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ABSTRACT 
There has been a lot of research and industrial effort on building 
XQuery engines with different kinds of XML storage and index 
models. However, most of these efforts focus on building either 
an efficient XQuery engine with one kind of XML storage, 
index, view model in mind or a general XQuery engine without 
any consideration of the underlying XML storage, index and 
view model. We need an underlying framework to build an 
XQuery engine that can work with and provide optimization for 
different XML storage, index and view models. Besides 
XQuery, RDBMSs also support SQL/XML, a standard language  
that integrates XML and relational processing. There are 
industrial efforts for building hybrid XQuery and SQL/XML 
engines that support both languages so that users can manage 
and query both relational and XML data on one platform. 
However, we need a theoretical framework to optimize both 
SQL/XML and XQuery languages in one RDBMS. In this 
paper, we show our industrial work of building a combined 
XQuery and SQL/XML engine that is able to work and provide 
optimization for different kinds of XML storage and index 
models in Oracle XMLDB. This work is based on XML 
extended relational algebra as the underlying tuple-based 
logical algebra and incorporates tree and automata based 
physical algebra into the logical tuple-based algebra so as to 
provide optimization for different physical XML formulations. 
This results in logical and physical rewrite techniques to 
optimize XQuery and SQL/XML over a variety of physical 
XML storage, index and view models, including schema aware 
object relational XML storage with relational indexes, binary 
XML storage with schema agnostic path-value-order key 
XMLIndex, SQL/XML view over relational data and relational 
view over XML. Furthermore, we show the approach of 
leveraging cost based XML physical rewrite strategy to 
evaluate different physical rewrite plans.  

1. INTRODUCTION 
With XML becoming a universal data model to represent 
structured, semi-structured and unstructured data and declarative 
XML processing languages, such as XQuery and SQL/XML 

[10], becoming standardized, there has been substantial research 
and industrial efforts on building XQuery engines on different 
platforms with different XML storage, index and view models. 
One approach is to build a native XML database using XML 
tree as the physical storage model [1,40, 41] with XPath/XQuery 
as the only query languages. The other approach is to build a 
hybrid XML/SQL database. Major RDBMS vendors have built 
hybrid XQuery and SQL/XML engines in their RDBMS 
products so that relational data and XML data can be managed 
and queried on one platform [7,8,9,30] with both XQuery and 
SQL/XML as query languages.  
 
However, IBM and Microsoft support one XML storage model 
in their respective XQuery engines, which are optimized for 
their corresponding storage and index model. IBM uses XML 
tree as the physical storage model with a combined path and 
value index [8,48] whereas Microsoft uses binary XML as the 
physical storage model with distinct path, value indexes [9,27]. 
Monet DB [33] uses range encoding to store XML documents in 
relational tables. Oracle XML DB, however, concludes based on 
its customer XML use-cases, that XML is an abstract data type 
and its optimal physical storage and index models are use-case 
driven. We find that there is no “one-size-fits-all” solution for 
physical XML storage and indexing because XML is used to 
represent data with a wide variety of characteristics. 
Consequently, the first requirement for the Oracle XQuery 
engine is that it must be XML storage, index and view model 
independent and yet be able to choose the best physical 
optimization strategies when working with the underlying XML 
physical model. 
 
In hybrid SQL and XML RDBMS use-cases, both XQuery and 
SQL/XML are used to query XML. Furthermore, there are SQL 
queries to query relational views over XML using the 
XMLTable construct defined in SQL/XML. Therefore, the 
second requirement for the Oracle XQuery engine is that it must 
provide better interoperability with the SQL engine so that 
cross-language optimizations between XQuery and SQL/XML 
are feasible. The resulting XQuery/SQL engine is independent 
of any particular XML query language. 
 
Although SQL and XQuery are different query languages, they 
share commonalities. One of the key similarities is that they are 
both set-based, declarative languages so that iterator-based 
(stream-based), lazy evaluation strategies, which use as little 
data materialization as possible, can be applied to process both 
languages [2,26]. Furthermore, both XQuery and SQL have the 
concept of join, selection, projection, and sort algebra. It is 
natural that an XQuery engine integrated into RDBMS should 
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share the same physical iterator-based execution infrastructure 
as that of the SQL engine and share the same physical data 
representation. Therefore, the third requirement for the Oracle 
XQuery engine is that it leverage existing mature SQL 
infrastructures as much as possible. Despite their similarities, 
SQL and XQuery have differences too. SQL is statically typed 
whereas XQuery is dynamically typed. A Relational set is 
unordered whereas XQDM (Xquery Data Model) is ordered. 
Therefore, one challenge that needs to be addressed is bridging 
these semantic gaps between XQuery and SQL if they are 
integrated as one engine in an RDBMS. 
 
In this paper, we show our work and experience of building such 
an XQuery/SQL-XML engine optimized for different XML 
storage, index, and view models. The main contributions of the 
paper are as follows: 
 
• We create XML Extended Relational Algebra (XERA) 

as the logical, tuple based algebra into which both XQuery 
and SQL semantics are compiled. With the theoretical 
foundation of SQL extensibility and object relational SQL 
[13], we show that the XERA that we have created and 
implemented in Oracle XMLDB is complete and is derived 
from a direct application of the principles of SQL 
extensibility and object relational SQL in the domain of 
XML. XERA is essentially SQL query graph extended with 
XML constructs and operators. We also incorporate tree 
algebra pattern in the form of XPath navigation tree pattern 
and XPath with branching predicate twig pattern, and 
automata-based streaming evaluation algebra pattern into 
the tuple based algebra so that both tree and automata 
physical optimizations over different physical XML 
formulations are feasible. 

 
• We show physical rewrite that enables the XQuery/SQL 

engine to work with different physical XML formulations:  
(a) XML schema aware structured object-relational storage, 
(b) path, value, XMLTable based XML indexes on schema 
agnostic binary XML storage, (c) SQL/XML view over 
relational data. (d) XMLTable relational view over XML. 
To our knowledge, this is the first industrial 
XQuery/SQL/XML engine that is designed to work and 
optimize with different XML storage, index and view 
models. 

 
• We show opportunities for using a cost based approach to 

prune different physical XML rewrite algebra plans given 
the same logical plan. 
 

Outline Of The Paper: Section 2 discusses the various XML 
storage, index and view models that Oracle XMLDB supports 
and the architecture overview of the unified XQuery and 
SQL/XML engine. Section 3 discusses an example to show the 
multi-phase XML rewrite transformation. Section 4 discusses 
XML extended relational algebra. Section 5 discusses 
optimisations for the XML extended relational algebra – the 
logical rewrite independent of physical XML storage, index, and 
view models. Section 6 discusses the physical optimizations for 
different XML storage, index and view models, with cost based 
pruning techniques. Section 7 discusses performance evaluation. 
Section 8 discusses the related work comparison and section 9 
concludes the paper with acknowledgement.  
 

