(q(SELECT(L, V1)), ..., q(SELECT(L, Vn)),m)

Translation & Rotation. The TRANSLATE operator ad-

justs every light ray in a TLF by some spatiotemporal distance

(∆x,∆y,∆z,∆t). Similarly, the ROTATE operator rotates the rays

at each point by angles ∆θ and ∆φ. We omit their formal defini-

tions here due to space.

3.2.2 Input & Output

Data flowing into LightDB must always go through a DECODE

operator that transforms 360◦ videos and light field encoded as

MP4 files into one of the physical TLF representations to be de-

scribed in Section 4.1. Similarly, data flowing out of LightDB must

go through the reverse ENCODE operator to transform it back into

an externally-consumable format.

LightDB also exposes SCAN and STORE operators, which are

used to read and overwrite TLFs that are defined in LightDB’s in-

ternal catalog.

In LightDB, TLFs are immutable and writes are performed by

copying video data at the track granularity (see Section 2). For ex-

ample, if a query overwrites a TLF after modifying information vis-

ible in video track T , LightDB materializes an updated version T ′

and writes it to disk alongside T . Unmodified tracks are not rewrit-

ten; LightDB instead stores pointers to the original video tracks.

Writes to TLFs are versioned, and version numbers are stored

as part of the TLF’s metadata (see Section 4.1). LightDB uses the

immutability and versioning of TLFs to provide snapshot isolation

during query evaluation. When a query references a TLF, LightDB

operates on the most recent version available. Developers may op-

tionally parameterize the SCAN operator with a version number.

3.2.3 Data Definition

LightDB exposes CREATE and DROP operators that function in

a manner equivalent to relational systems. Given a unique name,

CREATE creates a new TLF that is a copy of Ω, a distinguished,

immutable TLF where each point is associated with the null token

MAPሺ�ଵ, SHARPENሻ
UNIONሺ�0,�′, LASTሻ

PARTITIONሺ�ଶ, Δ� ʹsሻ
DECODE SELECT , ݔ = Ͳ, ݕ = Ͳ, ݖ = Ͳ�0 �′

ENCODEሺ�, H.ʹ64ሻ

Ͳ, ͳ ∗ �
�ଵ
�ଶ
�ଷ

SCANሺ�ሻ
1 2

3

= 4

5

�
2

Figure 7: A LightDB plan for a sharpened 360◦ video with a

watermark overlay encoded in two-second partitions.

Table 1: Example expressions using the LightDB algebra

Description Algebraic Expression

Self-concatenate

a 5-second TLF
UNION

(

SCAN (name) , TRANSLATE
(

SCAN (name) ,∆t = 5
)

)

Grayscale and

H264 encode
ENCODE

(

MAP
(

SCAN (name) , GRAYSCALE
)

, H264

)

Sharpen middle

third of a TLF
SUBQUERY











PARTITION

(

SCAN (name) ,∆φ =
π
/3

)

,

L 7→

{

MAP(L, SHARP) if Vθ(L) =
[

π/3, 2π/3

]

L otherwise











ω (see definition 3.1). Similarly, the DROP operator removes a TLF

from the LightDB catalog and deletes its content from disk.

Finally, the CREATEINDEX(L, d1, ..., dn) operator is used to cre-

ate an index over TLF L in dimensions d1, ..., dn, and the DROPIN-

DEX operator removes a previously-created index. To be discussed

in Section 4.2, TLF indexes may be multi-level and are represented

as dense arrays (for temporal or angular indexes) or spatial R-trees.

3.3 Algebra Expressions
LightDB operators can be composed into expressions in the same

way as relational algebra operators. Table 1 shows a few simple

examples. We present more complex applications in Section 3.5.

LightDB supports both one-shot and streaming queries, with

each executed similarly. Either query type may operate over TLFs

that are being continuously ingested (i.e., they have their stream-

ing flag set), those already stored in LightDB, or from other data

sources such as a socket, local disk, or distributed file system. All

of the operators in LightDB are non-blocking, though user-defined

functions used as arguments may lead to blocking.

3.4 Query Language
LightDB includes a declarative query language called VRQL.

VRQL allows developers to describe queries without the need to

be concerned with the underlying complexities of the video data,

how the query is executed, or which hardware to use for individual

operations. This abstraction is a key distinguishing feature from ex-

isting video processing systems, which require developers to man-

ually manage these details. We currently have bindings for VRQL

in C++, and plan to extend it to other languages.

1196



In VRQL, developers write queries over TLF using functions that

correspond to the algebra described previously. For example, a de-

veloper would write the following query for the example described

at the beginning of Section 3.2 with query plan shown in Figure 7:

Union(Decode(filename), Scan("W") >> Select(0, 0, 0))

>> Map(sharpen) >> Partition(Time, 2) (2)

>> Encode(H264);

As is common in functional languages, the streaming operator

g(α) >> f(β) is used as shorthand for f(g(α), β); the two forms

are otherwise equivalent and either may be used in a query.

VRQL exposes the operators introduced in Section 3.2 as func-

tions, and convenience functions for common operations (e.g.,

transcode converts a TLF from one codec to another).

To improve readability, a VRQL query may assign an intermedi-

ate result to a variable. For example, the following query is equiv-

alent to the TLF concatenation example shown in Table 1:

auto tlf = Scan(name);

auto cat = Union(tlf, (tlf >> Translate(Time, 5));

Developers may use VRQL to create indices over existing TLFs.

For example, the following query modifies cat from the previous

example by selecting only the first three seconds of video data (line

1). Line 2 then creates an index over two spatiotemporal dimen-

sions of out. LightDB may then utilize this index on line 3.

cat >> Select(Time, 0, 3) >> Store("out");

CreateIndex("out", Y, Time);

Scan("out") >> Select(Y, 0, 0, Time, 0, 1) >> Map(grayscale);

Finally, LightDB supports user-defined functions (UDFs) that

may be used with the MAP and UNION operators for functional-

ity not available in its built-in library. For example, to create the

TLF shown in Figure 6(a), a developer would define an anonymous

function used in MAP in the following query:

auto x = 1;

auto tlf = Create("RB")

>> Select(Volume{{-x, x}, ...})

>> Map([](auto &point) { return point.x < 0 ? Red : Blue; });

3.5 Applications
In Figure 7, we described a simple query used to ingest, wa-

termark, partition, sharpen, and re-encode an input TLF. We now

describe more complex queries drawn from real-world examples

in the recent literature.2 While we are aware of no comprehen-

sive VAMR application benchmark or corpus that could be used to

demonstrate the completeness of the LightDB algebra, these appli-

cations are representative of the VAMR applications that we have

found in this domain.

