
DITIR: Distributed Index for High Throughput Trajectory
Insertion and Real-time Temporal Range Query

Ruichu Cai� Zijie Lu� Li Wang�¶ Zhenjie Zhang¶ Tom Z. J. Fu�¶ Marianne Winslett†
�School of Computer Science

Guangdong University of Technology
{cairuichu, wslzj40}@gmail.com

¶Advanced Digital Sciences Center
Illinois at Singapore Pte. Ltd.

{wang.li, zhenjie, tom.fu}@adsc.com.sg
†Department of Computer Science

University of Illinois at Urbana Champaign
winslett@illinois.edu

ABSTRACT
The prosperity of mobile social network and location-based
services, e.g., Uber, is backing the explosive growth of spatial
temporal streams on the Internet. It raises new challenges
to the underlying data store system, which is supposed to
support extremely high-throughput trajectory insertion and
low-latency querying with spatial and temporal constraints.
State-of-the-art solutions, e.g., HBase, do not render sat-
isfactory performance, due to the high overhead on index
update. In this demonstration, we present DITIR, our new
system prototype tailored to efficiently processing temporal
and spacial queries over historical data as well as latest up-
dates. Our system provides better performance guarantee,
by physically partitioning the incoming data tuples on their
arrivals and exploiting a template-based insertion schema,
to reach the desired ingestion throughput. Load balancing
mechanism is also introduced to DITIR, by using which the
system is capable of achieving reliable performance against
workload dynamics. Our demonstration shows that DITIR
supports over 1 million tuple insertions in a second, when
running on a 10-node cluster. It also significantly outper-
forms HBase by 7 times on ingestion throughput and 5 times
faster on query latency.

1. INTRODUCTION
With the prosperity of mobile social network and location-

based services, a large amount of trajectory data is gener-
ated every second. To achieve analytical and administrative
purposes, it becomes increasingly desirable for data store
systems to support low-latency temporal and range queries
over the fast trajectory data stream. For instance, one of
our business clients requires to record real-time GPS data
at around 800 thousand tuples per second and to run in-
teractive queries, such as getting all GPS data in a certain

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

geographical region and within the last 5 minutes. However,
state-of-the-art data stores, such as HBase, cannot achieve
high data insertion rate and efficient temporal range queries
simultaneously. In particular, to enable low-latency tempo-
ral range queries over a massive amount of data, index has
to be created on the temporal and spatial columns. As a
result, incoming tuple insertion is coupled with index up-
date, which is known to be expensive and therefore prevents
high-throughput insertion. The index update cost cannot
be simply reduced by employing batch-based insertion in
our scenario, because data tuples are required to be imme-
diately visible on their arrivals.

To solve this problem, we propose DITIR, a distributed
append-only store capable of inserting trajectory data at
high rate and answering temporal range queries on both
newly arriving data and historical data. The key idea be-
hind our prototype system is to design a storage schema that
physically partitions incoming tuples on their arrivals based
on their locations and timestamps, so that only a subset of
data partitions are involved for a temporal range query. We
employ Z-order [11] to convert two-dimensional spacial val-
ues to one-dimensional z-codes. Within each partition, data
tuples are maintained in a B+ tree based on the z-codes, for
efficient spacial search. To enable efficient insertion without
batching, we propose a template-based insertion schema for
B+ tree, which avoids the index node splits and improves
both insertion and search performance. Based on the par-
titioning, for each query, DITIR generates a set of indepen-
dent subquries on the involved data partitions and executes
them across the cluster in parallel. In addition, load balanc-
ing mechanism is proposed for both data insertion and query
evaluation, to better utilize the computational resources.

The major contributions of this paper are as follows:

1. We propose a distributed append-only store that sup-
ports efficient trajectory data insertion and real-time
temporal range queries.

2. We introduce a template-based B+ tree insertion schema
to enable efficient indexing over fast data stream.

3. Load balance mechanism is proposed to guarantee reli-
able performance of data insertion and queries against
workload dynamics.

4. We implement DITIR and show the superiority of our
system by comparing with HBase.

1865

2. RELATED WORK
Distributed data stores, such as Dynamo [9], BigTable [8],

CLAIMS [16], HBase [1] and MongoDB [5], store and man-
age massive amounts of data by distributed data storage and
processing. BigTable [8] and its open-source implementation
HBase [1], for example, organize data as distributed multi-
dimensional sorted maps and provide efficient and scalable
queries. Our work differs from those systems in the sense
that our framework is optimized for high-throughput tra-
jectory data insertion and efficient evaluations of temporal
range queries. Our framework can be extended to support
more complex queries, such as join and aggregation [15],
based on the results of the temporal range queries.

