
FlashView: An Interactive Visual Explorer for Raw Data

Zhifei Pang, Sai Wu, Gang Chen, Ke Chen, Lidan Shou
College of Computer Science and Technology, Zhejiang University

{zhifeipang, wusai, cg, chenk, should}@zju.edu.cn

ABSTRACT
New data has been generated in an unexpected high speed.
To get insight of those data, data analysts will perform a
thorough study using state-of-the-art big data analytical
tools. Before the analysis starts, a preprocessing is con-
ducted, where data analyst tends to issue a few ad-hoc
queries on a new dataset to explore and gain a better un-
derstanding. However, it is costly to perform such ad-hoc
queries on large scale data using traditional data manage-
ment systems, e.g., DBMS, because data loading and index-
ing are very expensive. In this demo, we propose a novel
visual data explorer system, FlashView, which omits the
loading process by directly querying raw data. FlashView
applies approximate query processing technique to achieve
real-time query results. It builds both in-memory index and
disk index to facilitate the data scanning. It also supports
tracking and updating multiple queries concurrently. Note
that FlashView is not designed as a replacement of full-
fledged DBMS. Instead, it tries to help the analysts quickly
understand the characteristics of data, so he/she can selec-
tively load data into the DBMS to do more sophisticated
analysis.

1. INTRODUCTION
A big data analyst should have a deep understanding and

experience about business intelligence and real-time analyt-
ics. Before performing any analysis, he/she will explore and
examine a dataset first. Such data exploration process re-
trieves a few data samples from the dataset and visualizes
some common aggregation results to help data analysts un-
derstand the data characteristics.

To explore a new dataset in DBMS, we need to load data
first and then build a few indexes. However, both data load-
ing and indexing are expensive processes, because data are
required to be formatted into predefined structures. More-
over, after the exploration process, data analysts may be
only interested in a small subset, on which he/she will do
more sophisticated analysis. Hence, loading the full dataset

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

is not necessary and costly. What a data analyst requires
is an interactive system that can start the data exploration
without start cost.

To address the problem, NoDB system [2][7][3] directly
manipulates raw data and completely avoids data loading.
Similarly, analytic systems built on top of Hadoop, such as
Hive [8], also works on raw data. One drawback of these
systems is their suboptimal performance. Without proper
index, we must scan the whole dataset to process a query.
And since we are handling the raw data (e.g., csv files),
we need to parse every tuple on the fly. To improve the
performance, NoDB system gradually builds indexes. Un-
fortunately, such index building process may take quite a
long time to complete. HadoopDB [1], on the other hand,
relies on the DBMS to index and prune data. This strat-
egy significantly increases data loading cost and is thus not
feasible for data exploration process.

So we face the dilemma of whether to use the data load-
ing/indexing technique or suffering the slow query process-
ing performance. However, neither selection is good for data
exploration. Moreover, even some data analysts are familiar
with the SQL, most of them prefer the visualization results
which are more intuitive. Currently, there are a set of inter-
active visualization tools such as Tableau1 and QlikView2.
They provide easy-to-use GUIs for users to explore data.
But most of them rely on existing data management sys-
tems to do the “real-time” analysis. They neither remove
the data loading process, nor support real-time interactive
response. For data that cannot be held in memory, users
suffer a long waiting time.

Motivated by the requirements of our collaborated data
analyst, we design a new data exploration system, FlashView,
which has the following three distinguished features.

• FlashView does not need to load data, as it directly
manipulates raw data files. The only requirement is
to tell FlashView about the metadata of the data.
FlashView adopts an adaptive parsing process when
user explores the data gradually.

• FlashView provides a real-time response for data ag-
gregation queries by leveraging the approximate query
processing techniques [4][9]. Users can issue a series of
correlated aggregation queries to reveal insight of the
data. FlashView tracks all queries concurrently and
updates the results continuously.

1https://www.tableau.com
2http://www.qlik.com/

1869

• FlashView guides users to explore data via a simple
but intuitive GUI. Data are partitioned and organized
as a set of hierarchical subsets. Users can browse ag-
gregation results on all subsets and swiftly create new
subsets by further partitioning the data.

Note that as a data exploration tool, FlashView is not
designed as a full-fledged data processing systems. Instead,
it swiftly shows a rough view of the dataset, so data analyst
can decide which part of the data should be loaded into a
more complex data processing system (e.g., DBMS) for a
complete study. Based on the results from FlashView, data
analysts can also identify the interesting queries and get a
refined result from other systems.

