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Abstract. We propose a file structure to index high-dimensionality data, which are 
typically points in some feature space. The idea is to use only a few of the fea- 
tures, using additional features only when the additional discriminatory power is 
absolutely necessary. We present in detail the design of our tree structure and the 
associated algorithms that handle such "varying length" feature vectors. Finally, 
we report simulation results, comparing the proposed structure with the R*-tree, 
which is one of the most successful methods for low-dimensionality spaces. The 
results illustrate the superiority of our method, which saves up to 80% in disk ac- 
cesses. 
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1. Introduction 

Many applications require enhanced indexing that is capable of performing similarity 
searching on several, non-traditional (exotic) data types. The target scenario is as 
follows: given a collection of objects (e.g., 2-D images, 3-D medical brain scans, 
or simply English words), we would like to find objects similar to a given sample 
object. We rely on a domain expert to provide the appropriate similarity/distance 
functions between two objects. A list of potential applications for such a system 
follows: 

• Image databases: Jagadish (1991) showed how to query for similar shapes, 
describing each shape by the coordinates of a few rectangles that cover it 
(,~20 features per  shape). Niblack et al., (1993) supported queries on color, 
shape and texture, using color histograms (64-256 attributes per  image) as 
feature vectors, and using the first 20 moments  for shapes. 
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• Medical databases, where 1-D objects (e.g., ECGs), 2-D images (e.g., x-rays), 
and 3-D images (e.g., MRI brain scans; Arya et al., 1993) are stored. The 
ability to retrieve quickly past cases with similar symptoms is valuable for 
diagnosis, as well as for medical teaching and research purposes. 

• Time series, such as financial databases with stock-price movements. The goal 
is to aid forecasting, by examining similar patterns that have appeared in the 
past. Agrawal et al. (1993) used the co-elficients of the Discrete Fourier 
Transform (DFT) as features. 

• Multimedia databases, with audio (voice, music) or video (Narasimhalu and 
Christodoulakis, 1991). Users might want to retrieve similar music scores or 
video clips. 

• D N A  databases that contain a large collection of strings from a four-letter 
alphabet (A,G,C,T); a new string has to be matched against the old strings, 
to find the best candidates. The BLAST algorithm (Altschul et al., 1990) 
uses successive, overlapping n-grams for indexing. When using n-grams as 
features, we need 4 '~ features or 1,024 features for n = 5. 

• Searching for  names or addresses, (e.g., in a customer mailing list), which are 
partially specified or have errors. For example "1234 Springs Road" instead 
of "1235 Spring Rd," or "Mr. John Smith" instead of "Dr. J. Smith, Jr." 
Similar applications include spelling, typing (Kukich, 1992), and O C R  error 
correction. Given a wrong string, we should search a dictionary to find the 
closest strings to it. Triplets of letters are often used to assess the similarity 
of two words (Angell et al., 1983), in which case we have ,~, 263 = 17,576 
features per word (assuming that words consist exclusively of the 26 English 
letters, ignoring digits, upper-case letters, etc.). 

For all of these applications, we rely on an expert to derive features that 
adequately describe the objects of interest. As 3agadish (1991) proposed, once 
objects are mapped into points in some feature space, we can accelerate the search 
by organizing these points in a spatial access method. 

For a feature space with low dimensionality, any of the known spatial access 
methods will work. However, in the above applications, the number of features per 
object may range from 10 to 100. The spatial access methods of the past have mainly 
concentrated on 2-D and 3-D spaces, such as the R-tree based methods (Guttman, 
1984), and the linear-quadtree based methods (e.g., z-ordering; Orenstein and 
Manola, 1988). Although conceptually they can be extended to higher dimensions, 
they usually require time and/or space that grows exponentially with the number of 
dimensions. 

In this article, we propose a tree-structure that avoids the dimensionality problem. 
The idea is to use a variable number of dimensions for indexing, adapting to the 
number of objects to be indexed, and to the current level of the tree. Thus, for 
nodes that are close to the root, we use only a few dimensions (and therefore, 
we can store many branches, and enjoy a high fanout); as we descend the tree, 
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we become more discriminating, using more and more dimensions. Given that the 
feature vectors contract and extend dynamically, resembling a telescope, we called 
our method the Telescopic-Vector tree, or TV-tree. 

This article is organized as follows: Section 2 surveys related work, highlighting 
the problems of high-dimensionality. Section 3 presents the intuition and motivation 
behind the proposed method. Section 4 presents the implementation of our method, 
Section 5 gives the experimental results, and Section 6 lists the conclusions. 

2. Related Work 

As mentioned above, feature extraction functions map objects into points in feature 
space for a variety of applications; these points must be stored in a spatial access 
method. The prevailing methods form three classes: R*-trees (Beckmann et al., 
1990) and the rest of the R-tree family (Guttman, 1984; Jagadish, 1990); linear 
quadtrees (Samet, 1989); and grid-files (Nievergelt et al., 1984). 

