Quality Views: Capturing and Exploiting the User
Perspective on Data Quality

Paolo Missier
School of Computer Science
University of Manchester
Oxford Rd, Manchester, UK

pmissier@cs.man.ac.uk

Alun Preece
Computing Science
University of Aberdeen
Aberdeen, UK

Suzanne Embury
School of Computer Science
University of Manchester
Oxford Rd, Manchester, UK

sembury@cs.man.ac.uk

apreece@csd.abdn.ac.uk

ABSTRACT

There is a growing awareness among life scientists of the
variability in quality of the data in public repositories, and
of the threat that poor data quality poses to the validity
of experimental results. No standards are available, how-
ever, for computing quality levels in this data domain. We
argue that data processing environments used by life sci-
entists should feature facilities for expressing and applying
quality-based, personal data acceptability criteria.

We propose a framework for the specification of users’ qual-
ity processing requirements, called quality views. These
views are compiled and semi-automatically embedded
within the data processing environment. The result is a
quality management toolkit that promotes rapid prototyp-
ing and reuse of quality components. We illustrate the util-
ity of the framework by showing how it can be deployed
within Taverna, a scientific workflow management tool, and
applied to actual workflows for data analysis in proteomics.

1. INTRODUCTION

Data management for the life sciences, and for post-genomic
research in particular, represents a challenging testbed for
data quality management. The life sciences domain is in-
creasingly characterized by a variety of experiment types
and high-throughput techniques that generate large volumes
of data. In proteomics, for example, the study of complex
biological systems requires the simultaneous identification
of proteins from a sample, as well as the comparison of large
numbers of samples. As large-scale automated data analy-

Permission to copy without feeall or part of thismaterial isgranted provided
that the copies are not made or distributed for direct commercial advantage,
theVLDB copyright notice and thetitle of the publication and itsdate appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or specia permission from the
publisher, ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.

Copyright 2006 VVLDB Endowment, ACM 1-59593-385-9/06/09

971

Mark Greenwood
School of Computer Science
University of Manchester
Oxford Rd, Manchester, UK

markg@cs.man.ac.uk

Binling Jin
Computing Science
University of Aberdeen
Aberdeen, UK

bjin@csd.abdn.ac.uk

sis becomes essential in order to make biological sense of the
data, there is a growing awareness in the community that
the data produced by the experiments is of variable quality;
yet, quality of data in this domain is difficult to characterize
and control.

Data quality problems concern primarily the accuracy of ex-
perimental measurements, and of their interpretation: data
is produced by laboratory processes that are often experi-
mental in nature, hence not entirely predictable nor easily
reproducible. Even when they are well-established, the ex-
periments are still subject to variability and error, due to
biological contamination, procedural errors in the lab, and
technology limitations [12].

Despite the general lack of quality control, the number and
size of public post-genomics databases is increasing. Pro-
teomic data can be found for instance in PRIDE!, Pedro[11]
and gpmDB2. This data is typically used to perform in silico
experiments, in which hypotheses are tested computation-
ally by analysing data from previous experiments, rather
than through conventional experimental techniques in the
lab. By these means, the effects of poor data quality in the
primary DBs tends to propagate to the second-generation
data produced by these experiments.

One of the main problems with data quality management
in this domain is the lack of agreement on common quality
metrics, and of practical instruments for performing quality
assessments. Faced with unfamiliar data, therefore, scien-
tists often find it difficult to answer basic questions: what
are appropriate acceptability criteria for the data, and how
are they computed? which types of quality indicators are
available? what levels of quality are reasonable to expect3?
at which level of data granularity should these criteria ap-
ply?

Lwww.ebi.ac.uk/pride
2gpm — http://gpmdb.thegpm.org/

3Generally, higher quality requirements result in less accept-
able data

Due to the fundamentally subjective nature of quality, the
answers to these questions, when available, are inevitably
based on personal heuristics and experience rather than on
accepted standards. Furthermore, they are only valid for
particular uses of the data. For example, scientists may
guess that the reputation and track record of the originating
lab for a proteomics experiment may be a good discrimina-
tor for quality. However, users seldom have a cost-effective
way to validate such hypotheses, which are often expressed
informally and cannot be applied to the data.

Rather than trying to identify general rules for quality as-
sessment, we propose to provide users with tools to explore
the available options and trade-offs for measuring quality.
We have followed a pragmatic approach that involves real
users, primarily e-scientists, who have been engaged in the
definition of a common terminology and tools for informa-
tion quality management. As a result of this collaboration,
in the context of the Qurator project* we have developed
a user-centred quality model and software environment, in
which domain experts can rapidly and easily encode and
test their own heuristic quality criteria. At the heart of the
model is the novel concept of quality view, a sort of person-
alized “lens” through which the data can be viewed. Our
main contributions include:

e a user-extensible semantic model for information qual-
ity concepts in e-science, which has been lacking for a
long time, and which provides the basis for formulating
homogeneous and shareable quality criteria;

e a process model and a simple, declarative language for
the specification of abstract quality views in terms of
a few elementary operators;

e an architecture for the implementation and deploy-
ment of quality views within various data processing
environments.

The main difficulty in designing an environment for qual-
ity analysis in the life sciences is to make it cost-effective: it
should be straightforward for scientists who are not database
experts to observe their data through various configurations
of quality views, but it should also be easy for them to ex-
periment with different configurations. We have addressed
this key requirement in two ways: firstly, by reducing the
amount of implementation work that is required to create
new quality management components and to integrate them
with the user’s data environment; and secondly, by increas-
ing the possibilities for reuse of custom quality manage-
ment components in future applications. This is achieved
by identifying quality management functionality that is ei-
ther generic across a range of analysis problems, or that is
specific to an application or domain, but which can be gen-
erated automatically from a high-level specification of the
user’s requirements. The Qurator service-based architecture
offers this common functionality and provides a uniform way
to deploy user-defined, domain-specific quality services.