2. Overview of XML Storage and Index in 
Oracle XMLDB  
Oracle XMLDB addresses both data centric and document 
centric XML [7] use cases. On one end of the spectrum, data 
centric XML is very structured and bound with a rigid XML 
Schema. In such use-cases, modelling XML as a hierarchical 
view of relational data with XML schema aware decomposition 
of XML gives much better query performance and offers the 
best interoperability of relational and XML data [5,6,17,19]. On 
the other end of the spectrum, document centric XML may not 
have an XML schema or may have a very flexible XML schema. 
In such use cases, a schema-agnostic aggregated XML storage, 
such as tree or binary XML storage, with path-value index gives 
much better query performance.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 1 – Architecture of Unified XQuery/SQL/XML 
Engine in Oracle XMLDB for different XML physical 

formulations 
Oracle XMLDB provides both XML schema aware object 
relational storage with relational index for structured XML data 
[5] and binary XML storage with XMLIndex [7] for semi-
structured or unstructured XML data. There are three types of 
indexing strategies in Oracle XMLIndex: (a) path-value-order 
key based indexing strategies for ad-hoc XPath and value 
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search, (b) structured, XMLTable-based indexing strategies 
for querying structured components, and (c) full-text extensions 
to path-value-order key-based indexing strategies for doing full-
text search within a document fragment using the ora:contains() 
Oracle XQuery extension function. The path-value-order key-
based indexing is conceptually similar to path-based indexing 
technique described in [20] with ordered Dewey key [18]. The 
structured XMLTable based index is discussed in [12]. 
 
In addition, Oracle XMLDB provides a SQL/XML view over 
relational data using SQL/XML generation functions so that 
relational data can be queried as XML [6]. Also Oracle XMLDB 
provides a relational view over XML using XMLTable construct 
so that XML data can be queried relationally as if they were 
physically stored in a tabular form. 
 
The XQuery and SQL/XML query rewrite architecture is multi-
tiered as shown in Figure 1. Both XQuery and SQL/XML are 
first compiled into the same XERA and optimized without 
considering the actual physical XML storage/index. Then, the 
XERA logical algebra tree goes through physical rewrite with 
different XML storage, index and view models. Queries 
generated by physical rewrite are optimized by the relational 
query engine to produce physical-algebra query plans. For a 
given XML storage/index, if multiple physical, storage-
dependent rewrite strategies exist, the relational optimizer is 
invoked for each physical rewritten query to determine the best 
physical rewrite strategy in terms of cost.  An example of this 
multi-phase rewrite process is illustrated in Section 3. Note the 
SQL text shown here is for ease of presentation. The actual 
rewrite process does NOT generate SQL text but rather does 
rewrite transformation on query graph structures that represent 
these XML extended SQL queries. 

3. Motivating Example 
Consider an example of a table xmlt that stores XML documents 
and a SQL/XML query Q1 that finds the number of XML 
documents satisfying the XQuery in XMLEXISTS() SQL/XML 
operator. 
select count(*) 
from xmlt v 
where xmlexists('$x/a/b[c="cv"][d="dv"]' passing value(v) as "x") 

 Q1- SQL/XML Query 
3.1 XML Storage/Index Independent Logical Rewrite 
User query Q1 is first compiled into the SQL extended with 
XML operators (XERA) as Q2. Then multiple EXISTS sub-
queries are optimized into semi-joins as shown in Q3 (semi-join 
is not in the standard SQL, it is an existence join). However, 
table(xqpath()) functions capturing the node tuple iteration in 
Q3 remain because the logical rewrite is not aware of the 
physical XML storage/index properties.  
select count(*) 
from xmlt v 
where exists( 
   select 1 
   from table(xs(xqpath('$x/a/b') passing value(v) as "x")) v1 
   where 
      exists 
          (select 1 
           from table(xs(xqpath('$v1/c') passing value(v1))) v2 
           where xqexval(value(v2)) = "cv") 
    and 

      exists 
          (select 1 
           from table(xs(xqpath('$v1/d') passing value(v1))) v3 
           where xqexval(value(v3)) = "dv") 
   ) 

 Q2 - Post XQuery/SQL Hybrid Compilation 
select count(*) 
from xmlt v,  
     semi-join lateral(table(xs(xqpath('$x/a/b') passing value(v) 
as "x"))) v1, 
     semi-join lateral(table(xs(xqpath('$v1/c')  passing value(v1) 
as "v1"))) v2, 
     semi-join lateral(table(xs(xqpath('$v1/d')  passing value(v1) 
as "v1"))) v3 
where xqexval(value(v2)) = 'cv'  and xqexval(value(v3)) = 'dv' 

Q3 – Post Logical Rewrite 
3.2 XML Storage/Index Dependent Physical Rewrite 
3.2.1 Multiple physical rewrite strategies with binary XML 
If xmlt is binary XML storage with XMLIndex., then Q3 can be 
rewritten using different physical XML rewrite strategies 
(S1,S2,S3). S1 uses the XMLIndex physical rewrite discussed in 
section 6.3. S2 uses the binary XML stream evaluation rewrite 
discussed in section 6.4. S3 uses a combination of XMLIndex 
and binary XML stream evaluation.  
S1: Q4 is derived from physical rewrite using XMLIndex.. Note 
the table(xs(xqpath())) function is optimized into the selection 
from the XMLIndex storage table pathtable. Conceptually this 
query does a join based on node dewey order keys and docids 
among three different path-value probes of pathtable. Q4 is then 
optimized by the relational optimizer that determines the best 
physical join plan among pathtables and the best indexes to use 
to probe the pathtables using statistics collected on the 
pathtables and xmlt table.  
select count(*) 
from xmlt v, semi-join pathtable p1, 
     semi-join pathtable p2, semi-join pathtable p3 
where v.docid = p1.docid   and p1.pid = pid('/a/b') and 
      p2.pid = pid('/a/b/c') and p2.docid = p1.docid and p2.value 
= "cv" 
      and parent_key(p2.orderkey) = p1.orderkey 
      and p3.pid = pid('/a/b/d') and p3.docid = p1.docid and 
p3.value = "dv" 
      and parent_key(p3.orderkey) = p1.orderkey) 

Q4 - Post Physical Rewrite with XMLIndex 
S2: The table(xs(xqpath())) expression is rewritten using a 
binary XML specific xpathtable physical operator with 
streaming evaluation of XPath on the binary XML token stream. 
This results in Q5.  
select count(*) 
from xmlt v,  
semi-join  lateral(xpathtable('$x/a/b', passing value(v) as "x") ) 
v1, 
semi-join  lateral(xpathtable('$v1/c', passing v1.xvalue as "v1")) 
v2,  
semi-join  lateral(xpathtable('$v1/d', passing v1.xvalue as "v1")) 
v3 
where v2.value = 'cv' and v3.value = 'dv' 
Q5 – Post Physical Rewrite with Binary Stream Evaluation 

