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ABSTRACT
Motivated by the ”database-as-service” paradigm wherein data

owned by a client is hosted on a third-party server, there is signifi-

cant interest in secure query evaluation over encrypted databases.

We consider this problem for XML databases. We consider an

attack model where the attacker may possess exact knowledge

about the domain values and their occurrence frequencies, and

we wish to protect sensitive structural information as well as

value associations. We capture such security requirements us-

ing a novel notion of security constraints. For security reasons,

sensitive parts of the hosted database are encrypted. There is a

tension between data security and efficiency of query evaluation

for different granularities of encryption. We show that finding

an optimal, secure encryption scheme is NP-hard. For speeding

up query processing, we propose to keep metadata, consisting of

structure and value indices, on the server. We want to prevent

the server, or an attacker who gains access to the server, from

learning sensitive information in the database. We propose secu-

rity properties for such a hosted XML database system to satisfy

and prove that our proposal satisfies these properties. Intuitively,

this means the attacker cannot improve his prior belief probabil-

ity distribution about which candidate database led to the given

encrypted database, by looking at the encrypted database as well

as the metadata. We also prove that by observing a series of

queries and their answers, the attacker cannot improve his prior

belief probability distribution over which sensitive queries (struc-

tural or value associations) hold in the hosted database. Finally,

we demonstrate with a detailed set of experiments that our tech-

niques enable efficient query processing while satisfying the secu-

rity properties defined in the paper.

1. INTRODUCTION
To handle their data management needs, companies and

businesses are increasingly moving toward the so-called
“database as service” (DAS) paradigm [17]. The idea is
that third parties provide data management services, host-
ing and managing their customer’s business and/or personal
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data. Although this offers the possibility of reliable storage
of large volumes of data, efficient query processing, and sav-
ings of database administration cost for the data owner, it
raises serious questions about the security of the data man-
aged by the service provider. Given that no customer is
willing to implicitly trust their data to another party, we
need a mechanism for protecting the privacy of sensitive
data and prevent security breaches. The same concerns ex-
ist for untrusted disk scenario [22]. One solution to this
problem is that the customer encrypts the sensitive parts
of their data, sends the (partially) encrypted database to
the service provider, and keeps the decryption key to him-
self. Note that the purpose of encryption is to protect the
sensitive information from the untrusted server, and is or-
thogonal to any access control policies. We call the customer
client or data owner and call the service provider server.

There are two kinds of information the client may consider
as sensitive: (i) individual node with its content (here the
content of the node consists of the tag, the sub-elements and
the data values of leaf descendants) and (ii) association be-
tween data values. E.g., in a health care database, the owner
may wish to protect every patient element. Alternatively,
she may wish to protect the associations between patient’s
name and disease. To capture the client’s security require-
ments, we propose the notion of security constraints (SCs)
that support both types of security requirements above.

To enforce the security constraints specified by the data
owner, we need a way to decide which elements in the hosted
data need to be encrypted. Encryption may be done at dif-
ferent granularities. Encrypting the entire document, while
guaranteeing all SCs are enforced, quashes any hopes of
query optimization: for every query, the server needs to ship
the whole encrypted database to the owner, which will de-
crypt and process the query, at considerable burden to itself.
However, when the granularity is too fine, e.g., only leaf el-
ements are encrypted, as we will show in Section 4.1, an
attacker can infer sensitive information, based on his prior
knowledge of the domain values and their occurrence fre-
quencies. This might violate one or more SCs. Thus, one of
the challenges is to find a “secure” and “optimal” encryption
scheme (defined in Sections 3.4 and 4.2) which guarantees
that SCs are enforced while permitting efficient query pro-
cessing.

After the data is encrypted and sent to the server, in order
to enable efficient query processing, some metadata needs to
be maintained on the server side. We want to ensure that the
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hosted database is “secure” in the presence of the metadata,
i.e., that there are a large number of candidate databases,
including the true hosted database, such that: (i) none of
the candidate databases other than the true one contain any
of the sensitive information being protected, (ii) by looking
at the encrypted hosted data and the metadata, (a) the
attacker cannot distinguish between any pair of candidate
databases, (b) nor can he increase his belief probability that
any of the databases in the candidate set is indeed the true
hosted database.

Finally, we would like to make sure that even after ob-
serving a series of queries from client and responses by it-
self, the server’s knowledge about the sensitive information
in the database that is specified by the security constraints
does not improve.

In a recent paper, Agrawal et al. [3] proposed a scheme for
designing order preserving encryption functions, which en-
able efficient processing of queries over encrypted data. The
strength and novelty of this approach is that range queries
and aggregate queries involving MIN, MAX, COUNT can be
evaluated at the server without decrypting the data. Com-
pared with our work, they focus on the data distribution
model as a combination of histogram-based and parametric
techniques, while we consider the more conservative model
of exact occurrence frequencies of domain values as the back-
ground knowledge possessed by the attacker.

The basic architecture and data/control flow of our sys-
tem are shown in Figure 1. The client encrypts its data
D using some encryption function η and some private key
known only to itself. The encryption may be partial. The
client also creates metadata M on D for the server’s use.
Then it sends the encrypted data η(D) together with the
metadata M to the server. When a query Q needs to be
evaluated on the database D, the client translates Q into
an encrypted query Qs, and sends Qs to the server. The
server answers Qs by using the metadata M. The answer
to Qs, i.e., Qs(η(D)), consisting of a set of encrypted (and
possibly some unencrypted) blocks, is sent to the client. The
client decrypts the blocks as δ(Qs(η(D))), using decryption
function δ, and does post-processing on the decrypted re-
sults using Q, such that Q(δ(Qs(η(D)))) = Q(D). We use
XPath, the core of XQuery language, for illustrating query
processing ideas in this paper.

We make the following contributions:

• We define the security properties for a hosted XML
database system based on an attack model we define,
consisting of size-based attack and frequency-based at-
tack (Section 3).

• We propose a novel notion of security constraints (SCs)
for the client to specify what information needs to be
protected from the untrusted server (Section 3.2). It
supports not only the protection of elements (both
structure and contents) but also associations between

data values in the database. We propose a mechanism
to construct a secure encryption scheme to enforce the
SCs (Section 4.1) and show that finding an optimal,
secure encryption scheme for a given set of SCs is NP-
hard (Section 4.2).

• We propose a scheme for the metadata to be stored
on the server, to support efficient query processing.
It consists of two key components: (i) the structural
metadata called the discontinuous structural interval
index (DSI) that pertains to the structure of the hosted
database; (ii) a B-tree index as the metadata on the
values that is based on transforming the unencrypted
values by splitting and scaling techniques, so that the
distribution of unencrypted data is different from that
of ciphered data. We show that in the presence of
meta-data, the hosted database system is secure (Sec-
tion 5).

• We show how queries can be evaluated efficiently and
prove the query answering is secure, i.e., even when the
attacker observes a series of client queries and server
responses, his belief in whether the sensitive informa-
tion captured by the given security constraints exists
in the database, does not increase (Section 6).

• We complement our analytical results with experiments
on both real and synthetic data sets that measure the
effect of encryption scheme granularity and query size
and shape on query processing efficiency, as well as
the client post-processing cost, demonstrating the ef-
fectiveness of our approach (Section 7).

We will sometimes refer to unencrypted data values as
plaintext and encrypted values as ciphertext. Related work
is discussed next. We summarize the paper in Section 8.