Different kinds of queries arise; the most typical ones are listed below: 

• Exact match queries. Find whether a given query object is in the database. 
For example, check if a certain inventory item exists in the database. 

• Range queries. Given a query object, find all objects in the database that 
are within a certain distance from the object. Similarity queries also fall 
within this category. For example, find all buildings within 2 miles of the 
Washington National Airport; find all words within a one-letter substitution 
from the word "tex"; find all shapes that look like a Boeing 747. 

• Nearest neighbor queries. Given a query item, find the item that is closest or 
most similar to the query item. For example, find the fingerprint that is most 
similar to the one given. Similarly, k-nearest neighbor queries can be asked. 

• Allpair queries. Given a set of objects, find all pairs within distance e; or 
find the k-closest pairs. For example, given a map, find all pairs of houses 
that are within 100 feet of each other. 

• Sub-pattern matching. Instead of looking at the objects as a whole, find a 
sub-pattern within an object that matches our description. For example, find 
stock movements that contain a certain pattern; or find all x-ray images that 
contain tissue with tumor-like texture. 

Previous work compared the performance of different spatial data structures. 
Greene (1989) compared the R-tree, R+-tree, K-D-B-tree, and the 2-D Index 
Sequential Access Method, and concluded that the R-tree and the R +-tree give the 
better performances. Hoel and Samet (1992) compared the PMR-quadtree to the 
R-tree variants for large line segment databases. Their results show that different 
data structures are suited for different kinds of queries. 

Most multidimensional indexing methods, however, explode exponentially with 
the dimensionality, eventually reducing to sequential scanning. For linear quadtrees, 
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the effort is proportional to the hypersurface bounding the query region (Hunter and 
Stieglitz, 1979); the hypersurface grows exponentialIly with the dimensionality. Grid 
files face similar problems, because they require a directory that grows exponentially 
with the dimensionality. The R-tree and its variants will suffer if a single feature 
vector requires more storage space than a disk page can hold; in this case, the tree 
will have a fanout of 1, reducing to a linked list. 

Similar problems with high dimensionality have been reported for methods that 
focus mainly on nearest-neighbor queries: Voronoi diagrams do not work at all for 
dimensionalities higher than 3 (Aurenhammer, 1991). The method of Friedman et 
al. (1975) does almost as much work as linear scanning for dimensionalities > 9. 
The spiral search method of Bentley et al. (1980) also has a complexity that grows 
exponentially with the dimensionality. 

Relevant to our work is a wide variety of clustering algorithms (e.g., Hartigan, 
1975; Salton and Wong, 1978; Murtagh, 1983, for surveys). However, the main goal 
of these algorithms is to detect patterns in the data, and/or to assess the quality 
o f  the clustering scheme using the precision and recall measures; there is usually 
little attention to measures like the space overhead and the time required to create, 
search, and update the structure. 

3. Intuition Behind the Proposed Method 

As mentioned, several of the target applications require indexing in a high-dimensional 
feature space. Current spatial access methods suffer from the dimensionality curse 
(i.e., exploding exponentially with the dimensionalilty). 

The solution we propose is to contract and extend the feature vectors dynamically, 
that is, to use as few of the features as necessary to discriminate among the objects. 
This agrees with the intuitive way that humans classify objects: for example, in 
zoology, the species are grouped in a few broad classes first, using a few features 
(e.g., vertebrates versus invertebrates). As the classification is further refined, more 
and more features are gradually used (e.g., warm-blooded versus cold-blooded, or 
lungs versus gills). 

The basis of our proposed TV-tree is to use dynamically contracting and extending 
feature vectors. Like any other tree, it organizes the data in a hierarchical structure: 
Objects (i.e., feature vectors) are clustered into leaf nodes of the tree, and the 
description of their Minimum Bounding Region (MI3R) is stored in the parent node. 
Parent nodes are recursively grouped too, until the root is formed. 

Compared to a tree that uses a fixed number of features, our tree provides 
a higher fanout at the top levels, using only a few, basic features, as opposed to 
many, possibly irrelevant, features. 

As more objects are inserted into the tree, more features might be needed to 
discriminate among the objects. At that time, new features are introduced. The 
key point here is that features are introduced on a "when needed" basis and, thus, 
we can soften the effect of the dimensionality curse. 
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The basic telescopic vector concept can be applied to a tree with nodes that 
describe bounding regions of any shape (cubes, spheres, rectangles, etc.). Also, there 
is flexibility in the choice of the telescoping function, which selects the features of 
interest at any level of the tree. We discuss these design choices in the next two 
subsections. 

3.1 Telescoping Function 

In general, the telescoping problem can be described as follows. Given an n x 1 
feature vector ~ and an m x n (m < n) contraction matrixAm, the m x 1 vector 
A m ~  is an m-contraction of ~. A sequence of such matrices Am, with m = 1, . . .  
describes a telescoping function provided that the following condition is satisfied: 

If the ml-contractions of two vectors, ~ and if, are equal, then so are their respective 
m2-contractions, for every m 2 ~ ml.  

