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ABSTRACT
Given a social network G, the influence maximization (IM) prob-
lem seeks a set S of k seed nodes in G to maximize the expected
number of nodes activated via an influence cascade starting from
S. Although a lot of algorithms have been proposed for IM, most
of them only work under the non-adaptive setting, i.e., when all k
seed nodes are selected before we observe how they influence other
users. In this paper, we study the adaptive IM problem, where we
select the k seed nodes in batches of equal size b, such that the
choice of the i-th batch can be made after the influence results of
the first i − 1 batches are observed. We propose the first practi-
cal algorithms for adaptive IM with an approximation guarantee
of 1 − exp(ξ − 1) for b = 1 and 1 − exp(ξ − 1 + 1/e) for
b > 1, where ξ is any number in (0, 1). Our approach is based on a
novel AdaptGreedy framework instantiated by non-adaptive IM al-
gorithms, and its performance can be substantially improved if the
non-adaptive IM algorithm has a small expected approximation er-
ror. However, no current non-adaptive IM algorithms provide such
a desired property. Therefore, we further propose a non-adaptive
IM algorithm called EPIC, which not only has the same worst-case
performance bounds with that of the state-of-the-art non-adaptive
IM algorithms, but also has a reduced expected approximation er-
ror. We also provide a theoretical analysis to quantify the per-
formance gain brought by instantiating AdaptGreedy using EPIC,
compared with a naive approach using the existing IM algorithms.
Finally, we use real social networks to evaluate the performance of
our approach through extensive experiments, and the experimental
experiments strongly corroborate the superiorities of our approach.
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1. INTRODUCTION
The proliferations of online social networks such as Facebook

and Twitter have motivated considerable research on viral market-
ing as an optimization problem. For example, an advertiser could
provide a few individuals (referred to as “seed nodes”) in a social
network with free product samples, in exchange for them to spread
the good word about the product, so as to create a large cascade
of influence on other social network users via word-of-mouth rec-
ommendations. The Influence Maximization (IM) problem in such
a scenario aims to select a number of seed nodes to maximize the
influence propagation created.

Formally, the input to IM consists of a social network G =
(V,E), a budget k, and a influence modelM . The influence model
M captures the uncertainty of influence propagation in G, and it
defines a setW of possible worlds, each of which represents a pos-
sible scenario of the influence among the nodes in G. The problem
seeks to activate (i.e., influence) a seed set S of k nodes that can
maximize the expected number of influenced individuals over all
the possible worlds inW .

A plethora of techniques have been proposed for IM [7, 12, 13,
15–17, 20–24]. Almost all techniques, however, require that the
seed set S should be decided before the influence propagation pro-
cess, which means that they work in a “non-adaptive” manner. In
other words, if an advertiser has k product samples, she would have
to commit all samples to k chosen social network users before ob-
serving how they may influence other users. In practice, however,
an advertiser could employ a more adaptive strategy to disseminate
the product samples. For example, she may choose to give out half
of the samples, and then wait for a while to find out which users
are influenced; after that, she could examine the set U of users that
have not been influenced, and then disseminate the remaining sam-
ples to k/2 users that have a large influence on U . This strategy
is likely to be more effective than giving out all k samples all at
once, since the dissemination of the second batch of products is
optimized using the knowledge obtained from the first batch’s re-
sults.

In fact, the above adaptive approach has been applied in
HEALER [26], a software agent deployed in practice since 2016,
which recommends sequential intervention plans for homeless
shelters. HEALER aims to raise awareness about HIV among
homeless youth by maximizing the spread of awareness in the so-
cial network of the target population. It chooses people as the seed
nodes, who are “activated” by participating the intervention plans
for HIV. The choices of seed nodes are adaptive, i.e., they are se-
lected in batches and the choice of a batch depends on the observed
results of all previous batches.
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Golovin et al. [11] are the first to study IM under the adaptive
setting, assuming that the k seed nodes are chosen in a sequential
manner, such that the selection of the (i+ 1)-th node is performed
after the influence of the first i nodes has been observed. Specifi-
cally, they consider that (i) the social network conforms to a possi-
ble world w sampled fromW , but (ii) w is not known to the adver-
tiser before the selection of the first seed node. Then, after the i-th
seed node vi is chosen, the part of w relevant to {v1, v2, . . . , vi}
(i.e., the nodes that they can influence in w) is revealed to the ad-
vertiser, based on which she can (i) eliminate the possible worlds
inW that contradict what she observes, and (ii) select the next seed
node as one that has a large expected influence over the remaining
possible worlds.

Golovin et al. [11] propose a simple greedy algorithm for adap-
tive IM that returns a seed set S whose influence is at least 1− 1/e
of the optimum. under the case that only one seed is selected in
each batch (i.e., b = 1). Nevertheless, the algorithm requires know-
ing the exact expected influence of every node, which is impractical
since the computation of expected spread is #P-hard in general [8].
Vaswani and Lakshmanan [25] extend Golovin et al.’s model by
allowing selecting b ≥ 1 seed nodes in each batch, and by ac-
commodating errors in the estimation of expected spreads. Their
method returns an (1 − exp

(
− (1−1/e)2

η

)
)-approximation under

this setting, where η is certain number bigger than 1. However,
even this relaxed approach is still impractical, its requirements on
the accuracy of expected spread estimation cannot be met by any
existing algorithms without incurring prohibitive processing costs
(see Section 2.3 for a discussion).

Contributions. Motivated by the deficiency of existing techniques,
we study the adaptive IM problem under the general setting that
each batch contains b ≥ 1 seed nodes, and propose the first practi-
cal solution for adaptive IM. Specifically, our contributions include
the following.

First, We propose AdaptGreedy, a framework that enables us to
construct strong approximation solutions for adaptive IM using ex-
isting non-adaptive IM methods as building blocks. In particular,
we prove that AdaptGreedy achieves an approximation guarantee
of 1− exp(ξ − 1) for b = 1 and 1− exp(ξ − 1 + 1/e) for b > 1,
where ξ ∈ (0, 1) is a user-specified parameter. The derivation of
this approximation result requires non-trivial extension of the exist-
ing theoretical results on adaptive algorithms (e.g., [11] and [25]),
since AdaptGreedy imposes far fewer constraints on the building
blocks used for adaptive IM.

Second, we conduct an in-depth analysis on how AdaptGreedy
could be instantiated with the state-of-the-art non-adaptive IM al-
gorithms, and provide an interesting insight: the overall approxima-
tion guarantee of AdaptGreedy could be improved if the expected
approximation guarantee of the non-adaptive IM algorithm used
by AdaptGreedy is much better than the worst-case approximation
guarantee of the algorithm. Existing non-adaptive IM algorithms,
however, do not benefit AdaptGreedy in this regard, as there is
no known result on their expected approximation guarantee. Mo-
tivated by this, we develop a new non-adaptive IM method, EPIC,
that provides not only an attractive expected approximation ratio,
but also the same worst-case guarantees as the state-the-art non-
adaptive IM techniques. We establish AdaptGreedy’s performance
guarantee when it is instantiated with EPIC, based on a non-trivial
theoretical analysis utilizing Azuma’s inequality [10].

Third, We conduct extensive experiments to test the performance
of AdaptGreedy and EPIC, and the experimental results strongly
corroborate the effectiveness and efficiency of our approach.

2. PRELIMINARIES

2.1 IM and Possible Worlds
Let G = (V,E) be a social network with a node set V and an

edge set E, such that |V | = n and |E| = m. We assume that
the propagation of influence onG follows the independent cascade
(IC) model [16], in which each edge (u, v) in G is associated with
a probability p(u, v), and the influence propagation process is de-
fined as a discrete-time stochastic process as follows. At timestamp
0, we activate a set S of seed nodes. Then, at each subsequent
timestamp t, each node u that is newly activated at timestamp t−1
has a chance to activate each v of its neighbors, such that the prob-
ability of activation equals p(u, v). After that, u stays active, but
cannot activate any other nodes. The propagation process termi-
nates when no node is newly activated at a certain timestamp, and
the total number of nodes activated then is defined as the influence
spread of S, denoted as IG(S). The vanilla influence maximiza-
tion (IM) problem asks for a seed set S of k nodes that maximizes
the expected value of influence spread E[IG(S)].