S3: This strategy uses an XMLIndex to evaluate ‘/a/b’ and then 
uses binary stream evaluation to compute the two separate 
XPaths ‘c’ and ‘d’. This results in Q6. The mkini() in Q6 is a 
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physical operator that constructs XQDM from the LOB locator 
stored in pathtable that locates the XML fragment. 
 
select count(*) 
from xmlt v, semi-join (select mkini(p1) as v1 
                                     from pathtable p1  
                                    where p1.pid =pid( '/a/b')  
                                   and p1.docid = v.docid) pv,  
    semi-join lateral(xpathtab('$v1/c' passing pv.v1 as "v1"))  v2,  
    semi-join lateral(xptahtab('$v1/d' passing pv.v1 as "v1")) v3 
where  v2.value = 'cv' and v3.value = 'dv' 

Q6 –Post Physical Rewrite with XMLIndex & Binary 
Stream Evaluation 

Costs from the relational optimizer for Q4, Q5 and Q6 are then 
compared to choose the best physical rewrite strategy. Note that 
we can compare and cost among CPU operations for binary 
XML stream evaluation and pathtable I/O. The detail is beyond 
the scope of this paper though. 
3.2.2 Physical rewrite  for Object Relational Storage  
If xmlt is OR storage with elements for ‘/a/b’ stored in tab_b, 
elements ‘c’ stored in tab_c and elements ‘d’ stored in tab_d, 
then after physical rewrite and relational optimisation, Q3 is 
rewritten into Q7. The relational optimizer then chooses the 
optimal classical relational physical algebra: physical join plan 
and B+tree or bitmap index to access the storage tables. 
select count(*) 
from xmlt v,  
         semi-join tab_b b, semi-join tab_c c, semi-jon tab_d d 
where  v.docid = b.docid and  b.nid = c.nid and b.nid2 = d.nid 
and c.val = 'cv' and d.val = 'dv' 

Q7 - Post Physical Rewrite with OR storage 
Note that although OR storage requires that all XML documents 
stored in the table have uniform schema, query performance for 
Q7 is conceptually better than that of Q4 for typical use cases 
because different xpath match of the pathtable that need to be 
done during run time for Q4 has been pre-compiled into 
different physical table access in Q7 during compile time.  The 
joins in Q7 are primary-key foreign key joins instead of range-
based Dewey order key joins. The value search in Q7 is targeted 
for specific columns of specific tables instead of one bloated 
value column capturing all values in the pathtable. 

4. XML Extended Relational Algebra 
(XERA) 
Although SQL and XQuery have similarities, they have a 
number of critical differences that necessitate the use of Object 
Relational SQL and Extensibility SQL, which are initiated in 
POSTGRES [47,13] and are widely supported by RDBMS 
products [14,15,16], as the theoretical foundation to create the 
XML extended relational algebra into which both XQuery and 
SQL is compiled.  Extensibility SQL allows SQL to be extended 
with new datatypes; new functions and type comparison 
operators in SQL as if they were built-in SQL functions and 
built-in type comparison operators that can be used in SQL 
ORDER BY clause, UNION, INTERSECT, EXCEPT set 
operations; new aggregation functions as if they were built-in 
aggregation function (such as sum(), avg(), min(), max()); new 
indexing methods as if there were built-in index methods. Object 
relational SQL allows SQL to be extended with collection type 
and table function to nest and un-nest collection type. 

We create new operators, new table function, new aggregation 
functions, to be discussed below, in Oracle XMLDB to 
formulate the XML extended relational algebra which bridges 
the semantics gap between XQuery and SQL.  

4.1 Principles of  XERA 
1. Incorporate XQDM as a Datatype in SQL: XQuery Data 

Model (XQDM) is added as a new datatype into SQL. An 
XQDM can be a single XQItem, which is either an atomic 
value with its type, or a single XML node reference. It can 
also be an ordered set (sequence) of such XQItems (each 
XQItem is implicitly associated with an ordinal position 
indicating the item position in the sequence). Note that an 
XQuery atomic value is different from a SQL atomic value 
because an XQuery atomic value has its type associated 
with it. The new XQDM is actually a collection of items 
that is in principle similar to the collection type in the 
object extension of SQL [13].  

2. Incorporate XQDM operators in SQL: We add a number of 
operators that manipulate the XQDM added into SQL. We 
refer to them as XQSQL operators. These operators take 
XQDM as inputs and return XQDM as output and are 
closed with respect to XQDM. They implement the 
semantics of XQuery expressions that SQL does not have. 

3. UNNEST XQDM as relational set: We add a new table 
function XS() that converts an XQDM, which is a sequence 
of XQItems, into a set of relational tuples. The significance 
of this table function is that it models the concept of 
iteration of each XQItem of an XQDM as iteration of each 
row of a virtual table in SQL. There are two columns in 
each relational tuple. The first column pos is of type integer 
that is the ordinal position of the XQItem in the sequence, 
the second column value is an XQItem. The position 
column is used to answer position() and XPath positional 
index expressions in XQuery. 

4. NEST relational set into XQDM: We add a new aggregator 
function XQAgg() that aggregates a set of relational tuples 
of XQItems into an XQDM. It is the opposite of the table 
function XS() and flattens a virtual table into a collection. 
Here is the algebra identity rule for NEST/UNEST: 
SELECT XQAgg(tt.value ORDER BY tt.pos) FROM 
TABLE(XS(XQDM)) tt = XQDM. The XQAgg() has an 
ORDER BY clause to aggregate all of the XQItems based 
on its ordinal position. The application of the table function 
XS() and the aggregate function XQAgg() enables the 
compilation of XQuery expressions into SQL with proper 
application of NEST and UNNEST operators. The 
combination of table function XS() and aggregate function 
XQAgg() allows us to unflatten and flatten XQDM at 
proper places and algebraically simplify XQuery 
expressions after expression inline, variable substitution 
and FOR clause merge.  

5. Ordered and lateral Join construct: Joins in XQuery are 
ordered and have left join dependency whereas a pure 
relational SQL join is unordered and has no left join 
dependency. However, SQL has the concept of a lateral 
join which models left join dependency semantics. So join 
in XQuery is compiled into ordered lateral join construct 
that the underlying Oracle SQL engine supports. The 
access of iterator variable of the for clause of FLWOR is 
compiled into the access of value column of each row of 
the table function XS() over the for clause input. However, 
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to compile a let clause, a table with one row is used as the 
anchor point. See example 2 described below. 
 