While a variety of telescoping functions can be defined (Appendix B), the most 
natural choice is simple truncation. That is, each matrix Am has a 1 in positions 
(1,1) through (m, m), along a diagonal, and 0 everywhere else. In this article, we 
assume that truncation is the telescoping function selected. 

The proposed method treats the features asymmetrically, favoring the first few 
features over the rest, when truncation is used as the telescoping function. For 
similarity queries, which are likely to be frequent in the application domains we 
have in mind, it is intuitive that well ordered features will result in a more focused 
search. Even for exact match queries, where the depth of the tree typically will not 
be enough to have considered all features, a good choice of order will improve the 
response time of our method. Notice, however, that the correc tness  is not affected; 
poor ordering may make our method examine many false alarms, and thus do more 
work, but it will never create false dismissals. 

In most applications, transforming the given feature vector will achieve good 
ordering. Ordering the features on the basis of importance is exactly what the 
Karhunen Lowe (KL) transform achieves (Fukunaga, 1990): Given a set of n vectors 
with d features each, it returns d new features, which are linear combinations of 
the old ones, and which are sorted in discriminatory power. Figure 1 gives a 2-D 
example, where the vectors kl  and k2 are the results of the KL transform on the 
illustrated set of points. 

The KL transform is optimal if the set of data is known in advance (i.e., the 
transform is data-dependent). Sets of data with rare or no updates appear in real 
applications: for example, databases that are published on CD-ROM, dictionaries, 
or files with customer mailing lists that are updated in batches. The KL transform 
will also work well if a large sample of data is available in advance, and if the new 
data have the same statistical characteristics as the old ones. 

In a completely dynamic case, we have to resort to data-independent transforms, 
such as the Discrete Cosine Transform (DCT; Wallace, 1991), the Discrete Fourier 
Transform (DFT), the Hadamard Transform (Hamming, 1977), and the Wavelet 
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Figure 1. Illustration of the Karhunen Lowe transform 

f e l t u r e ' 2  Xx k l  

I?x K X X 

X 
x x k2 x xxVx 

" ,jJ x x w x . . .  - '" - X 

x x x  fea tu re  1 
x 

x x X  
X 

Transform (Ruskai et al., 1992). Fortunately, many data-independent transforms will 
perform as well as the KL if the data follow specific statistical models. For example, 
the DCT is an excellent choice if the features arc; highly correlated. This is the 
case in 2-D images, where nearby pixels have very similar colors. The JPEG image 
compression standard (Wallace, 1991) exactly exploits this phenomenon, effectively 
ignoring the high-frequency components of the DCT. Since the retained components 
carry most of the information, the JPEG standard achieves good compression with 
negligible loss of image quality. 

We have observed similar behavior for the DFT in time series (Agrawal et 
al., 1993). For example, random walks (also known as brown noise or brownian 
walks) exhibit a skewed spectrum, with the lower-fi:equency components being the 
strongest (and, therefore, most important for indexing). Specifically, the amplitude 
spectrum is approximately O(f-1), where f is the frequency). Stock movements 
and exchange rates have been successfully modeled as random walks (Mandelbrot, 
1977; Chatfield, 1984). Birkhoff's theory (Schroeder, 1991) claims that "interesting" 
signals, such as musical scores and other works of art, consist of pink noise, whose 
spectrum is similarly skewed (0(/--05)). 

In general, if the ~ statistical properties of the data are well understood, a data- 
independent transform in many common situations will obtain near optimal results, 
producing features sorted on the order of importance. We should stress again that 
the use of a transform is orthogonal to the TV-tree--a suitable transform will just 
accelerate the retrieval. 

3.2 Shape of Bounding Region 

As mentioned earlier, points are grouped together', and their minimum bounding 
region (MBR) is stored in the parent node. The shape of the MBR can be chosen 
to fit the application; it may be a (hyper-)rectangle:, cube, sphere etc. The simplest 
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shape to represent is the sphere, requiring only the center and a radius. A sphere 
of radius r is the set of points with Euclidean distance < r from the center of the 
sphere. Note that the Euclidean distance is a special case of the Lp metrics, with 
p=2: 

Lp(Z, ff) = [ E ( x i -  yi)P] lip (1) 
i 

For the L1 metric (Manhattan, or city-block distance), the equivalent of a sphere 
is a diamond shape; for the Loo metric, the equivalent shape is a cube. 

Definition. The Lp-sphere of center c' and radius r is the set of points whose Lp 
distance from the center is < r. 

The up-coming algorithms for the TV-tree will work with any Lp-sphere, without 
any modifications to the TV-tree manipulation algorithms. The only algorithm that 
depends on the chosen shape is the algorithm that computes the MBR of a set of 
data. The algorithm for the diamond shape is presented in Appendix A. 