As demonstrated in [16], the IC model also has an interpretation
based on possible worlds. Let w be a graph generated by removing
each edge (u, v) in G with 1 − p(u, v) probability, and let W be
the set of all possible choices of w. Then, w can be regarded as a
possible world sampled from a distribution overW that is defined
by G and the edge removal process. For example, Figure 1 shows
a social network and three of its possible worlds. For convenience,
we abuse notation and use W to denote both the universe of pos-
sible worlds and the aforementioned distribution over it. For any
seed set S, let Iw(S) be the number of nodes in w (including those
in S) that can be reached from S via a directed path starting from
S, and Ew∼W [Iw(S)] be the expectation of Iw(S) over W . It is
shown in [16] that

Ew∼W [Iw(S)] = E[IG(S)].

In other words, if we are to address the vanilla IM problem, it suf-
fices to identify a seed set S whose expected influence over the
possible worlds inW is the largest.

Remark. We note that the algorithms presented in this paper can
be extended to other influence models such as the linear thresh-
old model [16] or the topic-aware models [5]. We focus on the
IC model, however, as it simplifies the exposition of our technical
details.

2.2 Adaptive IM
Suppose that the influence propagation on G conforms to a pos-

sible world w that is sampled fromW , i.e., for any seed set S, the
nodes that it can influence are exactly the nodes that it can reach
in w. The adaptive influence maximization (IM) problem [11] con-
siders that w is unknown in advanced, but can be partially revealed
after we choose some nodes as seeds. For example, consider the
social network in Figure 1(a), and suppose that the possible world
sampled from W is w = w1, as shown in 1(b). Assume that we
choose v1 as the first seed node. In that case, we can observe v1’s
influence on v2 and v4, since v1 has two outgoing edges (v1, v2)
and (v1, v4) in w1. Similarly, we can observe v4’s influence on v5.
In addition, we can also observe that v1 (resp. v4) cannot influence
v3 (resp. v6), as w1 does not contain an edge from v1 to v3 (resp.
v4 to v6). Figure 2(a) shows the results of the influence propaga-
tion from v1, with each double-line (dashed-line) arrow denoting a
successful (resp. failed) step of influence.

In general, after choosing a partial set S′ of seed nodes, we can
learn all nodes that S′ can reach in w, as well as the out-edges
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Figure 2: Adaptive vs. non-adaptive seed selection with k = 2

of those nodes in w. This enables us to optimize the choices of
the remaining seed nodes since we can focus on the nodes that
have not been influenced by S′. For instance, consider that se-
lecting another seed node based on the result in Figure 2(a). In that
case, we can omit the nodes that have been influenced (i.e., v1, v2,
v4, and v5), and focus on the subgraph induced by the remaining
nodes, as shown in Figure 2(b). Based on this, we can choose v3

as the second seed node, which yields the results in Figure 2(c),
where we have 6 nodes influenced in total. In contrast, if we are to
non-adaptively choose two seed nodes from the social network in
Figure 1(a), we may end up choosing v1 and v4, in which case we
would obtain the result in Figure 2(d) when the underlying possible
world is w1 in Figure 1(b). In other words, we can only influence
4 nodes instead of 6.

Assume that we are to choose k seed nodes in r batches of
equal size b = k/r, and that we are allowed to observe the in-
fluence propagation in w for r times in total, once after the se-
lection of each batch. The adaptive IM problem asks for r seed
sets S1, S2, . . . , Sr , such that selecting Si (i ∈ [1, r]) as the i-th
batch maximizes the expected influence spread over the choices of
w ∼ W . Observe that when b = k (i.e., r = 1), the problem
degenerates to the vanilla IM problem.

We aim to develop algorithms for adaptive IM that provide non-
trivial worst-case guarantees in terms of both accuracy (i.e., the
expected influence of

⋃
i Si) and efficiency (i.e., the time required

to identify Si). We do not consider the “waiting time” required to
observe the influence of a seed node batch Si before the selection
of the next batch Si+1, since it is independent of the algorithms
used. That is, we target at helping the advertiser to identify Si+1 as
quickly as possible after the effects of Si have been observed.

Table 1 lists the notations that are frequently used in the remain-
der of the paper.

2.3 Existing Solutions
The first solution to adaptive IM is by [11]. It assumes that b =

1 (i.e., each batch consists of only one seed node), and adopts a
greedy approach as follows. Given G, it first identifies the node
v1 whose expected spread E[IG({v1})] on G is the largest, and
selects it as the first seed. Then, it observes the nodes that are
influenced by v1 (which are in accordance to the possible world
w0), and removes them from G. Let G2 denote the subgraph of G
induced by the remaining nodes. After that, for the i-th (i > 1)

Table 1: Frequently used notations

Notation Description
G = (V,E) A social network with node set V and edge set E.
n,m the numbers of nodes and edges in G, respectively
k the total number of selected seed nodes
b the number of nodes selected in each batch
Gi the i-th residue graph
ni,mi the numbers of nodes and edges in Gi, respectively
Si the seed set selected from Gi
Soi the optimal seed set in Gi
c c = 1 when b = 1 and c = 1− 1/e otherwise.
OPTk,b the optimal expected influence spread of k seed nodes

under the setting of selecting b nodes in each batch.
OPTb(Gi) the optimal expected influence spread of b seed nodes

in Gi.
IG(S) the number of nodes activated by S in G
εi, δi the parameters for the worst-case approximation guar-

antee in the ith batch.
ξi the absolute error factor in the ith batch
CovR(S) the number of RR-sets inR that overlap S
FR(S) the fraction of RR-sets inR that overlap S

batch, it (i) selects the node vi with the maximum expected spread
E[IGi({vi})] on Gi, (ii) observes the influence of vi on Gi, and
then (iii) generates a new graph Gi+1 by removing from Gi those
nodes that are influenced by vi. For convenience, we refer to Gi as
the i-th residue graph, and let G1 = G.

Let OPTk,b denote the expected spread of the optimal solution
to the adaptive IM problem parameterized with k and b. Golovin
et al. [11] show that the above greedy approach returns a solution
whose expected spread is at least (1 − 1/e) · OPTk,1. This ap-
proximation guarantee, however, cannot be achieved in polynomial
time because (i) in the i-th batch, it requires identifying a node vi
with the maximum largest expected spread E[IGi({vi})] on Gi,
but (ii) computing the exact expected spread of a node is #P-hard
in general [8].

To remedy the above deficiency, Vaswani and Lakshmanan [25]
propose a relaxed approach that allows errors in the estimation of
expected spreads. In particular, they assume that for any node set S
and any residue graph Gi, we can derive an estimation Ẽ[IGi(S)]
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Algorithm 1: AdaptGreedy
Input: social network G, seed set size k, batch number r
Output: adaptively selected seed sets S1, · · · , Sr

1 b← k/r;
2 G1 ← G;
3 if r = k then
4 c← 1;

5 else
6 c← 1− 1/e;

7 for i = 1 to r do
8 Identify a size-b seed set Si from Gi, such that the

expected spread of Si on Gi is at least c− ξi times the
largest expected spread of any size-b seed set on Gi;

9 Observe the influence of Si in Gi;
10 Remove all nodes in Gi that are influenced by Si, and

denote the resulting graph as Gi+1;
11 return S1, · · · , Sr

of E[IGi(S)], such that

c⊥ · E[IGi(S)] ≤ Ẽ[IGi(S)] ≤ c> · E[IGi(S)], (1)

with c>/c⊥ bounded from above by a parameter η. They show
that, by feeding such estimated expected spreads to the greedy
approach in [11], it can achieve an approximation guarantee of
1− exp (−1/η). In addition, they show that the greedy approach
can be extended to the case when b > 1, with one simple change: in
the i-th batch, instead of selecting only one node, we select a size-
b seed set Si whose estimated expected spread on Gi is at least
1− 1/e fraction of the largest estimated expected spread on Gi. In
that case, they show that the resulting approximation guarantee is
1− exp

(
− (1−1/e)2

η

)
.