4.2 Examples of compiling XQuery into XERA 
In Example 1, first, the table function XS() is used to iterate 
through each item from a sequence and XQAgg() is used to 
flatten tuple results back into a sequence. This makes the 
resulting SQL query a scalar query (query returns one row and 
one column output). Second, since ‘>’ is a general comparison, 
we have it compiled as a SQL EXISTS sub-query that again uses 
table function XS() to iterate through each item of the sequence. 
Third, note that the tti.pos column is used for the position at 
clause in FLWOR. Also, note the usage of XQElem() operator to 
construct element node, XQConcat() operator to construct 
XQuery sequence, and XQPath() operator to apply an XPath 
expression on the input. 
declare $x external; 
for $i at $j in $x/a/b 
where $i/c > 3 
return  <rslt>{($j, $i/d/e, <newf>{$i/d/f}</newf>)}</rslt> 
SELECT XQAgg( 
     XQElem(“rslt”, 
             XQConcat(XQAtomic(tti.pos), XQPath(tti.value, ‘d/e’),  
                 XQElem(“newf”, XQPath(tti.value, ‘d/f’)))) ORDER BY 
tti.pos) 
FROM TABLE(XS(XQPath(XQBindVGet($x), ‘a/b’))) tti 
WHERE EXISTS( 
                      SELECT 1  
                       FROM TABLE(XS(XQPath(tti.value, ‘c’))) tt2 
                       WHERE XQPolyVGT(tt2.value, XQConstruct(3, 
xs:integer)) ) 

Example 1 - FWR compilation 
declare $x external; 
for $i  in $x/a/b 
let $j :=  $i/d/e 
where count($j) > 3 
return  ($i, $j) 
SELECT XQAgg( 
                    XQConcat(tti.value, ttj.value) ORDER BY tti.pos) 
FROM  
TABLE(XS(XQPath(XQBindVGet($x), ‘a/b’))) tti, LATERAL(SELECT 
XQPath(tti.value, ‘d/e’) 
                                                                         FROM ONE_ROW_TAB)  
ttj 
WHERE (SELECT COUNT(*)  
                 FROM TABLE(XS(ttj.value))) > 3 

Example 2 – let Compilation 
In Example 2, the let clause is compiled into selection from a 
special table ONE_ROW_TAB that has only one row. Since there 
is a join dependency between a for clause and a let clause 
(because $j computation depends on $i), we use the LATERAL 
join construct of SQL. The XQuery fn:count() function is 
compiled into SQL count. 
 
4.3 Compilation of XQuery into XERA  
In [11], we presented how to compile XQuery into extended 
SQL with XML operators. Here we present the new 
improvements so that the XQuery rewrite logic is complete 
without the dependence on a co-processor evaluation. 
Handle Dynamic Typing: In contrast to statically typed SQL, 
an XQuery expression can be dynamically typed if the 
implementation does not support static typing. In the presence of 
static typing of XQuery, we may be able to map certain XQuery 
expressions, for example, arithmetic expressions and value 
comparing expressions to their equivalent SQL operators where 
static typing is needed to map to proper SQL operators. 

However, in general we have to create new XML specific type 
polymorphic operators to handle XQDM whose type 
information may not be available during query compile time. 
Therefore, all the new XML specific SQL operators that we 
create in XERA take XQDM as input and return XQDM as 
output so that the actual sequence type information of the input 
XQDM can be obtained during run time in these type-
polymorphic operators that do XQuery semantics based on the 
dynamic typing rules of XQuery. 
These new polymorphic operators include XQPolyAdd(), 
XQPolySub(), XQPolyMul(), XQPolyDiv(), XQPolyIDiv() and 
XQPolyMod() XQSQL operators for XQuery arithmetic 
expressions. 
These new polymorphic operators XQPolyVGT(), XQPolyVGE, 
XQPolyEQ(), XQPolyLT(), XQPolyLE() are XQSQL operators 
for XQDM value comparison. Note these operators have 
additional flag parameters to indicate what comparison context 
they are invoked in. This is critical as comparison semantics are 
different in different contexts. For example, although the 
semantics of general comparison is existential qualification and 
can be compiled into nested EXISTS sub-query. $x > $y is 
compiled into EXISTS (SELECT 1 FROM TABLE(XS($x)) ttx WHERE 
EXISTS(SELECT 1 FROM TABLE(XS($y)) WHERE 
XQPolyVGT(ttx.value, tty.value, GC_FLAG) ).  Note XQPolyVGT() 
is passed with a third parameter GC_FLAG to indicate that it is 
called with a general comparison context as the XQuery type 
casting rule semantics is different for general comparison and 
value comparison. 
Aggregate based XQuery F&O functions, fn:count(), fn:min(), 
fn:max(),fn:sum(),fn:avg(), fn:distinct-value() are compiled into 
the corresponding SQL aggregate functions count, min(), 
max(),sum(), avg() and DISTINCT construct in SQL using these 
type polymorphic comparison and arithmetic functions. 
Handle Node Comparison: Node comparison is compiled into 
XQNodeCmp() XQSQL operators. These operators take XQDM 
node reference as input and determine their relationship based 
on their node identities. When nodes are combined using 
XQuery union,intersect,except functions, they are compiled into 
SQL UNION, INTERSECT, EXCEPT query using 
XQNodeCmp() to do node comparison based on node identity. 
The physical node identity representation varies depending on 
the physical XML storage structures. 
XPath Compilation: Instead of normalizing path expression 
into nested FLWOR expression at each step expression level as 
defined in XQuery formal semantics [43], we normalize the step 
expression into FWOR expression when the step has  predicates. 
If each step of a path expression is a sequence of axis step 
expression without any predicates, it is directly compiled into 
XQPath() XQSQL operator.  
For example, $x/a/b/c is compiled into 
XQPath(XQBindVGet($x), ‘a/b/c’).   
A path expression with predicate, for example, $x/a[. gt “v1”][. 
lt “w2”]/b/c/d is compiled into the following Scalar Subquery 
with Predicates (SSP) as shown in XQP1. 
 
SELECT XQAgg(XQPath(tt.value, ‘b/c/d’))  
FROM TABLE(XS(XQPath(XQBindVGet($x), ‘a’))) tt  
WHERE XQPolyVGT(XQExVal(tt.value), “v1”) and 
XQPolyVLT(XQExVal (tt.value), “w2”) 

XQP1 
SSP can handle multiple predicates as long as each predicate 
does not access context position and it is statically determined 
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that the result of the predicate is not a numeric type. Otherwise, 
it is compiled into nested SSP.  
For example, $x/a[. gt “v1”][position() > 4] is compiled into 
the following XQP2. 
SELECT XQAgg(value(v)) 
FROM (SELECT /*+ NO_MERGE */ tt.value  
      FROM TABLE(XS(XQPath(XQBindVGet($x), ‘a’))) tt  
      WHERE XQPolyVGT(XQExVal(tt.value), “v1”))  v 
WHERE v.pos > 4 

XQP2 
Note that this is compiled into an inline view without merging as 
the inner view generates context position value that is filtered by 
the outer query.  
As another example, if we don’t know the static type of $y, then 
$x/a[. gt “v1”][$y] is compiled into the following XQP3. 
SELECT XQAgg(value(v)) 
FROM (SELECT /*+ NO_MERGE */ tt.value  
      FROM TABLE(XS(XQPath(XQBindVGet($x), ‘a’))) tt  
      WHERE XQPolyVGT(XQExVal(tt.value), “v1”))  v 
WHERE XQPredTruth(v.pos, XQBindGet($y)) 

XQP3 
The XQPredTruth() XQSQL operator checks the dynamic type 
of $y. If it is a numeric type, it does context comparison with its 
first input which is the context position and returns the result of 
the comparison. Otherwise, it returns the effective boolean value 
of $y.  
 
