
Towards a Physical XML independent XQuery/SQL/XML
Engine

 Zhen Hua Liu, Sivasankaran Chandrasekar, Thomas Baby, Hui J. Chang
Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA 94065, USA

{zhen.liu, sivasankaran.chandrasekar, thomas.baby, hui.x.zhang}@oracle.com

ABSTRACT
There has been a lot of research and industrial effort on building
XQuery engines with different kinds of XML storage and index
models. However, most of these efforts focus on building either
an efficient XQuery engine with one kind of XML storage,
index, view model in mind or a general XQuery engine without
any consideration of the underlying XML storage, index and
view model. We need an underlying framework to build an
XQuery engine that can work with and provide optimization for
different XML storage, index and view models. Besides
XQuery, RDBMSs also support SQL/XML, a standard language
that integrates XML and relational processing. There are
industrial efforts for building hybrid XQuery and SQL/XML
engines that support both languages so that users can manage
and query both relational and XML data on one platform.
However, we need a theoretical framework to optimize both
SQL/XML and XQuery languages in one RDBMS. In this
paper, we show our industrial work of building a combined
XQuery and SQL/XML engine that is able to work and provide
optimization for different kinds of XML storage and index
models in Oracle XMLDB. This work is based on XML
extended relational algebra as the underlying tuple-based
logical algebra and incorporates tree and automata based
physical algebra into the logical tuple-based algebra so as to
provide optimization for different physical XML formulations.
This results in logical and physical rewrite techniques to
optimize XQuery and SQL/XML over a variety of physical
XML storage, index and view models, including schema aware
object relational XML storage with relational indexes, binary
XML storage with schema agnostic path-value-order key
XMLIndex, SQL/XML view over relational data and relational
view over XML. Furthermore, we show the approach of
leveraging cost based XML physical rewrite strategy to
evaluate different physical rewrite plans.

1. INTRODUCTION
With XML becoming a universal data model to represent
structured, semi-structured and unstructured data and declarative
XML processing languages, such as XQuery and SQL/XML

[10], becoming standardized, there has been substantial research
and industrial efforts on building XQuery engines on different
platforms with different XML storage, index and view models.
One approach is to build a native XML database using XML
tree as the physical storage model [1,40, 41] with XPath/XQuery
as the only query languages. The other approach is to build a
hybrid XML/SQL database. Major RDBMS vendors have built
hybrid XQuery and SQL/XML engines in their RDBMS
products so that relational data and XML data can be managed
and queried on one platform [7,8,9,30] with both XQuery and
SQL/XML as query languages.

However, IBM and Microsoft support one XML storage model
in their respective XQuery engines, which are optimized for
their corresponding storage and index model. IBM uses XML
tree as the physical storage model with a combined path and
value index [8,48] whereas Microsoft uses binary XML as the
physical storage model with distinct path, value indexes [9,27].
Monet DB [33] uses range encoding to store XML documents in
relational tables. Oracle XML DB, however, concludes based on
its customer XML use-cases, that XML is an abstract data type
and its optimal physical storage and index models are use-case
driven. We find that there is no “one-size-fits-all” solution for
physical XML storage and indexing because XML is used to
represent data with a wide variety of characteristics.
Consequently, the first requirement for the Oracle XQuery
engine is that it must be XML storage, index and view model
independent and yet be able to choose the best physical
optimization strategies when working with the underlying XML
physical model.

In hybrid SQL and XML RDBMS use-cases, both XQuery and
SQL/XML are used to query XML. Furthermore, there are SQL
queries to query relational views over XML using the
XMLTable construct defined in SQL/XML. Therefore, the
second requirement for the Oracle XQuery engine is that it must
provide better interoperability with the SQL engine so that
cross-language optimizations between XQuery and SQL/XML
are feasible. The resulting XQuery/SQL engine is independent
of any particular XML query language.

Although SQL and XQuery are different query languages, they
share commonalities. One of the key similarities is that they are
both set-based, declarative languages so that iterator-based
(stream-based), lazy evaluation strategies, which use as little
data materialization as possible, can be applied to process both
languages [2,26]. Furthermore, both XQuery and SQL have the
concept of join, selection, projection, and sort algebra. It is
natural that an XQuery engine integrated into RDBMS should

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’08, August 24-30, 2008, Auckland, New Zealand.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-
000-0/00/00.

1356

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

share the same physical iterator-based execution infrastructure
as that of the SQL engine and share the same physical data
representation. Therefore, the third requirement for the Oracle
XQuery engine is that it leverage existing mature SQL
infrastructures as much as possible. Despite their similarities,
SQL and XQuery have differences too. SQL is statically typed
whereas XQuery is dynamically typed. A Relational set is
unordered whereas XQDM (Xquery Data Model) is ordered.
Therefore, one challenge that needs to be addressed is bridging
these semantic gaps between XQuery and SQL if they are
integrated as one engine in an RDBMS.

In this paper, we show our work and experience of building such
an XQuery/SQL-XML engine optimized for different XML
storage, index, and view models. The main contributions of the
paper are as follows:

• We create XML Extended Relational Algebra (XERA)

as the logical, tuple based algebra into which both XQuery
and SQL semantics are compiled. With the theoretical
foundation of SQL extensibility and object relational SQL
[13], we show that the XERA that we have created and
implemented in Oracle XMLDB is complete and is derived
from a direct application of the principles of SQL
extensibility and object relational SQL in the domain of
XML. XERA is essentially SQL query graph extended with
XML constructs and operators. We also incorporate tree
algebra pattern in the form of XPath navigation tree pattern
and XPath with branching predicate twig pattern, and
automata-based streaming evaluation algebra pattern into
the tuple based algebra so that both tree and automata
physical optimizations over different physical XML
formulations are feasible.

• We show physical rewrite that enables the XQuery/SQL

engine to work with different physical XML formulations:
(a) XML schema aware structured object-relational storage,
(b) path, value, XMLTable based XML indexes on schema
agnostic binary XML storage, (c) SQL/XML view over
relational data. (d) XMLTable relational view over XML.
To our knowledge, this is the first industrial
XQuery/SQL/XML engine that is designed to work and
optimize with different XML storage, index and view
models.

• We show opportunities for using a cost based approach to

prune different physical XML rewrite algebra plans given
the same logical plan.

Outline Of The Paper: Section 2 discusses the various XML
storage, index and view models that Oracle XMLDB supports
and the architecture overview of the unified XQuery and
SQL/XML engine. Section 3 discusses an example to show the
multi-phase XML rewrite transformation. Section 4 discusses
XML extended relational algebra. Section 5 discusses
optimisations for the XML extended relational algebra – the
logical rewrite independent of physical XML storage, index, and
view models. Section 6 discusses the physical optimizations for
different XML storage, index and view models, with cost based
pruning techniques. Section 7 discusses performance evaluation.
Section 8 discusses the related work comparison and section 9
concludes the paper with acknowledgement.

2. Overview of XML Storage and Index in
Oracle XMLDB
Oracle XMLDB addresses both data centric and document
centric XML [7] use cases. On one end of the spectrum, data
centric XML is very structured and bound with a rigid XML
Schema. In such use-cases, modelling XML as a hierarchical
view of relational data with XML schema aware decomposition
of XML gives much better query performance and offers the
best interoperability of relational and XML data [5,6,17,19]. On
the other end of the spectrum, document centric XML may not
have an XML schema or may have a very flexible XML schema.
In such use cases, a schema-agnostic aggregated XML storage,
such as tree or binary XML storage, with path-value index gives
much better query performance.