Unfortunately, the accuracy requirement in Equation 1 is so strin-
gent that no existing algorithm for evaluating expected spread can
meet the requirement without incurring prohibitive computation
costs. To understand this, observe that when E[IGi(S)] is very
small, Equation (1) allows only a tiny amount of estimation error in
Ẽ[IGi(S)], in which case the derivation of Ẽ[IGi(S)] is extremely
challenging. Due to this issue, Vaswani and Lakshmanan [25] pro-
pose to trade accuracy for efficiency and adopt algorithms that do
not enforce Equation 1, but fail to establish any non-trivial approx-
imation guarantees accordingly.

3. SOLUTION FRAMEWORK
Algorithm 1 illustrates the framework of our solution for

adaptive IM, referred to as AdaptGreedy. At the first glance,
AdaptGreedy may seem similar to Vaswani and Lakshmanan’s
method [25], since both techniques (i) adaptively select seed nodes
in r batches and (ii) do not require exact computation of ex-
pected spreads. However, there is a crucial difference between the
two: Vaswani and Lakshmanan’s method requires that the expected
spread of every node set should be estimated with a small rela-
tive error, whereas AdaptGreedy allows a random absolute error
of ξi · OPTb(Gi), where OPTb(Gi) denotes the maximum ex-
pected spread of any size-b seed set on Gi. The error requirement
of AdaptGreedy is much more lenient than that of Vaswani and
Lakshmanan’s method, and it can be achieved by several state-of-
the-art solutions [17,23,24] for vanilla influence maximization, i.e.,

it admits practical implementations. In addition, AdaptGreedy pro-
vides a strong approximation guarantee, as shown in the following
theorem.

THEOREM 1. Let Gi be the set of possible choices for Gi. Let
Pr[ξi | G1, . . . , Gi] be the probability that Si achieves an approxi-
mation ratio of c−ξi conditioned on the event that the first i residue
graphs are G1, . . . , Gi, and

ξ =
1

r

r∑
i=1

∑
G1∈G1,...,Gi∈Gi

(ξi · Pr[ξi | G1, . . . , Gi] · Pr[G1, . . . , Gi]) .

(2)
Then, the approximation guarantee of AdaptGreedy is at least{

1− exp(ξ − 1), if b = 1

1− exp
(
ξ − 1 + 1

e

)
, otherwise

(3)

Intuitively, Theorem 1 states that the approximation guarantee of ξ
depends on the average value of ξi (i ∈ [1, r]) conditioned on the
possibilities of G1, . . . , Gr .

Now recall that the adaptive IM method in [25] provides the fol-
lowing approximation guarantee for certain η > 1:{

1− exp(−1/η), if b = 1

1− exp
(
− (1−1/e)2

η

)
, otherwise

In comparison, the approximation guarantee of AdaptGreedy is
significantly better when b > 1, and is comparable when b = 1.
In addition, AdaptGreedy is flexible in that it allows each batch of
seed nodes Si to be selected with different (even random) approxi-
mation guarantee c− ξi, whereas the existing solutions (e.g., [11])
for adaptive IM require that all seed sets S1, . . . , Sr should be pro-
cessed with identical accuracy assurance. As we show in Section 4,
the flexibility of AdaptGreedy is crucial in improving the efficiency
of our adaptive IM algorithms.

The proof of Theorem 1 is rather intricate as it requires non-
trivial extensions of the theoretical results developed for adaptive
submodular optimization [11]. We refer interested readers to Ap-
pendix A for the details.

4. INSTANTIATIONS OF ADAPTGREEDY

4.1 Instantiation using Existing Algorithms
As shown in Algorithm 1, AdaptGreedy requires identifying a

size-b seed set Si from the i-th residue graph Gi, such that

E[IGi(Si)] ≥ (c− ξi) ·OPTb(Gi),

where E[IGi(Si)] is the expected spread of Si onGi,OPTb(Gi) is
the maximum spread of any size-b seed set on Gi, and c equals 1 if
b = 1 and 1−1/e otherwise. Such an approach achieves a provable
approximation guarantee represented by ξ as long as ξ1, · · · , ξi, ξ
satisfy the condition shown in Theorem 1. We observe that such a
seed set Si could be obtained by applying the state-of-the-art algo-
rithms (e.g., [17, 23, 24]) for vanilla influence maximization (IM)
on Gi. In particular, these algorithms are randomized, and they
provide a worst-case approximation guarantee as follows: given a
seed set size b, an error threshold εi and a failure probability δi, they
output a size-b seed set Si in Gi whose expected spread is c − ρi
times the maximum expected spread of any size-b seed set on Gi,
such that ρi ≤ εi with at least 1− δi probability. For convenience,
we refer to ρi as the absolute error factor.

By applying such algorithms on each residue graph Gi with
any given parameters εi and δi, we obtain an instantiation of
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AdaptGreedy achieving an approximation ratio of 1− exp(ξ − c)
(see Theorem 1), with

Pr
[
ξ > 1

r

∑r
i=1 εi

]
= Pr

[
1
r

∑r
i=1 εi <

1
r

∑r
i=1

∑
G1,...,Gi

(ρi · Pr [ρi, G1, . . . , Gi])
]

≤
∑r
i=1 Pr

[
εi <

∑
G1,...,Gi

(ρi · Pr[ρi, G1, . . . , Gi−1])
]

≤
∑r
i=1

∑
G1,...,Gi

(Pr [εi < ρi | G1, . . . , Gi] · Pr[G1, . . . , Gi])

≤
∑r
i=1

∑
G1,...,Gi

(δi · Pr[G1, . . . , Gi])

=
∑r
i=1 δi

In other words, the instantiation yields an approximation guarantee
of 1− exp

(
1
r

∑r
i=1 εi − c

)
with at least 1−

∑r
i=1 δi probability.

But how efficient is the above instantiation? To answer the
above question, we need to investigate the time complexity of the
vanilla IM algorithms in [23]. The theoretical analysis in [23]
show that if we are to achieve (c − εi)-approximation on Gi with
at least 1 − δi probability, then the expected computation cost is
O((b logni + log 1

δi
)(mi +ni)/ε

2
i ), where ni and mi denotes the

numbers of nodes and edges inGi. Since ni ≤ n andmi ≤ m, the
expected time required to process Gi is O((b logn+ log 1

δi
)(m+

n)/ε2i ). As such, all r batches of seed nodes can be identified in
O(
∑r
i=1(b logn+ log 1

δi
)(m+ n)/ε2i ) expected time.

4.2 Rationale for an Improved Approach
The instantiation of AdaptGreedy mentioned in Section 4.1 is

simple and intuitive, but is far from optimized in terms of its ap-
proximation guarantee. To explain, recall that it requires each
seed set Si to achieve (c − εi)-approximation on Gi with at least
1 − δi, based on which it provides an overall approximation ra-
tio of 1 − exp

(
1
r

∑r
i=1 εi − c

)
with at least 1 −

∑r
i=1 δi prob-

ability. In other words, it imposes a stringent worst-case approx-
imation guarantee on each seed set Si. This, however, might be
overly conservative. For example, suppose that one Sj of the seed
sets has an expected spread that is c− ρj times the optimum, with
ρj > εj , i.e., it fails to achieve (c−εj)-approximation. Even in that
case, the overall approximation ratio of AdaptGreedy could still be
c− 1

r

∑r
i=1 εi, as long as there exists another seed set Si whose ex-

pected spread is (c−ρi) times the maximum, with ρi−εi ≥ εj−ρj .
In other words, the deficiency of one seed set can be compensated,
as long as there exist other seed sets whose quality is above the bar
by a sufficient margin.

Formally, if we regard each seed set Si’s approximation ratio
c − ρi as a random variable, then the overall approximation guar-
antee of AdaptGreedy, namely, 1 − exp

(
1
r

∑r
i=1 ρi − c

)
, de-

pends on the mean of all r variables. Intuitively, when r is siz-
able, 1

r

∑r
i=1 ρi should be concentrated to its expectation, i.e.,

1
r

∑r
i=1 E[ρi]. That is, instead of formulating the approximation

ratio of AdaptGreedy based on the worst-case guarantee of each
Si, we might derive it based on each Si’s expected approximation
ratio, which could lead to much tighter results.