2. TECHNICAL BACKGROUND

2.1 Approximate Query Processing
In FlashView, data can be queried without any preloading

and indexing. To achieve such goal, FlashView adopts the
AQP technique. More specifically, we use a similar query
processing approach as the online aggregation, which was
firstly introduced by Hellerstein et. al. [5]. The intuition is
to apply statistical analysis to provide an approximate result
which is gradually refined when more random samples are
retrieved. The quality of the result is bounded by estimated
error bound and confidence.

In our case, analysts want to take a quick explore on a
huge raw data and expect to find some interesting facts
which they can dig further. During this process, analysts
may issues multiple queries in a short time and want to
get the results instantly, even with compromised accuracy.
Therefore, the design philosophy of FlashView is completely
consitent with the online aggregation.

In FlashView, the accuracy is depicted by an error bound
ε and confidence p, which will be optimized gradually by our
AQP model through fast random sampling from raw data.
In an extreme case, when all raw data have been scanned,
FlashView will return a precise query result, but this will be
very inefficient and is not what FlashView is designed for.

To obtain a precise estimation, we choose Hoeffding In-
equalition over the Central Limit Theory as our background
statistical model.

Let variable T represents a table which contains m tuples,
denoted as ti, so we have t1, t2, ..., tm ∈ T . Suppose we have
a query as follows.

SELECT AVG(expression(ti)) FROM T

The expression denotes arithmetic operations on ti, and
let v(i) be its result. Let S denote the samples randomly
chosen from T . If |S| = n and |T | = m, we can get P (si ∈
S) = 1

m
, 1 ≤ i ≤ n,∀si ∈ T . So we can get an approximate

aggregation results for the given samples.

Ȳ = (
1

n

n∑
i=1

v(Si))

Also, the accurate results, denoted as A, can be estimated
as

A = (
1

m

m∑
i=1

v(i))

Assume a and b are the lower and upper bounds for v(i)
(a ≤ v(i) ≤ b).

Generally, the bounds can be roughly estimated atom-
ically according current samples. According to Hoeffding
Inequalition, we can get

P{|Ȳ −A| < ε} > 1− 2e
−2nε2

(b−a)2

We use p to represent the confidence of estimation, namely
P{|Ȳ −A| < ε} = p. We get ε from equation 1.

ε = (b− a)(
1

2n
ln(

2

1− p
))

1
2 (1)

Now, we can guarantee the probability of the accurate re-
sults falling in the interval [Ȳ − ε, Ȳ + ε] is equal or larger
than p. Then, ε and p will keep updating in turn once more
samples are obtained.

Compared to the conventional AQP system, FlashView
applies two optimization approaches. First, one major prob-
lem of the approximate query processing is the lack of enough
random samples for small groups (due to group by operation
or selection predicate). In FlashView, we build both in-
memory and disk index for processed data to speed up sam-
pling process for a specific group. Second, data exploration
is a continuous process where a series correlated queries are
issued. Therefore, FlashView keeps track of multiple queries
and shares query processing process amongst them. We in-
troduce the details in the next section.

2.2 Interactive Visualization
BI tools, such as Tableau and QlikView, provide interac-

tive visualization tools for users to gain a better understand-
ing of their data. Most existing visualization systems adopt
the typical load-and-query solution. For example, Tableau
can be connected to a DBMS, and data should be first im-
ported into the DBMS before processing any query. Alter-
natively, Tableau can just to load all data into its own in-
memory processing engine to execute queries. Both strate-
gies suffers the long waiting time of data loading. Disk-based
processing is very slow for big data even with parallelism,
whereas memory-based processing is limited by the memory
size.

On the contrary, FlashView has an user friendly graphic
interface as Tableau and QlikView. It is build on top of
its AQP engine and provides real-time response. Users can
query raw data file and view dynamic visualization of re-
sults by interacting with FlashView GUI. They can also use
the GUI to partition or filter the data and issue new explo-
ration requests which are transformed into a set of queries
for the AQP engine. We allow users to add a fixed number of
queries to his/her watch list. The status, charts and parame-
ters related to queries in watch list are updated continuously.
Users can navigate and switch between these query visual-
ization results. Finally, after a such exploration, FlashView
provides tools to import a portion of data (normally related
to a query in watch list) into other processing systems, e.g.,
DBMS and Hadoop, to do a more sophisticated analysis.