Figure 1 – Architecture of Unified XQuery/SQL/XML
Engine in Oracle XMLDB for different XML physical

formulations
Oracle XMLDB provides both XML schema aware object
relational storage with relational index for structured XML data
[5] and binary XML storage with XMLIndex [7] for semi-
structured or unstructured XML data. There are three types of
indexing strategies in Oracle XMLIndex: (a) path-value-order
key based indexing strategies for ad-hoc XPath and value

SQL/XML

Relational Optimization with Cost

XQuery

SQL/XML XQuery Hybrid Compiler

XML Storage/Index Independent
Optimizations (XML Logical Rewrite)

XML Storage/Index Dependent Optimizations
(XML Physical Rewrite)

Optimized XERA

XERA

Structured OR
Storage with
Relational
Indexes

Binary XML
Storage with
XMLIndex

XML View on
Relational
Data

Relational Logical Optimization

Relational Physical Optimization

Cost
Analysis

1357

search, (b) structured, XMLTable-based indexing strategies
for querying structured components, and (c) full-text extensions
to path-value-order key-based indexing strategies for doing full-
text search within a document fragment using the ora:contains()
Oracle XQuery extension function. The path-value-order key-
based indexing is conceptually similar to path-based indexing
technique described in [20] with ordered Dewey key [18]. The
structured XMLTable based index is discussed in [12].

In addition, Oracle XMLDB provides a SQL/XML view over
relational data using SQL/XML generation functions so that
relational data can be queried as XML [6]. Also Oracle XMLDB
provides a relational view over XML using XMLTable construct
so that XML data can be queried relationally as if they were
physically stored in a tabular form.

The XQuery and SQL/XML query rewrite architecture is multi-
tiered as shown in Figure 1. Both XQuery and SQL/XML are
first compiled into the same XERA and optimized without
considering the actual physical XML storage/index. Then, the
XERA logical algebra tree goes through physical rewrite with
different XML storage, index and view models. Queries
generated by physical rewrite are optimized by the relational
query engine to produce physical-algebra query plans. For a
given XML storage/index, if multiple physical, storage-
dependent rewrite strategies exist, the relational optimizer is
invoked for each physical rewritten query to determine the best
physical rewrite strategy in terms of cost. An example of this
multi-phase rewrite process is illustrated in Section 3. Note the
SQL text shown here is for ease of presentation. The actual
rewrite process does NOT generate SQL text but rather does
rewrite transformation on query graph structures that represent
these XML extended SQL queries.

3. Motivating Example
Consider an example of a table xmlt that stores XML documents
and a SQL/XML query Q1 that finds the number of XML
documents satisfying the XQuery in XMLEXISTS() SQL/XML
operator.
select count(*)
from xmlt v
where xmlexists('$x/a/b[c="cv"][d="dv"]' passing value(v) as "x")

 Q1- SQL/XML Query
3.1 XML Storage/Index Independent Logical Rewrite
User query Q1 is first compiled into the SQL extended with
XML operators (XERA) as Q2. Then multiple EXISTS sub-
queries are optimized into semi-joins as shown in Q3 (semi-join
is not in the standard SQL, it is an existence join). However,
table(xqpath()) functions capturing the node tuple iteration in
Q3 remain because the logical rewrite is not aware of the
physical XML storage/index properties.
select count(*)
from xmlt v
where exists(
 select 1
 from table(xs(xqpath('$x/a/b') passing value(v) as "x")) v1
 where
 exists
 (select 1
 from table(xs(xqpath('$v1/c') passing value(v1))) v2
 where xqexval(value(v2)) = "cv")
 and

 exists
 (select 1
 from table(xs(xqpath('$v1/d') passing value(v1))) v3
 where xqexval(value(v3)) = "dv")
)

 Q2 - Post XQuery/SQL Hybrid Compilation
select count(*)
from xmlt v,
 semi-join lateral(table(xs(xqpath('$x/a/b') passing value(v)
as "x"))) v1,
 semi-join lateral(table(xs(xqpath('$v1/c') passing value(v1)
as "v1"))) v2,
 semi-join lateral(table(xs(xqpath('$v1/d') passing value(v1)
as "v1"))) v3
where xqexval(value(v2)) = 'cv' and xqexval(value(v3)) = 'dv'

Q3 – Post Logical Rewrite
3.2 XML Storage/Index Dependent Physical Rewrite
3.2.1 Multiple physical rewrite strategies with binary XML
If xmlt is binary XML storage with XMLIndex., then Q3 can be
rewritten using different physical XML rewrite strategies
(S1,S2,S3). S1 uses the XMLIndex physical rewrite discussed in
section 6.3. S2 uses the binary XML stream evaluation rewrite
discussed in section 6.4. S3 uses a combination of XMLIndex
and binary XML stream evaluation.
S1: Q4 is derived from physical rewrite using XMLIndex.. Note
the table(xs(xqpath())) function is optimized into the selection
from the XMLIndex storage table pathtable. Conceptually this
query does a join based on node dewey order keys and docids
among three different path-value probes of pathtable. Q4 is then
optimized by the relational optimizer that determines the best
physical join plan among pathtables and the best indexes to use
to probe the pathtables using statistics collected on the
pathtables and xmlt table.
select count(*)
from xmlt v, semi-join pathtable p1,
 semi-join pathtable p2, semi-join pathtable p3
where v.docid = p1.docid and p1.pid = pid('/a/b') and
 p2.pid = pid('/a/b/c') and p2.docid = p1.docid and p2.value
= "cv"
 and parent_key(p2.orderkey) = p1.orderkey
 and p3.pid = pid('/a/b/d') and p3.docid = p1.docid and
p3.value = "dv"
 and parent_key(p3.orderkey) = p1.orderkey)

Q4 - Post Physical Rewrite with XMLIndex
S2: The table(xs(xqpath())) expression is rewritten using a
binary XML specific xpathtable physical operator with
streaming evaluation of XPath on the binary XML token stream.
This results in Q5.
select count(*)
from xmlt v,
semi-join lateral(xpathtable('$x/a/b', passing value(v) as "x"))
v1,
semi-join lateral(xpathtable('$v1/c', passing v1.xvalue as "v1"))
v2,
semi-join lateral(xpathtable('$v1/d', passing v1.xvalue as "v1"))
v3
where v2.value = 'cv' and v3.value = 'dv'
Q5 – Post Physical Rewrite with Binary Stream Evaluation

S3: This strategy uses an XMLIndex to evaluate ‘/a/b’ and then
uses binary stream evaluation to compute the two separate
XPaths ‘c’ and ‘d’. This results in Q6. The mkini() in Q6 is a

1358

physical operator that constructs XQDM from the LOB locator
stored in pathtable that locates the XML fragment.

select count(*)
from xmlt v, semi-join (select mkini(p1) as v1
 from pathtable p1
 where p1.pid =pid('/a/b')
 and p1.docid = v.docid) pv,
 semi-join lateral(xpathtab('$v1/c' passing pv.v1 as "v1")) v2,
 semi-join lateral(xptahtab('$v1/d' passing pv.v1 as "v1")) v3
where v2.value = 'cv' and v3.value = 'dv'

Q6 –Post Physical Rewrite with XMLIndex & Binary
Stream Evaluation

Costs from the relational optimizer for Q4, Q5 and Q6 are then
compared to choose the best physical rewrite strategy. Note that
we can compare and cost among CPU operations for binary
XML stream evaluation and pathtable I/O. The detail is beyond
the scope of this paper though.
3.2.2 Physical rewrite for Object Relational Storage
If xmlt is OR storage with elements for ‘/a/b’ stored in tab_b,
elements ‘c’ stored in tab_c and elements ‘d’ stored in tab_d,
then after physical rewrite and relational optimisation, Q3 is
rewritten into Q7. The relational optimizer then chooses the
optimal classical relational physical algebra: physical join plan
and B+tree or bitmap index to access the storage tables.
select count(*)
from xmlt v,
 semi-join tab_b b, semi-join tab_c c, semi-jon tab_d d
where v.docid = b.docid and b.nid = c.nid and b.nid2 = d.nid
and c.val = 'cv' and d.val = 'dv'

Q7 - Post Physical Rewrite with OR storage
Note that although OR storage requires that all XML documents
stored in the table have uniform schema, query performance for
Q7 is conceptually better than that of Q4 for typical use cases
because different xpath match of the pathtable that need to be
done during run time for Q4 has been pre-compiled into
different physical table access in Q7 during compile time. The
joins in Q7 are primary-key foreign key joins instead of range-
based Dewey order key joins. The value search in Q7 is targeted
for specific columns of specific tables instead of one bloated
value column capturing all values in the pathtable.