4Funded by the EPSRC Programme Fundamental Com-
puter Science for e-Science: GR/S67593 & GR/S67609 —
Describing the Quality of Curated e-Science Information Re-
sources.

978

The choice of life sciences data as a testbed for the ideas
developed in the project is key for the validation of the pro-
posed framework; the abundance of real-life use cases pro-
vide good test suites with which to validate our approach,
as our running example demonstrates.

1.1 Running example: understanding protein
function

The example concerns the discovery of sets of proteins that
are expressed by particular organisms or cells [1], a com-
mon problem in qualitative proteomics. One widely used
technique is protein mass fingerprinting (PMF). In PMF,
a sample containing a (possibly large) number of unknown
proteins is processed in the lab using a mass spectrometer,
in order to obtain a representation of its protein compo-
nents as a list of individual masses, called a peak list. The
data-intensive portion of the experiment involves using the
peak list to search a reference database of known proteins,
and reporting a ranked list of proteins that are likely to be
present in the original sample.

Two main types of data quality problem arise in this type
of experiment:

e Protein identification is intrinsically subject to un-
certainty, due to limitations in the technology used,
experimental contamination, an incomplete reference
database, or an inaccurate matching algorithm. The
results may contain false positives, and it is often the
case that the correct identification is not ranked as the
top match.

e Experiments performed at different times, by labs with
different skill levels and experience, and using different
technologies, reference protein databases and match-
ing algorithms, are difficult to compare.

Now, consider a follow-up in silico experiment, that intends
to exploit the results of a protein identification process, as
specified by the ISPIDER project [2] on proteomic data inte-
gration. A scientist trying to understand the behaviour of a
cell under particular circumstances performs a PMF exper-
iment, from which many identifications result. Rather than
the identifications per se, the scientist is more interested in
the functional roles of the proteins within the cell. The iden-
tified proteins are therefore transformed into descriptions of
their biomolecular function, by querying the GOA database,
which links protein accession numbers with terms describ-
ing molecular function, expressed in a standard controlled
vocabulary.®

This analysis involves a sequence of steps, which mixes ac-
cess to software tools with database queries. It is therefore
implemented using a scientific workflow editor; in this case,
the Taverna workbench® [13], a component of the myGrid
project.” The resulting workflow is shown in Figure 1. In
the first step, a set of peak lists are retrieved from the Pe-
dro database and used for protein identification, using the

®The Gene Ontology (GO) — http://www.geneontology.org
STaverna — http://taverna.sourceforge.net/
"myGrid — http://www.mygrid.org.uk/

workﬂowmputs

ResultFile ” Database ”\i’ar‘iableModifications”FixedModifications” Enzyme ” TypeOfMasses ” ScoringSystem]

uniprot2G0

identifyProteins

’ Num berOfHits ” Error ” Masses IA

| GOParents || GOClassification || COTerm || cold || XM Lile |v

Figure 1: Example Proteomics Analysis Workflow

Imprint analysis tool® along with some configuration param-
eters and the reference protein sequence database. Imprint
computes ranked identifications, along with additional in-
dicators; in our example, we will use Hit Ratio (HR) and
Mass Coverage (MC). HR gives an indication of the signal
to noise ratio in a mass spectrum, and MC measures the
amount of protein sequence matched [20]. Finally, the GOA
database is queried to retrieve the functional annotations
for each identified protein.

At this point, the scientist proceeds to determine the most
likely protein functions, perhaps making a pareto chart of
the functional annotations by frequency of occurrence, to
see whether any trends emerge. What happens, however,
when the protein lists include false positives? How would
the scientist be able to rapidly design and repeatedly ob-
serve the effect of alternative criteria for ranking and filter-
ing the matches? In this paper, we argue that our quality
management framework provides ways to answer this ques-
tion.

1.2 Reated work

The research presented here is only concerned with express-
ing and computing quality assessment functions, rather than
providing another toolkit for data cleaning, following the ex-
amples of AJAX [9], TAILOR (7], Potter’s Wheel [17], and
others. Comparatively little work has been done on provid-
ing user-oriented tools and languages for expressing quality
in a general way; among these, the XQual language [3] is no-
table in its attempt to extend QML [8] for describing quality
of service constraints, in order to accommodate quality of
data constraints. The emphasis of the research, however, is
more on the performance aspects of the quality-aware query
processing than on the flexibility it affords.

In the related area of Quality of Service (QoS) specifica-
tion, most of the available work on semantic modelling of
QoS metrics is focused on advertising non-functional ser-
vices capabilities, for quality-aware service discovery. Zhou
et al. [21], for example, define a DAML ontology for QoS that

8Imprint is an in-house software tool for PMF. A number
of public and commercial tools are available, notably MAS-

COT [14].

979

is suitable for automatic matching of service quality pro-
files against a user’s quality requirements. Thus, their no-
tion of “service acceptability criteria”, roughly correspond-
ing to our “data acceptability criteria”, reduces to service
classification using ontology reasoning. Although this is a
potentially interesting approach, it means that the service-
matching algorithm is built-in and limited by the expres-
sivity of the underlying ontology language. Our work dif-
fers crucially, in that we allow acceptability criteria to be
defined as arbitrary decision models, rather than using on-
tology reasoning. Furthermore, we offer an environment in
which users may define their own, customized quality pro-
cesses, and observe their effect on the data. Besides simple
accept/reject, these effects are described in terms of gen-
eral condition/action pairs, which make more general action
types possible (for instance, some data can be directed to
a special workflow for dedicated processing). Finally, the
greater diversity of possible quality metrics that is encoun-
tered in the data domain, suggests that pre-defined “quality
profiles” are of limited use; in our approach, we instead pro-
vide a language for the dynamic composition of user-defined
metrics.