Minor modifications are required in the TV-tree algorithms to accommodate 
other popular shapes, such as rectangles or ellipses. Compared to Lp-spheres, these 
shapes differ only in that they have a different radius for each dimension. The 
required changes in the TV-tree algorithms are in the decision-making steps, such as 
the criteria for choosing where to split, or which branch to traverse during insertion. 

For the rest of this article, we concentrate on Lp-spheres as MBRs. 

4. The TV-tree 

4.1 Node Structure 

Each node in the TV-tree represents the MBR (an Lp-sphere) of all of its descendents. 
Each region is represented by a center, which is a vector determined by the telescoping 
vectors representing the objects, and a scalar radius. We also call the center of the 
region a telescopic vector (in the sense that it also contracts and extends depending 
on the objects stored within the region). We use the term Telescopic Minimum 
Bounding Region (TMBR) to denote an MBR with such a telescopic vector as a 
center. 

Definition. A telescopic Lp-sphere with center ~' and radius r, with dimensionality d 
and with c~ active dimensions contains the set of points ff such that 

and 

ci =Yi i :  1 , . . . , d - -  o~ (2) 

d 
rP --> E (ci -- yi) p (3) 

i=d-a+l 
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Figure 2. Example of TMBRs (diamonds, spheres) with different o~ 
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In Figure 2a, D2 has 1 inactive dimension (the first one), and i active dimension 
(the second one). D1 also has one active dimension (the first one). The dimension- 
ality of D1 is 1 (only the first dimension has been taken into account in specifying 
D1) and the dimensionality of D2 is 2 (both dimensions have been considered). 

We need this concept because, as the tree grows., some leaf node will eventually 
consist of points that all agree on their first, say, k dimensions. In this case, the 
TMBR should exploit this fact; its first k dimensions are inactive dimensions, in the 
sense that these dimensions cannot distinguish between the node's descendents. 

In our presentation, the active dimensions are always the last ones. Moreover, we 
can control the number of active dimensions o~ and ensure that all the TMBRs in 
the tree have the same ce. This number is a design parameter of the TV-tree. 

Definition. The number of  active dimensions (o~) of a TV-tree is the (common) number 
of active dimensions of all its TMBRs. 

The notation TV-1 denotes a TV-tree with o~=1; Figure 2 shows the TMBRs 
of TV-1 and TV-2 trees. The discriminatory power of the tree is determined by o~. 
Whenever more discriminatory power is needed, new dimensions are introduced to 
ensure that the number of active dimensions remains the same. 

The data structure for a TMBR is as follows: 

struct TMBR { TVECTOR v; 

integer radius;} 

struct TVECTOR { list_of (float feature_value); 

integer no_of_dimensions;} 

where TVECTOR stands for telescopic vector. 
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Figure 3. Example of a W-1 tree (with diamonds) 
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4.2 Tree Structure 

The W-tree structure bears some similarity to the R-tree. Each node contains a set 
of branches; each branch is represented by a TMBR denoting the space it covers; 
all descendants of that branch will be contained within that TMBR; TMBRs are 
allowed to overlap; and each node occupies exactly one disk page. 

Examples of TV-l and TV-2 trees are given in Figures 3 and 4. Points A 
through I denote data points (only the first two dimensions are shown). 

In the TV-l tree, the number of active dimensions is 1, thus the diamonds 
extend only along 1 dimension at any time. As a result, the shapes are straight lines 
or rectangular blocks (extended infinitely). In the TV-2 case, the TMBR resembles 
two dimensional &,-circles. 

At each stage, the number of active dimensions is exactly as specified. Sometimes, 
more than one level of the tree may using the same active dimensions. Figure 4 is 
an example; the same pair of active dimensions is used at both levels of the tree 
shown. More commonly, new active dimensions are used at each level. This is the 
case in Figure 3 when D3 has to be split any further. 

4.3 Algorithms 

Search. For both exact and range queries, the algorithm starts with the root and 
examines each branch that intersects the search region, recursively following these 
branches. Multiple branches may be traversed because TMBRs are allowed to 
overlap. The algorithm is straightforward and the pseudo-code is omitted for 
brevity. 



526 

Figure 4. Example of a TV-2 tree (with sphelres) 
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Spatial join can be handled as well. Recall that such a query requires all pairs 
of points that are close to each other (i.e., closer than a tolerance Q. Again, 
a recursive algorithm that prunes out remote branches of the tree can be used; 
efficient improvements on this algorithm have recently appeared (Brinkhoff et al., 
1993). 

Similarly, nearest-neighbor queries can be handled with a branch-and-bound 
algorithm (Fukunaga and Narendra, 1975). The algorithm works as follows: given 
a (query)(query) point, examine the top-level branches, and compute upper and 
lower bounds for the distance; descend the most promising branch, disregarding 
branches that are too far away. 

