GignoMDA - Exploiting Cross-Layer Optimization for
Complex Database Applications

Dirk Habich
Dresden University of
Technology
Database Technology Group
01099 Dresden, Germany

Sebastian Richly
Dresden University of
Technology
Software Engineering Group
01099 Dresden, Germany

Wolfgang Lehner
Dresden University of
Technology
Database Technology Group
01099 Dresden, Germany

dirk.habich@tu- sebastian.richly@tu- wolfgang.lehner@tu-
dresden.de dresden.de dresden.de
ABSTRACT —
Database Systems are often used as persistent layer for ap- ::;c:zl Presentation
plications. This implies that database schemas are gener- =5 Layer .
ated out of transient programming class descriptions. The —! ECTpse RCP, | fi:;'f; 2?:\_"5
basic idea of the MDA approach generalizes this princi- - - _Delphi, Stuts ../ Editors
ple by providing a framework to generate applications (and 'S N 5
database schemas) for different programming platforms. Logic RGN annotated
Within our GignoMDA project [3]—which is subject of this : Layer < UML-Model
demo proposal—we have extended classic concepts for code 1 JBGsS,
generation. That means, our approach provides a single \‘ Weblogie .
point of truth describing all aspects of database applica- : ™ Data Schema,
. . . ' Views,
tions (e.g. database schema, project documentation, ...) ; e
with great potential for cross-layer optimization. These new -
cross-layer optimization hints are a novel way for the chal-

lenging global optimization issue of multi-tier database ap-
plications. The demo at VLDB comprises an in-depth expla-
nation of our concepts and the prototypical implementation
by directly demonstrating the modeling and the automatic
generation of database applications.

1. INTRODUCTION

Relational database systems are often used as persistent
layer for a vast range of applications, especially for multi-
tier applications. A huge number of such small to mid-size
database applications require similar data maintenance and
retrieval activities. On the one hand, writing such kind of
code is neither challenging nor free of errors. On the other
hand, the global optimization of such applications is a very
difficult task because required knowledge is normally hidden
within the individual components of multi-tier applications.

The utilization of models has a long tradition in the soft-
ware technology and has been standard procedure since the
definition of UML. The Model Driven Architecture (MDA)
approach [4,7], coined by the Object Management Group,
places the UML models in the center of the development

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1251

Figure 1: GignoMDA Approach

process of applications. One of the main goals of MDA
is to separate software design from architecture and real-
ization technologies design and architecture can be altered
independently. The design addresses only the functional re-
quirements while the architecture provides the infrastruc-
ture through which non-functional requirements like scala-
bility, reliability and performance are realized. From the
architecture-independent UML model, various architecture-
specific models and program codes can be derived.

GignoMDA is based on the Model Driven Architecture ap-
proach and extends well-known methods for code generation
through targeted control based on a central application spec-
ification. Not only does our GignoMDA approach enable
a central and initially implementation- and architecture-
invariant description of database applications, but we also
attempt to allow for an optimized implementation. In or-
der to deal with the challenging global optimization issue of
multi-tier database applications, we extend the MDA con-
cept for the description of functional dependencies and spec-
ification techniques for the implicit and explicit modeling of
optimization hints as non-functional properties. These non-
functional properties provide a novel way for cross-layer op-
timization steps, which is not possible within the regular
software development process. With the optimization hints
in the model, we are able to derive different optimization
strategies for different architectures, and therefore we are



confirm with the general MDA concept.

To put it in a nutshell, we present our GignoMDA approach,
which is illustrated in Figure 1, by providing contributions
in the following areas: (i) New annotations for UML models,
so that these models are the center of database application
development steps addressing software design and optimiza-
tion issues of multiple layers, (ii) explicit and implicit hints
as the foundation for cross-layer optimization techniques, es-
pecially for deriving physical database design decisions, and
(iii) prototypical realization as proof-of-concept of all pro-
posed UML annotations and optimization hints based on
the AndroMDA framework [1].

The rest of the paper is organized as follows: In Sections
2 and 3, we give a brief overview of our UML profile ex-
tensions and application interaction patterns. In Section 4,
we present our optimization hints in more detail. The Gig-
noMDA prototype and a detailed demonstration description
is provided in Section 5. This paper ends with a conclusion
and some future aspects in Section 6.

2. UML PROFILE EXTENSIONS

Since our GignoMDA project is based on the idea of the
MDA approach [4,7], we start with a very short overview of
MDA concepts. The MDA approach introduces a Platform-
Independent Model (PIM), which is an abstract model of the
software system that does not incorporate any implementa-
tion choice and which is mostly used to describe the business
logic. Furthermore, the PIM can be extended by application
designers to a "marked PIM”, where the model elements
are marked with (1) stereotypes to define their functionality
within the application, and (2) tagged values to add ad-
ditional information for the code generation process. The
Platform-Specific Model (PSM), consisting of the target ap-
plication platform, is derived from this PIM. That means,
the UML model as PIM is the center of the MDA world, and
the vision is to generate full-operational applications for dif-
ferent platforms from this single UML-based specification.