Indexing is a commonly used technique to improve query
performance when some columns are frequently used in the
query criteria. However, the index maintenance overhead
is too high to afford when inserting tuples at high rate.
Bulk loading/insertion amortizes the overhead by inserting
a batch of tuples at a time rather than inserting each tuple
individually. For instance, [7] propose a distributed bulk
loading method with optimizations on load balancing across
the partitions. Unfortunately, those techniques are not ap-
plicable in the scenarios where data tuples should be im-
mediately visible on their arrivals. To improve the insertion
performance without batching, LSM-tree [12] and its variant
[13] have been widely used in many state-of-the-art database
management systems, such as HBase [1], MongoDB [5], Cas-
sandra [2] and InfluxDB [4]. The key idea is to maintain B+
trees in two or more layers, where the tree in a higher layer is
kept in a faster storage medium with smaller capacity. How-
ever, the insertion performance of LSM-trees is still limited,
due to the inefficient insertion to its first in-memory layer.
In this paper, we propose a new template-based insertion
schema in DITIR to achieve high insertion performance.

3. FRAMEWORK OVERVIEW

3.1 Data Model and Assumptions
In this paper, we focus on the applications where a data

tuple is in the form of < x, y, t, e >, where x, y, t and e
are the longitude, latitude, timestamp and payload, respec-
tively. Before insertion, an input data tuple < x, y, t, e >
is converted into < z, t, e > by applying Z-order [11] on x
and y, where z is called a location key or key for short. We
assume tuples arrive in the increasing order of their times-
tamps. Time and key form a two-dimensional space R. A
user query is based on a range of keys and a range of times-
tamp. We call a time duration as a time interval and a
range of keys as a key interval. Given any time interval
and any key interval, a rectangle, called region, is uniquely
determined in R.

3.2 Framework Architecture
DITIR runs on a cluster of shared-nothing commodity

servers, interconnected by high-speed local network. The
architecture of our system is shown in Figure 1. Dispatcher
servers receive the continuous input data tuples and dis-
patch them to the insertion servers. The insertion servers
organize data tuples and store them as data chunks on the
distributed file system. The metadata server maintains the
state of the system, including the partitioning schema of dis-
patcher servers and the metadata of the data chunks. Based
on the query criteria and the information on the metadata

Query ServersInsertion Servers

Dispatchers Query
Coordinator

… …

Data Stream Queries

Metadata
Server…

Distributed File System

…Data Chunks:

Figure 1: Architecture Overview.

server, the query coordinator converts a user query into in-
dependent subqueries and executes them across the insertion
servers and the query servers in parallel.

4. DATA INGESTION

4.1 Data Partitioning
The objective of data partitioning in our framework is to

enable efficient key-range and temporal queries while making
data insertion as efficient as possible. This is achieved by
physically partitioning data tuples based on the keys and
the timestamps into regions, called data regions, as they
arrive. By doing this, query evaluation can be effectively
accelerated by skipping the data regions that do not overlap
with the query criteria. To achieve range partition on the
key domain, the incoming data tuples are range-partitioned
to the ingestion servers by the dispatchers, such that each
ingestion server is responsible for inserting data tuples in a
unique key range. Each ingestion server stores its input data
tuples in its in-memory B+ tree. To achieve range partition
on the time domain, an ingestion server flushes its B+ tree
into the distributed file system as a data chunk when the B+
tree reaches a predefined capacity. Since the timestamps of
the incoming tuples are in increasing order, data chunks
generated by the same ingestion server are naturally in a
range partitioning of the time domain.

Such a data partitioning schema is insertion-friendly, be-
cause insertion servers work independently and data chunk
will never be modified once generated. To further improve
the ingestion performance, we make optimizations to im-
prove the performance of a single insertion server and bal-
ance the workloads among insertion servers, as will be dis-
cussed in the following subsections.

4.2 Template-Based B+ tree
Inserting a large number of tuples to a B+ tree is known to

be very inefficient, due to the overhead of node splits. Unfor-
tunately, bulk load and bulk insertion techniques, such as [6]
and [14], are not applicable in our scenario, because tuples
should be visible to the queries once they arrive. To achieve
both high-throughput and rapid insertion, a template-based
B+ tree insertion schema is proposed in our prior work [10].
The intuition is that the key distribution of the input data
tuples typically does not change much in a period of time.
This provides us opportunities to utilize the B+ tree struc-
ture from previous data chunks to build the B+ tree for
the new one, avoiding building the index from scratch. The
implementation of template-based B+ tree is simple and

1866

straightforward. After a B+ tree is flushed to the persistent
storage, the structure containing the root node and the in-
ner nodes, called template, is kept and reused to construct a
new B+ tree with all the leaf nodes empty for the next data
chunk. Then the new incoming data tuples are inserted into
the new B+ tree as normal.