4.4 Compilation of SQL/XML functions into XERA 
SQL/XML generation functions: they are compiled into the 
same set of operators as the ones that XQuery constructor 
expressions are compiled into. 
XMLAgg() aggregation function: it is compiled into XQAgg(). 
XMLQuery() and XMLExists() functions: The XQuery 
expression body in these functions are compiled as described 
above. For XMLExists(), the extra compilation of fn:exists()  is 
added on top of the XQuery expression body.  
XMLTable Construct: it is compiled into a XQTab SQL query 
using an table(XS()) table function to iterate through each item 
from the row XQuery expression and projects out column values 
from the column XQuery expression. All XQuery expressions in 
row and column of XQTab are compiled into XML extended 
algebra as discussed above. 

5. Optimization of XERA  

5.1 Optimistic Static Type check  
A structured type tree is used to do the static type inference 
[11,24]. A structured type tree is built from the bottom up while 
traversing the XQuery expression tree. The bottom portion of 
the structured type tree is constructed from the input variables to 
the query. There, the XML schema information or SQL/XML 
functions with SQL schema that constructs the input variables 
are used to build the structured type tree. If the input schema 
information is not available, a structured type tree representing 
item() * sequence type is built. 
We use static type inference to catch type errors that would 
otherwise be raised as dynamic type errors if not caught 
statically. However, we would not raise type errors statically if 
they may succeed during run time. For example, 3 + ‘abc’ 
results in static type error. However, declare $x external; 3 + ( if 
($x) then 4 else ‘abc’) does not result in static type error because 

whether the dynamic type error is raised or not depends on the 
value of $x  during run time. Such optimistic static type 
checking is feasible because the underlying XML extended 
relational algebra operators, such as XQPolyAdd(), are able to 
verify type from the input XQDM during run time. Note that this 
is different from pessimistic static typing defined in XQuery 
formal semantics [43] and what is implemented in Microsoft 
SQL Server [28]. 
 
5.2 Optimisation based on static type inference 
Simplify arithmetic and comparison expression: arithmetic 
expressions and value comparison expressions can be simplified 
to their corresponding static SQL operators using static type 
inference.  
Simplify Boolean based expressions: if fn:boolean() input type 
is one or more nodes, then fn:boolean() is true. If fn:exists() 
input type is one more item, then fn:exists() is true. If the input 
type to fn:boolean() or fn:exists() is an empty sequence, then the  
result is false. Based on these rules, we can simplify xquery 
expressions that are based on fn:boolean() value, such as 
condition expression, logical expression, where clause of 
FLWOR expression, quantifier expression etc, and fn:exists() 
function in a cascading fashion. 
Sequence type based expressions: Expressions, such as instance 
of, treat as, typeswitch, castable, cast, are optimized based on 
static type inference. 

5.3 Data Flow Analysis based Algebraic Optimization 
Join Optimization: Left dependency join in XML extended 
relational algebra from XQuery is optimized into SQL join 
algebra if there is no dependency  among join variables. Ordered 
join in XML extended relational algebra from XQuery is 
optimized into SQL join algebra if either unordered expression 
is used or the order of the items in the sequence is determined to 
be irrelevant. For example, when an expression is used as input 
in a boolean context, such as fn:exists() or fn:boolean() if the 
input is of static type node()*, the order is not relevant so that 
unordered optimization can be used. Other optimizations of 
elimination of order in XPath [57,58] context can also be used. 
Once the join is optimized as unordered SQL join, hash and 
merge join from the physical algebra can be used to optimize 
join processing.  
Existence Optimization: XQuery expressions, such as 
quantified expression, general comparison, fn:exists(), 
fn:boolean() whose input is of static type node()*,  are compiled 
into EXISTS() and NOT EXISTS() subquries so that subquery un-
nesting into semi-join and anti-join optimization in SQL [3] can 
be applied. 
Nested FWR Block Merge: A FWR can be merged with its 
parent FWR clause. For example, xquery for $p in (for $q in $x 
where $x > 3 return $q) return $p can be optimized into for $q in $x 
where $x > 3 return $q. Since FWR is compiled into SELECT 
FROM WHERE query so that view merge (folding) technique in 
SQL [4] can be applied. 
Ordinal positional number Elimination: positional number is 
not generated from Table(XS()) table function if the resulting 
sequence is not used in positional predicate computation and the  
at clause of FLWOR construct is absent. 
Cancellation & Merge Algebraic Reduction: Path navigation 
operator XQPath() can be cancelled with the node constructor 
operator XQElem() to eliminate unnecessary node construction. 
Two XQPath() operators can also be merged into one. For 
example, XQPath(XQPath($x, ‘a/b’), ‘c/d’) = XQPath($x, ‘a/b/c/d’). 
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Merging XQPath() operator enables the growth of tree pattern 
that can be facilitated for physical rewrite discussed in section 6. 
XQPath Push Down: This is the distributive rule for XQPath(). 
For example, an XQPath() can be distributed to each child of a  
XQConcat() operator and each branch of a CASE operator. Such 
push down of XQPath() to its source enables XQPath 
cancellation and merge algebraic reductions. 
Variable Inlining and Factoring: Let clause variable, prolog 
variable and non-recursive XQuery functions are inlined with 
their reference when the semantics is allowed. The result of 
inlining can create opportunities to apply composition & de-
composition reduction. For example, xquery expression let $x:= 
(<a><b>34</b><c>56</c><d>76</d></a>) return ($x/b, $x/d) is 
optimized as  (<b>34</b>, <d>76</d>). However, if such 
elimination is not feasible, then it is better to compute let clause 
variable value once and avoid re-computation if the variable is 
referenced in multiple places [25].  
Node reference Analysis: Static node reference analysis is 
performed to check if node identity generation is needed for 
each expression that may return nodes. For example, generating 
node identity for constructor is expensive. Furthermore, 
cancellation of XPath navigation with node construction 
requires that the node identity be irrelevant. For example: let $x 
:= (<a><b>34</b><c>56</c><d>76</d></a>) return ($x/b 
<< $x/d).  Since << requires the node identity generation for 
the constructor, so cancellation of xpath navigation with node 
constructor is not applied here and node identity generation is 
needed for the constructor. 