2. RELATED WORK
Hacigumus et al. [17] were one of the earliest to study the

DAS model. Their focus is the evaluation of SQL queries
over hosted relational databases. They use conventional en-
cryption techniques and additionally assign a bucket id to
each attribute value to facilitate efficient evaluation. The
client needs to decrypt the results sent by the server and
then execute a compensation query to extract the final an-
swer. We share most of the goals with this work. Agrawal et
al. [3] have proposed a method of designing order-preserving
encryption functions such that the distribution of the en-
crypted values follows an arbitrarily chosen target distri-
bution. Neither of the above works consider user specified
security constraints. We focus on a problem of transform-
ing the input data distribution such that by looking at both
source and target distributions, the attacker cannot easily
map the plaintext data to the ciphertext data, in a prov-
able sense. This is a valuable technique since on the one
hand, using order-preserving encryption, range queries (as
well as aggregate queries involving MIN, MAX, COUNT)
can be evaluated efficiently without decryption. At the same
time, an attacker can be fooled by the target distribution.
The notion of encryption scheme granularity is not an is-
sue in their works. Finally, in our model, unlike the above
works, we consider the more conservative model where the
attacker may know both the domain values and their exact
occurrence frequencies. All our security theorems are proved
w.r.t. this background knowledge.
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Protecting data privacy in relational databases has been
addressed in various works (e.g., see [13], [18]). Kantarcioglu
et al. [19] studied security issues in querying an encrypted
database from a cryptographic viewpoint and showed that
any secure database system that meets the strict crypto-
graphic definitions of security will require a linear database
scan for answering queries, and thus will be inefficient. Dami-
ani et al. [12] proposed an indexing scheme and an effi-
cient query evaluation scheme for encrypted relational data,
and quantitatively measured the resulting inference expo-
sure. They showed that the indexes proposed in [17] can
open a door to interference and linking attacks.

Brinkman et al. [7] proposed a method of applying queries
on encrypted XML documents. Their approach stores a re-
lational table containing structural information of the XML
database at the server, thus compromising privacy of struc-
tural information. Besides, they do not support flexible lev-
els of encryption granularity. Bertino et al. [6] proposed
differential encryption schemes for XML documents using
multiple keys. Miklau et al. [23] proposed a framework for
enforcing access control policies on published XML docu-
ments using cryptography. The security guarantee of this
framework is precisely characterized by Abadi et al. in [1].
In another paper, Miklau et al. [24] studied the problem of
query-view security and showed how to decide security based
on a novel information-theoretic standard they proposed for
analyzing the information disclosure of published views.

Private information retrieval (PIR) (e.g., see [9]) is a re-
lated field of research. Pure information-theoretic notion
of privacy requires that even a computationally unbounded
server cannot distinguish between queries intended at dif-
ferent targets. It is not practical for database applications
for the multiple copies and huge communication overheads.
Aggarwal et al. [2] proposed partitioning the database be-
tween two servers so that associations between data items
can be kept private from each of the servers (in an intuitive
but not cryptographic sense), but can be inferred by the
client. A basic assumption is that the servers cannot com-
municate with each other. One-server schemes with sub-
polynomial communications has been proposed in [20], but
imposes expensive computational overhead. Liu and Can-
dan [21] propose a computationally PIR one-server scheme
that achieves both content and access privacy with moderate
computation and communication cost. However, this comes
at the price of access redundancy and the client having to
employ the node swapping, which can be expensive.

There has been significant research on access control, pri-
vacy preserving data mining, secure XML publishing, and
trusted computation (see [2] for a survey). While they all
share the concern for security and privacy with us, the as-
sumptions, goals, and concerns are considerably different.
Access control on value associations in XML has been stud-
ied in [14] and [16]. Their work is orthogonal to our concerns.

3. SECURITY ISSUES
In this section, we define the concepts of security con-

straints, attack model, and present several security defini-
tions.

3.1 Encryption Scheme
Given an XML database D, we define an encryption scheme

as an identification of those elements that are to be en-
crypted. Figure 2 shows an example database. The en-
cryption scheme is illustrated by highlighting encrypted el-

ements with boxes. We have choice in the elements that are
to be encrypted. The choice is driven by what it is that the
client wishes to protect from the untrusted server and by
the desire to minimize the overhead imposed on the client
for extracting query answers.

3.2 Security Constraints
We propose security constraints (SCs) as a means for the

data owner to specify the information, i.e., the set of basic
queries, that she intends to protect from an attacker. To be
precise, a security constraint is an expression of the form p

or of the form p : (q1, q2), where p, q1 and q2 are XPath
expressions. The SC p, called node type constraint, specifies
that for every node x in the document D that p binds to,
the element subtree rooted at x, consisting of its tag, its
content, and structure, is considered as classified. The SC
p : (q1, q2), called association type constraint, says that for
every node x that p binds to and for every pair of nodes
y1, y2, containing data values v1 , v2 , that q1 , q2 bind to
in the context of x, the association between v1 and v2 is
considered as classified.

Example 3.1. [Security Constraints]
For the database in Figure 2, the client intends to protect
the following information: (1) the insurance information of
each patient, (2) which SSN number matches with which pa-
tient’s name, (3) which patient has which diseases, and (4)
which doctor treats which diseases. The security constraints
are specified as follows:
SC1 : //insurance, to protect insurance elements,
SC2 : //patient:(/pname, /SSN), to protect the associa-
tion between patient’s name and SSN number,
SC3 : //patient:(/pname, //disease), to protect the as-
sociation between patient’s name and disease.
SC4 : //treat:(/disease, /doctor), to protect the associ-
ation between the name of doctors and diseases.

Each SC can be seen as capturing a set of queries. A node
type SC p captures queries of the form p, as well as queries
p/a, p//a, p/a[following − sibling :: b] etc. where a, b

are element tags. The idea is that whenever p binds to an
element x in the database D, whether these queries have a
non-empty answer in the database D as well as the answers
should be protected. E.g., in Figure 2, the SC //insurance

captures the queries //insurance, insurance/policy#,
insurance//*/@coverage, //insurance//policy#, etc.

An association SC of the form p : (q1, q2) captures the
queries p[q1 = v1 ][q2 = v2 ] for all values v1 , v2 such that
the XPath expression above has a non-empty answer in the
database D. E.g., the association SC //patient:(pname,

//disease) captures the queries //patient[pname=Betty]

[//disease=diarrhea] and //patient[pname=Matt]

[//disease=lukemia]. Whether these queries have a non-
empty answer has to be protected from the attacker.

For a SC σ and a query A captured by σ, we denote by
D |= A that A has a non-empty answer in the database D.
Thus, for each query A captured by each SC, we need to pro-
tect the fact that D |= A. We implement protection of such
facts from the untrusted server by encryption. Intuitively,
enforcing the SCs requires encrypting certain elements in
the database. E.g., the enforcement of the SC //insurance

can be done by encrypting all insurance elements. The SC
//patient : (pname, //disease) can be enforced by encrypt-
ing either pname elements or disease elements. Figure 2
shows an example of an encrypted database with all SCs in
Example 3.1 are enforced.
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Figure 2: An Encrypted XML Health Care Database

3.3 Prior Knowledge and Attack Model
We assume the server/attacker may be curious and try to

learn about the data it is hosting, but never modifies the
data and always answers queries correctly. We consider the
following two kinds of attacks by the server/attacker:
Frequency-based Attack The server may possess prior
knowledge about the domain values and even the exact oc-
currence frequencies for the data values in the hosted data.
By matching the plaintext and ciphertext values of the same
frequency distribution, the attacker may crack the database.
This is called frequency-based attack. The data distribu-
tion knowledge can be collected from either the encrypted
database or the metadata. Thus, frequency-based attack
may be based on either the encrypted database or the meta-
data. We assume the server has no prior knowledge about

either the tag distribution or the correlations of data values.

Size-based Attack The attacker may have the common
knowledge that the length of plaintext decides that of ci-
phertext. Thus if the attacker has a set of candidate plain-
text databases for the hosted data, he will try to eliminate
those candidate databases whose encrypted result is of dif-
ferent length from that of encrypted hosted data, and conse-
quently increase the probability of the remaining candidates
to be the hosted data. We call this attack size-based attack.