Insertion. To insert a new object, we traverse the tree, choosing the branch at each 
stage that seems most suitable to hold the new object. Once we reach the leaf 
level, we insert the object in the leaf. Overflow is handled by splitting the node, or 
by re-inserting some of its contents. After the insertion/split/re-insert, we update 
the TMBRs of the affected nodes along the path. For example, we may have to 
increase the radius of a TMBR or decrease its dimensionality (i.e., contract the 
telescopic vector of the center), to accommodate the new object (Figure 5). 

The routine PickBranch(Node N, element e) examines the branches of the node 
N and returns the branch that is most suitable to accommodate the element (point 
or TMBR ) e to be inserted. In choosing a branch, we use the following criteria, 
in descending priority: 

1. Minimum increase in overlapping regions within the node (i.e., choose the 
TMBR such that after update, the number of new pairs of overlapping TMBR 
is minimized within the node introduced; Figure 6a). 

2. Minimum decrease in dimensionality (i.e., choose the TMBR with which the 
new object can agree on as many coordinates as possible, so that it can 
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Figure 5. Decrease in dimensionality during insertion 
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accommodate the new object by contracting its center as little as possible. 
For example, in Figure 6b, R1 is chosen to avoid contracting R2. 

3. Minimum increase in radius (Figure 6c). 

4. Minimum distance from the center of the TMBR to the point (in case the 
previous two criteria tie; Figure 6d). 

Handling overflowing nodes is another important aspect of the insertion algo- 
rithm. Here  an overflow can be caused not only by an insertion into a full node 
but by an attempt to extend a telescopic vector as well. Splitting the node is the 
most obvious way to handle overflow. However, reinsertion can also be applied, 
selecting certain items to be reinserted from the top. This provides a chance to 
discard dissimilar items from a node, usually achieving better clustering. 

In our implementation we have chosen the following scheme to handle overflow, 
treating the leaf node and the internal node differently: 

• For a leaf node, a pre-determined percentage (Pri) of the leaf contents will 
be reinserted if it is the first time a leaf node overflows during the current 
insertion. Otherwise, the leaf node is split in two. Once again, different 
policies can be used to choose the elements to be reinserted. Here  we choose 
those that are farthest away from the center of the region. 

• For an internal node, the node is always split; the split may propagate 
upwards. 
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Figure 6. Illustration of choose-branch criteria 
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Algorithm 1. Insert algorithm. 
begin 

end 

/* Insert element e into tree rooted at N */ 
Proc Insert(Node N, element e) 
1. Use PickBranch 0 to choose the best branch to follow; descend the tree until 

the leaf node L is reached. 
2. Insert the element into the leaf node L. 
3. If leaf L overflows 

If it is the first time during insertion 
Choose the Pri elements farthest away from the center of L and re-insert 
them from the top. 

else 
Split the leaf into two leaves. 

4. Update the TMBRs that have been changed (because of insertion and/or 
splitting). 

Split an internal node if overflow occurs. 

Splitting. The goal of splitting is to redistribute the set of TMBRs (or vectors, when 
leaves are split) into two groups to facilitate future operations and provide high 
space utilization. There are several ways to do the split. One way is to use a 
clustering technique that groups vectors so that similar ones will reside in the same 
TMBR. 

Algorithm 2. Splitting by clustering 
begin 

/* assume N is an internal node; similar for leaf nodes */ 
Proc Split(Node N, Branch NewBranch, float rain_percent) 
1. Pick as seeds the branches B1 and B2 with the two most dissimilar TMBRs 

(i.e., the two with the smallest common prefix in their centers; on tie, pick 
the pair with the largest distance between their centers). Let R1 and R2 be 
the groups headed by B1 and B2, respectively. 

2. For each of the remaining branches B: 
Add B to that group R1 or R2 according to the PickBranchO function 

end 

Another way of doing the split is by ordering. The vectors (i.e., the centers of 
the TMBRs) are ordered in some way and the best partition along the ordering is 
found. The current criteria being used are (in descending priority): 

1. Minimum sum of radius of the two TMBRs formed 

2. Minimum of (sum of radius of TMBRs -- Distance between their centers) 

In other words, we first try to minimize the area that the TMBRs cover; and 
then minimize the overlap between the diamonds. 
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Ordering can be done in a few different ways. We have implemented one that 
sorts the vectors lexicographically. Other orderings, such as a form of space-filling 
curves (e.g., the Hilbert curve; Kamel and Faloutsos, 1993) can also be used. 

Algorithm 3. Splitting by ordering 

begin 

/* assume N is an internal node; similar for leaf nodes */ 

/* min_fill is the minimum percentage (in bytes) of the node to be occupied */ 

Proc Split(Node N, Branch NewBranch, float min_fiU) 

1. Sort the TMBRs of the branches by ascending row-major order of their 
centers. 

2. Find the best break-point in the ordering, to create two sub-sets: (a) ignore 
the case where one of the subsets is too smallt (<  min_fill bytes); (b) among 

the remaining cases, choose the break-point such that the sum of the radius 

of the TMBRs of the two sets is the smallest. Break ties by minimum (sum 

of radius of TMBRs -- distance between the centers). 