6. Optimization with physical XML Storage, 
Index, View – Physical Rewrite 

Here we show how Q3 in section 3 is optimized into Q4,Q5,Q7 
for different physical rewrites. The physical rewrite occurs from 
inner query -blocks to outer ones. For each physical rewrite, we 
show below how query blocks v1 and v2 of Query 3 are 
optimized. In each optimization step, we highlight the operator 
or set of operators that are optimized. 
table(xs(xqpath('$x/a/b' passing value(v) as "x"))) v1 

 Q3 –v1 
table(xs(xqpath('$v1/c' passing value(v) as "v1"))) v2 
where xqexval(value(v2)) = 'cv' 

 Q3 –v2 

 6.1 Physical Rewrite for OR Storage and SQL/XML 
view   
When the XML schema is available, an XML instance can be 
decomposed and stored into a set of object relational tables for 
the XML schema. This corresponds to a schema aware XML 
storage model. However, Oracle XMLDB object relational 
storage is beyond simple ‘shredding’ methods because it can 
encode and store non-relational XML contents, such as PI, 
comment node information, node order, schema type 
information, into binary columns of the storage tables. 
Construction of XML from relational data and creation of XML 
views, using SQL/XML generation functions, are also 
supported.  
ORPW-v1 shows three intermediate steps in the process of 
optimizing query Q3-v1. ORPW-v1.S1 shows how the input $x 
is constructed from XQSQL generation operator XE(). XE() 
operator constructs element node. The XQAgg() within XE() 
constructs collection elements from the underlying relational 

storage tables. ORPW-v1.S2 shows the result of the cancellation 
of XQPath() with input XE(). Finally, ORPW-v1.S3 shows the 
result of cancelling table(XS()) with XQAgg(), after application 
of the NEST/UNEST algebra rule in section 4.1. 
S1 table(xs(xqpath( 

         XE("a", 
           select xqagg(XE("b", select xagg(XE("c", c.val))  
from tab_c  where c.nid = b.nid, select xqagg(XE("d", 
d.val))  from tab_d d  where d.nid = b.id)) 
           from tab_b b 
           where tab_b.docid = v.docid), 'a/b'))) v1 

S2 table(xs( select xqagg(XE("b", select xagg(XE("c", c.val))  
from tab_c c where c.nid = b.nid,  select xqagg(XE("d", 
d.val))  from tab_d d where d.nid = b.id)) 
           from tab_b b 
           where tab_b.docid = v.docid)) v1 

S3 select XE("b", select xagg(XE("c", c.val))  from tab_c c 
where c.nid = b.nid, select xqagg(XE("d", d.val)) from 
tab_d d where d.nid = b.id)  
from tab_b b where tab_b.docid = v.docid 

ORPW -v1 
ORPW- v2 shows three intermediate steps in the process of 
optimizing query block Q3-v2. The input to v2 is v1, the result 
of ORPW-v1. The optimizations of ORPW-v2.S1 and ORPW-
v2.S2 are the same as those of ORPW-v1.S1 and ORPW-v1.S2. 
ORPW-v2.S3 shows how xqexval() is optimized into the 
underlying relational storage column. 
S1 table(xs(xqpath( 

  (select XE("b", select xagg(XE("c", c.val))  from tab_c c 
where c.nid = b.nid, select xqagg(XE("d", d.val)) from 
tab_d d where d.nid = b.id),  
 from tab_b b  where tab_b.docid = v.docid), 'c'))) v2 
where xqexval(value(v2)) = 'cv' 

S2 table(xs( select xagg(XE("c", c.val))  from tab_c c 
where c.nid = b.nid )) v2 
where xqexval(value(v2)) = 'cv' 

S3 select XE("c", c.val) from tab_c c 
where c.nid = b.nid, and c.val = 'cv' 

ORPW -v2 
The same OR physical rewrite of Q3-v2 is also applied to Q3-
v3. All of these steps rewrite Q3 into ORPW-pre-Q7 below. 
Then, ORPW-pre-Q7 is optimized into Q7 via relational view 
merge. Since select lists of v1,v2,v3 are not referenced in the top 
query block, they do not appear in the final query Q7. 
select count(*) 
from xmlt v, 
semi-join lateral (select XE("b", select xagg(XE("c", c.val))  
from tab_c c where c.nid = b.nid, select xqagg(XE("d", d.val))  
from tab_d d where d.nid = b.id) 
 from tab_b b where tab_b.nid = v.nid), 
semi-join lateral (select XE("c", c.val)  from tab_c c 
where c.nid = b.nid, and c.val = 'cv'), 
semi-join lateral (select XE("d", d.val)  from tab_c d where 
d.nid = b.nid,  and d.val = 'dv') 

ORPW –pre-Q7 

6.2 Physical Rewrite for XMLIndex  
In the absence of an XML schema or in cases where XML 
schema flexibility is critical, an XMLIndex offers fast value-
based and path-based searches. Physically, an XMLIndex 
consists of a path table that stores one row for each node in an 
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XML document. The path table stores for each node, an 
identifier for the document containing the node, a Dewey style 
order key [18] that captures the hierarchical and sibling 
relationships among nodes, an identifier for the concatenation of 
Qnames of nodes along the path from the root to the indexed 
node, and the atomized value of the node [7]. The mapping from 
the concatenation of Qnames of nodes to its identifier is stored 
in system-wide token tables.  
XIPW-v1 shows two intermediate steps in the process of 
optimizing Q3-v1. XQPath() with input $x is rewritten into 
selection from pathtable with pid equals to ‘/a/b’ path (internally 
we use binary pathid comparison). Then, table(xs()) is optimized 
away with XQAgg(). 
S1 table(xs( select xqagg( mkini(p1.loc))  from pathtable p1 

where p1.pid = pid('/a/b')  and p1.docid = v.docid)) v1 
S2 select mkini(p1.loc)  from pathtable p1 

where p1.pid = pid('/a/b')  and p1.docid = v.docid 
 XIPW -v1 

XIPW- v2 shows two intermediate steps in the process of 
optimizing query block Q3-v2. The input to v2 is v1, which is 
the result of rewrite step XIPW-v1. XQPath('$v1/c') is rewritten 
into a selection from pathtable p2. Nodes selected from p2 
should have path '/a/b/c', which is obtained by concatenating the 
path for p1 (i.e., '/a/b') with the path specified in Q3-v2 (i.e., 'c'). 
They should also be direct children of nodes selected from 
pathtable p1, and this constraint is enforced using a check on the 
order keys of nodes from p1 and p2. 
S1 table(xs( select xqagg(mkini(p2.loc))  from pathtable p2 

 where p2.pid = pid('/a/b/c')  and p2.doicid = p1.docid 
          and parent_key(p2.orderkey) = p1.orderkey)) v2 
where xqexval(value(v2)) = 'cv' 