An older attempt at providing a toolkit for composable qual-
ity processors is described in [5], but its development, to the
best of our knowledge, has not continued. Closer to the life
sciences domain, Boulakia et al.[4] have proposed a practi-
cal system for selecting biomedical data sources according
to user preferences. So far, however, the search for useful
quality indicators and quality functions in bioinformatics
has hardly been systematic; one notable exception is an in-
vestigation into the consistency of functional annotations
in the Uniprot? database. These annotations describe the
likely function of a protein. In [16], the authors establish ex-
perimentally the reliability of a simple and readily available
meta-data element, called evidence codes, as a possible indi-
cator of the reliability of the curator’s annotation. This type
of research provides us with precious experimental data re-
garding useful indicators that might be exploited to express
new quality criteria.

9Uniprot — http://www.ebi.uniprot.org

1.3 Paper organization

The rest of the paper is organized as follows. After an
overview of our technical approach, in the next section, we
introduce models of information quality concepts in Sec-
tion 3, and of abstract quality processes in Section 4. We
then present our architectural framework in Section 5, and
show its application to a specific user environment—in this
case, the Taverna workflow environment for e-science ap-
plications (Section 6). Finally, in Section 6.3 we present an
example of effective quality-aware filtering for our main case
study.

2. OVERVIEW OF THE APPROACH

The definition and automated processing of quality views
is based on the assumption that data can be annotated in
an effective way with particular types of metadata, called
quality annotations. Annotations may include any measur-
able quantity that can provide “clues” into the quality of
the data, for example HR or MC, provided by the Imprint
algorithm alongside the ranked list of protein IDs. We use
the term quality evidence to refer to different types of anno-
tation. Users may then define domain-specific functions of
these annotations, called quality assertions (QA for short),
which provide intuitive and ready-to-use expressions of qual-
ity for the underlying data in terms of data classification,
or ranking. QAs are computed on a whole collection of
data items, rather than on individual items. For example,
given the set of protein IDs computed by one run of the Im-
print algorithm, a user may define a QA that assigns a score
s(hr,mc) to each ID within that collection, as a function of
HR and MC. Alternatively, a QA can be defined as a clas-
sifier for the collection, which associates a class label (low,
mid, high) to each ID, based on the frequency distribution
of the score s(hr,mc). In general, different QAs, using the
same or different types of evidence, capture different (and
possibly contrasting) user perceptions of quality on the same
data.

The Qurator quality framework lets users compose quality
views that (i) compute one or more QAs, and (ii) perform
actions on the data based on user-defined conditions, for
example to filter out the data in class “low”, or to retain the
top-k data items, relative to a custom ranking computed by
a QA. The framework includes the following main elements:
(i) a metadata management infrastructure for computing
quality annotations, maintaining a mapping from data to
annotations, and retrieving annotations given their evidence
type; (ii) a registry of quality annotation functions and QA
functions, which are implemented as Web services, and (iii)
a conditional expression language and interpreter to define
and apply data acceptability actions to the data.

These low-level functionalities are not directly accessible to
the users, however. Rather, they are exposed through a
small collection of quality operators, which users may com-
pose into abstract quality views using an XML-based lan-
guage. The operators are mapped to implementation com-
ponents that may execute within specific target data pro-
cessing environments —in our example, a workflow language
and enactment service. Thus, given a target workflow en-
vironment, the framework executes an abstract quality pro-
cess by compiling it into a quality workflow, deploying, and
invoking it on the data. The quality workflow can also be

980

integrated with the user-defined workflow that generates the
data.

We now introduce two models that provide a formal basis for
the framework, namely (i) a semantic model of information
quality management concepts, or IQ) model, and (ii) a quality
process model.

3. SEMANTIC MODEL FOR INFORMA-

TION QUALITY

The IQ model, an ontology defined in the OWL DL se-
mantic web language, formally captures the concepts just
introduced, and defines their relationships. Its root classes
include Quality Assertion to represent QAs, and Quality Ev-
idence, i.e., any measurable quantity that can be used as
input to a QA, such as HR or MC. Recall that evidence is
often not itself a measure of quality, but rather it enables
quality assertions to be made.

The term quality annotations denotes the actual values for
quality evidence, which are computed for specific data items
by annotation functions, represented by classes in the Anno-
tation Function taxonomy; these annotations are instances
of ontology classes under QualityEvidence. Thus, the ontol-
ogy provides both a structured vocabulary of concepts, and a
schema for a knowledge base of annotations, as shown in Fig-
ure 3. Consistent with the ontology, the association between
data and evidence is represented by the contains-evidence
object property, with domain and range the DataEntity and
QualityEvidence classes, respectively.

°»¢" Qualty Evidence
—

w.w SguNiprotPA00EE)- |,
g

Figure 2: Fragment of IQ ontology with quality ev-
idence annotations

The concepts rooted at the Data Entity class represent any
data item for which quality annotations can be computed,
and quality assertions can be made. Data can be of differ-
ent types and granularity, for example a single proteinlD
computed by Imprint (represented by the Imprint Hit Entry
class), a database tuple, or an entire XML document. The
association between Data Entity concepts and actual data
items is maintained in a separate data model, called the

Ohttp: //www.w3.org/TR/owl-guide/

binding model. In this model, data is represented as the re-
sult of some retrieval operation, represented generically by a
resource locator, eg an XPath expression, or an SQL query.

The binding model is also used to map concepts under Qual-
ity Assertion and Annotation Function, to their implementa-
tion in the Web service space. These bindings make it pos-
sible to compile an abstract quality view into an executable,
service-based workflow, as explained in more detail in Sec-
tion 6.