To make the above idea work, however, there are several chal-
lenges that we need to address. First, there is no known result for
vanilla IM with expected approximation guarantees. This motivates
us to develop a vanilla IM method that is tailored for AdaptGreedy,
as we show in Section 4.3. Second, as the selection of the i-th seed
set Si is dependent on the results of the (i − 1)-th seed set Si−1,
the random variables ρ1, ρ2, . . . , ρr are correlated, which makes
it rather non-trivial to derive concentration results for 1

r

∑r
i=1 ρi.

We circumvent this issue with a theoretical analysis leveraging
Azuma’s inequality [10] in Section 4.4. Finally, even if we are

given a concentration bound on 1
r

∑r
i=1 ρi, we still need to care-

fully tune each ρi, so as to yield a strong theoretical guarantee while
achieving superior practical efficiency.

4.3 Vanilla IM with Expected Approximation
As discussed in Section 4.2, the existing IM algorithms provide

only a worst-case approximation guarantee c − εi, i.e., they en-
sure that their absolute error factor ρi is no more than the input
threshold εi with high probability. To optimize the performance of
AdaptGreedy, however, we are in need of non-adaptive IM algo-
rithm A with two properties:

1. The worst-case approximation guarantee and time complex-
ity of A should be at least as good as those of the state-of-
the-art non-adaptive IM algorithms.

2. The expected value of A’s absolute error factor ρi should be
much smaller than the input threshold εi.

In the following, we present a new non-adaptive IM algorithm, re-
ferred to as EPIC1, that satisfies both of the above requirements.
Towards that end, we first introduce the concept of reverse reach-
able sets (RR-sets) [7], which is the basis of our algorithm.

RR-Sets. In a nutshell, RR-sets are subgraph samples ofG that can
be used to efficiently estimate the expected spreads of any given
seed sets. Specifically, a random RR-set of G is generated by first
selecting a node v ∈ V uniformly at random, and then taking the
nodes that can reach v in a random graph generated by by indepen-
dently removing each edge e ∈ E with probability 1 − p(e). If a
seed node set S has large expected influence spread, then the prob-
ability that S intersects with a random RR-set is high, as shown in
the following equation [7]:

E{IG(S)} = n · P{R ∩ S 6= ∅}, (4)

where R is a random RR-set. This result suggests a simple method
for estimating the expected influence spread of any node set S: we
can use a setR of random RR-sets to estimate the value of P{R ∩
A 6= ∅} and hence E{IG(S)}. In particular, let CovR(S) denote
the number of RR-sets in R that overlap S. Then the value of
E{IG(S)} can be unbiasedly estimated by n · FR(S), where

FR(S) = CovR(S)/|R| (5)

By the law of large numbers, n · FR(S) should converge to
E{IG(S)} when |R| is large, which provides a way to estimate
E{IG(S)} to any desired accuracy level. However, due to the cost
of generating RR-sets, there is a tradeoff between accuracy and ef-
ficiency in any algorithm using RR-set sampling.

The EPIC Algorithm Algorithm 2 shows the pseudo-code of our
EPIC algorithm. At the fist glance, EPIC is similar to the SSA algo-
rithm in [17] as they both (i) start from a small number of RR-sets
and (ii) iteratively increase the RR-set number until a satisfactory
solution is identified. The main difference between the two algo-
rithm lies in the way that they generate RR-sets in each iteration.
In particular, in SSA [17], the number of RR-sets generated in each
iteration is a random number, which makes it rather difficult to de-
rive the algorithm’s time complexity or its expected approximation
guarantee. (This could explain the absence of formal time com-
plexity analysis in [17].) In contrast, in each iteration of EPIC, it
uses a number of RR-sets that is fixed based on the number of pre-
ceding iterations, which enables us to derive rigorous bounds on
its worst-case approximation guarantee, expected time complexity,
1Expected approximation for influence maximization.
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Algorithm 2: The EPIC Algorithm
input : Gi, εi, δi, and b.
output: The seed set Si selected in the ith batch.

1 γi,1 = εi
6

, γi,3 = εi
2

, γi,2 =
εi−γi,1−cγi,3

1+γi,1

2 Υ1 =
(4e−8)(1+γi,1)(1+γi,2)

γ2i,3
ln(3/δi)

3 Tmax = (8+2εi)ni

bε2i

(
ln 2

δi
+ ln

(
ni
b

))
, ω =

⌈
log2(Tmax

Υ1
)
⌉

4 Υ2 = 1 +
(4e−8)(1+γi,2)

γ2i,2
ln 3ω

δi

5 Generate a setR1 of Υ1 random RR sets
6 repeat
7 〈Si, FR1(Si)〉 ←Max-Coverage(R1, b)
8 if |R1| · FR1(Si) ≥ Υ1 then
9 Generate |R1| random RR sets intoR2

10 Calculate FR2(Si) of Si inR2

11 if |R2| · FR2(Si) ≥ Υ2 then
12 if FR1(Si) ≤ (1 + γi,1)FR2(Si) then
13 return Si

14 R1 = R1 ∪R2

15 until |R1| ≥ Tmax ;
16 return Si

Algorithm 3: The MaxCover Algorithm
input : A setR of random RR sets, and b.
output: A node set Si, and the fraction of RR sets inR

covered by Si.

1 Si = ∅
2 for i = 1 to b do
3 v = arg maxv′∈V (CovR(Si ∪ {v′})− CovR(Si))
4 Insert v into Si
5 return 〈Si, CovR(Si)/R〉

and expected approximation ratio. In what follows, we discuss the
details of EPIC and its subroutine MaxCover (in Algorithm 3).

Based on the RR-set sampling method described previously, a
simple approach for selecting Si with a large expected influence
spread is to first generate a set R of RR-sets, and then invoke the
MaxCover algorithm onR. In particular, MaxCover uses a simple
greedy approach to identify Si ⊆ V such that Si overlaps with
as many RR-sets in R as possible. Since FR(·) is a submodular
function for any set R of RR-sets [7], the set Si found by such an
approach ensures that

FR(Si) ≥ cFR(Soi ), (6)

where Soi is an optimal seed set in Gi. Note that n · FR(Si)
and n · FR(Soi ) are unbiased estimations of the expected influ-
ence spread of Si and Soi , respectively. Therefore, when |R| is
large, the approximation guarantee of Si converges to c according
to Equation (6).

To strike a balance between the quality of Si and the number
of RR-sets used to derive Si, EPIC iterates in a careful manner as
follows. In each iteration, it maintains two sets of random RR-sets
R1 and R2 with |R1| = |R2|. It invokes MaxCover on R1 to
identify a seed set Si, and then utilizes R2 to test whether Si pro-
vides a good approximation guarantee. Initially, the cardinalities of
R1 andR2 are small constants determined by the parameter Υ1 in
Line 2 in the first iteration of EPIC. Then, whenever EPIC finds

that the quality of the seed set Si generated in an iteration is not
satisfactory, it doubles the sizes of R1 and R2. This process re-
peats until a satisfying solution is found or R1 and R2 reaches an
upper bound Tmax (Line 15).

As explained before, one of the main designing goals for EPIC
is to achieve a worst-case approximation ratio of c − εi, as with
the state-of-the-art IM algorithms. EPIC achieves this goal by a
series of operations in each iteration, whose implications are briefly
explained in the following.