4. XML Extended Relational Algebra
(XERA)
Although SQL and XQuery have similarities, they have a
number of critical differences that necessitate the use of Object
Relational SQL and Extensibility SQL, which are initiated in
POSTGRES [47,13] and are widely supported by RDBMS
products [14,15,16], as the theoretical foundation to create the
XML extended relational algebra into which both XQuery and
SQL is compiled. Extensibility SQL allows SQL to be extended
with new datatypes; new functions and type comparison
operators in SQL as if they were built-in SQL functions and
built-in type comparison operators that can be used in SQL
ORDER BY clause, UNION, INTERSECT, EXCEPT set
operations; new aggregation functions as if they were built-in
aggregation function (such as sum(), avg(), min(), max()); new
indexing methods as if there were built-in index methods. Object
relational SQL allows SQL to be extended with collection type
and table function to nest and un-nest collection type.

We create new operators, new table function, new aggregation
functions, to be discussed below, in Oracle XMLDB to
formulate the XML extended relational algebra which bridges
the semantics gap between XQuery and SQL.

4.1 Principles of XERA
1. Incorporate XQDM as a Datatype in SQL: XQuery Data

Model (XQDM) is added as a new datatype into SQL. An
XQDM can be a single XQItem, which is either an atomic
value with its type, or a single XML node reference. It can
also be an ordered set (sequence) of such XQItems (each
XQItem is implicitly associated with an ordinal position
indicating the item position in the sequence). Note that an
XQuery atomic value is different from a SQL atomic value
because an XQuery atomic value has its type associated
with it. The new XQDM is actually a collection of items
that is in principle similar to the collection type in the
object extension of SQL [13].

2. Incorporate XQDM operators in SQL: We add a number of
operators that manipulate the XQDM added into SQL. We
refer to them as XQSQL operators. These operators take
XQDM as inputs and return XQDM as output and are
closed with respect to XQDM. They implement the
semantics of XQuery expressions that SQL does not have.

3. UNNEST XQDM as relational set: We add a new table
function XS() that converts an XQDM, which is a sequence
of XQItems, into a set of relational tuples. The significance
of this table function is that it models the concept of
iteration of each XQItem of an XQDM as iteration of each
row of a virtual table in SQL. There are two columns in
each relational tuple. The first column pos is of type integer
that is the ordinal position of the XQItem in the sequence,
the second column value is an XQItem. The position
column is used to answer position() and XPath positional
index expressions in XQuery.

4. NEST relational set into XQDM: We add a new aggregator
function XQAgg() that aggregates a set of relational tuples
of XQItems into an XQDM. It is the opposite of the table
function XS() and flattens a virtual table into a collection.
Here is the algebra identity rule for NEST/UNEST:
SELECT XQAgg(tt.value ORDER BY tt.pos) FROM
TABLE(XS(XQDM)) tt = XQDM. The XQAgg() has an
ORDER BY clause to aggregate all of the XQItems based
on its ordinal position. The application of the table function
XS() and the aggregate function XQAgg() enables the
compilation of XQuery expressions into SQL with proper
application of NEST and UNNEST operators. The
combination of table function XS() and aggregate function
XQAgg() allows us to unflatten and flatten XQDM at
proper places and algebraically simplify XQuery
expressions after expression inline, variable substitution
and FOR clause merge.

5. Ordered and lateral Join construct: Joins in XQuery are
ordered and have left join dependency whereas a pure
relational SQL join is unordered and has no left join
dependency. However, SQL has the concept of a lateral
join which models left join dependency semantics. So join
in XQuery is compiled into ordered lateral join construct
that the underlying Oracle SQL engine supports. The
access of iterator variable of the for clause of FLWOR is
compiled into the access of value column of each row of
the table function XS() over the for clause input. However,

1359

to compile a let clause, a table with one row is used as the
anchor point. See example 2 described below.

4.2 Examples of compiling XQuery into XERA
In Example 1, first, the table function XS() is used to iterate
through each item from a sequence and XQAgg() is used to
flatten tuple results back into a sequence. This makes the
resulting SQL query a scalar query (query returns one row and
one column output). Second, since ‘>’ is a general comparison,
we have it compiled as a SQL EXISTS sub-query that again uses
table function XS() to iterate through each item of the sequence.
Third, note that the tti.pos column is used for the position at
clause in FLWOR. Also, note the usage of XQElem() operator to
construct element node, XQConcat() operator to construct
XQuery sequence, and XQPath() operator to apply an XPath
expression on the input.
declare $x external;
for $i at $j in $x/a/b
where $i/c > 3
return <rslt>{($j, $i/d/e, <newf>{$i/d/f}</newf>)}</rslt>
SELECT XQAgg(
 XQElem(“rslt”,
 XQConcat(XQAtomic(tti.pos), XQPath(tti.value, ‘d/e’),
 XQElem(“newf”, XQPath(tti.value, ‘d/f’)))) ORDER BY
tti.pos)
FROM TABLE(XS(XQPath(XQBindVGet($x), ‘a/b’))) tti
WHERE EXISTS(
 SELECT 1
 FROM TABLE(XS(XQPath(tti.value, ‘c’))) tt2
 WHERE XQPolyVGT(tt2.value, XQConstruct(3,
xs:integer)))

Example 1 - FWR compilation
declare $x external;
for $i in $x/a/b
let $j := $i/d/e
where count($j) > 3
return ($i, $j)
SELECT XQAgg(
 XQConcat(tti.value, ttj.value) ORDER BY tti.pos)
FROM
TABLE(XS(XQPath(XQBindVGet($x), ‘a/b’))) tti, LATERAL(SELECT
XQPath(tti.value, ‘d/e’)
 FROM ONE_ROW_TAB)
ttj
WHERE (SELECT COUNT(*)
 FROM TABLE(XS(ttj.value))) > 3

Example 2 – let Compilation
In Example 2, the let clause is compiled into selection from a
special table ONE_ROW_TAB that has only one row. Since there
is a join dependency between a for clause and a let clause
(because $j computation depends on $i), we use the LATERAL
join construct of SQL. The XQuery fn:count() function is
compiled into SQL count.

4.3 Compilation of XQuery into XERA
In [11], we presented how to compile XQuery into extended
SQL with XML operators. Here we present the new
improvements so that the XQuery rewrite logic is complete
without the dependence on a co-processor evaluation.
Handle Dynamic Typing: In contrast to statically typed SQL,
an XQuery expression can be dynamically typed if the
implementation does not support static typing. In the presence of
static typing of XQuery, we may be able to map certain XQuery
expressions, for example, arithmetic expressions and value
comparing expressions to their equivalent SQL operators where
static typing is needed to map to proper SQL operators.

However, in general we have to create new XML specific type
polymorphic operators to handle XQDM whose type
information may not be available during query compile time.
Therefore, all the new XML specific SQL operators that we
create in XERA take XQDM as input and return XQDM as
output so that the actual sequence type information of the input
XQDM can be obtained during run time in these type-
polymorphic operators that do XQuery semantics based on the
dynamic typing rules of XQuery.
These new polymorphic operators include XQPolyAdd(),
XQPolySub(), XQPolyMul(), XQPolyDiv(), XQPolyIDiv() and
XQPolyMod() XQSQL operators for XQuery arithmetic
expressions.
These new polymorphic operators XQPolyVGT(), XQPolyVGE,
XQPolyEQ(), XQPolyLT(), XQPolyLE() are XQSQL operators
for XQDM value comparison. Note these operators have
additional flag parameters to indicate what comparison context
they are invoked in. This is critical as comparison semantics are
different in different contexts. For example, although the
semantics of general comparison is existential qualification and
can be compiled into nested EXISTS sub-query. $x > $y is
compiled into EXISTS (SELECT 1 FROM TABLE(XS($x)) ttx WHERE
EXISTS(SELECT 1 FROM TABLE(XS($y)) WHERE
XQPolyVGT(ttx.value, tty.value, GC_FLAG)). Note XQPolyVGT()
is passed with a third parameter GC_FLAG to indicate that it is
called with a general comparison context as the XQuery type
casting rule semantics is different for general comparison and
value comparison.
Aggregate based XQuery F&O functions, fn:count(), fn:min(),
fn:max(),fn:sum(),fn:avg(), fn:distinct-value() are compiled into
the corresponding SQL aggregate functions count, min(),
max(),sum(), avg() and DISTINCT construct in SQL using these
type polymorphic comparison and arithmetic functions.
Handle Node Comparison: Node comparison is compiled into
XQNodeCmp() XQSQL operators. These operators take XQDM
node reference as input and determine their relationship based
on their node identities. When nodes are combined using
XQuery union,intersect,except functions, they are compiled into
SQL UNION, INTERSECT, EXCEPT query using
XQNodeCmp() to do node comparison based on node identity.
The physical node identity representation varies depending on
the physical XML storage structures.
XPath Compilation: Instead of normalizing path expression
into nested FLWOR expression at each step expression level as
defined in XQuery formal semantics [43], we normalize the step
expression into FWOR expression when the step has predicates.
If each step of a path expression is a sequence of axis step
expression without any predicates, it is directly compiled into
XQPath() XQSQL operator.
For example, $x/a/b/c is compiled into
XQPath(XQBindVGet($x), ‘a/b/c’).
A path expression with predicate, for example, $x/a[. gt “v1”][.
lt “w2”]/b/c/d is compiled into the following Scalar Subquery
with Predicates (SSP) as shown in XQP1.