Predictive 360◦ Video Tiling. Many streaming video services

(e.g., YouTube VR [75]) serve an entire panoramic viewing sphere

to client devices. This approach is suboptimal, because at any in-

stant only a small portion of the sphere is displayed in a VR viewer,

which generally have a narrow field of view. Recent work [21, 26,

30, 45] has demonstrated substantial savings (up to 75%) in data

transfer by degrading the quality of the unimportant areas of the

360◦ sphere. Developing this query in existing frameworks is te-

dious and error-prone (see Section 5.1). Using LightDB, a devel-

oper can simply express this as the following:

Decode("rtp://...")

>> Partition(Time, 1, Theta, π / 2, Phi, π / 4)

>> Subquery([](auto& partition) {

return Encode(partition, is important(partition)

? Quality::High : Quality::Low) })

>> Store("output");

2
Example output videos produced by LightDB for these applications may

be retrieved at http://lightdb.uwdb.io/examples.

source boxes Union(source, boxes)

�
Figure 8: Augmented reality TLFs for one 360◦ frame

This query subdivides the input TLF into one-second segments

and partitions of size (π
2
, π
4
). Next, the SUBQUERY operator

changes the quality of each partition to that given by a function

that predicts a user’s future orientation. For example, we might use

dead reckoning to predict a user’s next orientation and encode that

partition in high quality (and low quality elsewhere).

Augmented Reality. One augmented reality application that has

seen heightened interest in the computer vision [60, 38] and mo-

bile sensing [14, 59] communities involves ingesting a live video

stream from a worn camera or mobile device, automatically de-

tecting objects within the field of view, and highlighting them in

real-time with a bounding rectangle. In many cases, the object de-

tection function associated with this application is a neural network

trained on a particular input video resolution (e.g., 480×480). This

workload may be easily expressed in VRQL:

auto source = Decode("rtp://...");

auto lowres = source >> Discretize(Theta, 2π
480 , Phi, π

480 );

auto boxes = lowres >> Map(detect);

Union(source, boxes) >> Store("output");

This query lowers the resolution of its input to 480×480, and

applies a MAP UDF called detect. The UDF applies an object de-

tection algorithm such as YOLO9000 [60] and generates a result

that is red at detection boundaries and null otherwise (see Figure 8).

Finally, the result is combined with the original input.

Depth Map Generation. Several recent projects have explored

real-time depth map generation using parallel or custom hard-

ware [31, 49, 4, 46] in the context of cloud-based VR streaming.

For a light field stored in LightDB, the extremely high data sizes

(gigabytes or terabytes of raw data per second) make cloud-based

streaming to remote clients infeasible. One strategy to reduce the

amount of data transfer involves sampling a light field at two points

near where a user’s eyes are located (i.e., her current position p

offset by an interpupillary distance i) and computing a depth map

for the 360◦ videos incident to those points [34]. The VRQL query

for this process is as follows, where the DepthMapInterpolation

function implements the logic described in [46]:

auto stereo = Union(Scan(L) >> Select(p + i

2 ),

Scan(L) >> Select(p −
i

2 ))

>> Interpolate(DepthMapInterpolation)

>> Store("sample");

4. LIGHTDB ARCHITECTURE
In this section, we present LightDB’s overall architecture to-

gether with the details of its core components. LightDB is currently

a single-node, single-threaded system. We plan on extending it to

support distributed execution in shared-nothing clusters. In our pro-

totype, users submit individual queries as a statement or script that

may include variable assignments. LightDB executes each such

query as a single transaction with snapshot isolation. We currently

disallow queries that overwrite the same TLF more than once.

The major components of LightDB are shown in Figure 9. The

Query Processor (QP) receives declarative queries as input. It con-

verts them into physical query plans that it executes, and returns

results to applications in the form of encoded videos.

The translation of the input declarative queries into logical query

plans is a straightforward one-to-one mapping. The logical-to-

physical query plan translation, however, is amenable to various op-

1197



In-Memory Buffer Cache��1ܨ: ܱܩ ௜ܲ1 ܱܩ ௝ܲ1⋅⋅⋅
:௡ܨ�� ܱܩ ௜ܲ௡ ܱܩ ௝ܲ௡⋅⋅⋅ڭ

Persistent Storage

Metadata:1ܨ��ڭ ܱܩ 1ܲ1 ܱܩ 1ܲ௠⋅⋅⋅
:௡ܨ�� Metadata ܱܩ ௡ܲ1 ܱܩ ௡ܲ௠⋅⋅⋅

CatalogMetadata1
Metadata௡ڭ

Query Processor

Inputs

Thread 

Pool

OptimizerRule1
Rule௡ڭ

Logical 

Plans

Physical 

Plans

Physical Operators

Homomorphic Operators�TILE ∩TILE ڮ
�CPU �GPU ڮ GPU௜ FPGA௜ڮ ڮ

OutputsQueries

Figure 9: LightDB architecture

timizations, some of which we describe in Section 4.5. LightDB’s

physical algebra includes operators that directly process encoded

video frames, which we call homomorphic operators, and opera-

tors that process decoded data. LightDB also offers specialized

operator implementations for different hardware platforms, which

includes GPUs and FPGAs.

In this section, we describe each major LightDB component.

4.1 Physical Organization and Data Storage
In Section 2 we introduced two common encoding methods for

VAMR video data: 360◦ videos (optionally containing depth in-

formation) and light slabs. The first efficiently represents visual

data incident to a point, while the second is efficient at representing

visual data incident to a plane.