3. If requirement (a) above leaves no candidates, then sort the branches by 

their byte size and repeat the above step, skipping step (a), of course. 

end 

The last step in the algorithm guards against the rare case where one of the 
TMBRs has a long vector for center, while the rest have short vectors. In this case, 
a seemingly good split might leave one of the two new nodes highly under-utilized. 
The last step makes sure that the new nodes have similar sizes (byte-wise). 

Deletion. Deletion is straightforward, unless it causes an underflow. In this case, 
the remaining branches of the node are deleted and re-inserted. The underflow 
may propagate upwards. 

Extending and Contracting. As previously mentioned, extending and contracting of 
TVECTORs are important aspects of the algorithm. Extending is done at the 
time of split and reinsertion. When the objects inside a node are redistributed 
(either by splitting into two or removing at reinsertion), it may be the case that the 
remaining objects have the same values in the first few (or all) active dimensions. 
Thus, during the recalculation of the new TMBR, extension will occur (i.e., new 
active dimensions will be introduced and those on which all the objects agree will 
be rendered inactive). 

An example of extending diamonds is given in Figure 7. After extension, the 
diamond extends only along the y-dimension. 

On the other hand, contraction occurs during insertion. When an object is 
inserted into a TMBR such that the inactive dimensions of the TMBR do not agree 
completely with those of the object, the new TMBR will have some dimensions 
contracted, resulting in a TMBR with lower dimensionality. 
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Figure 7. Extending a TMBR (diamond), with ~ = 1 
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5. Experimental Results 

We implemented the TV-tree as described above, in C+ + under UNIX, 1 and we 
ran several experiments. The experiments form two sets: In the first, we tried to 
determine what is a good value for the number of active dimensions (o~) for the 
TV-tree; in the second set we compared the proposed method with the R*-tree, 
which we believe is the fastest known variation of R-trees. 

5.1 Experimental Setup 

The test database was a collection of objects of fixed size, using dictionary words 
from / u s r / d i c t / w o r d s  as keys. To find the closest matches in the presence of 
typing errors, the queries were exact match and range queries. For features, we 
used the letter count for each word, ignoring the case of the letters. Thus, each 
word is mapped to a vector v with 27 dimensions, one for each English alphabet 
letter, and an extra one for the non-alphabetic characters. The L 1 distance among 
two such vectors is a good measure for the edit distance; for this reason, we have 
used Ll-spheres (diamonds) as our bounding shapes. 

Finally, we apply the Hadamard Transform. 2 For n = 2 k, the Hadamard Trans- 
form matrix is defined as follows: 

1. UNIX is a registered Trademark of Novell, Inc. 

2. Actually, we are using the 32-dimension Hadamard  Transform matrix (Hamming,  1977) and padding 

extra 0s to the feature vectors. 
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1 1 , n k + l  = 
H1 = 1 - 1  Hk -- Hk 

on these letter-count vectors, appropriately zero-padded. The Hadamard Transform 
is used to give each letter a more even weight, especially in the first few dimensions. 

The TV-trees in the experiment used the algorithms described in the last section, 
with forced re-insertion, and with the ordering method for splitting. We used rain_fill 
= 45% and the percentage of elements to be reinserted to be Pri = 30%. These 
numbers are comparable to the parameter for the optimal R*-tree parameters. This 
number was chosen in order to provide a fair comparison for insertion behavior. 

Experiments on 2,000 to 16,000 words were run, with words being randomly 
drawn from the dictionary. We varied several parameters, such as the number of 
active dimensions oL (from 1 to 4), and the tolerance c of the range query, from e 
= 0 (exact match) up to 2. 

For the exact match queries, we tried successful searches (i.e., the query word 
was found in the dictionary), using half of the database words as query points. 
Experiments with unsuccessful searches gave similar results and are omitted. We 
also issued range queries with the words randomly drawn from the dictionary, (the 
number of queries is half of the database words). 

We measured both the number of disk accesses (assuming that the root is in 
core), as well as the number of leaf accesses. The former measure corresponds to 
an environment with limited buffer space; the latter approximates an environment 
with enough buffer space that, except for the leaves, llhe rest of the tree fits in core. 

5.2 Results 

Analysis for the Number of Active Dimensions. The first set of experiments tried to 
determine a good value for ol. Different numbers of active dimensions of the 
TV-tree were tried. The results are shown in Figures 8 through 10. The page size 
was 4K bytes and objects of size 100 bytes are used. 

We also measured the total number of pages accessed, assuming that the whole 
tree (except the root) was stored on the disk and no buffer for the internal levels 
was available. The results are similar. 