SELECT XQAgg(XQPath(tt.value, ‘b/c/d’))
FROM TABLE(XS(XQPath(XQBindVGet($x), ‘a’))) tt
WHERE XQPolyVGT(XQExVal(tt.value), “v1”) and
XQPolyVLT(XQExVal (tt.value), “w2”)

XQP1
SSP can handle multiple predicates as long as each predicate
does not access context position and it is statically determined

1360

that the result of the predicate is not a numeric type. Otherwise,
it is compiled into nested SSP.
For example, $x/a[. gt “v1”][position() > 4] is compiled into
the following XQP2.
SELECT XQAgg(value(v))
FROM (SELECT /*+ NO_MERGE */ tt.value
 FROM TABLE(XS(XQPath(XQBindVGet($x), ‘a’))) tt
 WHERE XQPolyVGT(XQExVal(tt.value), “v1”)) v
WHERE v.pos > 4

XQP2
Note that this is compiled into an inline view without merging as
the inner view generates context position value that is filtered by
the outer query.
As another example, if we don’t know the static type of $y, then
$x/a[. gt “v1”][$y] is compiled into the following XQP3.
SELECT XQAgg(value(v))
FROM (SELECT /*+ NO_MERGE */ tt.value
 FROM TABLE(XS(XQPath(XQBindVGet($x), ‘a’))) tt
 WHERE XQPolyVGT(XQExVal(tt.value), “v1”)) v
WHERE XQPredTruth(v.pos, XQBindGet($y))

XQP3
The XQPredTruth() XQSQL operator checks the dynamic type
of $y. If it is a numeric type, it does context comparison with its
first input which is the context position and returns the result of
the comparison. Otherwise, it returns the effective boolean value
of $y.

4.4 Compilation of SQL/XML functions into XERA
SQL/XML generation functions: they are compiled into the
same set of operators as the ones that XQuery constructor
expressions are compiled into.
XMLAgg() aggregation function: it is compiled into XQAgg().
XMLQuery() and XMLExists() functions: The XQuery
expression body in these functions are compiled as described
above. For XMLExists(), the extra compilation of fn:exists() is
added on top of the XQuery expression body.
XMLTable Construct: it is compiled into a XQTab SQL query
using an table(XS()) table function to iterate through each item
from the row XQuery expression and projects out column values
from the column XQuery expression. All XQuery expressions in
row and column of XQTab are compiled into XML extended
algebra as discussed above.

5. Optimization of XERA

5.1 Optimistic Static Type check
A structured type tree is used to do the static type inference
[11,24]. A structured type tree is built from the bottom up while
traversing the XQuery expression tree. The bottom portion of
the structured type tree is constructed from the input variables to
the query. There, the XML schema information or SQL/XML
functions with SQL schema that constructs the input variables
are used to build the structured type tree. If the input schema
information is not available, a structured type tree representing
item() * sequence type is built.
We use static type inference to catch type errors that would
otherwise be raised as dynamic type errors if not caught
statically. However, we would not raise type errors statically if
they may succeed during run time. For example, 3 + ‘abc’
results in static type error. However, declare $x external; 3 + (if
($x) then 4 else ‘abc’) does not result in static type error because

whether the dynamic type error is raised or not depends on the
value of $x during run time. Such optimistic static type
checking is feasible because the underlying XML extended
relational algebra operators, such as XQPolyAdd(), are able to
verify type from the input XQDM during run time. Note that this
is different from pessimistic static typing defined in XQuery
formal semantics [43] and what is implemented in Microsoft
SQL Server [28].

5.2 Optimisation based on static type inference
Simplify arithmetic and comparison expression: arithmetic
expressions and value comparison expressions can be simplified
to their corresponding static SQL operators using static type
inference.
Simplify Boolean based expressions: if fn:boolean() input type
is one or more nodes, then fn:boolean() is true. If fn:exists()
input type is one more item, then fn:exists() is true. If the input
type to fn:boolean() or fn:exists() is an empty sequence, then the
result is false. Based on these rules, we can simplify xquery
expressions that are based on fn:boolean() value, such as
condition expression, logical expression, where clause of
FLWOR expression, quantifier expression etc, and fn:exists()
function in a cascading fashion.
Sequence type based expressions: Expressions, such as instance
of, treat as, typeswitch, castable, cast, are optimized based on
static type inference.

5.3 Data Flow Analysis based Algebraic Optimization
Join Optimization: Left dependency join in XML extended
relational algebra from XQuery is optimized into SQL join
algebra if there is no dependency among join variables. Ordered
join in XML extended relational algebra from XQuery is
optimized into SQL join algebra if either unordered expression
is used or the order of the items in the sequence is determined to
be irrelevant. For example, when an expression is used as input
in a boolean context, such as fn:exists() or fn:boolean() if the
input is of static type node()*, the order is not relevant so that
unordered optimization can be used. Other optimizations of
elimination of order in XPath [57,58] context can also be used.
Once the join is optimized as unordered SQL join, hash and
merge join from the physical algebra can be used to optimize
join processing.
Existence Optimization: XQuery expressions, such as
quantified expression, general comparison, fn:exists(),
fn:boolean() whose input is of static type node()*, are compiled
into EXISTS() and NOT EXISTS() subquries so that subquery un-
nesting into semi-join and anti-join optimization in SQL [3] can
be applied.
Nested FWR Block Merge: A FWR can be merged with its
parent FWR clause. For example, xquery for $p in (for $q in $x
where $x > 3 return $q) return $p can be optimized into for $q in $x
where $x > 3 return $q. Since FWR is compiled into SELECT
FROM WHERE query so that view merge (folding) technique in
SQL [4] can be applied.
Ordinal positional number Elimination: positional number is
not generated from Table(XS()) table function if the resulting
sequence is not used in positional predicate computation and the
at clause of FLWOR construct is absent.
Cancellation & Merge Algebraic Reduction: Path navigation
operator XQPath() can be cancelled with the node constructor
operator XQElem() to eliminate unnecessary node construction.
Two XQPath() operators can also be merged into one. For
example, XQPath(XQPath($x, ‘a/b’), ‘c/d’) = XQPath($x, ‘a/b/c/d’).