3. OVERVIEW OF FLASHVIEW

3.1 Architecture of FlashView
In this section, we present the architecture and design of

FlashView. The front-end and back-end of FlashView are

1870

Block 0

SystemRaw File

Block 1

Block 2

Block 3

Block n

Stream 0

Buffer
Pool

Indexed Memory Map

Query Parser

Approximate
Optimizer &

Executor

Confidence &
Error

Evaluator

Read

Request

Result Stream

Stream 1

Stream 2

Stream 3

Stream n

……
Redis

Meta Data

GUI

Status

Panel

Graphic

Panel

Query

Panel

Config

Panel

Figure 1: FlashView Architecture

Block 0

Q1 =

select avg(sales)

from Sales

Q3 = Q1:: where age > 30Q2 = Q1:: where age < 25

:: groupby gender

Buffer Pool

Block 1 … Block n

gender=M gender=F

age<=25 30<=age25<age<30 district = 01 district != 01

district

cmp

age

cmp

replicate replicate

Q4 = Q1:: where district = 01

stream

age buffer district buffer

Figure 2: Data Flow of SQL Tree

implemented in JavaScript and Java/Scala respectively. Re-
dis3 is used to maintain metadata of FlashView. FlashView
starts multiple threads to read samples from some random
blocks. Samples are maintained in a memory buffer where a
scrambling process is applied to permute sample sequence.
If memory is full, we apply memory-map approach to let
the operating system decide which data should be shuffled
to disk. As shown in Figure 1, FlashView consists of four
main modules - 1) visualization, 2) query engine, 3) memory
data management and 4) metadata storage.

Before data exploration starts, visualization module asks
a user to select his/her data file and configure necessary
schema properties. Then, the user can start the interac-
tive visual data exploration. Visualization module formal-
izes interactions between GUI and users via a XML-based
language FvQL, similar as the one used in Tableau (VizQL).

The back-end AQP engine accepts a FvQL query and
parses it as a data exploration query q. A typical data ex-
ploration query consists of a filter set SF , an arithmetic op-
erators set SO and a group set SG. Note that one query can
ask multiple aggregation results (e.g., both average value
and variance). The AQP engine first checks whether q is
derived from a previous query. If so, q will join the specific
data flow to share samples. Otherwise, a new data flow is
started to retrieve random samples. AQP updates all queries
in watch list when a batch of samples are obtained. Users
can terminate a query by removing it from the list or set an
upper bound for the error rate and confidence.

3https://redis.io/

In a data exploration process, new queries are normally
derived from previous queries. For instance, an analyst ob-
serves a low average income for those born in a specific area.
He/she may further issue a query via our GUI to check the
average income of those people grouped by ages in that area.
For the new query, fewer samples are available due to more
selection filters. To address the problem, we maintain pro-
cessed samples in memory and build a hierarchical index for
them. In particular, queries are structured as trees based
on their derivation relationship. If samples cannot be main-
tained in memory, we apply the memory-map technique to
flush them back into disk adaptively. For a new query, we
first retrieve correlated samples from the index which can
immediately generate a coarse result for the query. Then, it
is inserted into the watch list for periodical update.

Finally, metadata of all explored data are maintained in
Redis which will be used by our AQP engine and index mod-
ule.

3.2 Indexing and Query Processing
During data exploration process, users can manipulate

data via FlashView’s GUI. The interactions are translated
into data cube operations such as drilling down and rolling
up. Each operation is considered as a new query derived
from the old one. To avoid a cold start, we maintain used
samples in memory buffer and process the new query using
those samples. We also build an index search tree as queries
are being processed. The idea is borrowed from database
cracking techniques [6].

Due to space limitation, we use the example in Figure 2 to
illustrate our idea. Suppose there are four running queries
in the system on a sales dataset, Q1, Q2, Q3 and Q4. The
root node represents Q1, which is the first query when the
exploration starts. Q2, Q3 and Q4, as children of Q1, are
the drilling down queries derived from Q1. We use symbol
:: to denote the filter or operator conjunction.

Q1 reads samples from the buffer pool and maintains an
index for samples that it has consumed. After checking the
results of Q1, the analyst is interested in people under 25
years old and issues query Q2. Q1 scans samples via its
index and creates an index node age buffer which is cracked
by the indicator age = 25. The indicator divides the random
buffer into two parts, one for data which has age ≤ 25, the
other for age > 25. Furthermore, we create an index node
for Q2 by assembling tuples satisfying age < 25. The index
node is organized into two groups for male and female.