3.4 Security Definitions
We first define indistinguishability of databases w.r.t. the

two possible attacks. Let |D| denote the size of a database.

Definition 3.1. [Indistinguishability of Databases]
Let E be an encryption function. Let D, D’ be two plain-
text XML databases. We say D and D’ are indistinguish-
able, written D ∼ D’, if: (1) |E(D)| = |E(D’)|, (2) For each
attribute, D and D’ have the same domain of values, and
for each domain value v, the corresponding encrypted value
in E(D) and E(D ′) has the same occurrence frequency.

This definition ensures that the attacker cannot distin-
guish D and D’ by either size-based attack (condition (1)) or
frequency-based attack (condition (2)). Thus if there is a set
of candidate databases including the true hosted database
and they are all pairwise indistinguishable, we can say those
candidate databases have equal probability to be the true
hosted database.

Having a large set of candidate databases alone doesn’t
imply security. The attacker may have some prior belief
probability of each candidate database to be the true hosted
database. He may be able to infer something and increase
the belief when looking at the encrypted hosted database
along with the metadata on server. We then use perfect
security as the security requirement for this case. Perfect
security [11] is a term used in cryptography. An encryp-
tion scheme has perfect security provided the probability
of obtaining the corresponding plaintext message M for a
given encrypted (i.e., ciphertext) C, is the same as obtain-
ing the plaintext without any ciphertext to observe, i.e., the

attacker is unable to obtain any additional information from
the ciphertext. We adapt this definition to databases.

Definition 3.2. [Perfect Security] Let C be an en-
crypted XML database and let D1 , D2, . . . , Dn be the cor-
responding set of candidate plaintext databases, each with
a priori probability Prob(D=Di) of being the true hosted
database. Let Prob(D=Di |C=C) be the posteriori probabil-
ity of Di being the true hosted database given the encrypted
hosted database C. We say C is perfectly secure if Prob(D
= Di |C = C) = Prob(D=Di), where D (C) denotes the
plaintext database (encrypted database).

Based on the definitions of indistinguishability and perfect
security, we define a secure encryption scheme:

Definition 3.3. [Secure Encryption Scheme] Given
an XML database D, a set of security constraints Σ on D,
an encryption scheme S , and the ciphertext database E(D)

encrypted by S , we say S is secure on D if there exists a
large number of databases D’ such that: (1) D’∼D, (2) ∀
security constraint σ ∈ Σ, and ∀ query A captured by σ,
D |= A, but D ′ 6|= A, and (3) E(D) is perfectly secure.

This definition requires that for a large set of candidate
databases that don’t contain any sensitive information (con-
dition (2)), by looking at the encrypted hosted database
alone, neither can the attacker distinguish them from each
other or from the original hosted data (condition (1)), nor
can he increase the probability of any of them to be the true
hosted data (condition (3)). This definition formalizes what
it means for an encryption scheme to enforce a given set
of SCs on a database. We will show in Section 4 that our
proposed encryption scheme is secure. The term “large” is
intentionally left undefined in Definitions 3.3 and 3.4 (be-
low). When proving security properties, we will actually
show typically “large” means exponential in the size of the
domain or the schema.

To facilitate efficient query processing, we need to place
some metadata on the server. However, by looking at both
the encrypted hosted data and the metadata on the server,
the attacker should not be able to infer any sensitive infor-
mation. The following definition addresses this.

Definition 3.4. [Secure Database System] For the
XML database system DS(D, C, M), where D is the plain-
text database, C is the encrypted version of D, and M is
the metadata on D, we say DS is secure for a set of security
constraints Σ if there exists a large number of database sys-
tems DS ′(D’, C’, M’) such that: (1) M = M’, (2) D∼D’,
(3) ∀ security constraint σ ∈ Σ, and ∀ query A captured by
σ, D |= A, but D ′ 6|= A, and (4) C is perfectly secure.

This definition requires that for a large set of candidate
databases that don’t contain any sensitive information (con-
dition (3)), by looking at the encrypted database as well as
the metadata, the attacker cannot distinguish them from
each other or from the original hosted data ((condition (1)
and (2)), nor can he increase the probability of any of them
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to be the true hosted data (condition (4)). We will show in
Section 5 that using our proposed metadata (consisting of
structural and value indices), the resulting database system
is secure.

Finally, we also consider attacker’s possible inference when
he observes query answering. To make this problem precise
we consider the following predicates: Let A be any query
captured by a security constraint. Let B denote an encryp-
tion block (i.e., an element that is encrypted) in E(D). Then
we use B(A) to denote that the block B satisfies the query
A. Note that A may be structure-based or can be a value
association. The question is whether for a specific block B,
the server can learn whether or not B(A) holds for any query
captured by any of the SCs in Σ. More precisely, can the
server’s belief probabilities in these assertions B(A) be im-
proved after observing a series of queries and answers? We

assume the server has no prior knowledge about the query

workload distribution. We capture this concern in the form
of a definition of secure query answering:

Definition 3.5. [Secure Query Answering] Let Σ

be a given set of SCs, D a database, and C = E(D) the
encrypted database obtained from D using an encryption
scheme S . Let M be the metadata placed on the server. Let
A be any query captured by any SC in Σ and let Bel(B(A))

denote the attacker’s belief probability that the proposition
B(A) holds for any encryption block B, after observing q

queries and responses. Then we say the query answering by
the server is secure if Bel(B(A)) does not increase after the
attacker observes each additional query and response.

We will show in Section 6 that our query processing proce-
dure is not only efficient but also secure.

4. ENCRYPTION SCHEME
Given an XML database D, it can be encrypted at any

level of granularity, e.g., the whole document, chosen el-
ements at any depth, or just the content (text values) of
chosen elements. In choosing a granularity for encryption,
there is a tradeoff between the data security and efficiency of
query evaluation. Too coarse-grained encryption schemes,
e.g., encrypting the whole database into one or very few
blocks, can quash hopes of query optimization, while too
fine-grained encryption schemes may allow an attacker to
learn about the data, thus violating security requirements.
In this section, we will first show how to construct a se-
cure encryption scheme in Section 4.1. Then we will define
the optimal, secure encryption scheme and discuss the com-
plexity of finding an optimal, secure encryption scheme in
Section 4.2.

4.1 Secure Encryption Scheme
Although the plaintext data is hidden after encryption,

careless design of the encryption scheme still may allow an
attacker to infer the plaintext data by frequency-based at-
tack. E.g., assume the association between patient’s age 40

and his disease leukemia in Figure 2 should be protected.
If the client plainly encrypts each disease and age element
individually, the encrypted value of leukemia will have the
same number of occurrence as before encryption, which is
also true for value 40. Then by matching the frequency of
occurrences of plaintext and ciphertext values, even both
disease and name are encrypted, the attacker can easily
identify the plaintext values and infer the classified associa-
tion. We assume only the distribution on the leaf nodes are

known to the attacker.

From the above example we can see that encrypting leaf
nodes 1 individually is not safe. To address the security
issue, we use the notion of an encryption decoy, which is
similar to the salt technique in UNIX system. To be more
specific, for an element e, an encryption decoy is a randomly
generated data value d that is added as a child of e and then
e and d are encrypted together. By the effect of decoy, for
any two elements e, e ′, the result of encrypting them with
their encryption decoy are not identical. E.g., we choose to
encrypt the two disease nodes in Figure 2 of value diarrhea
with decoy (the decoy values xyya and atrw are shown in
ovals). By the effect of decoy the two diarrhea values will
be encrypted into two distinct ciphertext values.