1361

Merging XQPath() operator enables the growth of tree pattern
that can be facilitated for physical rewrite discussed in section 6.
XQPath Push Down: This is the distributive rule for XQPath().
For example, an XQPath() can be distributed to each child of a
XQConcat() operator and each branch of a CASE operator. Such
push down of XQPath() to its source enables XQPath
cancellation and merge algebraic reductions.
Variable Inlining and Factoring: Let clause variable, prolog
variable and non-recursive XQuery functions are inlined with
their reference when the semantics is allowed. The result of
inlining can create opportunities to apply composition & de-
composition reduction. For example, xquery expression let $x:=
(<a>34<c>56</c><d>76</d>) return ($x/b, $x/d) is
optimized as (34, <d>76</d>). However, if such
elimination is not feasible, then it is better to compute let clause
variable value once and avoid re-computation if the variable is
referenced in multiple places [25].
Node reference Analysis: Static node reference analysis is
performed to check if node identity generation is needed for
each expression that may return nodes. For example, generating
node identity for constructor is expensive. Furthermore,
cancellation of XPath navigation with node construction
requires that the node identity be irrelevant. For example: let $x
:= (<a>34<c>56</c><d>76</d>) return ($x/b
<< $x/d). Since << requires the node identity generation for
the constructor, so cancellation of xpath navigation with node
constructor is not applied here and node identity generation is
needed for the constructor.

6. Optimization with physical XML Storage,
Index, View – Physical Rewrite

Here we show how Q3 in section 3 is optimized into Q4,Q5,Q7
for different physical rewrites. The physical rewrite occurs from
inner query -blocks to outer ones. For each physical rewrite, we
show below how query blocks v1 and v2 of Query 3 are
optimized. In each optimization step, we highlight the operator
or set of operators that are optimized.
table(xs(xqpath('$x/a/b' passing value(v) as "x"))) v1

 Q3 –v1
table(xs(xqpath('$v1/c' passing value(v) as "v1"))) v2
where xqexval(value(v2)) = 'cv'

 Q3 –v2

 6.1 Physical Rewrite for OR Storage and SQL/XML
view
When the XML schema is available, an XML instance can be
decomposed and stored into a set of object relational tables for
the XML schema. This corresponds to a schema aware XML
storage model. However, Oracle XMLDB object relational
storage is beyond simple ‘shredding’ methods because it can
encode and store non-relational XML contents, such as PI,
comment node information, node order, schema type
information, into binary columns of the storage tables.
Construction of XML from relational data and creation of XML
views, using SQL/XML generation functions, are also
supported.
ORPW-v1 shows three intermediate steps in the process of
optimizing query Q3-v1. ORPW-v1.S1 shows how the input $x
is constructed from XQSQL generation operator XE(). XE()
operator constructs element node. The XQAgg() within XE()
constructs collection elements from the underlying relational

storage tables. ORPW-v1.S2 shows the result of the cancellation
of XQPath() with input XE(). Finally, ORPW-v1.S3 shows the
result of cancelling table(XS()) with XQAgg(), after application
of the NEST/UNEST algebra rule in section 4.1.
S1 table(xs(xqpath(

 XE("a",
 select xqagg(XE("b", select xagg(XE("c", c.val))
from tab_c where c.nid = b.nid, select xqagg(XE("d",
d.val)) from tab_d d where d.nid = b.id))
 from tab_b b
 where tab_b.docid = v.docid), 'a/b'))) v1

S2 table(xs(select xqagg(XE("b", select xagg(XE("c", c.val))
from tab_c c where c.nid = b.nid, select xqagg(XE("d",
d.val)) from tab_d d where d.nid = b.id))
 from tab_b b
 where tab_b.docid = v.docid)) v1

S3 select XE("b", select xagg(XE("c", c.val)) from tab_c c
where c.nid = b.nid, select xqagg(XE("d", d.val)) from
tab_d d where d.nid = b.id)
from tab_b b where tab_b.docid = v.docid

ORPW -v1
ORPW- v2 shows three intermediate steps in the process of
optimizing query block Q3-v2. The input to v2 is v1, the result
of ORPW-v1. The optimizations of ORPW-v2.S1 and ORPW-
v2.S2 are the same as those of ORPW-v1.S1 and ORPW-v1.S2.
ORPW-v2.S3 shows how xqexval() is optimized into the
underlying relational storage column.
S1 table(xs(xqpath(

 (select XE("b", select xagg(XE("c", c.val)) from tab_c c
where c.nid = b.nid, select xqagg(XE("d", d.val)) from
tab_d d where d.nid = b.id),
 from tab_b b where tab_b.docid = v.docid), 'c'))) v2
where xqexval(value(v2)) = 'cv'

S2 table(xs(select xagg(XE("c", c.val)) from tab_c c
where c.nid = b.nid)) v2
where xqexval(value(v2)) = 'cv'

S3 select XE("c", c.val) from tab_c c
where c.nid = b.nid, and c.val = 'cv'

ORPW -v2
The same OR physical rewrite of Q3-v2 is also applied to Q3-
v3. All of these steps rewrite Q3 into ORPW-pre-Q7 below.
Then, ORPW-pre-Q7 is optimized into Q7 via relational view
merge. Since select lists of v1,v2,v3 are not referenced in the top
query block, they do not appear in the final query Q7.
select count(*)
from xmlt v,
semi-join lateral (select XE("b", select xagg(XE("c", c.val))
from tab_c c where c.nid = b.nid, select xqagg(XE("d", d.val))
from tab_d d where d.nid = b.id)
 from tab_b b where tab_b.nid = v.nid),
semi-join lateral (select XE("c", c.val) from tab_c c
where c.nid = b.nid, and c.val = 'cv'),
semi-join lateral (select XE("d", d.val) from tab_c d where
d.nid = b.nid, and d.val = 'dv')

ORPW –pre-Q7

6.2 Physical Rewrite for XMLIndex
In the absence of an XML schema or in cases where XML
schema flexibility is critical, an XMLIndex offers fast value-
based and path-based searches. Physically, an XMLIndex
consists of a path table that stores one row for each node in an

1362

XML document. The path table stores for each node, an
identifier for the document containing the node, a Dewey style
order key [18] that captures the hierarchical and sibling
relationships among nodes, an identifier for the concatenation of
Qnames of nodes along the path from the root to the indexed
node, and the atomized value of the node [7]. The mapping from
the concatenation of Qnames of nodes to its identifier is stored
in system-wide token tables.
XIPW-v1 shows two intermediate steps in the process of
optimizing Q3-v1. XQPath() with input $x is rewritten into
selection from pathtable with pid equals to ‘/a/b’ path (internally
we use binary pathid comparison). Then, table(xs()) is optimized
away with XQAgg().
S1 table(xs(select xqagg(mkini(p1.loc)) from pathtable p1

where p1.pid = pid('/a/b') and p1.docid = v.docid)) v1
S2 select mkini(p1.loc) from pathtable p1

where p1.pid = pid('/a/b') and p1.docid = v.docid
 XIPW -v1

XIPW- v2 shows two intermediate steps in the process of
optimizing query block Q3-v2. The input to v2 is v1, which is
the result of rewrite step XIPW-v1. XQPath('$v1/c') is rewritten
into a selection from pathtable p2. Nodes selected from p2
should have path '/a/b/c', which is obtained by concatenating the
path for p1 (i.e., '/a/b') with the path specified in Q3-v2 (i.e., 'c').
They should also be direct children of nodes selected from
pathtable p1, and this constraint is enforced using a check on the
order keys of nodes from p1 and p2.
S1 table(xs(select xqagg(mkini(p2.loc)) from pathtable p2

 where p2.pid = pid('/a/b/c') and p2.doicid = p1.docid
 and parent_key(p2.orderkey) = p1.orderkey)) v2
where xqexval(value(v2)) = 'cv'

S2 select mkini(p2.loc) from pathtable p2 where p2.pid =
pid('/a/b/c') and p2.doicid = p1.docid and
parent_key(p2.orderkey) = p1.orderkey and p2.value =
'cv'

XIPW -v2
The same XI physical rewrite of Q3-v2 is also applied to Q3-v3.
All of these steps rewrite Q3 into XIPW-pre-Q4 below. Then,
XIPW-pre-Q4 is then optimized into Q4 via relational view
merge.
select count(*)
from xmlt v,
semi-join lateral (select mkini(p1.loc) from pathtable p1 where
p1.pid = pid('/a/b') and p1.docid = v.docid),
semi-join lateral (select mkini(p2.loc) from pathtable p2 where
p2.pid = pid('/a/b/c') and p2.doicid = p1.docid and
parent_key(p2.orderkey) = p1.orderkey and p2.value = 'cv'),
semi-join lateral (select mkini(p3.loc) from pathtable p3 where
p3.pid = pid('/a/b/d' and p3.doicid = p1.docid and
parent_key(p3.orderkey) = p1.orderkey and p3.value = 'dv')