In each iteration, EPIC first applies MaxCover on R1 (Line 7),
which returns a seed set Si satisfying

FR1(Si) ≥ cFR1(Soi ) (7)

After that, EPIC usesR2 to estimate the expected spread of Si (i.e.,
E{IGi(Si)}). Observe that |R2|FR2(Si) is a binomial random
variable due to Equation (5). Accordingly, EPIC uses the Chernoff
bound to set a threshold Υ2 (Line 4) such that, if the condition
|R2| · FR2(Si) ≥ Υ2 in Line 11 is satisfied, then

niFR2(Si) ≤ (1 + γi,2)E{IGi(Si)} (8)

should hold with high probability. Intuitively, Equation (8) implies
that |R2| is large enough such that niFR2(Si) is a sufficiently ac-
curate estimation of the expected influence spread of Si in Gi. Af-
ter that, EPIC further checks whether

FR1(Si) ≤ (1 + γi,1)FR2(Si) (9)

holds in Line 12. Intuitively, if Equation (9) is true, then we know
that ni · FR1(Si) is also a sufficiently accurate estimation of the
expected spread of Si inGi. Note that E{IGi(Si)} ≤ OPTb(Gi).
Therefore, if the estimation of E{IGi(Si)} usingR1 is sufficiently
accurate, then the estimation of OPTb(Gi) using R1 should also
be sufficiently accurate due to the Chernoff Bound. Thus, when
Equation (9) and the inequality |R1| · FR1(Si) ≥ Υ1 in Line 8
hold, then

ni · FR1(Soi ) ≥ (1− γi,3)OPTb(Gi) (10)

holds with high probability. Combining Equations. (7)–(10), we
can derive a quantitative relationship between E{IGi(Si)} and
OPTb(Gi) when Si is returned:

(1 + γi,2)E{IGi(Si)} ≥ niFR2(Si)

≥ niFR1(Si)

1 + γi,1
≥ cniFR1(Soi )

1 + γi,1

≥ c(1− γi,3)OPTb(Gi)

1 + γi,1
. (11)

This proves the (c − εi) worst-case approximation ratio of
E{IGi(Si)} as εi = γi,1 + γi,2 + γi,1γi,2 + cγi,3.

4.4 Theoretical Analysis
Based on the discussions in Section 4.3, we prove the worst-case

approximation guarantee and time complexity of EPIC as follows.

THEOREM 2. With a probability of at least 1−δi, EPIC returns
a seed set Si satisfying

E{IGi(Si)} ≥ (c− εi)OPTb(Gi)

for any Gi. In addition, the expected time complexity of EPIC
is O((b logni + log 1

δi
)(mi + ni)/ε

2
i ), where ni and mi are the

numbers of nodes and edges of Gi, respectively.

Due to the space constraint, we omit the proofs of Theorem 2
and its corollary (i.e., Lemma 2), and include them in our technical

1034



report [1]. In what follows, we analyze the expected approximation
guarantee of EPIC, and show that instantiating AdaptGreedy using
EPIC can lead to improved performance for adaptive IM.

4.4.1 Expected Approximation Guarantee
To derive the expected approximation guarantee of EPIC, we

would need to compute the expectation of the absolute error factor
ξi of EPIC. We observe that ξi consists of two components: the
estimation error on IGi(Si) and the estimation error on IGi(S

o
i ),

where Soi is an optimal seed set in Gi. In what follows, we analyze
these two components in detail.

Recall that EPIC utilizes the set R1 of random RR-sets to find
Si, and then employs R2 to estimate E{IGi(Si)}. This ensures
that R2 is independent of Si and R1 is independent of Soi . Based
on this property and the definition of FR(·) in Equation (5), we
know that |R1|FR1(Soi ) and |R2|FR2(Si) are both random vari-

ables following binomial distributionsBin
(
|R1|,

E{IGi
(So

i )

ni

)
and

Bin
(
|R2|,

E{IGi
(Si)}

ni

)
, respectively. By the well known bound

on the mean absolute deviation of binomial random variables (see
Lemma 4 in the appendix), we have

E
{∣∣∣∣FR1(Soi )− OPTb(Gi)

ni

∣∣∣∣} ≤
√
OPTb(Gi)

ni|R1|
(12)

E
{∣∣∣∣FR2(Si)−

E{IGi(Si)}
ni

∣∣∣∣} ≤
√
OPTb(Gi)

ni|R2|
(13)

Intuitively, Equation (12) provides an upper bound of the “es-
timation error” of E{IGi(S

o
i )} using |R1|, while Equation (13)

gives an upper bound of the estimation error of E{IGi(Si)} us-
ing |R2|. Moreover, the absolute error factor ξi of EPIC can be
represented by these estimation errors, due to Equations (7)–(10).
Combining these results, we obtain the following lemma:

LEMMA 1. Suppose that R1 is the set of random RR-sets used
by EPIC to identify Si in the last iteration of EPIC. Let γi,1 be the
parameter set in Line 1 of EPIC. Then,

E{ξi | R1} ≤ (c+ 1)

√
ni

|R1| ·OPTb(Gi)
+ cγi,1 (14)

Meanwhile, the following theorem shows that, when EPIC ter-
minates, the size ofR1 is likely to be large.

LEMMA 2. Let γi,3 be the parameter set in Line 1 of EPIC.
When EPIC stops, we must have

|R1| ≥
ni(4e− 8)

γ2
i,3 ·OPTb(Gi)

ln(3/δi)

with the probability of at least 1− δi/3.

Combining Lemma 1 and Lemma 2, we immediately get the fol-
lowing bound on the expected approximation ratio of EPIC in each
batch i:

THEOREM 3. For each batch i, define λi, βi as

λi = (c+ 1)
γi,3
2εi

1√
(e− 2) ln(3/δi)

+
γi,1c

εi
(15)

βi = λi + (c− λiεi)δi/(3εi) (16)

where γi,3 and γi,1 are the parameters set in Line 1 of EPIC, and
εi, δi are the input parameters to EPIC in batch i. Then, we have
E{ξi} ≤ βiεi, and hence, the expected approximation guarantee
of EPIC is at least c− βiεi.

PROOF. Using Lemma 1 and Lemma 2, we can get

E{ξi} = E{E{ξi | R1}}
≤ λiεi(1− δi/3) + cδi/3 = βiεi (17)

Hence, the lemma follows.

By Theorem 3, the expected approximation guarantee of EPIC
can be much better than its worst-case approximation guarantee
(i.e., c − εi), as long as βi is considerably smaller than 1. In Sec-
tion 4.4.2, we investigate how this property can be exploited to de-
velop an improved instantiation of AdaptGreedy based on EPIC.

4.4.2 Performance Improvement for AdaptGreedy
In this section, we consider the instantiation of AdaptGreedy

with EPIC, and aim to derive an improved approximation guarantee
for AdaptGreedy based on the results in Section 4.4.1. Towards
this end, we utilize Azuma’s inequality:

LEMMA 3. (Azuma’s inequality [10]) Let Y1, · · · , Yr be any
sequence of random variables satisfying Yi ≤ α and

E{Yi | Y1, · · · , Yi−1} ≤ ϑ

for every i ∈ [r]. Then we have

Pr
[∑r

i=1
Yi > rϑ+ z

√
rα
]
≤ exp{−z2/2} (18)

Observe that Azuma’s inequality provides a concentration
bound for possibly correlated random variables. Recall that we
have shown in Theorem 1 that the approximation guarantee of
AdaptGreedy is determined by the summation of the absolute error
factors of the non-adaptive IM algorithm (i.e., EPIC in our case)
used to select each batch of seed nodes, and these absolute error
factors could be correlated. Therefore, if we consider them as the
random variables in Azuma’s inequality, we can get a bound on
their summation, based on which we can derive the overall approx-
imation guarantee by Theorem 1. However, there is one issue in
this approach: the Azuma’s inequality requires that the random
variables considered have a deterministic upper bound (i.e., α in
Lemma 3), which is not the case for our absolute error factors. For-
tunately, due to the worst-case approximation guarantee of EPIC,
its absolute error factor is bounded by an input parameter (i.e., εi)
with high probability. We leverage this property to apply Azuma’s
inequality, by considering a “truncated” version of each absolute
error factor, which is defined as the minimum of the absolute er-
ror factor and the input parameter εi. We derive a concentration
result for such truncated variables, and then extend it to prove the
following theorem that establishes the approximation guarantee of
AdaptGreedy when instantiated by EPIC.

THEOREM 4. Suppose that we instantiate AdaptGreedy using
EPIC with the parameters (εi, δi) in each batch i. Define ε =
max{ε1, · · · , εr} and β = max{β1, · · · , βr}, where βi is defined
in Theorem 3. For any given δ′ ∈ (0, 1) and ξ ∈ (0, 1), if

ε = max{(β +
√

(2/r) ln(1/δ′))−1ξ, ξ} (19)

then AdaptGreedy achieves the approximation ratio shown in The-
orem 1 with a probability of at least 1− δ′ −

∑r
i=1 δi.