Finally, the model also captures a simple collection of generic
quality properties, or dimensions as they are known in the
1Q literature [19, 18]; these include accuracy, completeness,
currency. Users may associate quality assertions to these
properties, for the purpose of classifying them and thus fos-
tering their reuse. A more thorough description than is pos-
sible in this paper, regarding these semantic models, can be
found in [15].

Annotations are encoded as a graph of RDF statements!!
(lower part of the figure), and are maintained in a dedicated
repository. Note that the encoding requires that references
to the data itself can be considered as resources in the RDF
framework. This is achieved by “wrapping” the native data
identifiers as URIs.'> In our use cases, we have adopted
the naming conventions defined by the Life Science Iden-
tifiers (LSID) initiative'® for the unique URI-encoding of
data references. Thus, in the figure, P30089 is a Uniprot ac-
cession number, the LSID-wrapper (part of Uniprot’s own
naming scheme) of which is the URN shown in the oval.
The standard rdf:type property indicates that this is an in-
stance of Imprint Hit Entry. The data is annotated with
literal-encoded RDF values for quality evidence, that are
themselves instances of model classes, namely HitRatio and
MassCoverage.’* 1In this case, the evidence is available as
part of the Imprint output, therefore the annotation func-
tion simply captures their values and stores them as anno-
tations. Commonly, however, annotation functions compute
evidence metadata from a variety of sources; for example,
when the reputation of a scientific journal is used as evi-
dence for the credibility of published data, official impact
factor tables (eg provided by the IST*®) may have to be con-
sulted.

4. ABSTRACT QUALITY PROCESSES

Users exploit the IQ model to create a quality process, which
are executed to reach in acceptability decisions on their
data. Two main elements are available for decision mak-
ing. The first is a set of one or more QAs which capture
alternative data quality preferences by computing classifica-
tions and scores for the data. The second is a set of con-

"RDF - http://www.w3.org/RDF/

121t is assumed that unique identifiers are available through-
out for data items (in bioinformatics databases, these are
commonly known as accession numbers).

13Life Sciences Identifiers Specification, Object Management
Group (OMG), document dtc/04-05-01

1410 the model, we exploit the flexibility of the RDF model
to allow for values of quality evidence that are themselves
arbitrary RDF graphs; however, this feature is not discussed
further in the paper.

Bhttp://www.isinet.com/

981

dition/action pairs, where conditions are predicates on the
values of QAs and of the evidence. These may involve fil-
tering data items based on their class, or more generally,
partitioning the data so that the different subsets can be
handled independently. Take for example our protein ID
classification function. Having partitioned protein IDs into
classes (low, mid, high), users may now experiment with dif-
ferent filtering conditions, eg “select the high and mid IDs
for which the Mass Coverage is also greater than X”.

The distinction between the QA and actions decision steps is
mainly a pragmatic one. Using QAs, arbitrary heavy-weight
decision models can be encoded, for instance complex deci-
sion trees, but no actions take place other than “tagging”
the data with a class label, or a score. QAs are expected to
be well-tested, and reusable — such is the case for the QA
functions used in our example, which are backed by scien-
tific experimental evidence [20]. Action conditions, on the
other hand, can be modified on-the-fly, from one process ex-
ecution to the next, allowing users to quickly observe the
effect of various filtering options.

From the user perspective, quality assessment involves the
composition of a quality process, and its repeated execu-
tion, possibly using different action conditions. Specifically,
quality process execution amounts to (i) collecting the qual-
ity evidence associated with the data, required to compute
the QAs, e.g. HR; (ii) computing the QA functions using
the input quality evidence, and (iii) evaluating the quality
conditions and executing the associated actions.

The process is sketched in Figure 3, where a data set is parti-
tioned into several subsets, according to the outcome of the
classification process. As shown in the figure, the process
of collecting quality evidence can be broken down into two
steps, namely (i) computing new metadata values using an-
notation functions; and (ii) retrieving previously computed
values that have been stored in a metadata repository. This
distinction is motivated by the observation that, although
annotations may in principle be generated on the fly, in
some cases this is neither necessary nor convenient. When
the quality process involves querying a database with stable
data, for example, then the quality annotations are likely to
be long-lived and can be made persistent. Take for instance
the Uniprot database; a measure of measures of credibility of
a functional annotation made by a Uniprot curator, whether
based on the evidence codes to which we alluded earlier or
other evidence, is bound to be long-lived, relative to the ex-
ecution of a query to Uniprot. On the other hand, caching
annotations is not an option when the evidence is produced
as part of the same process that computes the data, as in
our Imprint case study, where the scope of annotations is a
single process execution. Therefore, in practice the actual
annotation process may consist of both on-the-fly computa-
tion of annotations, and simple retrieval from a repository.

Figure 3 depicts a generic quality process pattern, composed
using several abstract operators. We will now describe the
role of the operators, and then show how they are mapped to
an extensible set of Web services in the Qurator framework;
this provides an instantiation of the pattern as a process
that can be deployed within the user environment.

Evidence

Dgta set typles Abstract Quality process
. YV ™
Quality
evidence
collection

“l on-the-fly

Annotations

‘ Amaps
" offline
E » Annotations

Data -
Enrichment m

Quality-aware
data
F classification
' Quality
Assertions
augmented
Amaps
Actions
Data set on data
Data cl. ck
. vy
|
(D1, Amap 1) (Dk, Amap k)

Figure 3: General quality process pattern

4.1 Quality operator types

We adopt the following terminology for describing the qual-
ity operator types shown in Figure 4. Given a data set D
and a set I of evidence types, an annotation map: Amap :
d — {(e,v)} associates an evidence value v (possibly null)
for evidence type e € E to each data item d € D. The
names or evidence types must be consistent with the IQ on-
tology; specifically, they must be references to subclasses of
QualityEvidence, eg HitRatio.