S2 select mkini(p2.loc)  from pathtable p2 where p2.pid = 
pid('/a/b/c') and p2.doicid = p1.docid and 
parent_key(p2.orderkey) = p1.orderkey and p2.value = 
'cv' 

XIPW -v2 
The same XI physical rewrite of Q3-v2 is also applied to Q3-v3. 
All of these steps rewrite Q3 into XIPW-pre-Q4 below. Then, 
XIPW-pre-Q4 is then optimized into Q4 via relational view 
merge.  
select count(*) 
from xmlt v, 
semi-join lateral (select mkini(p1.loc)  from pathtable p1 where 
p1.pid = pid('/a/b') and p1.docid = v.docid), 
semi-join lateral (select mkini(p2.loc)  from pathtable p2 where 
p2.pid = pid('/a/b/c') and p2.doicid = p1.docid  and 
parent_key(p2.orderkey) = p1.orderkey and p2.value = 'cv'), 
semi-join lateral ( select mkini(p3.loc)  from pathtable p3 where 
p3.pid = pid('/a/b/d'  and p3.doicid = p1.docid  and 
parent_key(p3.orderkey) = p1.orderkey  and p3.value = 'dv') 

XIPW –pre-Q4 

6.3 Physical Rewrite for Binary XML Streaming 
Evaluation   
Binary XML storage provides a compact post-parsed 
representation of an XML document. It can be viewed as a 
serialized form of a SAX stream over XML. The tags in XML 
are tokenised.  In addition, if the XML is schema based, then 
content is stored in native format by making use of type 
information form the schema. 
The main access pattern for identifying pieces from an encoded 
binary XML storage is to use a finite-state automaton based 

approach [54]. A single scan of the input binary-encoded 
document can identify nodes matching one or more XPaths.  We 
refer to this approach as binary XML streaming evaluation. 
Each node can be uniquely identified by means of a locator, 
which also serves as a Node Identifier. This identifier contains 
information about the location of the node in the binary encoded 
stream along with its QName, an optional type id and associated 
information. When the physical rewrite is applied to binary 
XML storage, query evaluation proceeds by first identifying 
matching nodes using streaming evaluation. These nodes 
themselves are represented using Node Identifiers, which make 
it possible to perform further stream evaluation on them. 
SEBPW-v1 shows result of rewrite of Q3-v1 to build an 
xpathtable row source which performs automata evaluation of 
XPath ‘/a/b’. SEBPW-v2 shows the result of rewriting Q3-v2 to 
build an xpathtable row source that evaluates xpath 'c.' This row 
source takes input from xpathtable column v1.xvalue and 
performs an automaton-based evaluation of xpath 'c.' All of 
these steps rewrite Q3 into SEBPW-pre-Q5, which is then view 
merged into Q5. 
select v1.xvalue 
from xpathtable('$x/a/b' passing value(v) as "x") v1 

SEBPW -v1 
select v2.xvalue 
from xpathtable('$v1/c' passing v1.xvalue))) v2 
where v2.value = 'cv' 

SEBPW -v2 
select count(*) 
from xmlt v, semi-join lateral(select  v1.xvalue from 
xpathtable('$x/a/b' passing value(v) as "x") v1), semi-join 
lateral (select v2.xvalue from xpathtable('$v1/c' passing 
v1.xvalue) v2 where v2.value = 'cv'), lateral (select v2.xvalue 
from xpathtable('$v1/d' passing v1.xvalue) v3 where v3.value = 
'dv') 

SEBPW – pre-Q5 

6.4 Cost-Based Evaluation of Physical Rewrite 
Strategies    
For binary XML, there are several physical rewrite strategies: 
• Evaluate master-detail twig tree pattern using structured 

XMLTable based XMLIndex or path-value-order key 
XMLIndex. 

• Evaluate descendant XPath navigation by using the join of 
two sub-query probes of the path tables or by expanding a 
descendant XPath using token tables and then using 
expanded XPaths. 

• Evaluate XQTab query construct using path index or using 
streaming evaluation or using path index for row 
expression of XQTab and streaming evaluation for the 
columns of XQTab as illustrated in section 3. 

Since there are multiple physical rewrite strategies, our physical 
XML rewrite driver is cost based. We perform different physical 
rewrite strategies and call the relational optimizer to compute 
the cost of each query plan to determine which physical rewrite 
produces the cheapest plan.  

7. Performance Evaluations & Observations 
7.1 XMark 
No-one-size-fits-all: We use the Xmark benchmark [59] for our 
performance experiments to evaluate the XQuery engine using 
both schema based object relational storage (OR) with relational 
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B+ tree indexes and binary XML storage with path-value-order 
key based XMLIndex (BINXI). All 20 XMark queries can be 
optimized fully by the Oracle XMLDB XQuery engine at the 
level of physical rewrite with OR and BINXI storages.  
However, the performance of queries comparing the two storage 
and index models is different depending on the type of queries. 
Value-Predicate-Qry: For Q1 and Q5 that use XPath value 
predicate, OR out-performs BINXI as shown in Figure 2. This is 
expected because the value index in XMLIndex indexes the leaf 
values for all the nodes in one table whereas OR B+ tree index 
indexes leaf value for different nodes in different tables. 
Therefore, OR can precisely determine which leaf value column 
of the table it needs to search and thus significantly reduces the 
number of leaf values needed to be searched. 
Positional-Predicate-Qry: For Q2 and Q3 that use XPath 
positional predicate, OR outperforms BINXI as shown in Figure 
3. This is expected because OR can use the ordinal number of 
OCT (described in section 6.2) to compare the position quickly 
whereas BINXI needs to rank the nodes using order key to 
determine the position. 
Count-Sequential-Qry: For Q6 and Q7 that count all nodes with 
a particular path, OR and BINXI achieve relatively the same 
performance as shown in Figure 4. This is expected because 
both queries compute the count without predicates, and this 
essentially involves table scans to count the rows. 
Long-XPath-Qry: For Q15 and Q16 that use very lengthy XPath. 
BINXI outperforms OR as shown in Figure 5. This is expected 
because Q15 and Q16 have very long XPaths that can be 
answered using path index, which directly returns the locators to 
the corresponding XML fragments.  
These performance observations from XMark queries are 
explainable from the underlying strength or weakness of each 
XML storage/index model. It demonstrates that the choice of the 
right XML storage and indexing strategies is use-case driven 
and depends upon the type of XML data and the type of queries. 
There is no ‘one size fits all’ solution to determine how to store 
and index XML.  
Scaling: Q11 – Q12 are the time consuming XMark queries as 
they involve joins. Figure 6 shows that we get quadratic scaling 
with document size of 100MB and 200MB. For Q6 and Q7, we 
get linear to sub-linear scaling because Q6 and Q7 compute 
count() without predicates and therefore are equivalent to table 
scans. These results are consistent with the experimental results 
from Monet DB [33] that an XQuery system is bound to exhibit 
quadratic scaling with document size on XMark query Q11-
Q12. Q6 and Q7 show sub-linear scaling for Monet DB. 
 