LightDB physically represents each TLF using one of these two

physical formats: a physical 360◦ TLF (360TLF) or a physical

light slab TLF (SlabTLF). Each 360TLF contains one or more 360◦

videos, with a separate video stream encoded for each non-null spa-

tial point in the TLF. SlabTLFs contain one or more slabs at various

positions and orientations, with a separate stream encoded for each.

Both 360TLFs and SlabTLFs may be continuous or discrete. The

video data associated with a discrete TLF is materialized and en-

coded into a video stream. For a continuous TLF, since it is not

possible to materialize every point in a volume of continuous space,

LightDB instead creates a partially materialized view by material-

izing an intermediate TLF up to the latest point where it becomes

continuous (i.e., the last INTERPOLATE operator). It encodes this

intermediate result as if it were an ordinary, discrete TLF. It identi-

fies the remaining logical operator subgraph that acts on the inter-

mediate result to produce the full (continuous) query result. This

subgraph is serialized in a special view subgraph field alongside

other TLF metadata. For example, given a discrete TLF L and the

query INTERPOLATE(SCAN(L), f), which produces a continuous

TLF, LightDB materializes L and records the call to INTERPOLATE

and f in the view subgraph.

Combinations of 360TLF and SlabTLFs may be merged through

application of the UNION operator. Similar to the above, LightDB

materializes and stores each of the inputs to the union and records

the union operator in the view subgraph field in the TLF metadata.

The resulting composite TLF (CompositeTLF) contains any number

of child 360TLFs and SlabTLFs, potentially recursively.

During encoding and when persisting, LightDB automatically

converts between TLF formats using the following rules:

• A SlabTLF is converted to a 360TLF whenever it is spatially

selected at a single point or spatially discretized to a small

number of points (≤ 4 in our prototype).

• A CompositeTLF is transformed to a 360TLF whenever it

contains only 360TLFs, and to a SlabTLF when it contains

only SlabTLFs.

• When a light slab in a SlabTLF or a 360◦ video in a 360TLF

is no longer visible within its bounding volume, it is dropped.

We now describe how discrete 360TLFs and SlabTLFs are phys-

ically encoded. First, observe that a 360TLF contains one or more

encoded 360◦ videos defined at spatially distinct points. As de-

scribed in Section 2, each encoded 360◦ video is associated with

a projection function (which defines how the sphere is projected

onto a frame), a data stream compressed using a video codec, and

an optional depth map metadata stream.

Similarly, a SlabTLF contains a set of light slabs (Section 2),

where each slab is associated with a data stream compressed us-

ing a video codec, geometric metadata that includes the start and

endpoints of the planes in three-dimensional space, and sampling

parameters (i.e., the number of uv and st plane samples).

For each of the formats, LightDB physically organizes a TLF

within a single directory on the file system. LightDB uses a multi-

version, no-overwrite mechanism for TLF writes, and each direc-

tory contains one metadata file for each version of the associ-

ated TLF. When a new TLF version is created through a STORE,

LightDB increments the version number and atomically creates a

new metadata file containing information about the new version.

The directory also contains one or more video files containing

encoded video streams. This structure allows multiple TLFs to

maintain pointers to the same encoded video files and avoids data

duplication. For example, multiple CompositeTLFs can reference

the same video file without requiring it be duplicated on disk.

The metadata file is a small (generally less than 20kB) MP4-

compliant multimedia container (see Section 2) that contains in-

formation about each version of a physical TLF. Using the MP4

format allows for better interoperation with viewing headsets and

video processing libraries. The metadata MP4 file is composed of

a forest of data elements called atoms (see Section 2) that contain

the properties of the TLF and pointers to associated video streams.

As described in Section 2, LightDB uses standard MP4 atoms

to store pointers to separately-stored encoded video streams and

the sv3d drawn from the Spherical Video V2 RFC [67] to store a

360TLF’s projection function.

LightDB extends the MP4 format by introducing an additional

atom (tlfd) to serialize the remaining data about a TLF’s physical

type. For a 360TLF, this includes the points at which the TLF is

defined. For a SlabTLF, this includes geometry and sampling gran-

ularity for each of the slabs. Finally, a CompositeTLF recursively

contains two or more tlfd atoms as children.

Each tlfd atom also contains pointers to video tracks, which

store metadata about the underlying video data that support the dis-

crete TLF (see Section 2). For a 360TLF, the tlfd atom contains a

pointer to one or more video spheres and optional pointers to depth

map tracks. SlabTLFs contains one pointer per slab.

To illustrate this structure, we show in Figure 10 an abridged

physical layout for the output of the depth map generation query

discussed in Section 3.5. This TLF has a single version and as-

sociated metadata file metadata1.mp4. This file contains a tlfd

atom that describes a 360TLF defined at two points: (p ± i

2
).

It is discrete, and so has no view subgraph. It has pointers to

two trak video tracks, one for each 360◦ sphere, and also con-

tains a depth map trak atom. Each trak atom contains the

codec used to encode the video data, the projection function,

an index to the beginning of each GOP within the video file,

and a pointer to the file that contains the encoded video data,

{stream0,stream1,depthmap}.hevc.
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Figure 10: Physical layout of a stereoscopic 360◦ 360TLF.

4.2 Indexing
In Section 2, we introduced two indices found in encoded VAMR

video: a tile index (Figure 3) and a GOP index (Figure 4). When

available, LightDB uses the former for point or range queries over

one or more angular dimensions, and the latter for point or range

queries over time. LightDB also supports spatial indices, which are

external indices over any combination of spatial dimensions and

take the form of R-trees [28] that identify relevant encoded video

files in a TLF. Such indices are useful in the case of a TLF cre-

ated from the union of videos or light fields captured at different

locations, such as at a concert, museum, or tourist location.

When executing a query, the QO first chooses a spatial index (if

any) that covers the largest subset of spatial dimensions included in

each selection. For example, if a user has executed the command

CREATEINDEX(L, x, z), LightDB utilizes the resulting R-tree for

queries of the form SELECT(L, x ∈ [a, b], z ∈ [c, d], ...). As shown

in Figure 10, a spatial index is stored as an external file with a name

containing its version and covered dimensions (e.g., index1.xz).