We also use mappings of the form {d — (¢,cl)} to represent
the assignment of class cl to d within a classification scheme
t. This mapping is produced by a QA operator. Again, ¢
is a reference to a subclass of ClassificationModel, say PI-
MatchClassification, and ¢l is a member of that model, eg
average-to-low.

Quality Assertion. An operator of this type defines a de-
cision model that associates a class value to each data item
based on the contents of a vector of evidence values, rep-
resented by an input annotation map. These operators are
expected to be user-defined and domain-specific. However,
to the extent that the decision model only depends on the
evidence and not on the data itself, they are not specific to
an individual data set: they can be applied to any data set
that can be annotated with the input evidence types.

The operator computes a new version of its input map, aug-
mented with new mappings for the class assignment, of the
form {d; — (¢, ¢l;)}.

982

Ouaily evidence Mbn and consumplion

Amap D E : G
v v v
. D v
l__ o | |_ il 2 J E -h|. Enrichment |
Arap:; | | Amap |Amap
v v
Amap D
Am]
vy %14
{e1..eK (:
‘ T Fiter a
| A\
¥ v Y S
(D1, Amap 1) (DK, Amap k) (D_def, Amap_def) (0", Amap)

Figure 4: Abstract quality process operators

QA operators are defined in the IQ ontology as the sub-
classes of the QualityAssertion class. Thus,

UniversalPIScore C QualityAssertion

is a domain-specific operator of this type. Note that op-
erators are defined as classes rather than individuals; this
is done to allow further user-defined specializations on the
operators’ hierarchy.

Annotation. This operator computes a new association
map of evidence values for an input set E of evidence types,
and for each item in the input data set D. The map is stored
persistently in a repository s specified as part of the input.

In practice, this operator may require additional input to
execute, e.g. the species of a protein (human, mouse...); we
assume that the operator has access to this additional input,
which is not explicitly represented in the quality process.

Similar to QAs, these operators are also user-defined; how-
ever, note that not only they are domain-specific, but they
are also data-specific, hence they offer few opportunities
for reuse besides their repeated application to homogeneous
data sets.

Data Enrichment. This operator type accounts for the
need to fetch pre-computed annotations from a repository,
given an input data set D and a set E of evidence types
of interest. It is pre-defined and not user-extensible. Since
a metadata repository may contain annotations for a large
number of data items and for a variety of evidence types,
this operator effectively performs queries to the repository,
using d € D and e € E as lookup keys.

Actions. These operators evaluate boolean expressions on
evidence and quality classification values, and assign data
items to different groups accordingly. The expression lan-
guage includes relational operators, i.e. “score < 3.2”, as
well as set membership operators, as in “PIScoreClassifica-
tion IN {“high”, “mid”}”. More examples are provided in
Section 5.1, when the declarative specification of quality pro-
cesses is presented. The set of possible actions is extensible;

we consider only two example here:

Data splitting action. This action type splits an in-
put data set D into groups D; ... Dy, not necessarily dis-
joint. The input consists of D, an annotation map Amap
(which may include classification mappings), and a collec-
tion {c1 ... cx } of conditional expressions over the quality ev-
idence types defined in Amap. The output consists of k£ + 1
sets of pairs (D;, Amap;), such that for each d € D, map
entries {d — (e1,v1),...,d — (en,vn)} C Amap are placed
in Amap;, and d is added to D;, if and only if ¢;(v1 ... v,)
evaluates to true. The k + 1-th output is a default group,
which includes all data items and associated evidence, for
which none of the expressions evaluates to true.

Data filtering action. This is a particular case of data
splitting, for which a single condition ¢ is given and a sin-
gle output map is produced; the map entries that satisfy c
are placed in the output map, while the others are simply
discarded.

The Qurator quality framework, described next, provides an
execution environment for quality processes in which these
abstract operators are implemented as services.

5. A SERVICE-BASED QUALITY FRAME-
WORK

A high level view of the framework appears in Figure 5. The
core components are shown in the “Qurator services” box.
These are web services that implement the user-extensible
set of QA and Annotation operators, and are recorded in a
service registry. In order to facilitate the process of binding
the abstract operators to the services, all QA services export
the same WSDL interface, using a common XML schema for
the input and output messages. The schema is effectively a
concrete model for the data sets, evidence types and anno-
tation maps described earlier in abstract terms. Among the
core services, we find the Data Enrichment operator, already
described, as well as further ancillary functionality that will
not be discussed in this paper.

On the right hand side, the data layer includes a collection
of quality annotation repositories that contain quality evi-
dence metadata, according to the model discussed in Sec-
tion 3. All of these repositories are accessed through the
same read/write API, which provides an object model for
building and searching the annotation graphs, and guaran-
tees that the metadata complies with the ontology model.
Consistent with the definition of annotation maps, access
to evidence is provided primarily based on (data, evidence
type) keys, using queries in the SPARQL language, currently
a W3C working draft.’® While performance issues have not
been addressed at this stage, it is worth noting that the use
of SPARQL makes it simple to swap the underlying storage
mechanism and/or back-end database, should performance
become a concern. Scalable RDF storage components are
currently offered for instance by the Sesame project'” and

SPARQL — http://www.w3.org/ TR /rdf-sparql-query/.
Several RDF store providers offer SPARQL support, e.g.
3store (http://www.aktors.org/technologies/3store/), see
also [10].

"SESAME - http://www.openrdf.org/

by Oracle [6].

5.1 Quality views: declarative specification of

quality processes
On the left side of Figure 5 we find the quality view man-
agement services that exploit the framework by building on
the core services. Quality views are concrete and machine-
processable specifications for instances of our general qual-
ity process pattern, expressed in an XML syntax. They
include declaration sections for quality operators and evi-
dence types, which can be referenced within the scope of
the specification using explicit variable names. Although
expressed using a concrete syntax, views are still defined
purely in terms of our abstract model, i.e., the specification
is not tied to any implementation of the operator set. This
leaves us free to target the view to different data manage-
ment environments. In the next section, we demonstrate
this targeting step by showing how a view process instance
can be deployed within the Taverna workflow environment.