XIPW –pre-Q4

6.3 Physical Rewrite for Binary XML Streaming
Evaluation
Binary XML storage provides a compact post-parsed
representation of an XML document. It can be viewed as a
serialized form of a SAX stream over XML. The tags in XML
are tokenised. In addition, if the XML is schema based, then
content is stored in native format by making use of type
information form the schema.
The main access pattern for identifying pieces from an encoded
binary XML storage is to use a finite-state automaton based

approach [54]. A single scan of the input binary-encoded
document can identify nodes matching one or more XPaths. We
refer to this approach as binary XML streaming evaluation.
Each node can be uniquely identified by means of a locator,
which also serves as a Node Identifier. This identifier contains
information about the location of the node in the binary encoded
stream along with its QName, an optional type id and associated
information. When the physical rewrite is applied to binary
XML storage, query evaluation proceeds by first identifying
matching nodes using streaming evaluation. These nodes
themselves are represented using Node Identifiers, which make
it possible to perform further stream evaluation on them.
SEBPW-v1 shows result of rewrite of Q3-v1 to build an
xpathtable row source which performs automata evaluation of
XPath ‘/a/b’. SEBPW-v2 shows the result of rewriting Q3-v2 to
build an xpathtable row source that evaluates xpath 'c.' This row
source takes input from xpathtable column v1.xvalue and
performs an automaton-based evaluation of xpath 'c.' All of
these steps rewrite Q3 into SEBPW-pre-Q5, which is then view
merged into Q5.
select v1.xvalue
from xpathtable('$x/a/b' passing value(v) as "x") v1

SEBPW -v1
select v2.xvalue
from xpathtable('$v1/c' passing v1.xvalue))) v2
where v2.value = 'cv'

SEBPW -v2
select count(*)
from xmlt v, semi-join lateral(select v1.xvalue from
xpathtable('$x/a/b' passing value(v) as "x") v1), semi-join
lateral (select v2.xvalue from xpathtable('$v1/c' passing
v1.xvalue) v2 where v2.value = 'cv'), lateral (select v2.xvalue
from xpathtable('$v1/d' passing v1.xvalue) v3 where v3.value =
'dv')

SEBPW – pre-Q5

6.4 Cost-Based Evaluation of Physical Rewrite
Strategies
For binary XML, there are several physical rewrite strategies:
• Evaluate master-detail twig tree pattern using structured

XMLTable based XMLIndex or path-value-order key
XMLIndex.

• Evaluate descendant XPath navigation by using the join of
two sub-query probes of the path tables or by expanding a
descendant XPath using token tables and then using
expanded XPaths.

• Evaluate XQTab query construct using path index or using
streaming evaluation or using path index for row
expression of XQTab and streaming evaluation for the
columns of XQTab as illustrated in section 3.

Since there are multiple physical rewrite strategies, our physical
XML rewrite driver is cost based. We perform different physical
rewrite strategies and call the relational optimizer to compute
the cost of each query plan to determine which physical rewrite
produces the cheapest plan.

7. Performance Evaluations & Observations
7.1 XMark
No-one-size-fits-all: We use the Xmark benchmark [59] for our
performance experiments to evaluate the XQuery engine using
both schema based object relational storage (OR) with relational

1363

B+ tree indexes and binary XML storage with path-value-order
key based XMLIndex (BINXI). All 20 XMark queries can be
optimized fully by the Oracle XMLDB XQuery engine at the
level of physical rewrite with OR and BINXI storages.
However, the performance of queries comparing the two storage
and index models is different depending on the type of queries.
Value-Predicate-Qry: For Q1 and Q5 that use XPath value
predicate, OR out-performs BINXI as shown in Figure 2. This is
expected because the value index in XMLIndex indexes the leaf
values for all the nodes in one table whereas OR B+ tree index
indexes leaf value for different nodes in different tables.
Therefore, OR can precisely determine which leaf value column
of the table it needs to search and thus significantly reduces the
number of leaf values needed to be searched.
Positional-Predicate-Qry: For Q2 and Q3 that use XPath
positional predicate, OR outperforms BINXI as shown in Figure
3. This is expected because OR can use the ordinal number of
OCT (described in section 6.2) to compare the position quickly
whereas BINXI needs to rank the nodes using order key to
determine the position.
Count-Sequential-Qry: For Q6 and Q7 that count all nodes with
a particular path, OR and BINXI achieve relatively the same
performance as shown in Figure 4. This is expected because
both queries compute the count without predicates, and this
essentially involves table scans to count the rows.
Long-XPath-Qry: For Q15 and Q16 that use very lengthy XPath.
BINXI outperforms OR as shown in Figure 5. This is expected
because Q15 and Q16 have very long XPaths that can be
answered using path index, which directly returns the locators to
the corresponding XML fragments.
These performance observations from XMark queries are
explainable from the underlying strength or weakness of each
XML storage/index model. It demonstrates that the choice of the
right XML storage and indexing strategies is use-case driven
and depends upon the type of XML data and the type of queries.
There is no ‘one size fits all’ solution to determine how to store
and index XML.
Scaling: Q11 – Q12 are the time consuming XMark queries as
they involve joins. Figure 6 shows that we get quadratic scaling
with document size of 100MB and 200MB. For Q6 and Q7, we
get linear to sub-linear scaling because Q6 and Q7 compute
count() without predicates and therefore are equivalent to table
scans. These results are consistent with the experimental results
from Monet DB [33] that an XQuery system is bound to exhibit
quadratic scaling with document size on XMark query Q11-
Q12. Q6 and Q7 show sub-linear scaling for Monet DB.

7.2 TPOX
Need for cost based physical XML rewrite: XMark uses
single document scaling with document size. However, in
practice, we have seen that a more realistic data centric XML
use-case is that of a large collection of moderately sized XML
documents. TPOX [60] models such XML use-cases. TPOX
queries can be optimized fully by the Oracle XMLDB XQuery
engine using a structured XMLIndex [12] (XTXI), path-value-
order based XMLIndex (PVXI) or binary XML stream
evaluation (SEB). However, there are performance differences
among them.
In TPOX queries, using XTXI to qualify XML documents
among large collections of XML documents provides better
performance than using PVXI as shown in Figure 7. This is
expected because the master-detail-detail twig pattern used in
selection can be answered by querying the pivoted XMLTable

without requiring XPath searching during execution time.
Furthermore, it is very common for a user to query a relational
view over XML using XMLTable construct. TXQ shows such
XMLTable query using TPOX schema. For such a query, SEB
yields better performance than PVXI as the number of projected
columns of XMLTable increases as shown in Figure 8. This is
expected because PVXI needs to compute each XPath projected
column using a scalar sub-query over the path table whereas
SEB can evaluate each XPath for a projected column from the
common row fragment in a streaming fashion.

Value-Predicate-Qry

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100MB 200MB

XML Doc Size

Ex
ec

-T
im

e-
R

at
io

-B
IN

XI
/O

R

Q1-Ratio-BINXI/OR

Q5-Ratio-BINXI/OR

Figure 2 - OR outperforms BINXI for value-predicate-Qry

Positional-Predicate-Qry

0

5

10

15

20

25

30

35

100MB 200MB

XML Doc Size

Ex
ec

-T
im

e-
R

at
io

-B
IN

XI
/O

R

Q2-Ratio-BINXI/OR

Q3-Ratio-BINXI/OR

Figure 3 - OR outperforms BINXI for positional-predicate-

Qry
Experiments from TPOX shows that different physical rewrite
strategies yield different performance for the same query and
therefore it is important to have a framework where we can cost
different physical rewrite plans during compile time and to
develop a costing model for different physical XML evaluation
strategies. This is what we had discussed in Section 6.4.