The results indicate that ce = 2 gives the best results, because the TV-2 tree 
outperforms the rest. This can be interpreted as an optimization of two conflicting 
factors: tree size and number of false drops. With a smaller o~, fewer dimensions 
will be available to differentiate among the entries, thus more branches will have 
to be searched. However, a larger ce will lead to a decrease of fanout per node, 
making it necessary for more branches to be retrieved when the search space is 
large. Moreover, effectively clustering objects in higher dimensions is also more 
difficult, given the constraints in shapes allowed. (In l-D, one can always sort the 
numbers and order it; but this method breaks down in higher dimensions). In the 
experiments we ran, ce = 2 is the best compromise. 
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Figure 8. Exact match queries (# leaf accesses vs. o~) 
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Figure 9. Range queries (tolerance=l)(# of leaf accesses vs. o~) 
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Figure 10. Range queries ( tolerance=2)(#  of disk accesses vs. o~) 
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Table 1. Disk access per insertion - object size 100 bytes 

Dictionary size 

4,000 

8,000 

12,000 

16,000 

Disk access per insertion 
R*-tree TV-2 tree 

5.25 4.75 

5.51 5.21 

6.19 5.28 

6.50 5.35 

5.3 Comparison with R*-Tree 

lndex Creation. We measured the number of disk accesses (read + write) needed to 
build the indexes. We assumed that every update of the index would be reflected 
on the disk. We found that, in general, the insertion cost is cheaper in the W-tree. 
This is due to the fact that the W-tree is usually shallower than the corresponding 
R*-tree and, thus, fewer nodes need to be retrieved and fewer potential updates 
need to be written back to disk. Table 1 shows the result for object size 100 bytes 
with a 4K page size. 
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F igure  11. D isk / lea f  a c c e s s e s  vs.  db  s ize - exact  match  q u e r i e s  
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The big jump between 4,000 and 8,000 for the TV-2 tree is because of an 
introduced addition level. However, the TV-2 tree still has one level fewer than 
the R*-tree. Thus, the increase in disk access for the TV-2 tree is slower after the 
introduced level. 

Search. The next set of experiments compared the proposed TV-tree with the 
R*-tree. Figures 11 through 13 show the number of disk/leaf accesses as a function 
of the database size (number of records). The number of leaf accesses is the lower 
curve in each set. A 4,000 page size was used. The following results are for objects 
of size 100 bytes. 

As seen from the figures, the TV-2 tree consistently outperforms the R*-tree, 
with up to 67-73% savings in total disk accesses for exact matches and similar 
savings in leaf accesses. The savings for range queries are also high (,~., 40% for 
large dictionary size). 

Moreover, the savings increased with the size of the database, indicating that 
our proposed method scales up well. As the database size increased from 2,000 to 
16,000 elements, the savings in the number of leaf accesses increased consistently: 
from 67% to 73% for exact match queries; from 50% to 58% for range queries 
with tolerance e=l ;  and from 33% to 42% for range queries with e=2. 
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Figure 12. Disk/leaf accesses vs. db size-range queries (tolerance = 1) 
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Figure 13. Disk/leaf accesses vs. db size-range queries (tolerance=2) 
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Figure 14. Comparison of space requirements 

800 

.D 

Z 

700 

600 

500 

400 

300 

200 

100 

R'-trees - ~  
TV-2 tree -+--- 

I I I I I I I I 

2000 4000 6000 8000 10000 12000 14000 16000 
Dictionary size 

Even if we only assume that the leaves are stored in the disk (while all the non- 
leaf levels are read into memory buffer beforehand), the TV-2 tree still outperforms 
the R*-tree significantly (around 60-70% for exact match and 25-35% for range 
queries with c=2). 

We also experimented with various sizes of database objects. Our method showed 
more significant improvement when object size is small. As object size increases, 
the leaf fan-out decreases, making the TV-tree grow faster, and offsetting some of 
its advantages. However, even with object size 200, we still have improvement of 
around 60% over R*-trees for exact match and 40% for range queries with c=2. 

Comparison of Space Requirements. Figure 14 shows the number of nodes (= pages) 
in the trees. The TV-tree requires fewer number of nodes (and thus less space). 
The savings are 15-20%. 

Since the object size is the same for both indexes, the number of leaf nodes are 
also very similar (in fact, they will be identical when the utilization is the same). 
This implies that all the savings in the TV-tree are from internal nodes, which 
means that the non-leaf levels require a smaller buffer, which can be significant 
when buffer space is limited. 
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6. Conclusions 

In this article, we proposed the TV-tree as a method[ for indexing high dimensional 
objects. The benefit lies in its ability to adapt dynamically and use a variable number 
of dimensions to distinguish between objects or groups of objects. Since this number 
of required dimensions is usually small, the method saves space and leads to a larger 
fan-out. As a result, the tree is more compact and :shallower, requiring fewer disk 
accesses. 