Like Q2, Q3 has where age > 30 which makes Q1 has
to crack the age buffer into three segments. Then Q3 just
fetches samples like Q2.

Q4 is a special case, because there is no existing buffer
with district indicator. So Q1 will create a district buffer
to process queries with district filter. Both age buffer and
district buffer can be considered as a replica of Q1’s index.
But they reorganize their buffer to create new indexes for
consecutive queries.

Note that, all the segments in parent nodes can be com-
bined to deal with more complicated queries. When a query
contains both where age < 25 and where district = 1, Q1
will combine the two qualified segments from age buffer and
district buffer together and data in both segments will be
taken as possible valid samples for the new query. Since
that sub-queries sustain samples from parent query node,
we can achieve one reading for multiple updating which im-

1871

Figure 3: GUI of FlashView

proves the sampling performance greatly. However, samples
from parent nodes may not be sufficient, because available
samples decrease greatly as increase of search tree height.
Therefore, during the runtime, new samples retrieved from
raw data will flow from Q1 to Q2, Q3 and Q4 based on the
search tree.

For rolling up query requests, instead of adding a child to
the current node, a new node will be built and inserted into
between the current node and its former parent. The rest
operations are just like drill down process mentioned above.

If a query is suspended by the user and there is no child
query, we discard its index. Otherwise, we keep maintaining
its index until all its child queries have been completed.

4. DEMONSTRATION
We will demonstrate FlashView with two real datasets.

The participants attending FlashView demonstration can
start a data exploration through the web interface in Figure
3. We show three main modules:

Load: By clicking the select file button, the user specifies
the file path. Schema configuration should be provided if
the file is first seen. Data type will be automatically inferred
before the processing starts.

Query/Navigate: The black node represents the root
node. The green nodes and red ones stand for running
queries and suspended queries respectively. Currently se-
lected node is emphasized with a black circle, and its de-
tails are shown in the node panel. With the node panel,
the user can start, terminate and dump the query by click-
ing different buttons. Users can navigate current running
queries through the search tree. Visualization diagrams will
be changed accordingly. Users can also create new queries
by extending any existing running queries.

Visualization: With the graph panel, the user can see
the dynamic results from the current running query. Graph
panel also supports zoom operations to show diagrams in
full screen mode. Currently, FlashView just supports 2-
D graph plotting. When there are multiple group-by, the
combinations will shown as tiles denoting results calculated
in each group.

5. CONCLUSION
In this demo, we present FlashView, a data exploration

system which supports on-the-fly data exploration on large

raw data. FlashView avoids the long data loading pro-
cess and supports real-time response for analytic queries by
adopting the approximate query processing technique. It
provides an intuitive GUI for users to understand the char-
acteristics of the data.

6. ACKNOWLEDGE
This research is supported by National Natural Science

Foundation of China (Grant No. 61661146001) and National
Basic Research Program of China (No.2015CB352402).

7. REFERENCES
[1] A. Abouzied, K. Bajda-Pawlikowski, J. Huang, D. J.

Abadi, and A. Silberschatz. Hadoopdb in action:
building real world applications. In SIGMOD, pages
1111–1114, 2010.

[2] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. Nodb in action: Adaptive query
processing on raw data. PVLDB, 5(12):1942–1945,
2012.

[3] I. Alagiannis, R. Borovica-Gajic, M. Branco, S. Idreos,
and A. Ailamaki. Nodb: efficient query execution on
raw data files. Commun. ACM, 58(12):112–121, 2015.

[4] P. J. Haas and J. M. Hellerstein. Online query
processing. In SIGMOD, page 623, 2001.

[5] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In SIGMOD, pages 171–182, 1997.

[6] S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. In CIDR, pages 68–78, 2007.

[7] M. Karpathiotakis, M. Branco, I. Alagiannis, and
A. Ailamaki. Adaptive query processing on RAW data.
PVLDB, 7(12):1119–1130, 2014.

[8] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using hadoop. In ICDE,
pages 996–1005, 2010.

[9] S. Wu, B. C. Ooi, and K. Tan. Continuous sampling for
online aggregation over multiple queries. In SIGMOD,
pages 651–662, 2010.

1872