Let S be an encryption scheme, D a database, and Σ be a
set of SCs. Let E(D) be the encrypted database according
to S , such that: (i) for every node type SC p ∈ Σ, p is en-
crypted, and (ii) for every association type SC p : (q1, q2) ∈
Σ, nodes that bind either to p/q1 or to p/q2 are encrypted,
and (iii) every leaf element that is encrypted is encrypted
with a decoy. We call C = E(D) an encrypted version of D.
We have:

Theorem 4.1. (Secure Encryption Scheme) : Let
S , D, Σ, E(D) be as above. Then S is a secure encryption
scheme (Definition 3.3).

The correctness can be shown as follows. Assume for some
leaf element/attribute that there are n distinct plaintext
values in the original database D, each with an occurence
frequency ki. There will be correspondly m distinct ci-
phertext values, each with occurrence frequency 1, where
Σn

i=1ki = m. By simply matching the frequency of the ci-
phertext to that of plaintext does not help the server to crack
the plaintext value. Each plaintext value can be mapped to
a set of ciphertext values. The only possibility is to try out
all such mappings. The number of mappings corresponds to
the number of ways of partitioning m into n non-zero parts.
This number is N=

`

m

k1

´

×
`

m−k1

k2

´

. . .×
`

m−k1−···−kn−1

kn

´

=(Σk
i=1ki)!/Πn

i=1ki !, which is exponential in Σn
i=2ki (proof

is given in [26]), and thus satisfies the “large” requirement in
Definition 3.3. E.g., for k1=3, k2=4, k3=5, N = (3+4+5)!
/ (3!×4!×5!) = 27720. This is the number of candidate
databases the attacker has to consider, where we have only
taken one leaf element/attribute into account. Notice that
for each of the latter databases D ′, E(D ′) has the same fre-
quency distribution and the same size as E(D). Thus D’∼ D

(condition (1) of Definition 3.3). Out of those N candidates,
there is only one that contains the sensitive nodes and sen-
sitive associations (condition (2) of Definition 3.3). Finally,
for those N candidates Di (1≤i≤N) and the given encrypted
hosted database C, Prob(D = Di | C = C) = Prob(C = C|

D = Di)× Prob(D = Di)/ Prob(C = C). Assume the en-
cryption keys that the attacker uses are of length s. Since
the keys are uniformly distributed, Prob(C = C|D = Di) =
2−s. Then Prob(C = C) = ΣDi

(Prob(D = Di) × Prob[C =
C| D = Di ]) = 2−s ×ΣDi

Prob(D = Di). Since ΣDi
Prob(D

= Di) = 1, we have Prob(C = C) = Prob(C = C|D =
Di)=2−s. Thus the encrypted database C is perfectly se-
cure (condition (3) of Definition 3.3). In sum, S is secure.

4.2 Optimal Secure Encryption Scheme
1In this paper we assume that the data values in the XML
documents are only attached to the leaf nodes and do not
consider mixed content.
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For a given set of security constraints, there may be multi-
ple secure encryption schemes. Using the database in Figure
2 as an example, to protect the disease data, one of the se-
cure encryption schemes is to encrypt the whole document
as a block. Some other possible encryption schemes are: en-
crypt individual treat elements without decoy, or encrypt
individual disease node with decoy. Different encryption
schemes have different query processing performance with
regard to the cost of transmission, decryption and query
post-processing.

To address the efficiency issue of query processing, we then
define the optimal (and secure) encryption scheme. Notice
that each encryption scheme can be viewed as a set of en-
cryption blocks. Thus, we abuse the notation and write
b ∈ S , for an encryption block b. The size of an encryption
block b is the number of nodes in it, including any decoy
elements. The size of an encryption scheme S is the sum of
sizes of its encryption blocks, i.e., | S |=

∑
b∈S

| b |.

Definition 4.1. [Optimal Secure Encryption
Scheme] Let Σ be a set of user specified SCs on a database
D. Then an optimal secure encryption scheme is a secure
encryption scheme S that is of the smallest size on D, i.e.,
| S |≤| S ′ |, ∀S ′ that are secure on D.

Optimal secure encryption scheme is not unique. E.g., to
enforce the security constraints specified in Example 3.1 on
the instance shown in Figure 2, besides encryption on two
insurance nodes individually, we can encrypt two pname

nodes with decoy and three disease nodes with decoy, or
we can encrypt two SSN nodes with decoy and three disease
nodes with decoy. Both of them has the same size. We
next address the complexity of finding an optimal secure
encryption scheme.

Theorem 4.2. (Complexity of Optimal Secure En-
cryption) : Given an XML database D and a set of SCs
Σ, finding an optimal secure encryption scheme for Σ on D

is NP-hard.

The complexity is in the size of SCs. The proof is by
reduction from VERTEX COVER, an NP-complete problem
[25] and is given in [26].

Given the NP-hardness result, we seek approximations.
Indeed, weighed vertex cover has several approximation al-
gorithms (see Motwani [25]). In principle, we can adapt any
of them to devise an algorithm for finding an encryption
scheme whose cost is no worse than twice the optimal cost.

5. METADATA ON SERVER
To enable efficient query processing, we propose to add

some metadata on the hosted data at the server. Our pro-
posal consists of two parts: a structural index and a value
index. In this section, we will present techniques for these
two indices and show that when using a secure encryption
scheme enforcing given SCs, in the presence of the proposed
indices, the database system as a whole is secure.

5.1 Structural Index
Recall that the server stores encrypted blocks, correspond-

ing to subtrees of the XML data, in addition to unencrypted
data, as determined by the chosen encryption scheme (e.g.,
see Figure 2). We want the server to be able to efficiently lo-
cate the encryption blocks as well as unencrypted data nodes
satisfying user query without the server who has access to
the data and metadata learning any sensitive information.

Function calInterval()

Input: Node p with interval [min, max], weight w1
i , w2

i

Output: Interval of p’s ith child ci, [mini, maxi]
Assume p has N children.

d = (max − min)/(2 × N + 1)

mini = min + (2 × i − 1) × d − d × w1
i

maxi = min + 2 × i × d + w2
i × d

Figure 3: Calculating DSI Index

We propose a novel index scheme, called discontinuous
structural interval (DSI) index,2 as an effective way to in-
dex tree-structured data. The DSI index for a database
tree D is obtained as follows. The root is assigned the
interval [0, 1]. Inductively, children of an internal node p

are assigned subintervals of p’s interval, but gaps are in-
troduced between the intervals of (1) p and its first child,
(2) adjacent children of p, and (3) the last child of p and
p itself. We differentiate the gap length by assigning two
arbitrary weights w1 and w2 (known only to the client),
where w1 , w2 ∈ (0, 0.5) is a real number. The weights
are generated at random before assigning an interval to a
node. Then, we calculate the interval of every node by us-
ing the algorithm shown in Figure 5.1, where we assume we
know node p’s interval [min, max] and calculate its child
intervals. In general, d=(max - min)/(2N + 1)(where N =
number of p’s children), maxi = mini + (1 + w1

i + w2
i )d,

and mini+1 = mini + (2 − w1
i+1 + w1

i )d. The gap is
mini+1 − maxi = (1-w2

i -w1
i+1)d > 0. In particular, the

lower bound of the first child is more than that of its par-
ent, i.e., min1 > min , and the upper bound of the last
child is less than that of the parent, i.e., maxN < max.

XPath axes descendant, following, following-sibling (and
their symmetric counterparts) are all computed efficiently
just as using a regular (continuous) interval index. The child
axis is computed using child(x, y) ↔ desc(x, y)

∧ 6 ∃z : desc(x, z) ∧ desc(z, y).

5.1.1 Representing DSI index
DSI Index Table We represent the DSI index using the
DSI index table. It stores the mapping between the tags
(in encrypted format, if the element was encrypted) and
their DSI index entries. We chose one-time-pad encryption
scheme (a.k.a. Vernam cipher) [15] for the tag encryption,
because of its perfect security property. Note that simply
storing all intervals reveals too much information to the
server. Thus we do the following: for those adjacent nodes
that are of the same tag and are encrypted in the same block,
we group their intervals into one by using the lower bound of
the left-most node as the lower bound, and the upper bound
of the right-most node as the upper bound. For example,
two adjacent nodes “policy#” in block 2 (Figure 2) will be
represented by a single interval [0.399, 0.433]. Figure 4 (b)
shows the DSI index table of the instance in Figure 2.