Recall that the expected approximation guarantee of EPIC can be
better than its worst-case approximation guarantee, in which case
the parameter β in Equation (19) can be much smaller than 1. In
that case, Equation (19) indicates that ε can be larger than ξ, espe-
cially when the round number r ≥ 2 ln(1/δ′) = 2 lnn (assuming
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δ′ = 1/n). Note that ε = max{ε1, · · · , εr}, and we have proved
in Theorem 2 that EPIC has the same time complexity with the
existing IM algorithms under the same input parameters. This in-
dicates that we can use some ε1, · · · , εr satisfying

∑r
i=1 εi/r > ξ

as the input of EPIC in each batch i, while still achieving the ap-
proximation ratio shown in Theorem 1, but under a smaller time
complexity compared with that of using the existing IM algorithms.
In other words, Theorem 4 shows that instantiating AdaptGreedy
using EPIC can achieve tighter approximation guarantee under the
same time complexity compared with that of the existing IM algo-
rithms.

5. RELATED WORK
Non-Adaptive Influence Maximization: The IM problem under
the non-adaptive setting has been extensively studied. The seminal
work of Kempe et al. [16] shows that there is a 1−1/e−ε approxi-
mation guarantee for the non-adaptive IM problem, and it proposes
a monte carlo simulation algorithm to achieve this approximation
ratio with high time complexity. After that, a lot of studies have
appeared to improve Kempe et al.’s work in terms of time effi-
ciency. Among these works, Borgs. et al. [7] propose the RR-set
sampling method for influence spread estimation, and several later
studies [17, 20, 23, 24] use this method to find more efficient algo-
rithms for the IM problem. However, all these studies concentrate
on the non-adaptive IM problem, and hence their approximation
guarantees do not hold for the adaptive IM problem.

Adaptive Influence Maximization: Compared with the studies
on non-adaptive IM, the studies on adaptive IM are relatively few.
Golovin et al. [11] derive a 1 − 1/e approximation ratio under the
case that only one seed node can be selected in each batch. Chen et
al. [9], Vaswani and Lakshmanan [25] study adaptive seed selec-
tion under the case that more than one seed nodes can be selected in
each batch. Nevertheless, Chen et al. [9] aim to minimize the cost
of the selected seeds under the constraint that the influence spread
is larger than a given threshold, which is a different goal from ours.
Vaswani and Lakshmanan [25] derive an approximation guarantee
1− exp

(
− (1−1/e)2

η

)
for certain η > 1. Unfortunately, none of

the studies listed above provide a practical algorithm to achieve the
claimed approximation ratios. More specifically, Golovin et al. [11]
and Chen et al. [9] assume that the expected influence spread can be
exactly computed in polynomial time (which is not true due to [8]),
while Vaswani and Lakshmanan [25] did not provide a method to
bound the key parameter η appearing in their approximation ratio.

We also notice that Seeman et al. [19], Horel et al. [14] and
Badanidiyuru et al. [4] consider an influence maximization prob-
lem called “adaptive seeding”, but with totally different implication
from ours. More specifically, they assume that the seed nodes can
be selected in two stages. In the first stage, a set S can be selected
from a given node setX ⊆ V . In the second stage, another seed set
T can be selected from the influenced neighboring nodes of S. The
goal of their problem is to maximize the expected influence spread
of T , under the constraint that the total number of nodes in S ∪ T
is no more than k. However, the problem model and optimization
goal of these studies are both very different from ours, and hence
their methods cannot be applied to our problem.

6. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed ap-

proach using extensive experiments. The goal of our experiments is
to test the efficiency and effectiveness of AdaptGreedy using real

Table 2: Dataset details. (K = 103, M = 106, G = 109)
Dataset n m Type Avg. degree
NetHEPT 15.2K 31.4K undirected 4.18

Epinions 132K 841K directed 13.4

DBLP 655K 1.99M undirected 6.08

LiveJournal 4.85M 69.0M directed 28.5

Orkut 3.07M 117M undirected 76.2

social networks. All of our experiments are conducted on a Linux
machine with an Intel Xeon 2.6GHz CPU and 256GB RAM.

6.1 Experimental Setting

Datasets: We use five real datasets in our experiments, as shown
by Table 2. All these datasets are downloaded from [2]. To the best
of our knowledge, only Vaswani and Lakshmanan [25] have used
real social networks to test adaptive IM algorithms (but without an
approximation guarantee), and the largest network used by them
only has 75k nodes and 500k edges [25]. Note that the number
of edges in Orkut is about 234 times of that of the largest dataset
in [25]. Therefore, as far as we know, our datasets are the largest
ones for testing adaptive IM algorithms in the literature. We also
generate 20 possible worlds for each dataset to test the performance
of our algorithms, and the reported data are the average results on
these possible worlds.

Algorithms: As we discuss in Section 2.3, there are only two ex-
isting methods [11, 25] for adaptive IM. They both require using
a non-adaptive IM algorithm that is both efficeint and extremely
accurate, but none of the existing non-adaptive IM algorithms sat-
isfy such requirements. Consequently, the methods in [11, 25] do
not allow practical implementations without invlidating their the-
oretical results. Instead, we implement two adaptive IM algo-
rithms AdaptIM-1 and AdaptIM-2 by instantiating AdaptGreedy
using EPIC. The difference between AdaptIM-1 and AdaptIM-
2 is that AdaptIM-1 achieves the approximation guarantee shown
in Theorem 1 by leveraging the worst-case approximation guaran-
tee of EPIC (in the way explained by Sec. 4.1), while AdaptIM-2
leverages Theorem 4 to achieve the same approximation guarantee.
The purpose of implementing AdaptIM-1 and AdaptIM-2 is to test
whether the method proposed in Sec. 4.4.2 is effective, i.e., whether
the performance of AdaptGreedy can be improved by leveraging
the small approximation error of EPIC.

We also test two state-of-the-art non-adaptive IM algorithms
(i.e., D-SSA [18] and IMM [23]) in our experiments. IMM is ob-
tained from [3], and D-SSA is obtained from [18]. The purpose of
using D-SSA and IMM in our experiments is to test whether we can
achieve larger influence spread by adaptively selecting seed nodes,
compared with the non-adaptive IM algorithms such as D-SSA and
IMM.

Parameter settings: We use the popular independent cascade (IC)
model [16] in our experiments. Following a large body of existing
work on influence maximization [7,16,17,23,24], we set the propa-
gation probability of each edge e = (u, v) to 1

din(v)
, where din(v)

is the in-degree of the node v.
Given any ξ ∈ (0, 1) and δ ∈ (0, 1), the goal of both AdaptIM-1

and AdaptIM-2 is to find a 1− exp{ξ− c} approximation solution
with probability of at least 1 − δ. To achieve this goal, we set
δ1 = · · · = δr = δ/r and ε1 = · · · = εr = ξ for AdaptIM-1. As
AdaptIM-2 leverages Theorem 4 to improve its performance, we
set δ1 = · · · = δr = δ/2r, δ′ = δ/2 and ε1 = · · · = εr = ε
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Figure 3: Running time vs. batch size
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Figure 6: Spread vs. seed size

for AdaptIM-2, where ε, δ′ and ξ satisfy the relationship shown in
Eqn. (19). We also set δ = 1/n and ξ = 0.1 in all our experiments.

Recall that we need to select k nodes in r batches in adaptive
IM, where b = k/r nodes are selected in each batch. To see how
the performance of our algorithms is impacted by k, b and r, we set
these parameters according to the b-setting and k-setting explained
as follows. Under the b-setting, we fix k = 500 and vary b such that
b ∈ {1, 2, 5, 10, 20, 50, 500}. Under the k-setting, we fix r = 50
and vary k such that k ∈ {50, 100, 200, · · · , 500}.