Next, if a temporal constraint is present in a selection, LightDB

considers GOP indices (if present) to identify relevant temporal re-

gions in an encoded video file. Each GOP index is embedded in the

stss region of a TLF’s metadata (see Figure 4) and maps a starting

time to the byte offset of the associated GOP. Given a temporal se-

lection (e.g., SELECT(t ∈ [a, b], ...)), the QO uses this information

to look up GOPs containing information between time a and b.

Finally, the QO considers a tile index (if present) to identify ap-

plicable and independently-decodable subregions of each frame.

For example, assuming an equirectangular projection, a query of

the form SELECT(φ ∈ [0, π
2
]) might only need to decode Tile 1

shown in Figure 3. Since this index is also used by video decoders,

an attempt to drop an angular index results in an error.

4.3 Buffer Pool
During query execution, the query processor (QP) interacts with

an in-memory TLF cache (TC) to load data from persistent stor-

age. As shown in Figure 9, the TC contains entries for TLF meta-

data files, which are parsed from their MP4 representation prior to

caching. It also contains a buffer pool for GOPs (see Section 2)

that have been recently accessed. Buffering at the GOP granularity

improves temporal locality and reduces misses for predictive frame

requests. The TC implements a least-recently used eviction policy.

4.4 Physical Algebra
Our current implementation includes physical operator variants

that target CPUs, GPUs, and FPGAs and communicate using PCIe.

First, LightDB has a CPU-based implementation for each of the

operators described in Section 3.2. These operators rely on FFm-

peg [8] for video encoding and decoding, and make direct modifi-

cations to decoded video frames.

LightDB also includes a GPU-accelerated operator implemen-

tation for each logical operator. The SCAN, ENCODE, DECODE

GPU-based operators utilize the hardware-accelerated NVEN-

CODE/DECODE interfaces [50]. The remaining operators each

use CUDA [51] kernels to perform their work.

LightDB has a built-in FPGA-accelerated MAP and INTERPO-

LATE UDF used to generate depth maps as described in Section 3.5.

Finally, LightDB has homomorphic operators (HOps) that per-

form operations directly on 360TLF or SlabTLF video data with-

out requiring that it be decoded. This leads to higher performance

— up to 500× faster compared to GPU-based operators (see Sec-

tion 5). Two categories of HOps exist in LightDB: those that op-

erate over encoded groups of pictures (GOPs; see Section 2), and

those that operate over the tiles (ibid.) in each frame. These op-

erators are currently executed on the CPU, and we plan on adding

other HOps (e.g., keyframe selection, scalable video coding [64]).

To understand the first category, consider a 360TLF or SlabTLF

encoded with a GOP duration of one second. The GOPSELECT

operator may be applied for any SELECT operator that temporally

selects precisely at a GOP boundary (e.g., SELECT(L, t = [i, j]),
where i, j ∈ Z). It does so by using the GOP index to identify the

byte region in an encoded video file that contains the frame data for

the relevant GOPs, and outputs them without decoding.

The GOPUNION operator performs a similar operation—given n
encoded videos that are temporally-contiguous, it concatenates the

encoded GOPs in each video and produces a valid unioned result.

The second category of HOps perform a similar operation over

the tiles (q.v. Section 2) within each video frame. The TILESELECT

operator may be used for any angular selection that includes com-

plete, contiguous tiles. It does so by using tile index, as shown

in Figure 3(b), to efficiently identify the relevant bytes without

video decoding. For example, consider a 360TLF that has been

tiled as shown in Figure 3(a). The TILESELECT operator may be

used for the logical selection T1 = SELECT(φ = [0, π
2
)), since

it precisely selects the tile labeled 1 in Figure 3(b). Similarly,

T23 = SELECT(φ = [π
2
, π)), selects tiles labeled 2 and 3.

Analogous to GOP unioning, the TILEUNION HOp concate-

nates tiles without video decoding. To be applicable, each UNION

operand must be defined at the same spatiotemporal points and the

tiles must be angularly non-overlapping. For example, the opera-

tion UNION(T1, T23) can be performed using this operator.

4.5 Rule­Based Optimization
The LightDB algebra is amenable to several optimizations that

improve performance. To demonstrate this, LightDB comprises a

rule-based query optimizer that performs two types of optimiza-

tions. As future work, we will use these heuristics to implement a

cost-based optimizer.

The first type of optimization involves selecting the physical im-

plementation for each logical operation, including the device that

should execute the operation. The selection is heuristic and pro-

ceeds in a bottom-up fashion. We also have rules that combine,

reorder, and eliminate operators. We describe each in this section.

Given a logical query plan as input, the query optimizer (QO)

generates the physical plan by first transforming the logical plan in

a bottom-up fashion starting from the SCAN and DECODE opera-

tions. During that transformation, the QO uses two heuristics: (1)

GPU-based operators are faster than FPGA-based ones, which in

turn are faster than CPU-based ones and (2) it is more efficient to

keep data on the same device for consecutive operations.

The QO first selects decoders, which are leaves in the query plan

graph. For each TLF stored within LightDB, the QO consults the

TLF catalog (TC) and selects a GPU-based 360◦ or light field SCAN
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physical operator if one exists for the video codec; otherwise it uses

a CPU-based SCAN implementation. For TLFs ingested using a

DECODE operator, the QO first checks for user-supplied hints (e.g.,

DECODE(url, HEVC)). If no hint is supplied, the QO attempts to

infer a codec by examining a prefix of the input data. If the QO is

unable to identify a codec, query processing fails. Otherwise, the

QO uses a GPU-based decoder if one is available for a codec, and

falls back to a CPU implementation if none exists.

Having selected physical operators for the leaves in the query

plan, the QO then selects physical operators for the remaining oper-

ator nodes in a bottom-up, breadth-first manner. For each unary op-

erator, the QO selects a physical operator that executes on the same

device as its predecessor. If no physical operator implementation is

available for that device, the QO selects a GPU-based implemen-

tation and inserts a TRANSFER operator to mediate the inter-device

transfer. User-defined functions used in MAP and other operators,

which may include implementations that target CPUs, GPUs, or

FPGAs, are similarly mapped to physical operators.