Note that if the same grouping technique is applied on a
set of sibling nodes when a continuous indexing scheme such
as in [4] is used, the grouping may cause discontinuity of the
index and the server consequently may find out the existence
of grouping, and further possibly the exact structure of the
tree. An example to show such information leakage on the
continuous index is shown in [26]. Compared with continu-
ous index, by looking at the indices in the DSI interval table,
the server cannot decide whether there exist groupings be-

2As contrasted with the well-known continuous interval in-
dexing scheme [4].
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hind the intervals, or how many elements have been grouped
together. E.g., by looking at the entry “U84573” with DSI
index [0.16, 0.2] in DSI index table (Figure 4 (b)), which
corresponding to the SSN node in the block 1 in Figure 2,
the server cannot decide whether [0.16, 0.2] represents one
node or multiple nodes that have been grouped together.
Encryption Block Table: In addition to the DSI index de-
scribed above, we also keep auxiliary information on the en-
crypted blocks. Specifically, for each encrypted block, which
is essentially a subtree, we call the interval of the subtree
root, the representative interval of the block. Thus, we main-
tain a mapping between representative intervals and block
IDs. The block IDs can be viewed as a pointer to the phys-
ical location of the encrypted blocks in the database. This
mapping is also represented as a table, called the encryp-
tion block table. E.g., for our running example of Figure 2,
the DSI index table as well as the encryption block table is
shown in Figure 4.

ID Representative Interval

1 [0.16, 0.2]
2 [0.393, 0.439]
3 [0.55,0.596]
... ...

Tag DSI Index

U84573 [0.16, 0.2],
[0.55, 0.596]

patient [0.14, 0.46]
[0.54, 0.86]

... ...

(a) Encryption Block Table (b) DSI Index Table

Figure 4: Meta Data

In sum, the structural index at the server consists of the
DSI index table and the encryption block table. We have
the following theorem:

Theorem 5.1. (Security of Structural Index) : Let
DS(D, C, SI) be a database system, where D is an XML
database, C is the encrypted version of D, and SI is the
structural index of D. Then DS(D, C, SI) is secure (Defi-
nition 3.4).

For lack of space, we sketch the proof here (detailed proof
can be found in [26]). We assume there are m encryption
blocks in C, with each encryption block containing ni leaf
nodes that are represented by ki intervals (ni≥ki, 1≤i≤m).
Then we prove there are Πm

i=1

`

ni−1

ki−1

´

-1 database systems

DS’(D’, C’, SI’) s.t. DS’ satisfies the conditions in Defini-
tion 3.4. Let Bi be the ith encryption block that is obtained
by encrypting the subtree t rooted at node x. Assume there
are ni leaf nodes in Bi represented by ki intervals in the DSI
index table, with each interval representing (a group of) mi

leaf nodes. Then there are
`

ni−1

ki−1

´

assignments of values for

mi(1≤i≤ ki) such that Σ
ki

i=1mi=ni. E.g., for ni=7 and
ki=3, we can have 7=1+1+5, =1+2+4, =2+3+2, . . . ., –
15 possible assignments to assign 7 leaf nodes to 3 intervals
(Figure 5 shows three such possibilities), with each assign-
ment representing a possible structure of the subtree. As
shown in Figure 5, the DSI intervals of each possible subtree
are identical (condition (1) of Definition 3.4). Furthermore,
the encryptions of those 15 possible subtrees are indistin-
guishable since they have the same size (condition (2) of
Definition 3.4). Out of those 15 candidates there is only one
true database that contains the sensitive nodes (condition
(3) of Definition 3.4). In general, for m encryption blocks
we have Πm

i=1

`

ni−1

ki−1

´

-1 such candidates in total, where the

number Πm
i=1

`

ni−1

ki−1

´

is exponentially “large” in ki, the num-

ber of intervals in the encryption block Bi , E.g., when n=15,
k=5,

`

n−1

k−1

´

=1001. The proof that each candidate database
satisfies the perfect security (condition (4) of Definition 3.4)

is similar as the proof in Theorem 4.1.
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Figure 5: Possible Structure of Node A

5.2 Value Index
For value indexing, we choose B-trees so as to support

range queries. Each data entry of the B-tree will be of the
form 〈evalue, Bid〉, where evalue is the encrypted version
of the value from the database and Bid is the ID of the
encrypted block containing an occurrence of evalue.

Simply encrypting the data values that we want to in-
dex on and storing the ciphertext in the B-tree will result
in encrypted values following the same distribution as the
original plaintext values, opening the door fo frequency-
based attack. To mitigate this, we advocate “splitting” each
plaintext value into one or more ciphertext values in such
a way that regardless of the original distribution, the tar-
get distribution remains flat, i.e., uniform. Splitting is not
enough to guard against frequency-based attack, so we fur-
ther use “scaling” on the split data so that the attacker
cannot uniquely crack the identity of ciphertext values with
the aid of the data frequency knowledge. The details are
discussed in this section. Note that the “splitting” and
“scaling” techniques are applied on the metadata, while the
“encryption decoy” (Section 4.1) is applied on the database.

Agrawal et al. [3] proposed a method of designing order
preserving encryption functions such that the distribution
of the encrypted values follows an arbitrarily chosen target
distribution, regardless of the input distribution. However,
the input distribution considered in their paper is a combi-
nation of histogram-based and parametric techniques, while
we consider a more conservative model where the attacker
knows the exact occurrence frequencies of domain values. To
protect the data against frequency-based attack, we map the

same plaintext values to different ciphertext values, with the
target domain size becoming larger than the input domain
size. We describe our approach next.

5.2.1 Splitting and Scaling Values
Let A be an attribute or atomic element being encrypted.

Suppose there are k distinct values {v1, ..., vk} in the (ac-
tive) domain whose numbers of occurrences are {n1 , ..., nk}.
Without loss of generality, suppose v1 < v2 < · · · < vk (al-
phabetical ordering is used for categorical domain). To map
each vi to multiple ciphertext values such that they have
similar number of occurrences, we look for 3 consecutive pos-
itive integers, m−1, m, and m+1, such that each ni can be
expressed in a form: ni=ki

1×(m−1)+ki
2×m+ki

3×(m+1),
where ki

1 , ki
2, and ki

3 are non-negative integers. The in-
tuition is to map a data value with ni occurrences to ki

1

+ ki
2 + ki

3 distinct encrypted values, each with m − 1, m

or m + 1 occurrences. Thus in the distribution of the en-
crypted values, the frequency of each value will be nearly
uniform for the server/attacker. E.g., Figure 6(a) shows
an input where values follow a somewhat skewed distribu-
tion. This distribution is transformed into a nearly flat dis-
tribution (Figure 6(b)) where every frequency is 6, 7, or 8.
E.g., the input value “90” with number of occurrences 34
(34=1*6+4*7+0*8), is encrypted into 1+4+0 = 5 different
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Figure 6: Data Distribution before Encryption & after Encryption

encrypted values in Figure 6(b) by using 5 distinct keys, each
distinct encrypted value having the number of occurrences
6 or 7.

Notice that the existence of the triple (m−1, m, m+1) is
always guaranteed. Ignore the case where some values have
just 1 occurrence, as this case is dealt with below. Then
(2,3,4) is a triple using which any set of numbers greater
than 1 can be expressed as a linear combination as above.
We choose the maximum value of m for which the triple
m − 1, m, m + 1 works, so intuitively the number of keys
needed is reduced. Once the triple m−1, m, m+1 is chosen,
for n distinct plaintext values, K = max1≤i≤n {ki

1 + ki
2 + ki

3}

is the maximum number of keys needed for encryption. For
those values vi with just 1 occurrence, if the chosen chunk
sizes are (m − 1, m, m + 1), then we split vi into m values.
In this case, the number of keys required would be m, which
in general may be larger than K, the maximum number of
keys needed as determined above.