As an illustration of a quality view we have extended
the workflow shown in Figure 1 which was developed
by the ISPIDER proteomics project. The fragment be-
low declares an annotation operator, of class q:Imprint-
output-annotation, and gives it a local variable name,
g:lmprintOutputAnnotator'®. The <variables> declara-
tions identify the evidence types for which the operator is
going to provide values, which are to be stored in the cache
repository; the persistent attribute is set to ’false’, indicat-
ing that these annotations are only valid during one process
execution.

<Annotator
serviceName="ImprintOutputAnnotator"
serviceType="Imprint-output-annotation">
<variables repositoryRef="cache"
persistent="false">
<var evidence="q:Coverage"/>
<var evidence="q:Masses"/>
...
</variables>
</Annotator>

Three QAs are used in this view, so that users may compare
their relative effects by editing the selection criteria in the
action section at process execution time. The first two QAs
produce a score based on a combination of Hit Ratio and
Mass Coverage, and Hit Ratio alone. The scores can be
used to split the data, using a splitter action based on user—
defined thresholds. To simplify the user’s task, a third QA
computes a ready-to-use three-way classification (low, mid,
high) based on the average and standard deviation of the
Hit Ratio and Mass Coverage score.'?

The following fragment shows the declaration for the first

QA:

<QualityAssertion

8¢ is a prefix for the namespace http://www.qurator.org#

!9The thresholds used for classification are (avg - stddev) and
(avg + stddev).

Qurator infrastructure
Qurator services
Quality-aware data services (20 ¢ (LG ST
}Annutations coverage analysis service|
‘ Annotations retrieval service |
Ontology access szivice [an Quality knowledge base
Quality Views management ‘ 8y | %
=
=
Annotation services g © 1Q
- . (collecting quality evidence) c = ology
- L
|MIAME MGED usage analysws‘ E 2
=] o
- © =3
| MIAME evidence collactor ‘ 5 - #
© 2
| Imprint evidence collector ‘ o Quality
notations
| L] |
Quality Ass ertion s ervices
(decision models)
‘ Imprint quality estimator |
target Workflow - -
environment orkflow resources ‘ microarray high-level cluster analysis |
Quality processors ‘MIAME reputation-hased assessmem|
workflow I Qurator services ==
designer ‘ [|
. Y
workflow Biolnf processors Ny
enacior / myGrid services »
omain

Figure 5: Overview of the quality framework

serviceName="HR_MC_score"
serviceType="q:UniversalPIScore2"
tagName="HR_MC"
tagSynType="q:Score">
<variables repositoryRef="cache">
<var variableName="Coverage"
evidence="q:Coverage"/>
<var variableName="Masses"
evidence="Masses"/>
<var variableName="PeptidesCount"
evidence="q:PeptidesCount"/>
</variables>

It defines the HR_MC_score operator as an instance of class
q:UniversalPIScore2, which computes a score value and asso-
ciates it to tag name HR_MC, a variable. Its three inputs are
instances of the mentioned QualityEvidence subclasses, and
are fetched from the cache repository, which has been writ-
ten to by the previous annotation operator. A classification
QA is declared similarly:

<QualityAssertion
serviceName="PIScoreClassifier"
serviceType="q:PIScoreClassifier"
tagSemType="q:PIScoreClassification"
tagName="ScoreClass"
tagSynType="q:Class">
<variables repositoryRef="cache">

.0

</variables>

</QualityAssertion>

984

Here, q:PlIScoreClassification is the I1Q model class that de-
fines the classification schema used by the QA. We should
clarify that views may include any number of annotator and
quality assertions operators, which may fetch their annota-
tions from any number of repositories.

The variable names introduced in the preceding sections can
now be referenced in one ore more action sections, where
splitters and filters are specified:

<action name="filter_top_k_score">
<filter>

<condition>ScoreClass in

‘(q:hig ’)’ (tq:mid’)

and HR.MC > 20

</condition>

</filter>

</action>

Note that the classifications computed by the QA are them-
selves defined as part of the 1Q ontology: they are enumer-
ated individuals of class

q:PIScoreClassification.

View specifications do not include any reference to input
data sets, because they are designed to be independent of the
specific input data. The run-time model for quality views
descends directly from our definition of the quality operators
(Section 4.1): a view is applicable to any data set for which
evidence values are available for the required evidence types
mentioned in the input.

6. COMPILING AND EMBEDDING QUAL -
ITY VIEWS WITHIN SCIENTIFIC
WORKFLOWS

The process of targeting a quality view to a specific envi-
ronment requires two additional types of information: (i) a
set of bindings of abstract operator types to implemented
services, and (ii) deployment instructions for the target en-
vironment.

The binding information is maintained in a semantic reg-
istry whose schema is defined in a binding model, mentioned
earlier. This small ontology prescribes a pattern for associ-
ating any concept defined in the IQ ontology with a concrete
Service Resource or Data Resource object through a Binding
object. A Resource has a locator associated with it, whose
nature depends on the type of the resource, eg a service end-
point. We use this ontology to bridge the gap between the
conceptual model and the framework implementation: the
binding step results in each Annotation and (QA) operator
being mapped to a Web Service endpoint.

6.1 Quality view compilation into a workflow
To make our case study concrete, our example of quality
view compilation is based on the Taverna workflow envi-
ronment, rather than on some abstract workflow reference
model. The simple workflow design primitives offered by
Taverna, however, are common to many similar models, and
the approach can easily be generalized. In Taverna, proces-
sors drawn from an extensible collection?® can be composed
using either data or control links. A control link from proces-
sor A to B means that B is started as soon as A completes.
The workflow execution environment invokes the processors
and transfers data from the processors’ output ports to in-
put ports according to a simple data model.