A similar process applies to the n-ary UNION operator. If all

predecessors execute on the same device, the union also executes

on that device. Otherwise, a GPU-based operator is selected and

TRANSFER operators are inserted.

After producing an initial physical query plan, the QO performs

further optimizations as follows. First, it makes the following trans-

formations and eliminations:

• Consolidate consecutive MAPs: MAP(MAP(L, f), g) →
MAP(L, f ◦ g) when both are executed on the same device.

• Remove redundant selections: SELECT(
SELECT(L, [d1, d

′
1])), [d2, d

′
2]) → SELECT(L, [d2, d

′
2])

if d1 ≤ d2 and d′1 ≥ d′2.

• Replace SELECT( SCAN(L), x, y, z) with SCAN(L) if L
is a 360◦ video defined only at (x, y, z). Empty selec-

tions are replaced with Ω. Unions with empty inputs (e.g.,

UNION(L,Ω)) are replaced with L. If all operands are

empty, the union is replaced with Ω.

• Combine partitions and discretizations: PARTITION(
PARTITION(L,∆d = γ),∆d = γ′) → PARTITION(L, γ′),
and DISCRETIZE(DISCRETIZE,∆d = γ),∆d = γ′) →
DISCRETIZE(L, γ′), if γ′ = i · γ, where i ∈ Z.

• Convert DISCRETIZE(INTERPOLATE(L, f),∆d = γ) →
MAP(L,D(f)), where D is a function that produces f on

discretization intervals and null otherwise.

• Combine interpolations and maps:

INTERPOLATE(MAP(L, f), g) → INTERPOLATE(L, f ◦ g).

Second, the QO “pushes up” instances of the INTERPOLATE op-

erator. Delaying interpolation ensures that a TLF remains discrete

for as many operations as possible. The QO currently pushes inter-

polation above SELECT and PARTITION operators. Moving inter-

polation may further eliminate operators as described above.

Finally, the QO attempts to substitute highly-efficient homomor-

phic operators (HOps) that may be executed directly on encoded

TLF video. For example, unioning non-overlapping TLFs can of-

ten be performed using a homomorphic operator. Because video

encoding and decoding is expensive relative to most other opera-

tions (see Figure 11), HOps always outperform operators that ex-

ecute over decoded video (by up to 500×; see Section 5), even if

they require inter-device transfer.

5. EVALUATION
We have implemented a prototype of LightDB in C++ using

∼15,000 lines of code. GPU-based operators were implemented

using NVENCODE/NVDECODE [50] and CUDA 8.0 [51]. We

experimentally evaluate LightDB and compare it to four baseline

systems in terms of programmability for complex VR video work-

loads (Section 5.1) and performance (5.2). In Section 5.3 we show

how LightDB is able to utilize hardware accelerators, and in Sec-

tion 5.4 we detail LightDB operator performance.

Baseline systems. We compare LightDB against OpenCV

3.3.0 [53] and FFmpeg 3.2.4 [8], the most commonly-used frame-

works for 2D video processing and analysis. OpenCV is a com-

puter vision library designed for computational efficiency and high-

performance image analytics, while FFmpeg is a platform designed

for video processing that is invoked via the command-line interface

(CLI) or by linking to its C-based API.

We build both FFmpeg and OpenCV with support for GPU opti-

mizations. FFmpeg is configured with support for NVENCODE/N-

VDECODE [50] GPU-based encoding and decoding. OpenCV is

built with internal calls to FFmpeg and CUDA 8.0 [51].

We also compare against Scanner [57], a recent system designed

to efficiently perform video processing at scale. We installed Scan-

ner by using its most recently-published Docker container. This

GPU-enabled container was built using Ubuntu 16.04, OpenCV

3.2, CUDA 8.0, and FFmpeg 3.3.1.

360◦ videos are loaded into OpenCV, FFmpeg, and Scanner as

encoded, two-dimensional equirectangular projections of a video

sphere. While none of these systems natively support operations on

light slabs, in some cases we were able to apply operations directly

on encoded SlabTLF videos (e.g., conversion to grayscale). For

other light field operations that are not readily supported by the

comparison systems, we show only LightDB results.

Finally, we compare against SciDB 15.12 [12, 61], which is a

distributed, array-oriented database management system designed

for efficient array processing at scale. For experiments involving

SciDB, we represent 360◦ videos as a non-overlapping decoded

three-dimensional array (x, y, t) and light fields as discrete six-

dimensional arrays encoded as shown in Figure 2(b).

Experimental configuration. We perform all experiments using

a single node running Ubuntu 14.04 and containing an Intel i7-

6800K processor (3.4 Ghz, 6 cores, 15 MB cache), 32 GB DDR4

RAM at 2133 MHz, a 256 GB SSD drive (ext4 file system), and a

Nvidia P5000 GPU with two discrete NVENCODE chipsets.

Datasets. We use the following two reference datasets in our

experiments, one for 360TLFs and another for SlabTLFs. For

360TLF experiments, we utilize the “Timelapse”, “Venice”, and

“Coaster” videos from Corbillon et al [17]. Each of these 360◦

videos are equirectangularly projected, 142-177 MB in total size,

captured at 30 frames per second at 4K resolution (3840×2048),

and have an average bit rate of 13–15Mbps. Except for Scanner, we

truncated each video to the same duration (90 seconds) with one-

second GOPs. As detailed below, Scanner was unable to complete

queries for these inputs, and so we show its results for a further-

abbreviated 20-second variant.

For SlabTLFs, we use the “Cats” light slab by Wang et al [72].

This light slab is encoded at 4096×2816 resolution with 8×8 uv-

plane samples. Since this dataset is provided as 109 separate im-

ages, we converted it into a video using the H264 codec at 30

frames per second with one-second GOPs. We also looped the

frames so that the resulting slab had a total duration of 90 seconds

(for LightDB, OpenCV, and FFmpeg) and 20 seconds (Scanner).