A key requirement of this encryption is that the cipher-
text values corresponding to different plaintext values should
never straddle each other. More precisely, we require (*):
for any two values vi < vj, and for any ciphertext values
cm

i , cn
j associated with vi, vj respectively, it is necessary that

cm
i < cn

j . We describe a method for achieving such an en-
cryption. Let enc denote any order-preserving encryption
function, such as was proposed by [3]. Choose K distinct
random numbers w1 , ..., wK ∈ (0, 1/(K + 1)). Without loss
of generality, let w1 < w2 < · · · < wk . Let there be n

distinct plaintext values ordered as v1, v2, . . . , vn . Let δ =
max1≤i≤n−1(vi+1 − vi). Let ni be the number of occur-
rences of value vi in the original database. Recall that out
of the ni occurrences, chunks of size m−1, m, or m+1 need
to be mapped to a given encrypted value. Then we trans-
form the first chunk of occurrences of vi to enc(vi + w1δ).
More generally, we map the n-th chunk of occurrences to
enc(vi + (

∑
1≤j≤n wj)δ). In other words, the n-th chunk

is displaced from vi by a fraction of the gap δ given by the
sum w1 + · · ·+ wn . The result is encrypted using an order-
preserving encryption function. It is straightforward to show
that the resulting encryption satisfies the required condition
(*) above. Splitting of a ciphertext value c into multiple val-
ues can be easily implemented by adding randomly chosen
low order bits to c.

As an example, suppose two successive values are 23 and
32 and that we have determined K = 4. Say 23 was broken
into 23 = (2 × 5) + (1 × 6) + (1 × 7). Notice that the sum of
coefficients is 2 + 1 + 1 = 4. The chunk sizes are 5, 6, 7. The
gap is δ = 32−23 = 9. Suppose the chosen random numbers
are w1 = 0.05, w2 = 0.1, w3 = 0.05, w4 = 0.02. Then 23

would be displaced to each of the values – 23 + 0.05 × 9 =

23.45, 23.45 + 0.1 × 9 = 24.35, 24.35 + 0.05 × 9 = 24.80,
24.80+0.02×9 = 24.98. The displaced values would then be
encrypted using some order preserving encryption function.
The value 32 would be handled in a similar fashion.

If the domain is not real or rational, then we map it to such
a domain. The client keeps the mapping between categorical
values and natural numbers.

A key property of the splitting technique described so
far is that the total number of occurrences of any value is
unchanged by the transformation. That is,

∑
1≤i≤k

ni =∑
1≤j≤ℓ

fj , where ni (fj) are the occurrence frequencies of

plaintext (ciphertext) values, and k (ℓ) is the number of dis-
tinct plaintext (ciphertext) values. An attacker with an ex-
act knowledge of occurrence frequencies of input values can
group adjacent ciphertext values together until they match
a particular occurrence frequency of an input value. We
use “scaling” to defend against such attack. Let si be a
randomly chosen scale factor. We typically want to use a
small real number in the range [1, 10] since the index size
is affected by the scale factor. When we split a value vi

into ciphertext values c1
i , ..., cn

i , we replicate each index en-
try corresponding to c

j
i , si times. Note that all si replicas

of the index entry for c
j
i will point to the same encryption

block. The scale factor si is randomly chosen independently
for each value vi . The ciphertext value distribution is not
uniform any more. However, without knowing the scaling
factor used, it is not possible for the attacker to crack the
identity of ciphertext values. The price we pay is of course
that instead of K keys we now have 2K keys (K w’s for split-
ting and K s’s for scaling).

Theorem 5.2. (Security of Value Index) : Let
DS(D, C, VI) be a database system, where D be an XML
database, C be the encrypted version of D, and VI be the
value index of D. Then DS(D, C, VI) is secure (Definition
3.4).

We illustrate the key proof idea with an example. Sup-
pose there are three plaintext values v1 , v2, v3 (k = 3) with
occurrence frequencies 30, 10, 20 respectively. Suppose we
decided to map v1 , v2, v3 to six ciphertext values c1 ,c2 , . . . ,
c6 (n=6), where each ci has occurrence frequency of 30.
Then each of the following encryptions and scaling could
give rise to the observed target distribution: (1) v1 7→ c1

(scale=1), v2 7→ c2 (scale=3), v3 7→ {c3 , ..., c6} (scale=6),
(2) v1 7→ c1 (scale=1), v2 7→ {c2 , c3} (scale=6), v3 7→
{c4 , c5 , c6} (scale=4.5), ..., (10) v1 7→ {c1 , ..., c4} (scale=4),
v2 7→ c5 (scale=3), v3 7→ c6 (scale=1.5). The number of
mappings together with appropriate scalings is determined
by the number of ways of partitioning the set {v1, ..., vn} into
k non-empty subsets 〈S1 , ...Sk〉, in an order-preserving way,
i.e., ∀vi ∈ Si, ∀vj ∈ Sj, i 6= j, we have vi < vj. This number
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is
`

n−1

k−1

´

. Each of each of these mappings (with appropriate
scalings) might give rise to the observed ciphertext distribu-
tion. Out of these, only one mapping/scaling combination
correctly determines the identity of the ciphertext values.
We use this idea to construct databases D ′ where the val-
ues v1 and v2 both occur but they do not occur as an as-
sociation, i.e., there is no matching of the XPath expression
p[q1=v1][q2=v2] in D ′. For those

`

n−1

k−1

´

databases D’, they
have the same value index (condition (1) of Definition 3.4),
same size (after encryption), and same exact occurrence fre-
quency distribution for values as D. Thus D ∼ D’ (condition
(2) of Definition 3.4). However, only one database contains
the sensitive associations (condition (3) of Definition 3.4).
The number

`

n−1

k−1

´

is exponentially “large” in k, the num-
ber of distinct plaintext values of attribute A. E.g., when
n=15, k=5,

`

n−1

k−1

´

=1001. The proof that each candidate
database satisfies the perfect security is similar to the proof
of Theorem 4.1 (condition (4) of Definition 3.4). The details
are omitted for lack of space but can be found in [26].

Note that by using different encryption techniques for the
database and for the value index, we can ensure their en-
crypted value sets are disjoint, so by accessing them to-
gether, the attacker cannot infer any useful information he
otherwise could not.

This theorem shows that by collecting the distribution of
the encrypted data from the B-tree index, the server cannot
infer any association (or atomic query) that would violate
any SC p : (q1, q2) ∈ Σ. The price of this protection is that
the size of the B-tree index is more than it would be for an
unencrypted database, The increase in size is proportional
to the scaling used. Secondly, because of splitting, aggre-
gate queries involving COUNT cannot be evaluated without
decryption, although queries involving MAX/MIN can still
be evaluated correctly without decryption. Details of query
processing are discussed in Section 6.

We refer to the particular encryption technique described
here as order preserving encryption with splitting and scaling
(OPESS).

6. QUERY PROCESSING
The major steps in query answering are as follows: (1)

The client translates the query Q into Qs by replacing the
tags and data values individually with their encrypted for-
mat, whenever the tag/value was encrypted in enc(D). (2)
The server labels each (encrypted) query node with its DSI
index entry retrieved from the DSI index table and com-
putes structural joins, which prune index entries at query
nodes. After the pruning, the remaining indices represent
the nodes that satisfy the structural predicates of the query.
(3) For the value-based constraints in the query, the server
looks up the B-tree and returns the intervals (index entries)
that represent the encryption blocks that meet the value
constraints. (4) The server then “joins” the result of step 2
with the results of step 3 and obtains a set of unencrypted
nodes, or a set of block IDs if the output node is encrypted
in some blocks. The corresponding nodes or the encrypted
blocks satisfy both structural and value constraints of the
query and are returned to the client. (5) The client decrypts
the received encrypted blocks, removes the decoy if any, and
applies the original query Q on the remaining decrypted re-
sult. These steps are elaborated below. We use the query
shown in Figure 7 (b) as a running example.