Adding new processors to the available collection is straight-
forward, as any deployed Web Service with a published
WSDL interface can be found automatically on a specified
host by Taverna’s services scavenger process. As a prelim-
inary step, core Qurator services, as well as user-defined
annotation and QA services, have been added to Taverna’s
processor collection. The main rules for compiling quality
views specifications into a workflow are as follows:

e Annotators are added first; their input ports are ini-
tially unbound, and their output is empty, since anno-
tators only write to a repository;

e By analysing the annotators and QA specifications,
the QV compiler determines the association between
each evidence type and the repository in which its
value is to be found. This allows the compiler to add
one single Data Enrichment (DE) operator and con-
figure it using this association, to make it read from
specific repositories. A control link is also installed
from each of the annotators to the DE;

e The output from the DE, an annotation map, feeds all
the QA processors, using their common WSDL inter-
face;

20More than a hundred services are currently available for
Taverna, most of them for bioinformatics applications.

985

e Action processors are added next, and data connec-
tors are installed from each of the QAs to each of the
actions. During deployment (see below), the output
ports of actions are bound to data links that transfer
the surviving data back to the embedding workflow.

The compiled workflow for our running example appears in
Figure 6, box (a); the ConsolidateAssertions task is added
by the compiler to produce a consistent view of multiple
assertions; a number of other ancillary tasks, used to encode
configuration information for the main Taverna processors,
are not shown.

6.2 Deployment descriptorsfor embedding

The homogeneity of the quality and data process models
make the embedding of one workflow within another a con-
ceptually simple operation. Two main elements must be
considered, (i) a set of adapters that surround the embedded
quality flows, and (ii) the connections among host and em-
bedded processors, which may occur through the adapters.

The Taverna-specific deployment descriptor contains decla-
rations (using a succinct XML syntax) for both adapters
and connectors. Adapters typically account for differences
in data formats; as they are Taverna processors themselves,
their names are registered and can be used within the de-
scriptor. Connectors include the name of the source and tar-
get processors and the name of the output and input ports,
respectively. Figure 6 shows the original experiment work-
flow from the running example, with the embedded quality
workflow. Note that, at this point, both the annotator and
the DE processors are provided with an input (the data set
and the quality evidence of interest); also, the protein iden-
tification task feeds the quality view through the adapter,
and the output of the filter feeds the GO retrieval task.

6.3 Applying quality views in practice: some
exampleresults

We now present some results that were obtained by applying
our embedded quality view to the protein identification flow
from the running example. While this shows the practical
usefulness of our approach, the results presented here should
be viewed only as an illustration of the potential offered by
our framework, as no effort was made in this experiment to
reach biologically significant conclusions.

The overall effect of inserting a quality process into the orig-
inal flow is to reduce the number of protein IDs, so that
the associated GO terms more accurately reflect the likely
functions of the protein. As we recall from Section 1.1, the
ISPIDER workflow takes a set of masses from a mass spec-
trometer and delivers a set of terms from the GO ontol-
ogy, based on the GO annotations of the identified proteins.
While some GO terms may occur very frequently when they
are accumulated over the entire experimental sample (many
spots), their frequency may not be an accurate indicator of
their relevance because the GO terms associated to the false
positives are misleading and should be discounted.

In this experiment, protein IDs are classified according to
our QA criteria, regardless of the native ranking proposed

Worlkflow Inputs

Masses]A

ResultFile

][Database][\l'arhbleModifmtbns![Fixenddiﬁcaticns” Enzyme

[Type OfMasses ” ScoringSystem I I MNum berOfHits][Error ”

(b) — adapter

(a) — compiled quality view

— Annotation

— Data Enrichment

— QAs

—— Actions

.l

.

Figure 6: Compiled and embedded quality workflow

by Imprint, thus providing an ad hoc quality view of the
associated GO terms.

Input for the ISPIDER workflow includes the peptide masses
for 10 protein spots, extracted from a PEDRo data file sup-
plied by collaborators in the Molecular and Cell Biology
Group, School of Medical Sciences, University of Aberdeen.
The 10 sets of peptide masses were processed using the orig-
inal ISPIDER workflow, producing a total number of about
500 related GO terms. They were then processed again by
adding the quality workflow shown in Figure 6, with a fil-
ter action set to save only the “top quality” protein IDs,
i.e., those with a score higher that the average + standard
deviation (see Section 5.1).

As a measure of actual significance for the GO terms, we
take the ratio of the number of occurrences of each GO term
with and without quality filtering. Figure 7 shows the result-
ing GO terms, ranked in order of significance as just defined
(the original rank is not shown). A high ratio indicates that
the GO term is relatively unaffected by the filtering, and
thus it is representative of high-quality proteins. This sig-
nificantly alters the original ranking: for instance, GO term

986

G0O:0007049, now ranked first, occurred only 6 times in the
original data, while GO:0008652, ranked towards the end,
originally occurred 14 times.

7. CONCLUSIONSAND FURTHER WORK

We have presented the Qurator framework for the composi-
tion of user-defined quality functions into abstract data qual-
ity views. Views can be compiled, embedded within specific
data processing environments, and computed during the ex-
ecution of the data processes. We have given an example of
this mechanism in action, using a proteomics process based
on Taverna, a scientific workflow environment which is in
wide use among the bioinformatics community.