6.2 Comparing the Running Time
In this section, we compare the time efficiency of the imple-

mented algorithms by varying b, k and r.
We first plot our experimental results under the b-setting in

Fig. 3, where k is fixed to 500 and b scales from 1 to 500. As
both IMM and D-SSA are non-adaptive IM algorithms that select
all 500 seed nodes in one batch, we can only test their performance
under the b-setting for b = 500. For AdaptIM-1 and AdaptIM-2,
we test their running time under the case of b < 500 in Fig. 3. The
experimental results in Fig. 3 show that IMM and D-SSA have the

smallest running time, which is not surprising given that they only
run for one batch, and hence, generate a smaller number of RR-sets.
Besides, it can be seen that the time efficiency of AdaptIM-2 is sig-
nificantly better than AdaptIM-1, especially when b is small (i.e., r
is large). For example, AdaptIM-2 runs almost 4 times faster than
AdaptIM-1 on the Epinions dataset when b = 1. We also notice
that, AdaptIM-1 even cannot finish under the case of b < 5 for the
largest datasets LiveJournal and Orkut, due to the memory over-
flow. To explain, reall that AdaptIM-2 leverages Theorem 4 to set
its input parameter ε, due to which ε can be much larger than ξ,
especially when r is large. Consequently, the number of RR-sets
generated in AdaptIM-2 can be much smaller than that in AdaptIM-
1, and hence AdaptIM-2 achieves better time efficiency and less
memory consumption.

In Fig. 4, we plot our experimental results under the k-setting,
where r is fixed to 50 and k varies from 50 to 500. The results
show similar trends as those in Fig. 3, which can be explained by
similar reason as that for Fig. 3. Besides, Fig. 4 reveals that the
performance gain of AdaptIM-2 with respect to AdaptIM-1 can be
more prominent when k is small under the k-setting. This can be
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explained as follows. As r is fixed to 50 under the k-setting, b
must increase with k, due to which the optimal influence spread
OPTb(Gi) also tends to increase with k for each batch i. Conse-
quently, AdaptIM-1 and AdaptIM-2 are both less sensitive to their
input parameter εi when k gets larger, as they both generate fewer
RR-sets in each batch; thus, they both achieve better time efficiency
when OPTb(Gi) gets larger.

6.3 Comparing the Influence Spread
In this section, we study the performance of the implemented

algorithms on the influence spread, and the experimental results
are shown in Fig. 5 and Fig. 6. The parameter settings in Fig. 5 and
Fig. 6 are the same with those in Fig. 3 and Fig. 4, respectively.

We first study the performance of the implemented algorithms
under the b-setting in Fig. 5, where k is fixed to 500 and b scales
from 1 to 500. It can be seen that AdaptIM-1 and AdaptIM-2
achieve similar influence spreads, which proves the effectiveness
of AdaptIM-2, as AdaptIM-2 achieves better time efficiency than
AdaptIM-1. Moreover, the influence spreads of AdaptIM-1 and
AdaptIM-2 both tend to decrease when b increases. This can be
explained as follows. Under the b-setting, r decreases when b in-
creases, which implies that both AdaptIM-1 and AdaptIM-2 be-
come “less adaptive” when b increases. Consequently, they both
could activate fewer nodes. In fact, when b = 500, all the seed
nodes must be non-adaptively selected in one batch. This explains
why IMM and D-SSA achieve much worse influence spread than
AdaptIM-1 and AdaptIM-2 do.

Finally, we study the influence spread under the k-setting in
Fig. 6, where r is fixed to 50 and k scales from 50 to 500. It can be
seen that all the influence spreads of the implemented algorithms
increase with k, which is due to the reason that selecting more
seed nodes causes a larger influence spread. Moreover, both the
influence spreads of AdaptIM-1 and AdaptIM-2 outperform those
of IMM and D-SSA, as they can activate more nodes by adaptively
selecting seed nodes. Indeed, Fig. 6 shows that AdaptIM-1 and
AdaptIM-2 can achieve more than ten percentage gain on the in-
fluence spread for LiveJournal. We also note that the gain on the
influence spread brought by adaptively selecting seed nodes can
be affected by the network itself, as different social networks have
different topologies and different possible worlds.

7. CONCLUSION
We have studied the adaptive Influence Maximization (IM) prob-

lem, where the seed nodes can be selected in multiple batches to
maximize their influence spread. We have proposed the first prac-
tical algorithms to address the adaptive IM problem that achieve
both time efficiency and provable approximation guarantee. Our
approach is based on a novel AdaptGreedy framework instantiated
by a new non-adaptive IM algorithm EPIC, which has a provable
expected approximation guarantee. We also have conducted exten-
sive experiments using real social network to test the performance
of our algorithms, and the experimental results strongly corroborate
the superiorities and effectiveness of our approach.
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APPENDIX
A. MISSING LEMMAS AND PROOFS

LEMMA 4. [6] Suppose that X ∼ Bin(n, p) is a binomial
random variable. Then the mean absolute deviation (MAD) of X
(i.e., E{|X − E{X}|}) is no more than

√
np(1− p).

A.1 Proof of Theorem 1
In this section, we first introduce some definitions and lemmas,

and then use them to prove Theorem 1. Our theoretical analy-
sis borrows some concepts from [11], but is considerably differ-
ent from that in [11]. This is mainly due to the reason that our
AdaptGreedy framework allows different and even random ap-
proximation guarantee in different batches, while [11] requires that
the approximation guarantees in all batches are identical and fixed
constants.

For convenience, we call any strategy that selects seed nodes in
the way explained by Section. 2.2 as an adaptive seeding policy.
To analyze the performance ratio of AdaptGreedy, we formally
define the expected influence spread of any adaptive seeding pol-
icy in Definition 1, and then introduce the “truncation” and “con-
catenation” operations on policies in Definition 2 and Definition 3,
respectively.

DEFINITION 1. (Influence spread of policy) Given any adap-
tive seeding policy Λ, let N(Λ) denote the set of all seed nodes
that would be selected by Λ. The expected influence spread of Λ
is defined as π(Λ) = Ew∼W{Iw(N(Λ))}, where w and W are
explained in Section 2.1.

DEFINITION 2. (Policy truncation) For any adaptive seeding
policy Λ, the policy truncation Λ[i] denotes an adaptive policy that
performs exactly the same as Λ, except that Λ[i] only selects the
first i (i ≤ r) batches of nodes.

DEFINITION 3. (Policy concatenation) For any two adaptive
seeding policy Λ and Λ′, the policy concactenation Λ⊕Λ′ denotes
an adaptive policy that first executes the policy Λ, and then exe-
cutes Λ′ on the residue graph output by Λ, but without any knowl-
edge about Λ.

With the above definitions, we further introduce the concept of
optimal marginal gain of any adaptive seeding policy in Defini-
tion 4, and then introduce Lemma 5 and Lemma 6, which are useful
for proving Theorem 1.

DEFINITION 4. (Optimal marginal gain) For any adaptive pol-
icy Λ, define G[Λ] as the graph generated by removing the nodes
activated by Λ in G. Define ∆∗(Λ) as the maximum expected in-
fluence spread of any b seed nodes in G[Λ], which is called the
optimal marginal gain of Λ.

LEMMA 5. For any adaptive seeding policy Λ and any i ≥ 1,
we have

π(Λi)− π(Λ[i−1]) ≤ Ew∼W{∆∗(Λ[i−1])} (20)

PROOF. Suppose that C is the set of nodes selected by Λ in
the ith batch. Let K = E{IG[Λ[i−1]]

(C)} be the expected influ-
ence spread of C in G[Λ[i−1]]. So K is always no more than than
∆∗(Λ[i−1]). Therefore, we have

π(Λ[i])− π(Λ[i−1]) = E{K} ≤ E{∆∗(Λ[i−1])} (21)
= Ew∼W{∆∗(Λ[i−1])}

where the expectations in (21) are taken with respect to the ran-
domness of G[Λ[i−1]].
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LEMMA 6. Given any adaptive seeding policy Λ and any i ≤ j,
we have

Ew∼W{∆∗(Λ[j])} ≤ Ew∼W{∆∗(Λ[i])} (22)

PROOF. Note that the nodes activated by Λ[i] are always acti-
vated by Λ[j] due to i ≤ j. Therefore,G[Λ[j]] is always a subgraph
of G[Λ[i]]. As ∆∗(Λ[j]) and ∆∗(Λ[i]) are the maximum expected
influence spread of any b seed nodes inG[Λ[j]] andG[Λ[i]], respec-
tively, we must have ∆∗(Λ[j]) ≤ ∆∗(Λ[i]) for any possible world
w ∼ W . Hence the lemma follows.