8. Rationale & Related Work Comparison
The amount of work on XQuery in the database community
during the last decade is enormous. There are basically three
approaches to XQuery/XPath processing in the database
community. The first approach is to use relational-like, tuple-
based algebra as the logical algebra. This includes early work of
translating XQuery to SQL [37][38][39]. However, XQuery to
SQL translation is not theoretically complete without the
theoretical framework from object relational SQL and SQL

1364

extensibility. Then, various ways of incorporating XML specific
operators into relational algebra have been proposed
[29,31,32,33,34,35,36,43]. The second approach is to use tree-
based algebra - the entire XPath and the XQuery FOR clause is
folded into a pattern tree, which forms the basic unit
[41,42,44,45,46]. The third approach is to use automata based
algebra working with XML token streams [53,54,55,56].

Count-Sequential-Qry

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

100MB 200MB

XML Doc Size

Ex
ec

-T
im

e-
R

at
io

-B
IN

XI
/O

R

Q6-Ratio-BINXI/OR

Q7-Ratio-BINXI/OR

Figure 4 - OR,BINXI same for count-sequential-Qry

Long-XPath-Qry

0

50

100

150

200

250

300

350

400

100MB 200MB

XML Doc Size

Ex
ec

-T
im

e-
R

at
io

-O
R

/B
IN

XI

Q15-Ratio-OR/BINXI

Q16-Ratio-OR/BINXI

Figure 5 - BINXI outperforms OR for long-Xpath Qry

Ratio-200MB/100MB

0

2

4

6

Q6 Q7 Q11 Q12

XMark-Qry-Num

Ex
ec

-T
im

e-
R

at
io

-
20

0M
B

/1
00

M
B

Ratio-
200MB/100MB

Figure 6 - XMark Scaling

SELECT v.*
FROM security_tab s,
 XMLTable(
XMLNamespaces (default 'http://tpox-benchmark.com/security'),
'$doc/Security'
 passing s.sdoc as "doc"
 columns

 symbol varchar2(20) path 'Symbol',
 Name varchar2(20) path 'Name',
 SecurityType varchar2(20) path 'SecurityType',
 sector varchar2(20) path 'SecurityInformation//Sector',
 PE number path 'PE',
 Yield number path 'Yield') v) v

TXQ- TPOX XMLTable-Qry

Rat io-PVXI/ XTXI

0

50

100

150

200

250

300

Q1 Q2 Q3 Q4 Q5 Q6 Q7

TP OX Qr y - N umbe r

Rat io-PVXI/ XTXI

Figure 7 - XTXI outperforms PVXI for TPOXQ

Ratio-XI/SEB

0

0.5

1

1.5

2

2.5

3

3.5

15 cols 30 cols 45 cols 60 cols

Number of cols in XMLTable

Ex
ec

-T
im

e-
R

at
io

-X
I/S

EB

Ratio-XI/SEB

Figure 8 - SEB outperforms PVXI for XMLTable Qry

Our approach is to integrate the strengths of these algebraic
approaches into one XQuery engine. We use XML extended
relational algebra - a tuple-based algebra, as the main algebra.
Our reasoning is that this algebra is theoretically complete as it
can handle arbitrarily complex XQuery expressions. It is also
practically adaptive to our relational-algebra-based RDBMS
platform with its support for SQL extensibility and object-
relational SQL framework [13]. We incorporate the common
XPath navigation tree pattern and XPath with branching
predicate twig tree pattern as high-level operators into XML
extended relational algebra so that they can be used as a logical
unit for physical rewrite. We also incorporate the automata
based algebra as the physical algebra for evaluating XPath tree
with binary XML storage.
As discussed previously, IBM DB2, Microsoft SQL Server and
MonetDB work with one XML storage and index model. IBM
DB2 Viper uses tree storage (with a mixture of tuple and tree
based algebra) and schema-agnostic path-value index [8, 48].
Microsoft uses binary XML storage with path, value, order,
property index [27] and its XQuery engine is hardwired to work
with this XML storage and index model [28]. Monet DB [33]

1365

shreds XML documents using range-based encoding and
leverages relational engine to process SQL translated from
XQuery on the encoding tables. Oracle’s early work of
XQuery/XPath XQuery is primarily designed to work with
structured XML using object relational storage and XML view
over relational data generated using SQL/XML [6,11].
XPERANTO [23] XQuery system works with XML view over
relational data. This paper shows the approach of an XQuery
engine based on the complete XML extended relational algebra.
This engine works with different XML storage, index and view
models and combines tuple, tree and automata algebra together.
The idea of abstracting out tree based logical operators for
different XML storage, index and view-models is in principle
closer to the XAM (XML Access Module) idea proposed in
[51]. However, we have demonstrated the set of XAMs we use
and how this set can be efficiently supported on both schema
aware structured XML storage and schema-agnostic XML
storage. Furthermore, we show the idea of using cost based
physical rewrite strategy to weigh XAMs, a strategy that
distinguishes us from [51].

9. Conclusion & Future work
In this paper, we present our work on building a combined
XQuery and SQL/XML engine that can work with and optimize
for different XML storage, index and view models in RDBMS.
To our knowledge, this is the first industrial XQuery engine that
can work with a variety of physical XML storage and index
models. We define an XML-extended-relational algebra as the
logical algebra to optimize both XQuery and SQL/XML into the
same underlying logical algebra presentation. This algebra is
based on the theoretical framework of object-relational SQL and
SQL extensibility. This achieves a physical XML independent
XQuery-SQL/XML engine. Then, we optimize specific tree
based algebraic operators - such as XPath navigation pattern,
XPath with predicate branching pattern, specific master-detail
twig pattern, and automata-based streaming evaluation - based
on the underlying XML storage, index and view models. Our
future work will include support for additional kinds of XAM
patterns using XQuery/XPath materialized views.

10. ACKNOWLEDGEMENTS
We gratefully acknowledge the contributions of all the members
of the Oracle XML DB development and product management
teams.

11. REFERENCES
[1] LORE: http://infolab.stanford.edu/lore/
[2] G. Graefe. Query Evaluation Techniques for Large

Databases. ACM Computing Surveys, 25(2):73–170, 1993.
[3] W.Kim: On Optimizing an SQL-like Nested Query. ACM

TODS, Sep 7, 1982.
[4] M. Stonebraker: Implementation of Integrity Constraints

and Views by Query Modification. SIGMOD Conference
1975: 65-78

[5] R. Murthy, S. Banerjee: XML Schemas in Oracle XML
DB. VLDB 2003

[6] M. Krishnaprasad, Z. H. Liu, A. Manikutty, J. Warner, V.
Arora, S. Kotsovolos: Query Rewrite for XML in Oracle
XML DB,VLDB 2004

[7] R. Murthy, Z. H. Liu, M. Krishnaprasad, S. Chandrasekar,
A. Tran, E. Sedlar, D. Florescu, S. Kotsovolos, N. Agarwal,
V. Arora, V. Krishnamurthy: Towards An Enterprise XML
Architecture , SIGMOD 2005

[8] F. Ozcan, R. Cochrane , H. Pirahesh, J. Kleewein, K.
Beyer, V. Josifovski , C. Zhang: System RX: One Part
Relational, One Part XML, SIGMDO 2005

[9] M. Rys: XML and relational database management
systems: inside Microsoft SQL Server 2005.

[10] I.O. for Standardization (ISO). Information Technology-
Database Language SQL-Part 14: XML-Related
Specificaitons (SQL/XML)

[11] Z. H. Liu, M. Krishnaprasad, V. Arora: Native XQuery
Processing in Oracle XML DB. SIGMOD 2005

[12] Z. H. Liu, M. Krishnaprasad, H. J. Chang, V. Arora:
XMLTable Index - An Efficient Way of Indexing and
Querying XML Property Data, ICDE 2007

[13] M. Stonebraker, P. Brown, D. Moore: Object-Relational
DBMSs, Second Edition Morgan Kaufmann 1998

[14] Z. H. Liu. "Object-Relational Features in Informix Internet
Foundation."Informix technical notes. 9.4(Q4 1999):77-95.