7.2 TPOX 
Need for cost based physical XML rewrite: XMark uses 
single document scaling with document size. However, in 
practice, we have seen that a more realistic data centric XML 
use-case is that of a large collection of moderately sized XML 
documents.  TPOX [60] models such XML use-cases. TPOX 
queries can be optimized fully by the Oracle XMLDB XQuery 
engine using a structured XMLIndex [12] (XTXI), path-value-
order based XMLIndex (PVXI) or binary XML stream 
evaluation (SEB). However, there are performance differences 
among them. 
In TPOX queries, using XTXI to qualify XML documents 
among large collections of XML documents provides better 
performance than using PVXI as shown in Figure 7. This is 
expected because the master-detail-detail twig pattern used in 
selection can be answered by querying the pivoted XMLTable 

without requiring XPath searching during execution time. 
Furthermore, it is very common for a user to query a relational 
view over XML using XMLTable construct. TXQ shows such 
XMLTable query using TPOX schema. For such a query, SEB 
yields better performance than PVXI as the number of projected 
columns of XMLTable increases as shown in Figure 8. This is 
expected because PVXI needs to compute each XPath projected 
column using a scalar sub-query over the path table whereas 
SEB can evaluate each XPath for a projected column from the 
common row fragment in a streaming fashion. 

Value-Predicate-Qry

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100MB 200MB

XML Doc Size

Ex
ec

-T
im

e-
R

at
io

-B
IN

XI
/O

R

Q1-Ratio-BINXI/OR

Q5-Ratio-BINXI/OR

 
Figure 2 - OR outperforms BINXI for value-predicate-Qry 
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Figure 3 - OR outperforms BINXI for positional-predicate-

Qry 
Experiments from TPOX shows that different physical rewrite 
strategies yield different performance for the same query and 
therefore it is important to have a framework where we can cost 
different physical rewrite plans during compile time and to 
develop a costing model for different physical XML evaluation 
strategies. This is what we had discussed in Section 6.4. 

8. Rationale & Related Work Comparison  
The amount of work on XQuery in the database community 
during the last decade is enormous. There are basically three 
approaches to XQuery/XPath processing in the database 
community. The first approach is to use relational-like, tuple-
based algebra as the logical algebra. This includes early work of 
translating XQuery to SQL [37][38][39]. However, XQuery to 
SQL translation is not theoretically complete without the 
theoretical framework from object relational SQL and SQL 
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extensibility. Then, various ways of incorporating XML specific 
operators into relational algebra have been proposed 
[29,31,32,33,34,35,36,43]. The second approach is to use tree-
based algebra - the entire XPath and the XQuery FOR clause is 
folded into a pattern tree, which forms the basic unit 
[41,42,44,45,46]. The third approach is to use automata based 
algebra working with XML token streams [53,54,55,56].  
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Figure 4 - OR,BINXI same for count-sequential-Qry 
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Figure 5 - BINXI outperforms OR for long-Xpath Qry 
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Figure 6 - XMark Scaling  

SELECT v.* 
FROM security_tab s, 
  XMLTable( 
XMLNamespaces (default 'http://tpox-benchmark.com/security' ), 
'$doc/Security' 
    passing s.sdoc as "doc" 
   columns 

     symbol varchar2(20) path 'Symbol', 
     Name varchar2(20) path 'Name', 
     SecurityType varchar2(20) path 'SecurityType', 
     sector varchar2(20) path 'SecurityInformation//Sector', 
     PE number path 'PE', 
     Yield number path 'Yield') v) v 
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Figure 7 - XTXI outperforms PVXI for TPOXQ 
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Figure 8 - SEB outperforms PVXI for XMLTable Qry 

Our approach is to integrate the strengths of these algebraic 
approaches into one XQuery engine. We use XML extended 
relational algebra - a tuple-based algebra, as the main algebra. 
Our reasoning is that this algebra is theoretically complete as it 
can handle arbitrarily complex XQuery expressions. It is also 
practically adaptive to our relational-algebra-based RDBMS 
platform with its support for SQL extensibility and object-
relational SQL framework [13]. We incorporate the common 
XPath navigation tree pattern and XPath with branching 
predicate twig tree pattern as high-level operators into XML 
extended relational algebra so that they can be used as a logical 
unit for physical rewrite. We also incorporate the automata 
based algebra as the physical algebra for evaluating XPath tree 
with binary XML storage.  
As discussed previously, IBM DB2, Microsoft SQL Server and 
MonetDB work with one XML storage and index model. IBM 
DB2 Viper uses tree storage (with a mixture of tuple and tree 
based algebra) and schema-agnostic path-value index [8, 48]. 
Microsoft uses binary XML storage with path, value, order, 
property index [27] and its XQuery engine is hardwired to work 
with this XML storage and index model [28]. Monet DB [33] 
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shreds XML documents using range-based encoding and 
leverages relational engine to process SQL translated from 
XQuery on the encoding tables. Oracle’s early work of 
XQuery/XPath XQuery is primarily designed to work with 
structured XML using object relational storage and XML view 
over relational data generated using SQL/XML [6,11]. 
XPERANTO [23] XQuery system works with XML view over 
relational data. This paper shows the approach of an XQuery 
engine based on the complete XML extended relational algebra. 
This engine works with different XML storage, index and view 
models and combines tuple, tree and automata algebra together. 
The idea of abstracting out tree based logical operators for 
different XML storage, index and view-models is in principle 
closer to the XAM (XML Access Module) idea proposed in 
[51]. However, we have demonstrated the set of XAMs we use 
and how this set can be efficiently supported on both schema 
aware structured XML storage and schema-agnostic XML 
storage. Furthermore, we show the idea of using cost based 
physical rewrite strategy to weigh XAMs, a strategy that 
distinguishes us from [51]. 

9. Conclusion & Future work 
In this paper, we present our work on building a combined 
XQuery and SQL/XML engine that can work with and optimize 
for different XML storage, index and view models in RDBMS. 
To our knowledge, this is the first industrial XQuery engine that 
can work with a variety of physical XML storage and index 
models. We define an XML-extended-relational algebra as the 
logical algebra to optimize both XQuery and SQL/XML into the 
same underlying logical algebra presentation. This algebra is 
based on the theoretical framework of object-relational SQL and 
SQL extensibility. This achieves a physical XML independent 
XQuery-SQL/XML engine. Then, we optimize specific tree 
based algebraic operators - such as XPath navigation pattern, 
XPath with predicate branching pattern, specific master-detail 
twig pattern, and automata-based streaming evaluation - based 
on the underlying XML storage, index and view models. Our 
future work will include support for additional kinds of XAM 
patterns using XQuery/XPath materialized views. 
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