5.1 Programmability
To evaluate the programmability of LightDB relative to similar

systems, we execute VRQL queries for the predictive 360◦ tiling

and augmented reality (AR) workloads described in Section 3.5.

For the predictive 360◦ tiling application, LightDB loads each

360◦ dataset (Timelapse, Venice, and Coaster) from the file sys-
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Table 2: Lines of code required to reproduce the predictive

360◦ and augmented reality queries described in Section 3.5.

Numbers in parenthesis show the lines required to implement

user-defined functions for operations not natively supported.

System
Lines of Code

360◦ Tiling Augmented Reality (UDF)

LightDB 9 9 (18)

SciDB 12 13 (98)

Scanner 37 (144) 35 (110)

OpenCV 112 90

FFmpeg 283 161

FFmpeg CLI 895 N/A

tem, decodes it as a 90-second 360TLF, and partitions it into one-

second fragments. It then decomposes each partition into sixteen

equally-sized tiles (∆θ=π
2
,∆φ=π

4
) and re-encodes one tile at high

quality (HEVC at 50Mbps) and the remaining fifteen at low quality

(50kbps). It finally recombines the tiles and writes the result to the

file system. This process is repeated for each of the 90 one-second

fragments in the input. To emulate looking in different directions,

the high quality tile is initially the upper-left of the equirectangular

projection and advanced in raster order (modulo 16) every second.

For the AR application, LightDB loads each dataset from the file

system and decodes it into a 360TLF (for Timelapse, Venice, and

Coaster inputs) or SlabTLF (Cats dataset). This TLF is then dis-

cretized and fed into a UDF that executes the YOLO9000 detection

algorithm [60]. This result is finally unioned with the original TLF.

For the SciDB, OpenCV, FFmpeg, and Scanner variants, we use

the same inputs and map each step into a system-specific equiva-

lent. Both OpenCV applications are written in C++. For FFmpeg,

we execute the predictive 360◦ tiling workflow using both a C++ im-

plementation and via the command-line interface (CLI). The FFm-

peg CLI does not expose extensibility for custom UDFs, so we did

not execute the AR application for this case. We used the Scanner

Python API and leveraged existing functions when possible and

implemented custom kernels using its C++ API for unsupported op-

erations (e.g., tiling, recombining). Since SciDB does not natively

expose video-related functionality, we implement encode, decode,

and the AR UDF externally using OpenCV and transfer data using

standard SciDB import and export operations.

We show the number of lines of code associated with each query

and system in Table 2. Here, both LightDB and SciDB are able

to express the complex workload in a small number of lines, while

OpenCV and FFmpeg require many more lines of code to express

the same query. The Scanner versions fall between these extremes.

The VRQL and SciDB queries for both of these workloads are

declarative, with a developer needing only to express the form of

the desired result. By contrast, the implementation for OpenCV

and FFmpeg is much more imperative, and developers need to be

heavily involved in deciding how the workload is executed. This in-

cludes details such as calculating 2D tiling, copying data between

video frames, calculating codec parameters, and managing file IO.

Scanner again falls between these two extremes, where a developer

must decide some execution details (e.g., selecting hardware, calcu-

lating tile sizes, aligning unsynchronized frame rates) but is spared

from others. For each comparison, managing these details requires

additional lines of code that are interspersed with application logic.

For these workloads, LightDB produces correct results using sig-

nificantly fewer lines of code than the imperatively-oriented video

frameworks, and is able to do so in a declarative manner that avoids

requiring developers to be involved with the low-level details asso-

ciated with workload execution.
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Figure 11: Performance of predictive 360◦ and AR applica-

tions. The y-axes on the left show frames per second (FPS),

while the right plot shows LightDB operator contribution to

total execution time. Value for SciDB added on top of its bar.

5.2 Application Performance
We next evaluate the performance of LightDB and compare it

to OpenCV, FFmpeg, Scanner, and SciDB. For this comparison,

we evaluate the performance of the applications described in the

previous subsection: predictive 360◦ tiling and augmented reality.

Predictive 360◦ Tiling. We first execute the predictive 360◦

tiling application described in Section 3.5 using the Timelapse,

Venice, and Coaster datasets.

The throughput for each system and dataset are shown on the

left plot of Figure 11(a). Here, LightDB is able to process up to

4×, 7×, 13×, and 190× the number of frames per second com-

pared to the FFmpeg, OpenCV, Scanner, and SciDB systems, re-

spectively. SciDB suffers due to its lack of native video encod-

ing support, which necessitates an expensive export/import cycle

to/from an external UDF. On the other hand, Scanner pins all un-

compressed frames in memory and requires an expensive per-tile,

per-frame allocation. This quickly exhausts available memory and

prevents operations on video that cannot be completely material-

ized (e.g., 4K videos longer than ∼20 seconds).

The key means by which LightDB is able to achieve the highest

performance is that it utilizes its efficient physical tile union oper-

ator (TILEUNION, see Section 4.4) that avoids an expensive addi-

tional decode/encode step that is required by the other systems. At

runtime and as discussed in Section 4.5, LightDB recognizes that

this physical tile union HOp is applicable and automatically uses it.

This ability to automatically select from many available opti-

mizations is a key strength for LightDB. Its declarative VRQL lan-

guage removes the need for a developer to hard-code the low-level

mechanics of query execution, which allows LightDB to automati-

cally apply available optimizations at runtime.

The predictive tiling workload is motivated by related work [30,

26, 21, 45], which demonstrates a substantial decrease in video size

by encoding regions of a 360◦ video at different qualities. We thus

evaluate LightDB and the baseline systems on their ability to de-

crease total 360◦ video size. Table 3 shows the results. LightDB is

able to offer performance comparable to FFmpeg. Here, the other

systems (which all depend on OpenCV in our experimental config-

uration) suffer due to their lack of robust support for codec settings.

Finally, the right graph in Figure 11(a) breaks down total query

execution time by LightDB operator for the Timelapse dataset and
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System
% Reduced

Coaster Venice Timelapse

LightDB 78% 78% 67%

FFmpeg 75 76 71

Scanner 20 23 38

OpenCV 19 21 34

SciDB 19 23 33

Table 3: Percent reduction for

the predictive 360◦ query.
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various tile configurations. Across each tile configuration, total ex-

ecution time is dominated by the GPU-based encode and decode

and not by other query operators such as UNION and MAP.