Given a relatively stable key distribution, this method
is efficient and scalable with multiple read and insertion
threads. However, key distribution may not be always sta-
ble in real applications. Key distribution changes introduce
skewed tuple distribution across the leaf nodes, making both
insertion and read inefficient in the over-sized leaf nodes. To
handle workload dynamics, we propose a new template up-
date method, as will be discussed blow.
Key Skewness Detection: Let K(k−, k+) ∈ K be the
key interval that the current B+ tree is responsible for.
Without losing generality, we assume the template-based
B+ tree has l leaf nodes. The structure of the template
implies a range partition of K(k−, k+) across l leaf nodes:
P = {k1, k2, . . . kl}, in which K(k−, k+) = ∪1≤i≤lki and
ki ∧ kj = ∅ for any i 6= j. We use d to denote the set of
tuples inserted to the tree, and thus the desirable number
of tuples on each leaf node is n = |d|/l. Let d(ki) denote
the set of tuples on any leaf node i. We propose distribu-
tion skewness, S(P, d), to quantify the skewness of the tuple
distribution in the leaf nodes:

S(P, d) = max
1≤i≤l

|d(ki)| − n

n
(1)

When the data distribution skewness factor s exceeds the
predefined threshold, e.g., 0.2, the template of the B+ tree
is considered as improper. As a consequence, we pause in-
serting tuples to the B+ tree until we update the template
based on the new key distribution.
Template Update: Given the number of leaf nodes and
the fanout, the structure of the template is purely decided
by P , the range partition of keys across the leaf nodes. Con-
sequently, the objective of template update is to get a new
range partition P ′ that minimizes the skewness factor s, as
formally defined as:

P ′ = arg min
P̃

S(P̃ , d) (2)

We logically view the tuples in all the leaf nodes as an
ordered array with no-decreasing keys, and denote the key
of the j-th tuple as key[j]. Then P ′ = {k′1, k′2, . . . k′l} can be
easily computed by evenly dividing the tuples into l ranges:

k′i =


[key−, key[n− 1]) i = 1

[key[(i− 1)n], key[in− 1]) 2 ≤ i ≤ l − 1

[key[(i− 1)n], key+] i = l

(3)

Given the new range partition of keys P ′, we employ the
traditional bulk load technique to quickly build the template
upwards, from the bottom inner nodes to the root node.
After that, we complete the template update by reorganizing
the data tuples in the leaf nodes according to the range
partition schema of the new template. Some optimization
tricks can be made in template update, to guarantee the
process is no longer than several milliseconds. We omit the
discussions, due to space limitation.

4.3 Adaptive Key Space Partitioning
Based on the fact that the overhead of inserting each in-

put tuple is nearly the same, we measure the key distribu-
tion and evenly range-partition the keys among the insertion
servers based on their frequencies, to balance the workload
across the insertion servers. To do it in an efficient manner,
we evenly divide the key space K into many fine-grained in-
tervals and range-partition those intervals to the insertion
servers. In particular, we let each dispatcher server main-
tain the key frequency of each interval in recent several sec-
onds. A centralized system process periodically calculates
the global key frequencies of the intervals by combining the
values from all the dispatchers. Based on the key frequen-
cies of the intervals and the interval to insertion server as-
signment, the process is able to estimate the workload on
a particular ingestion server, simply as the sum of key fre-
quencies of all the intervals assigned to it. If the workload
distribution is skewed, the process adjusts the interval to
dispatcher assignment to guarantee a balanced workload.

5. QUERY EVALUATION

5.1 Query Decomposition
To efficiently obtain the set of data regions covered by

a query, the metadata server uses R-tree to store the data
regions. When the system receives a query q =< kq, tq >,
where kq and tq is the key interval and the time interval of
the query respectively, the query coordinator refers to the
R-tree in the metadata server and gets a set of regions Rq

that are covered by the query q. For each data region ri =<
ki, ti >∈ Rq where ki and ti is the key interval and the time
interval of the data region respectively, a subquery qi =<
ki ∩ kq, tk ∩ tq > is generated and sent to the corresponding
insertion server or one of the query servers for processing.

5.2 Caching
Reading data chunks from distributed file system is the

dominant overhead of the subquery evaluation in the query
servers. Consequently, we leverage caching techniques to re-
duce the subquery cost by keeping the frequently accessed
data in the main memory of the query servers. In our imple-
mentation, a template or a leaf node is regarded as a basic
caching unit. Compared with caching a data chunk in en-
tirety, such fine-grained caching has better space-efficiency.
Since the memory space is limited, we employ LRU policy
to evict old caching units. In the rest of this section, we
discuss our subquery dispatching optimization to maximize
the effectiveness of caching by improving data locality.