Intuitively, the above lemmas reveal an interesting submodular
property of any adaptive policy Λ, i.e., the optimal marginal gain
of Λ satisfies the “diminishing returns” properties under truncation.
Using Lemma 5 and Lemma 6, we can build a quantitative relation-
ship between AdaptGreedy’s expected influence spread and the ex-
pected influence spread of the optimal adaptive seeding policy, as
shown by Lemma 7:

LEMMA 7. Let Γ and Γopt denote the AdaptGreedy policy and
the optimal adapt seeding policy, respectively. For any 1 ≤ i ≤ r,
let

Xi =
∑

G1∈G1,...,Gi∈Gi

(ξi · Pr[ξi | G1, . . . , Gi] · Pr[G1, . . . , Gi])

Then we have

π(Γ[i])− π(Γ[i−1]) ≥
c−Xi
r

(π(Γopt)− π(Γ[i−1]))(23)

PROOF. For any 1 ≤ i ≤ r, we have:

OPT− π(Γ[i]) ≤ π(Γ[i] ⊕ Γopt)− π(Γ[i])

=

r∑
j=1

(
π(Γ[i] ⊕ Γopt[j] )− π(Γ[i] ⊕ Γopt[j−1])

)
≤

r∑
j=1

Ew∼W{∆∗(Γ[i] ⊕ Γopt[j−1])} (24)

≤
r∑
j=1

Ew∼W{∆∗(Γ[i−1])} (25)

= rEw∼W{∆∗(Γ[i−1])}, (26)

where Eqn. (24) is due to Lemma 5 and Eqn. (25) is due to
Lemma 6. Besides, we have

Ew∼W{ξi∆∗(Γ[i−1])}
= E{Xi∆∗(Γ[i−1])} = XiE{∆∗(Γ[i−1])} (27)
= XiEw∼W{∆∗(Γ[i−1])} (28)

where the expectations in Eqn. (27) are taken with respect to the
randomness of Gi, and Eqn. (27) holds because that Xi is only
determined by the algorithm used to select the seed nodes in the ith
batch. Using Eqn. (28), we can get

π(Γ[i])− π(Γ[i−1])

≥ Ew∼W
{
c∆∗(Γ[i−1])− ξi∆∗(Γ[i−1])

}
(29)

≥ cE
{

∆∗(Γ[i−1])
}
−XiE

{
∆∗(Γ[i−1])

}
≥ (c−Xi)E

{
∆∗(Γ[i−1])

}
(30)

where Eqn. (29) is due to the reason that AdaptGreedy achieves an
c− ξi approximation ratio in each batch. So the lemma follows by
combining Eqn. (30) and Eqn. (26).

Intuitively, Lemma 7 reveals that the expected marginal gain of
AdaptGreedy in each batch i “covers” a sufficiently large portion
of the optimal expected influence spread, which leads to the proof
of the AdaptGreedy’s approximation ratio:

PROOF. (of Theorem 1) According to Lemma 7, we have

π(Γopt)− π(Γ) ≤
(

1− c−Xr
r

)
(π(Γopt)− π(Γ[r−1]))

≤ · · · ≤
r∏
i=1

(
1− c−Xi

r

)
π(Γopt) (31)

Therefore, we have

π(Γ) ≥

(
1−

r∏
i=1

(
1− c−Xi

r

))
π(Γopt)

≥

(
1− exp

(
−

r∑
i=1

c−Xi
r

))
π(Γopt) (32)

≥ (1− exp(ξ − c))π(Γopt) (33)

Recall that c = 1 and c = 1 − 1/e when b = 1 and b > 1,
respectively. Hence the theorem follows.

A.2 Proof of Lemma 1
PROOF. Let ni be the number of nodes in Gi. Recall thatR1 is

used to find Si, whileR2 is used to estimate Si. Define

ξi,1 = |niFR1(Soi )−OPTb(Gi)}|/OPTb(Gi) (34)
ξi,2 = |niFR2(Si)− E{IGi(Si)}|/OPTb(Gi) (35)

So we have

E{IGi(Si)} ≥ niFR2(Si)− ξi,2OPTb(Gi)

≥ ni
1 + γi,1

FR1(Si)− ξi,2OPTb(Gi) (36)

≥ cni
1 + γi,1

FR1(Soi )− ξi,2OPTb(Gi) (37)

≥ c

1 + γi,1
(1− ξi,1)OPTb(Gi)− ξi,2OPTb(Gi)

≥ cOPTb(Gi)−
[

c

1 + γi,1
ξi,1 + ξi,2 +

γi,1c

1 + γi,1

]
OPTb(Gi)

where Eqn. (36) is due to Line 12 of EPIC, and Eqn. (37) is due to
FR1(Si) ≥ cFR1(Soi ). Therefore, we have ξi ≤ c

1+γi,1
ξi,1 +

ξi,2 +
γi,1c

1+γi,1
. Note that |R1|FR1(Soi ) and |R2|FR2(Si)

are both random variables following the binomial distributions
Bin(|R1|, OPTb(Gi)/ni) and Bin(|R2|,E{IGi(Si)}/ni), re-
spectively. So we can use Lemma 4 to get

E
{
|R1|
ni

ξi,1OPTb(Gi)

}
≤
√
|R1|OPTb(Gi)/ni

E
{
|R2|
ni

ξi,2OPTb(Gi)

}
≤
√
|R2|OPTb(Gi)/ni

Note that |R1| = |R2| when EPIC returns. Therefore, we have

E{ξi | R1} ≤ E
{

c

1 + γi,1
ξi,1 + ξi,2 +

γi,1c

1 + γi,1

}
≤

(
c

1 + γi,1
+ 1

)√
ni

|R1|OPTb(Gi)
+

γi,1c

1 + γi,1

≤ (c+ 1)

√
ni

|R1|OPTb(Gi)
+ γi,1c (38)

Hence the lemma follows.
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A.3 Proof of Theorem 4
PROOF. Note that Theorem 2 has proved that EPIC achieves a

c − εi worst-case approximation ratio. Therefore, if ε = ξ, then
we can use the reasoning similar to that in Sec. 4.1 to prove that
AdaptGreedy satisfies the approximation guarantee shown in The-
orem 1 with a probability of at least 1 −

∑r
i=1 δi, and hence the

theorem follows. In the sequel, we consider the case of ε > ξ.
let Yi = min{Xi, εi} for any i ∈ {1, · · · , r}, where

Xi =
∑

G1∈G1,...,Gi∈Gi

(ξi · Pr[ξi | G1, . . . , Gi] · Pr[G1, . . . , Gi])

then we must have Yi ≤ ε and

E{Yi | Y1, · · · , Yi−1}
≤ E{Xi | Y1, · · · , Yi−1} ≤ E{Xi}
≤ E{ξi} ≤ βiεi ≤ βε (39)

for any i ∈ {1, · · · , r}. Therefore, using the Azuma’s inequality,
we can prove

Pr
[∑r

i=1
Yi > rξ

]
≤ δ′ (40)

Let E1, E2, E3, E4 be the following events:

E1 = {
∑r

i=1
Xi > rξ ∧ ∀i : Xi ≤ ε}; E2 = {∃i : Xi > ε};

E3 = {
∑r

i=1
Yi > rξ}; E4 = {∃i : ξi > ε}

Note that we have ∀i : Xi = Yi when E1 happens. So we have

Pr[E1] ≤ Pr[E3] ≤ δ′ (41)

due to Eqn. (40). Moreover, as EPIC achieves a c − εi worst-case
approximation guarantee with probability of at least 1 − δi (see
Theorem 2), we have P{Xi > ε} = P{ξi > ε} ≤ P{ξi > εi} ≤
δi for all i. Using the union bound, we have

Pr[E2] = Pr[E4] ≤
∑r

i=1
δi (42)

Combining Eqn. (41) and Eqn. (42), we get

Pr[
∑r

i=1
Xi > rξ] ≤ Pr[E1] + Pr[E2] ≤ δ′ +

∑r

i=1
δi

Hence the lemma follows.
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