Augmented Reality (AR). We next execute the AR application

described in Section 3.5 using the 360◦ datasets as input.

Throughputs for LightDB and comparison systems are shown on

the left plot in Figure 11(b). Here LightDB is again able to process

up to 21× more frames per second than OpenCV, 3× for FFmpeg,

and 8× for Scanner. This performance is possible because LightDB

is able to perform most of the processing (decode, discretize, and

union) using its GPU-optimized physical operators and parallelize

the GPU-to-CPU transfer required by the UDF. Neither OpenCV

nor FFmpeg are able to fully parallelize the operation, and OpenCV

suffers in particular due to its lack of support for NVENCODE on

Linux. After reviewing Scanner’s internal implementation, we ob-

served that Scanner’s performance is degraded because it relies on

OpenCV to convert frames to a format compatible with the object

detection algorithm. Additionally, Scanner’s built-in bounding box

overlay operator also relies on OpenCV.

The right plot in Figure 11(b) shows each operator’s contribution

to query execution time for each dataset. As before, the GPU-based

encode and decode operations account for a substantial portion of

total execution time. The object recognition UDF, which requires a

GPU-to-CPU transfer, constitutes the bulk of the remaining time.

5.3 Hardware Acceleration
An important feature of LightDB is its ability to integrate spe-

cialized hardware accelerators in its query execution pipeline. To

demonstrate this ability and to illustrate its performance potential,

we characterize the performance for the depth map generation ap-

plication described in Section 3.5 using a UDF with a CPU and

hybrid FPGA implementation [46] executed on a Xilinx Kintex-7.

For this experiment, we show results for the Cats SlabTLF (sam-

pled at two spatial points) and the Timelapse 360TLF experiment

using adjacent frames. Figure 12 compares performance for CPU

and hybrid FPGA versions of the query. Here introducing a FPGA-

based UDF variant allows the LightDB query optimizer to re-

duce query execution by more than 25%. This is a useful per-

formance advantage, since high-quality depth map generation is

computationally-expensive and is often performed offline [46].

5.4 Operator Performance
360TLF Operator Performance. We first examine the indi-

vidual performance of LightDB operators for 360TLFs using the

Timelapse dataset. Figures 13(a)–(d) respectively illustrate the op-

erator performance for the SELECT, MAP, UNION, and PARTITION

operators. For each unary operator O, we executed a minimal query

Decode(L) >> O(...) >> Store(L′
).

To benchmark the selection and partition operators, we select a

subset of or partition the 360TLF along different dimensions.

For the MAP operation, we use a grayscale UDF that drops the

chroma signal from its input and a blur UDF that performs a trun-

cated Gaussian blur convolution [62].

Table 4: Video data systems & frameworks. Bolded systems

have source available and can execute Section 3.5 applications.

Type Systems

2D General Purpose FFmpeg [8], GStreamer [27], GPAC [22] (also supports 360◦ )

2D Vision OpenCV [53], OpenIMAG [29]

2D Analytics Scanner [57], BlazeIt [33], Optasia [40], VideoStorm [76], Rocket [3]

2D Content/Feature Search VDBMS [5], BilVideo [19], VideoQ [13], AVIS [1], DelaunayMM [18]

2D Metadata Search VideoAnywhere [66], OVID [52]

2D Presentation MINOS [15]

Streaming & Transcoding Morph [23], 360ProbDASH [74]

We demonstrate the UNION operator by combining the Time-

lapse dataset with three TLFs. We first UNION it with the Venice

dataset. Next, we use a 360TLF that contains a 64×64 watermark;

this is denoted as “Watermark” in Figure 13. Finally, the “Rotated

Timelapse” TLF contains the original Timelapse dataset rotated by

90◦. All operations use the LAST merge function (see Section 3.2).

For each operator shown in Figures 13(a)–(d), LightDB outper-

forms other systems by a modest amount. This result is expected,

since application of each operator requires the same expensive de-

code/encode cycle that dominated execution time in our previous

experiments. For most operations, LightDB performs better since

it utilizes its GPU-based physical operators across the entire query,

which minimizes data transfer. The one exception is with temporal

selection and partitioning, where LightDB outperforms the other

systems by a sizable margin. In this case LightDB uses its GOP

index to decode only the relevant portions of the 360TLF. LightDB

performs slightly worse for unions due to its merge UDF overhead.

SlabTLF Operator Performance. We next show the average

throughput for queries using SlabTLFs as input. Figure 14 shows

the results for the SELECT and MAP operators using various in-

put parameters. Because the baseline systems do not support light

fields, we only show results for LightDB.

For the SELECT operator, we show in Figure 14(a) selection at

one or two points (representing a mono or stereoscopic selections),

over the temporal interval t = [11/2, 3
1/2], and over angles. Here

LightDB is able to generate results at approximately 60 frames per

second, which is a common throughput for 4K VR video. Similarly,

blur and grayscale operations, shown on Figure 14(b), perform at a

rate comparable to their 360TLF counterparts (see Figure 13(b)).

Effectiveness of Optimizations. Finally, we evaluate the per-

formance impact of several LightDB optimizations in Figure 15.

The left two plots in Figures 15(a) and 15(b) show performance

of the HOps in LightDB, in terms of the application’s frames per

second. These operators allow LightDB to far outperform the base-

line systems—in some cases by more than 500×! The one ex-

ception is FFmpeg’s GOP unioning performance, which matches

LightDB because it utilizes a similar GOP stitching mechanism that

it calls a “concat protocol” [16].

The “Self Union” plot illustrates the effect of other query opti-

mizations on LightDB performance. Here, we execute the degener-

ate query UNION(L,L), which LightDB simplifies to L to produce

a result without an expensive decode. The other systems are unable

to recognize this pattern, and perform far more work to produce the

degenerate result. A similar effect is seen in the “Self Select” plot,

where we show results for the degenerate SELECT(L, [−∞,+∞]).