5.3 Subquery Dispatching
We propose a simple but efficient method to guarantee

the load balance and data locality at the same time. In
our method, we create one queue for each insertion server
in the query coordinator and hash-partition the subqueries
to the queues. We take one subquery for each queue and
send it to the corresponding query server for processing.
When a query server finishes a subquery, we dispatch a new
subquery from its queue if any. Otherwise, a subquery from
the longest queues is taken instead. Such a policy achieves
load balance by letting the query server finished earlier take
over some work from the lagging ones. Also, data locality is
retained, as the policy prefers to dispatch subqueries on the
same data chunk to the same query server.

1867

Figure 2: Insertion throughput display GUI.

Figure 3: Query latency display GUI.

6. DEMONSTRATION OVERVIEW
In this demonstration, we run a mixed workload with tra-

jectory data insertion and temporal spatial querying on DI-
TIR and HBase simultaneously, and display the instanta-
neous performance metrics of both systems on a Java GUI.
In particular, we implement our DITIR based on Apache
Storm [3]. DITIR and HBase are executed on two 10-node
clusters, respectively. For each system, we launch a back-
ground process to continuously insert trajectory data to the
system and issue queries. The Java GUI program connects
to the background processes, controls key parameters, and
displays the performance metrics.
Insertion Throughput: On the insertion throughput win-
dow, as shown in Figure 2, the throughputs in the recent
60 seconds are displayed in the plot. Users are allowed to
change the input data arrival rate and enable/disable the
dynamic key partitioning feature for DITIR. Users will ob-
serve that the data insertion capacity of DITIR is 1180K
tuples/s, outperforming HBase by 7 times. Also, a 20%
throughput increase will see in DITIR when the dynamic
key partitioning feature is enabled.
Query Latency: On another GUI window, as shown in
Figure 3, the recent 10 query response times are displayed
for both systems. Users are allowed to change two param-
eters, i.e., query selectivity and dispatching policy, to see
how those parameters affect the query latencies. Generally
speaking, the queries in DITIR is 5 times faster than HBase.

7. CONCLUSION
In this work, we present DITIR, our new distributed in-

dexing framework to support highly parallelized trajectory
insertion and efficient temporal range querying. DITIR out-
performs state-of-the-art solutions by a substantial margin,
in terms of both insertion throughput and query respon-
siveness. To the best of our knowledge, DITIR is the only
applicable solution to real-time trajectory indexing over one
million insertions per second.

8. ACKNOWLEDGMENTS
This study is partially supported by the research grant for

the Human-Centered Cyber-physical Systems Programme
at the Advanced Digital Sciences Center from Singapore’s
A*STAR and Infosys, NSFC-Guangdong Joint Found (U15-
01254), Natural Science Foundation of Guangdong (2014A0-
30306004, 2014A030308008), Science and Technology Plan-
ning Project of Guangdong (2015B010108006, 2015B01013-
1015).

9. REFERENCES
[1] http://hbase.apache.org.

[2] https://cassandra.apache.org.

[3] http://storm.apache.org.
[4] https://www.influxdata.com/.

[5] https://www.mongodb.com/.

[6] D. Achakeev and B. Seeger. Efficient bulk updates on
multiversion b-trees. Proceedings of the VLDB Endowment,
6(14):1834–1845, 2013.

[7] M. K. Aguilera, W. Golab, and M. A. Shah. A practical
scalable distributed b-tree. Proceedings of the VLDB
Endowment, 1(1):598–609, 2008.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems
(TOCS), 26(2):4, 2008.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available
key-value store. ACM SIGOPS Operating Systems Review,
41(6):205–220, 2007.

[10] P. Mazumdar, L. Wang, M. Winslet, Z. Zhang, and
D. Jung. An index scheme for fast data stream to
distributed append-only store. In Proceedings of the 19th
International Workshop on WebDB. ACM, 2016.

[11] G. M. Morton. A computer oriented geodetic data base and
a new technique in file sequencing. International Business
Machines Company New York, 1966.

[12] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Informatica,
33(4):351–385, 1996.

[13] R. Sears and R. Ramakrishnan. blsm: a general purpose log
structured merge tree. In SIGMOD, pages 217–228. ACM,
2012.

[14] A. Silberstein, B. F. Cooper, U. Srivastava, E. Vee,
R. Yerneni, and R. Ramakrishnan. Efficient bulk insertion
into a distributed ordered table. In ACM SIGMOD, pages
765–778. ACM, 2008.

[15] L. Wang, M. Zhou, Z. Zhang, M. C. Shan, and A. Zhou.
Numa-aware scalable and efficient in-memory aggregation
on large domains. IEEE Transactions on Knowledge and
Data Engineering, 27(4):1071–1084, 2015.

[16] L. Wang, M. Zhou, Z. Zhang, Y. Yang, A. Zhou, and
D. Bitton. Elastic pipelining in an in-memory database
cluster. In SIGMOD, pages 1279–1294. ACM, 2016.

1868