With this exercise, we have begun to validate our hypothesis
that the framework supports cost-effective data quality man-
agement, by identifying various levels of sharing and reuse,
namely: (i) of quality concepts through the IQ model, (ii) of
generic core framework components, (iii) of configured com-
ponents for a whole data domain. The limits of reuse are
also becoming clear: some components, primarily used for

ratio of GO terms frequency with and without quality filkering

Wore significant terms
——
0.6

less significant terms
_—

05

0.4 4

0.3 4

02 4+ 1
01+ 1 —
o o o @ o N o o o X X
R A A S G R S AR T P SR AN
g 8 S M N SR S S~~~ S -~ S
o o & § o NI Sy P P P o & F o o o o &
& & 0 N S P S S
¢ ¢} ¢} ¢} e} e} e e e e e} e e e} e} e} e} o o

Figure 7: Effects of a data quality view on the workflow output

extracting quality evidence, tend to be very data-specific.

Life sciences applications continue to provide new require-
ments for the architecture and real use cases for testing our
implementation. Our current work mainly involves (i) en-
gaging biologists in the definition of a useful collection of
quality functions, (ii) investigating the use of machine learn-
ing techniques to derive decision models and quality func-
tions from example data sets, (iii) providing a more general
mapping from quality views to formal workflow models, and
(iv) providing user-friendly interfaces for the reuse of qual-
ity components views defined by peers within a scientific
community.

Acknowledgements

The authors would like to thank Dr. David Stead of the
Molecular and Cell Biology group, School of Medical Sci-
ences, University of Aberdeen for precious insight into qual-
ity functions for proteomics data, and Dr. Khalid Belhaj-
jame for providing support with ISPIDER experiments.

8. REFERENCES

[1] R. Aebersold and M. Mann. Mass spectrometry-based
proteomics. Nature, 422:198-207, March 2003.

[2] K. Belhajjame, S.M. Embury, H. Fan, C. Goble, and
al. Proteome data integration: Characteristics and
challenges. In Proceedings of UK e-ScienceAll Hands

Meeting, 2005.

Laure Berti-Equille. Quality-adaptive query
processing over distributed sources. In Procs. 9th
International Conference on Information Quality,
ICIQ 2004, Cambridge, Ma, 2004.

S. Cohen Boulakia, S. Lair, N. Stransky, S. Graziani,
F. Radvanyi, E. Barillot, and C. Froidevaux. Selecting

987

biomedical data sources according to user preferences.
In ISMB/ECCB 2004, Bioinformatics, volume 20,
suppl. 1, pages 186-193, 2004.

F. Caruso, M. Cochinwala, U. Ganapathy, G. Lalk,
and P. Missier. Demonstration of telcordia’s database
reconciliation and data quality analysis tool. In VLDB
2000, September 10-14, 2000, Cairo, Egypt, pages
615-618. Morgan Kaufmann, 2000.

E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
Efficient SQL-based RDF Querying Scheme. In

K. Bohm, C. S. Jensen, L. M. Haas, M. L. Kersten,
P. Larson, and B. C. Ooi, editors, VLDB 2005,
Trondheim, Norway, August 30 - September 2, pages
1216-1227. ACM, 2005.

M.G. Elfeky, A.K. Elmagarmid, and V.S. Verykios.
Tailor: a record linkage tool box. In Proceedings of the
18th International Conference on Data Engineering
(ICDE 2002), San Jose, CA, Feb. 2002. IEEE
Computer Society.

S. Frolung and J. Koistinen. QML: A language for
Quality of Service specification. Technical Report
HPL98-10, HP Labs, HP Software Technologies
Laboratory, 1998.

H. Galhardas, D. Florescu, D. Shasha, and E. Simon.
An Extensible Framework for Data Cleaning. In
Proceedings of the 16th International Conference on
Data Engineering (ICDE 2000), San Diego, CA, USA,
2000.

S. Harris and N. Gibbins. 3store: Efficient bulk rdf
storage. In Proceedings 1st International Workshop on
Practical and Scalable Semantic Web Systems, Sanibel
Island, Florida, USA, 2003.

[11]

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

K. Garwood K, T. McLaughlin, C. Garwood, and al.
PEDRo: a database for storing, searching and
disseminating experimental proteomics data. BMC
Genomics, 5(1), Sep 2004.

H. Muller, F.Naumann, and J.C. Freytag. Data
quality in genome databases. In Proceedings of the

FEight International Conference on Information
Quality (ICIQ03), Cambridge, MA, 2003. MIT.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: A tool for the
composition and enactment of bioinformatics
workflows. Bioinformatics, pages 3045 — 3054,
November 2004.

D.N. Perkins, D.J.C. Pappin, D.M. Creasy, and J.S.
Cottrell. Probability-based protein identification by
searching sequence databases using mass spectrometry
data. FElectrophoresis, 20:3551-3567, 1999.

Alun D. Preece, Binling Jin, Edoardo Pignotti, Paolo
Missier, Suzanne M. Embury, David Stead, and

Al Brown. Managing information quality in e-science
using semantic web technology. In York Sure and John
Domingue, editors, ESWC, volume 4011 of Lecture
Notes in Computer Science, pages 472-486. Springer,
2006.

P.W.Lord, R.D. Stevens, A. Brass, and C.A.Goble.
Investigating semantic similarity measures across the
Gene Ontology: the relationship between sequence
and annotation. Bioinformatics, 19(10):1275-83, 2003.

Vijayshankar Raman and Joseph M. Hellerstein.
Potter’s wheel: An interactive data cleaning system.
In VLDB, pages 381-390, 2001.

T.C. Redman. Data Quality for the Information Age.
Artech House, 1996.

Wang R.Y. and Strong D.M. Beyond accuracy: What
data quality means to data consumers. Journal of
Management Information System, 12(4), 1996.

D. A. Stead, A. Preece, and A. J.P. Brown. Universal
metrics for quality assessment of protein
identifications by mass spectrometry. Molecular &
Cellular Proteomics, 2006. In press. Available at
http://www.mcponline.org/papbyrecent.shtml.

Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee.
DAML-QoS Ontology for Web Services. In ICWS,
pages 472-479. IEEE Computer Society, 2004.

988