5.5 Index Performance
Our final evaluation explores index performance in LightDB us-

ing queries of the form Scan(L) >> Select(di ∈ [a, b]) >> Store(L′
),

where di is an indexed dimension.

Figure 16(a) shows performance of temporal selection on the

Timelapse dataset for two choices of [a, b] both with and without a

GOP index. Here the presence of the index substantially improves

performance for queries over a small interval, but does not impact

performance for queries over a large extent.
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0

60

120

180

x = 0 x = 0, x = 1 t=[1  , 3  ] Θ=[  ,   ], 
Φ=[  ,   ]

F
P

S

LightDB

Cats Lightfield Selection

�ʹ �ʹ�4
�ͳʹ ͳʹ

Monoscopic Stereoscopic

(a) SELECT

0

60

120

180

Focus Grayscale

F
P

S

LightDB

Map @ 4K

(b) MAP

Figure 14: LightDB SlabTLF performance (Cats dataset)

1

10

100

1,000

10,000

100,000

TILESELECT GOPSELECT IDENTITY SELECT

F
P

S

LightDB FFmpeg Scanner OpenCV SciDB

Optimized Select @ 4K

(a) SELECT

1

10

100

1,000

10,000

100,000

TILEUNION GOPUNION SELF UNION

F
P

S

LightDB Ffmpeg Scanner OpenCV SciDB

Optimized Union (Tilable) @ 4K

0.1 0.1 0.1

(b) UNIONTILESELECT GOPSELECT IDENTITY SELECT

LightDB FFmpeg Scanner OpenCV SciDB

Figure 15: Homomorphic & optimized performance (log scale)

0

0.5

1

[89, 90] [0, 90]

T
im

e
 (

s)

GOP Index No Index

GOP Index @ 4K

(a) GOP Index

0

0.5

1

[0, π] [0, 2π]

T
im

e
 (

s)

Tile Index No Index

Tile Index @ 4K

(b) Tile Index

0

0.5

1

0 [-∞, +∞]

T
im

e
 (

s)

Spatial Index No Index

Spatial Index @ 4K

(c) Spatial Index

Figure 16: Index Performance

Next, we tiled the Timelapse dataset using the configuration

shown in Figure 3. Figure 16(b) shows resulting tile index perfor-

mance for two choices of φ. In this experiment, LightDB’s use of

the tile index is able to improve performance by allowing LightDB

to decode only the relevant tile rather than the entire encoded video.

To evaluate spatial indexes, we first created a large 360TLF that

simulates many 360◦ videos taken over time at a popular tourist

destination. To do so, we repeatedly unioned the Timelapse dataset

until it contained five million 360◦ videos defined at random points

in a unit cube and at the origin. We then performed two selections

with and without a spatial index defined on (x, y, z). The results

are shown in Figure 16(c), and illustrate that the R-tree yields a

modest benefit relative exhaustive search for relevant videos.

6. RELATED WORK
Several systems explore efficient video delivery that targets a

single format or workload. Examples include 360◦ streaming sys-

tems [39, 74] and light field image-based rendering systems [6, 58].

LightDB generalizes these and offers a unified declarative query

language independent of the underlying physical video format.

Multiple previous systems [37, 40, 56, 3, 76] target 2D video an-

alytics. VideoStorm [76] allow users to express distributed analyt-

ical workloads over 2D video (e.g., citywide security feeds), while

Optasia [40] also supports declarative queries. Similarly, VAIT [37]
offers a small set of predefined queries over large video datasets.

Since these systems target 2D video analytics, they force develop-

ers to manually map 3D environments onto 2D constructs, which

results in rigid applications that are difficult to maintain and evolve.

Other previous video systems, shown in Table 4, variously pro-

vide content-based, keyword or metadata, and similarity or feature-

based search for 2D video and images. LightDB supports much

richer workloads. The GStreamer [27] and Scanner [57] libraries

allow for fixed pipelines that are similar to LightDB query plans,

but these pipelines are rigid, closely tied to a physical execution

strategy, and also require manually mapping 3D constructs onto

a 2D equivalent. Finally, the SQL multimedia (SQL/MM) stan-

dard [68] extends the SQL specification to a limited set of opera-

tions (e.g., cropping, color histograms) over 2D images, but does

not support video or user-defined extensions.

The database community has explored the application of array-

based data models that are similar to the light field model exposed

by LightDB. For example, the RasDaMan [7], SciDB [12], and

TileDB [55] DBMSs allow developers to define and operate over

multidimensional arrays. While these systems offer excellent per-

formance for scientific and other analytical workloads, they do not

take advantage of the unique nature of virtual and augmented real-

ity video such as continuousness, angular periodicity, and nonuni-

form projections. Additionally, existing array DBMSs do not sup-

port video compression and its idiosyncrasies. As we showed in

this paper, the result is dramatically reduced performance.

Other work (e.g., [24, 44, 46]) focuses on capture, stitching, and

depth estimation aspects of 360◦ video. Similar examples exist

for light field capture [35]. These efforts are complementary to

LightDB, which accepts preprocessed 360◦ and light field videos

from these pipelines and performs further query processing.

In our evaluation, we demonstrated a substantial reduction in to-

tal data transfer by tiling a 360◦ video sphere and adaptively de-

livering tiles at various qualities. Recent work has shown similar

performance improvements [30, 21, 26, 45]. These applications,

however, are dedicated exclusively to the task of 360◦ video tiling

and do not generalize to other workloads as does LightDB. Birkl-

bauer et al. [10] show similar advantages for light field rendering.

7. CONCLUSION
In this paper, we presented LightDB, a DBMS designed to ef-

ficiently process virtual, augmented, and mixed reality (VAMR)

video. LightDB exposes a data model that treats VAMR video as

a logically continuous six-dimensional light field. It offers a query

language and algebra, allowing for efficient declarative queries.

We implemented a prototype of LightDB and evaluated it using

several real-world applications. Our experiments show that queries

in LightDB are easily expressible and yield up to a 500× perfor-

mance improvement relative to other video processing frameworks.
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