We presented the manipulation algorithms in detail, as well as guidelines for 
choosing the design parameters (e.g., optimal actiwe dimension o~ = 2, minimum 
fill factor = 45%). We implemented the method, and we reported performance 
experiments, comparing our method to the R*-tree. The W-tree achieved access 
cost savings of up to 80%, at the same time resuhing in a reduction in the size 
of the tree, and hence its storage cost. Moreover, the savings seem to increase 
with the size of the database, indicating that our method will scale well. In short, 
we believe that the W-tree should be the method of choice for high dimensional 
indexing. 
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Appendix 

A. Calculation of the Telescopic Minimum Bounding Diamond (TMBD) 

To find the TMBD of a given set of points or diamonds, we first find the largest 
m such that all the TVECTORS (centers of the diamond or vectors corresponding to 
data points) agree in the first m dimensions. Then we project the next ce dimensions, 
where ce is the number  of active dimensions of the W-tree.  Thus, the projected 
diamonds will reside in a ol-dimensional space. An example is given in Table 2, 
assuming the diamonds are from a TV-2 tree. 

In Table 2, m is 2 (and o~ is 2 by definition of the TV-2 tree). Note that the 
projected second diamond has a radius of 0 because the third and fourth dimensions 
are not active dimensions. This means that all points inside the diamond will have 
coordinates that start with (1,0,8,7,...). 

From there we find the minimum bounding diamond of the projected diamonds, 
and use its center as the active dimensions of the final MBD. The non-active di- 
mensions will be the common m dimensions we first found. Finding the minimum 
bounding diamond-of  these projected diamonds can be formulated as a linear 
programming problem. However, we decided to use a faster approximation algo- 
rithm to find the approximate MBD. The algorithm first calculates the bounding 
(hyper)rectangle of the projected diamonds, and then use its center as the dia- 
mond center. The smallest radius that is needed to cover all the diamonds is then 
calculated. 
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Table 2. Example of Diamond Projection in a TV-2 tree 

Original diamond 

Center 

(1,0,3,4) 

(1,0,8,7,5,6) 

(1,0,2,6) 

Projected diamond 

Radius Center Radius 

2 (3,4) 2 

4 (8,7) 0 

1.5 (2,6) 1.5 

Algor i thm 4. Finding the MBD 
begin 

/*oz is the number of active dimensions */ 
Proc TMBD(Array of Diamonds D, integer o0; 
1. Find min,  the minimum dimensionality among all diamonds in D. 
2. Find the maximum m such that all the diamonds have the same first m 

dimensions. 
3. I f m  + ce < mi n  

Set Startproject ~-- m + 1 

Set Startproject ~-- m i n  - oz + 1/* special case when some diamonds have 
small dimensionality. This step is to ensure that there will be & active 
dimensions */ 

4. Project each diamond to dimensions Startproject . . .  Startproject + ol - 1, 

setting the radius to 0 if none of the projected dimension is active, 
otherwise retain the original radius. 

5. Find the minimum bounding rectangle of the projected diamonds. Let c 
center. 

6. Set center of the result diamond ~-- the m common dimensions of the 
diamonds concatenated with c. 

7. Find the minimum distance that is needed to contain all diamonds, and set 
this as the radius. 

end 

Continuing the example from Table 2, the bounding rectangle for the projected 
diamonds has boundary (0.5, 8) along the first dimension, and (2, 7.5) along the 
second. Its center is (4.25, 4.75). The radius required to cover all three diamonds 
is 6. Thus, the final TMBR has center (1, O, 4,25, 4.75) and radius 6. 

B. Telescoping Without Truncation 

Given a feature vector of length n, its contraction to length m is achieved through 
multiplication by the matrixAm. Here we present an example of a simple, summation- 
based, telescoping function that does not involve truncation. The required series 
of matrices A m are: 
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If n < 2m, Am has a 1 in position (1,1), (2,2), . . . ,  (2m- n, 2m-  n), (2m- n + 1, 
2 m - n  + 1 ) , ( 2 m - n  + 2 , 2 m - n  + 1 ) , ( 2 m - n  + 3  2 m - n  + 2 ) , ( 2 m - n  + 4 , 2 m  
- n  + 2), . . . ,  (n, m), and a 0 everywhere else. 

In other words, the first 2m - n rows have a single 1 each on the diagonal, and 
the remaining n - m rows have two ls each, in pairs, in a stretched out continuation 
of the diagonal. Call this the halving step. 

If n/4 < m < n/2, obtain the matrixAp, wherep  = ceiling(n~2), using the halving 
step, and then apply the halving step once more to the p length vector to create 
an rn length vector. A m is obtained as the product of the two matrices for each 
application of the halving step. 

Similarly, for any value of m, enough applications of the halving step produce 
the required contraction. The contraction for m = 1 is simply the summation of 
all elements, induced by a matrix Am, which is a vector of all l's. 