[15] V. Krishnamurthy, S. Banerjee, A. Nori: Bringing Object-
Relational Technology to Mainstream. SIGMOD
Conference 1999: 513-514

[16] M. J. Carey, N. M. Mattos, A. Nori: Object-Relational
Database Systems: Principles, Products, and Challenges
(Tutorial). SIGMOD Conference 1997: 502

[17] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.
DeWitt, J. Naughton: Relational Databases for Querying
XML documents: Limitations and Opportunities, VLDB
1999

[18] I. Tatarinov, E. Viglas, K. Beyer, J. Shanmugasundaram, E.
Shekita: Storing and Querying Ordered XML Using a
Relational Database System: SIGMOD 2002

[19] F. Tian, D. DeWitt, J. Chen, C. Zhang: The Design and
Performance Evaluation of Alternatives of Storage
Strategies: SIGMOD Record, Vol 31, No 1, Mar 2002.

[20] M. Yoshikawa, T. Amagasa, T. Shimura, S. Uemura: Xrel:
A Path-Based Approach to Storage and Retrieval of XML
documents Using Relational Databases

[21] H. Jiang, H. Lu, Wei Wang, Jeffrey Xu Yu: Path
Materialization Revisited: An Efficient Storage Model for
XML Data. Australasian Database Conference 2002

[22] D. Florescu, D. Kossmann: Storing and Querying XML
Data using an RDMBS. IEEE Data Eng. Bull. 22(3): 27-34
(1999)

[23] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, J.
Funderburk: “Querying XML Views of Relational Data”.
VLDB 2001.

[24] V. R. Borkar, M. J. Carey, D. Lychagin, T. Westmann, D.
Engovatov, N. Onose: Query Processing in the AquaLogic
Data Services Platform. VLDB 2006: 1037-1048

1366

[25] Y. Diao, D. Florescu, D. Kossmann, M. J. Carey, M. J.
Franklin: Implementing Memoization in a Streaming
XQuery Processor. XSym 2004: 35-50

[26] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F.
Riccardi, T. Westmann, M. J. Carey, A. Sundararajan: The
BEA streaming XQuery processor. VLDB J. 13(3): 294-
315 (2004)

[27] S. Pal, I. Cseri, G. Schaller, O. Seeliger, L. Giakoumakis,
V. V.Zolotov: Indexing XML Data Stored in a Relational
Database. VLDB 2004: 1134-1145

[28] S. Pal, I. Cseri, O. Seeliger, M. Rys, Gideon Schaller, W.
Yu, D. Tomic, A. Baras, B. Berg, D. Churin, E. Kogan:
XQuery Implementation in a Relational Database System.
VLDB 2005: 1175-1186

[29] C. Re, J. Siméon, M. F. Fernández: A Complete and
Efficient Algebraic Compiler for XQuery. ICDE 2006: 14

[30] M. Rys, D. D. Chamberlin, D. Florescu: XML and
relational database management systems: the inside story.
SIGMOD Conference 2005: 945-947

[31] A. Deutsch, Y. Papakonstantinou, Y. Xu: The NEXT
Logical Framework for XQuery. VLDB 2004: 168-179

[32] X. Zhang, B. Pielech, E. A. Rundensteiner: Honey, I shrunk
the XQuery!: an XML algebra optimization approach.
WIDM 2002: 15-22

[33] P. A. Boncz, T. Grust, M. Keulen, S. Manegold, J.
Rittinger, J. Teubner: MonetDB/XQuery: a fast XQuery
processor powered by a relational engine. SIGMOD
Conference 2006: 479-490

[34] N.May, S. Helmer, G. Moerkotte: Nested queries and
quantifiers in an ordered context.: ICDE 239-250, Mar
2004

[35] R. A. Kader: XQuery Optimization in Relational Database
Systems: http://arvo.ifi.uzh.ch/dbtg/vldbphd2007/Camera-
Ready%20Papers/Paper%206/XQuery_Optimization.pdf

[36] M. Grinev, S. Kuznetsov: Towards an Exhaustive Set of
Rewriting Rules for XQuery Optimization: BizQuery
Experience.
http://www.ispras.ru/~grinev/mypapers/rewriting-
extended.pdf

[37] R. Krishnamurthy, R. Kaushik, J. Naughton: XML-to-SQL
Query Translation Literature: The State of the Art and
Open Problems.
http://homepages.inf.ed.ac.uk/wenfei/qsx/reading/xmltosqls
urvey.pdf

[38] T. Grust, S. Sakr, J. Teubner: XQuery on SQL Hosts.
VLDB 2004: 252-263

[39] I. Manolescu, D. Florescu, D. Kossmann: Answering XML
Queries over Heterogeneous Data Sources. BDA 2001

[40] C. Kanne, G. Moerkotte: Efficient Storage of XML Data.
ICDE 2000: 198

[41] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
Lakshmanan, A. Nierman, S. Paparizos, J. M.Patel, D.
Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu,
“TIMBER: A Native XML Database,” VLDB Journal 11,
No. 1, 274–291 (2002)

[42] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava,
Keith Thompson: TAX: A Tree Algebra for XML. DBPL
2001: 149-164

[43] XQuery 1.0 and Xpath 2.0 Formal Semantics:
http://www.w3.org/TR/xquery-semantics/

[44] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, S.
Paparizos: From Tree Patterns to Generalized Tree
Patterns: On Efficient Evaluation of XQuery. VLDB 2003:
237-248

[45] P. Michiels, G. A. Mihaila, J. Siméon: Put a Tree Pattern in
Your Algebra. ICDE 2007: 246-255

[46] N. Bruno, N. Koudas, D. Srivastava: Holistic Twig Joins:
Optimal XML Pattern Matching. SIGMOD 2002

[47] M. Stonebraker: Inclusion of New Types in Relational Data
Base Systems. ICDE 1986: 262-269

[48] A. Balmin, F. Ozcan, K.S. Beyer, R.J. Cochrane, H.
Pirahesh: A Framework for Using Materialized Xpath
Views in XML Query Processing. VLDB 2004.

[49] Z. Chen, J. Gehrke, F. Korn, N. Koudas, J.
Shanmugasundaram, D. Srivastava: Index structures for
matching XML twigs using relational query processors.
Data Knowl. Eng. 60(2): 283-302 (2007)

[50] W. Xu, Z. Meral Özsoyoglu: Rewriting XPath Queries
Using Materialized Views. VLDB 2005: 121-132

[51] A. Arion, V. Benzaken, I. Manolescu: XML Access
Modules: Towards Physical Data Independence in XML
Databases. XIME-P 2005

[52] A. Arion, V. Benzaken, I.Manolescu, Y. Papakonstantinou:
Structured Materialized Views for XML Queries. VLDB
2007: 87-98

[53] M. Lee, B. Chin Chua, W. Hsu, K. Tan: Efficient
evaluation of multiple queries on streaming XML data.
CIKM 2002: 118-125

[54] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, P. M.
Fischer: Path sharing and predicate evaluation for high-
performance XML filtering. ACM Trans. Database Syst.
28(4): 467-516 (2003)

[55] H. Su, E. A. Rundensteiner, M. Mani: Automaton meets
algebra: A hybrid paradigm for XML stream processing.
Data Knowl. Eng. 59(3): 576-602 (2006)

[56] M. F. Fernández, P. Michiels, J. Siméon, M. Stark: XQuery
Streaming à la Carte. ICDE 2007: 256-265

[57] J. Hidders, P. Michiels: Avoiding Unnecessary Ordering
Operations in XPath. DBPL 2003: 54-70

[58] T. Grust, J. Rittinger, J. Teubner: eXrQuy: Order
Indifference in XQuery. ICDE 2007: 226-235

[59] A. Schmidt, F. Waas, M.L.Kersten, M.J. Carey, Manolescu,
R. Busse: “XMark: A Benchmark for XML Data
Management” pp974-985 VLDB 2002

[60] M. Nicola, I. Kogan, B. Schiefer: An XML Transaction
Processing Benchmark, SIGMOD 2007.

[61] A. Baras, C. A. Galindo-Legaria, T. Grabs, B.
Krishnaswamy, S. Pal: Optimizing Similar Scalar
Subqueries for XML Processing in Microsoft SQL Server.
ICDE 2007 1164-1173

1367