6.1 Query Translation at the Client

We encrypt the tags and value constraints individually in
the query while still preserving the query structure. Recall
that the constraint graph (used in the proof of Theorem 4.2)
records the nodes that are encrypted. For any query node
that has the same tag as one of those nodes, its tag will be
encrypted by Vernam cipher scheme [15] with the same keys
used for the construction of DSI index table. Furthermore,
if such query node has a value-based constraint, the value
will be encrypted by the same encryption function and the
same keys as used for the construction of the B-tree index.
We make use of the nice property of OPESS functions in
translating value constraints in the query. The details of
the transformation is shown in Figure 7(a). Note that data
values with multiple occurrences and unique occurrence are
both translated in the same fashion. Figure 7(b) shows an
example of query translation on the client based on the in-
stance shown in Figure 2. In this example the patient node
is kept unencrypted, while insurance and coverage nodes
are replaced with their encrypted formats.

6.2 Query Translation at the Server
After receiving the query Qs from the client, the server

answered the query by the following steps:
Step 1: Translation of Query Structure: The server
first obtains index entries associated with each query node
type by consulting the DSI index table. Note that some
nodes may have a tag which is encrypted. E.g., the inter-
vals [0.16, 0.2] & [0.55, 0.596] will be returned by retrieving
“U84573” (the encrypted value of query node “SSN”) from
the DSI index table (Figure 4(b)). We call the interval(s)
of the distinguished (i.e., query answer) node distinguished
interval(s).

Once query nodes have lists of intervals associated with
them, the server computes any of the standard structural
join algorithms to prune away intervals that do not match
structural constraints of the query. The remaining intervals
represent tuples of nodes that satisfy the structural con-
straints of the query.
Step 2: Translation of Value-based Constraints: Each
value-based constraint can be treated as a triple <tag, op,
value>, where op ∈ <, >, ≤, ≥, =}. Here tag and value are
both in encrypted format. Each value-based constraint is
translated as a range query. This is necessary because of the
splitting that was applied before encryption. Figure 7(a)
shows how each value-based constraint is translated into cor-
responding range query on the B-tree index. The server re-
trieves the index entries from a B-tree index, corresponding
to entries that match the triple. Recall that these index en-
tries correspond to encrypted blocks. So for the value-based
constraint @coverage>100000, the server retrieves the entry
pointing to block 2.
Step 3: Obtaining Final Results: Step 1 yields index
entries (intervals) corresponding to the distinguished node
of the query, while step 2 yields index entries associated
with encrypted blocks. In this final step, the server com-
putes a final set of structural joins to determine the subset
of encryption block id’s that contain the distinguished node
intervals. The resulting set of block id’s are used to fetch
the blocks from the encrypted database enc(D), which are
then shipped to the client. In our example, block 1 will be
returned to the client.

6.3 Security of Query Answering
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E: an order-preserving encryption function;
w1, w2, . . . , wn: wi<wi+1

v = v1 ⇒ v ≥ E(v1 + w1 ∗ δ) and v ≤ E(v1 + (
∑

1≤j≤n
wj)δ)) ;

v < v1 ⇒ v < E(v1 + w1 ∗ δ);
v > v1 ⇒ v > E(v1 + (

∑
1≤j≤n

wj)δ));

v ≤ v1 ⇒ v ≤ E(v1 + (
∑

1≤j≤n
wj)δ));

v ≥ v1 ⇒ v ≥ E(v1 + w1 ∗ δ);

Original query Q: //patient [.//insurance//@coverage≥’10000’]//SSN

Translated query Q’: //patient[.//X95SER// TY0POA≥764398]//U84573
‘‘U84573’’: encrypted value of tag ‘‘SSN’’;

‘‘X95SER’’: encrypted value of tag ‘‘insurance’’;
‘‘TY0POA’’: encrypted value of tag ‘‘coverage’’;
‘‘764398’’: the maximum of the encrypted value of value ‘‘10000’’

(a) Translation of Value-based Constraints (b) Example: Query Translation on Client

Figure 7: Query Translation on Client

We have shown our encryption scheme is secure (Theo-
rem 4.1). We also have shown that by adding metadata on
server side, the metadata is secure (Theorems 5.1 and 5.2).
The next question is what if an attacker gets to observe
client queries and server responses. Could he infer any in-
formation that would violate the SCs? We have:

Theorem 6.1. (Secure Query Answering) : The
query answering on the server is secure (Definition 3.5).

The proof for the belief probability associated with queries
captured by node type security constraints //a is based on
the perfect security property of the Vernam cipher [15] we
chose for the tag encryption in the DSI index table and the
query translation. Since each element with tag a is en-
crypted by Vernam cipher scheme, due to the latter’s perfect
security property, the server cannot improve the belief prob-
ability of B(Q) where Q is a query captured by the SC, by
observing client queries and server answers.

The proof for the protection on association type secu-
rity constraints is based on our design of OPESS encryp-
tion technique. For the SC //a : (b1 , b2), the values of at
least one of the b1 , b2 should be encrypted in the instance.
Without loss of generality, we assume b1 is encrypted. Let
k (n) be the number of distinct plaintext (ciphertext) val-
ues of b1 (n > k). Then when the server processes the
query p[//b1=v1][//b2=v2] for the first time, in which v1

is encrypted while v2 is not, the server’s belief that v1 is
associated with v2 is changed from 1/k to 1/

`

n−1

k−1

´

(the rea-

son why we get
`

n−1

k−1

´

can be found in the proof of Theorem

5.2). Since
`

n−1

k−1

´

≥k (because
`

n−1

k−1

´

>
`

n−1

1

´

≥ k), the be-
lief of B(p[//b1=v1][//b2=v2]) that is changed from 1/k

to 1/
`

n−1

k−1

´

is not increasing. For the following similiar
queries, the probability of v1 is associated with v2 will stay
at 1/

`

n−1

k−1

´

.

6.4 Query Post Processing
The query post-processing is straightforward: upon re-

ceiving the result blocks from the server, the client first de-
crypts them if needed. If there exists the encryption decoy,
the decoy is removed and the client applies the original query
to the remaining data. For our example, the client decrypts
block 1 that is returned by the server, removes the decoy
“1213”, and applies the original query Q on the remaining
decrypted result. The query result is exactly the same as
applying Q on the unencrypted database. It is straightfor-
ward to see that this yields the same answer as Q applied
to the original database D.

A final note is that if the query involves aggregation in-
volving the functions MIN/MAX, we can still evaluate them
without decrypting data. However, if it involves other ag-
gregate functions, the values would have to be decrypted
by the client and then evaluated. Compared to [3], we are

emailaddress

income

creditcard

address

profile

name

age age

initial last

publisherdate

title city

(a) XMark Database (b) NASA Database

Figure 8: Constraint Graphs

unable to process COUNT queries without decryption. But
unlike their scheme, our scheme assumes conservatively that
the server/attacker knows the exact occurrence frequencies
of domain values.

7. EXPERIMENTAL EVALUATION
We ran a battery of experiments to measure the query

evaluation performance on both client and server sides and
explored various factors that impact the query performance,
e.g., various encryption schemes, query size, etc.. In this
section, we describe our experiments and provide an analysis
of our observations.

7.1 Experimental Set up
Setup: We used one sparc workstation running SunOS 5.9
with 8 processors each having a speed of 900MHz and 32GB

of RAM up as a server, and one workstation running Linux
version 2.6.5 with 1 processor having a speed of 900MHz

and 512MB of RAM up as a client. The communication
speed between these two machines is 100Mbps.
Data sets: We used both synthetic and real data sets for
the experiments. The synthetic data we used is from the
XMark benchmark3. The real dataset is the NASA database
from the XML data repository of University of Washington4.
Security Constraints: We defined a set of security con-
straints on both XMark database and NASA database, which
are represented by the constraint graph (which has a node
for every tag appearing in the SCs and an edge representing
every association type SC).
Various Encryption Schemes: To study the influence of
different encryption schemes on the query processing per-
formance, we designed the following four schemes for the
experiments:
- Optimal (or opt) scheme: the document is encrypted by
the optimal secure encryption scheme. The optimal encryp-
tion scheme encrypt nodes name and creditcard on XMark
database, and encrypt nodes initial and last on NASA
database.
- Approximate (or app) scheme: the document is encrypted
by the scheme obtained by the approximation algorithm by
Clarkson ([10]). The approximation encryption scheme en-
crypt nodes name, income and address on XMark database,
and encrypt nodes initial, date, publisher, age, title

and city on NASA database.

3http://monetdb.cwi.nl/xml/
4http://www.cs.washington.edu/research/xmldatasets/www
/repository.html
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- Sub scheme: the document is encrypted on those nodes
that are parents of the encrypted node in scheme 1.
- Top scheme: the whole document is encrypted as one block.
Query Set: We created three kinds of queries for each en-
crypted document: (1) Qs, the queries output the children
node of the root of the document, (2) Qm, the queries out-
put the nodes on the [h/2] level, where h is the depth of
the document tree, and (3) Ql, the queries output the leaf
nodes. For each category of queries, we creates 10 queries
and reported the average.

We used the XQEngine engine for query evaluation. All
values reported are the average of 5 trials after dropping the
maximum and minimum for different workloads.

7.2 Division of Work between Client and
Server

We measured the following parameters for each query:
query translation time on client, query translation time on
server, query processing time on server, transmission time of
the answer from server to client, decryption time on client,
and query post-processing time on client. Since we ran the
experiment on a fast-speed network, the transmission time
is negligible comparing with other time factors. The query
translation time on client and server are both negligible too:
even for document size of 50MB and the query of 20 nodes,
the translation time on client is less than 5ms and the query
translation time on server is around 13ms, which is only
1/3000 of query processing time by server. Thus we mainly
studied query evaluation time on server, decryption time on
client, and the query post-processing time on client. From
the performance result of NASA database shown in Figure
9, we observe that the decryption cost is always the largest
among the three measured factors. We also notice that the
query processing time on server is always larger than that on
client. This is because: (1) the encrypted data on the server
is always of larger size than the decrypted data on the client,
and (2) the whole dataset is used for the query processing
on the server, while only the relevant data is used on the
client. Similiar results are observed on XMark database.

7.3 Our Approach VS. Naive Method
We compare the performance of our techniques with the

naive method, which is that the server sends the whole en-
crypted document to the client, the client decrypts it and
applies the query on the decrypted result. We ran the exper-
iments on both XMark and NASA databases encrypted by
various encryption schemes, and observed that our method
reached a substantial saving ratio: for both XMark database
and NASA database on opt, app and sub encryption schemes,
the query evaluation time by our technique is only 11% -
28% of that by the naive method, while top scheme has the
same performance as naive method. For space issue, the
experiment results are omitted.

7.4 Effect of Various Encryption Schemes
Firstly, we measured how the encryption time and the

size of the encrypted document varies on both XMark and
NASA databases for various schemes. The results show that
app scheme takes the longest time for encryption since the
number of elements that are encrypted by app scheme is the
largest out of the four schemes. The results also show that
the encrypted document by sub scheme is of the largest size.
This is because compared with top scheme that encrypts the

root element of the document, there are thousands of ele-
ments that are encrypted by sub scheme, each with extra
encryption information (e.g., the EncryptionType,
EncryptionMethod elements defined by W3C’s XML encryp-
tion standard) added. On the other hand, compared with
app and opt schemes, the sub scheme has similiar number of
elements that are encrypted, with each encryption block of
larger size than that of opt and app scheme. We also observe
that the opt scheme always reached the best performance for
both encryption time and size. The results can be found in
[26].

Secondly, we measured the query evaluation performance
for different encryption schemes. Figure 9 shows the result of
NASA database. The observation is that for the same query,
the query processing time on server, the decryption time on
client and the query processing time on client decreases in
the order of top, sub, app, opt scheme. However, the query
processing time on server decreases slower than decryption
time and query processing time on client, i.e., the improve-
ment of query performance by better encryption scheme is
mainly on the client side. Another observatation is that for
all results, the query performance of app scheme is around
1.1-1.3 times of that by opt scheme, i.e., app scheme is a
reasonable alternative for opt scheme. The similiar results
are observed from XMark database, which are put in [26].

We also measured how much the app scheme and opt
scheme win the top and sub schemes. We use saving ra-
tio to show the result. The saving ratio Sa/t (Sa/s) of app

over top (sub) is defined as Sa/t = Tt−Ta

Tt
( Sa/s = Ts−Ta

Ts
),

where Tt be the query evaluation time by the top scheme,
Ta be the time by the app scheme, and Ts be the time by
the sub scheme. We also define So/t and So/s in the similiar
way. Intuitively, the closer the saving ratio to 1, the better.
We showed the results in Figure 10. The figure shows that
both app and opt schemes gets better saving ratios over top
scheme than the sub scheme. It also shows that the saving
ratio grows when the output node of query is closer to the
leaf(e.g. opt scheme reaches the highest ratio 0.64 over top
scheme and 0.53 over sub scheme for query Ql on NASA
database). This is because when the output node is closer
to the leaf, it is closer to the node that is encrypted by the
opt and app scheme. Consequently the cost of decryption
and query processing on client is smaller.

8. CONCLUSIONS
In this paper, we considered the problem of efficient evalu-

ation of XPath queries on encrypted XML databases hosted
by an untrusted server. We proposed security constraints as
a means for the client to specify her security requirements.
We formally defined the attack model and semantics of secu-
rity of encryption scheme, metadata and query processing.
We showed our approach of constructing a secure encryption
scheme and showed that finding an optimal secure encryp-
tion scheme is NP-hard. We proposed a metadata mecha-
nism (including structural and value indices) at the server
side that enables efficient query evaluation. We showed that
with presence of the structural and value metadata, for a
large set of candidate databases that don’t contain any sensi-
tive information, the attacker cannot distinguish them from
the original hosted data, neither can he increase the prob-
ability of any of them to be the original hosted data. We
also proved that an attacker cannot improve his belief prob-
abilities about sensitive structural or value association in-
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(1)Query Qs (2)Query Qm (3) Query Ql

Figure 9: Query Performance of Various Encryption Schemes, NASA Database, 25MB

(a) XMark Database (b)NASA Database

Figure 10: App and Opt Schemes VS Top and Sub Schemes

formation about the database, even after observing a series
of queries and responses. We complemented out analyti-
cal results with a comprehensive set of experiments. Our
experiments show that our techniques can delivered the ef-
ficient query evaluation while ensure the enforcement of the
security constraints.

Possible future work includes: (1) The security achieved
comes at the price of increase in data size (e.g., scaling used
in OPESS) and the need to decrypt data to answer some
queries. Can we characterize the tradeoff between security
and efficiency? (2) Our current scheme cannot provide se-
curity against an attacker who has the prior knowledge of
tag distribution, query workload distribution, or correlations
between data values. Extensions for handling these attack
modesl are important. (3) Developing a secure encryption
scheme for efficiently supporting updates is another impor-
tant problem.
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