Nowadays, most database applications typically consist of
three layers: (i) the presentation layer based either on Web
technology or on a rich client platform (RCP), (ii) the busi-
ness logic layer implementing the structure and the behavior
of business objects, and (iii) the persistence layer imple-
mented by a standard (mostly relational) database system.
The current powerfulness of the UML model is not suffi-
cient in the context of database applications, and therefore,
we extend the PIM with the following concepts:

1. New stereotypes for all three layers; in particular, we
integrate the modeling of the presentation layer in the
whole process, which is totally missing in many ap-
proaches. With our extensions, we are able to design
complete database applications and automatically gen-
erate full-operational applications from the model.

2. Moreover, we introduce new stereotypes enabling cross-
layer optimization for database applications. These
stereotypes are considered in the generation process
and the resulting application is optimized regarding
all layers.

o Test IH =] E3

e Editor
13 Havigsion| = 0|1 Tiwe Docter £ |1 Dpessiion =
2 Hoapdal |
2 Marage boss Fistname:*  [Tent
Ty
= Opssaions Suename *  [Test Suename
& Dok
Salay.* [roeoms 4
/-/ hon I=
Navigation Good docte?.*
Bar Bittday [1zoa1sm
- Li_sfing
View

Figure 2: Fully Generated Eclipse-based Sample Ap-
plication

3. New tagged values to annotate the UML model which
is used in the UML2Code transformation. These new
tagged values specify the utilization of the new stereo-

types.

We illustrate the new GignoMDA design process and the
subsequent generation process with the following database
application, where we record doctors and their assigned surg-
eries within a hospital environment. This example applica-
tion requires typical data maintenance and retrieval activi-
ties, as much as other database application do, and we do not
consider further extended business logic. In this example,
the presentation layer is an Eclipse-based [2] user-frontend
(see Figure 2), which communicates via RMI with JBoss
as business logic layer). The persistence layer is modeled
via EJB and supports any relational database system. On
this example database application, we evaluate several cross-
layer optimization hints, which are described in Section 4.

We start with the frontend modeling, with the application
frontend, as depicted in Figure 2, being divided into three
major parts: Navigation Bar, Listing View and Editor. The
navigation bar illustrates the overall structure of the applica-
tion areas and provides the entry points to the listing views
and individual editors for data maintenance. The naviga-
tion tree is defined by a UML use-case diagram. The hierar-
chy of the navigation node can be modeled by dependency
connections between the use cases, annotated with a new
stereotype.

The listing view comprises the result set of a database query,
specified by an OCL constraint (see Section 3). The tabular
view displays only those attributes of the underlying object
which are annotated with the new stereotype <<FrontEnd-
ListAttribute>> (see Figure 3) or included in the tagged
value @client.view.table.columns.

The editor view provides a mechanism to view and manip-
ulate individual records shown in the listing view. The ap-
pearance and the rules for updates of the attributes and all
participating associations are controlled by the stereotype
<<FrontEndEditorAttribute>> (see Figure 3). Additional
information—e.g. the label caption—are specified by tagged
values. Moreover, the user’s input can be validated by given



<<ValueObject>>
DoctorBO

<<|dentifier>> <<FrontEndListAttribute>>+doctorlD : Long
<<FrontEndEditorAttribute>> <<FrontEndListAltribute>>+firstName : String
<<FrontEndEditorAtfribute>> <<FrontEndListAttribute>>+sureName : String
<<FrontEndEditorAttribute>> <<FrontEndListAttribute>>+salary : Float
<<FrontEndEditorAftribute>> <<FrontEndListAttribute>>+age : Integer
<<FrontEndEditorAtfribute>> <<FrontEndListAttribute>>+goodDoctor : Boolean
<<FrontEndEditorAttribute>> <<FrontEndListAftribute>>+birthday : Date

Figure 3: Sample Presentation Object

OCL constraints [5].

3. APPLICATION INTERACTION
PATTERNS

Aside from the design of the frontend application, we also
have to define the set of interactions between the different
parts of the application by a UML activity graph. Fig-
ure 4 shows a sample interaction pattern. With the ac-
tivity state RefreshDoctorView, the activation of a naviga-
tion node opens the listing view DoctorView by calling the
method getAllDoctors. As can be seen in Figure 5, this
<<FrontEndRefreshAction>>-method is part of the set of
C.R.U.D. (acronym for the life cycle operations Create, Re-
trieve, Update, and Delete) methods associated with each
business object manager element (i.e. class with the stereo-
type <<Service>>). These methods are either provided with
default semantics (e.g. get all instances of the underly-
ing business object for getAlIXXX-methods) or replaced by
methods with corresponding application-specific semantics.
The presentation type of an activity state is set using the
stereotypes <<FrontEndView>> and <<FrontEndEditor>>.
Actions, like the opening of an editor or the deletion of
an individual object, are modeled as transitions with the
<<FrontEndAction>> stereotype.

._, refreshDoctorView
l getdliDoctors

editDoctor 5
s

<<FrontEndDoubleClickAction>>

<<FrontEndEditor>>
DoctorEditor
{@client.editor.title=Doctor}

6

As already pointed out, the interaction patterns rely on
methods which perform the application logic, i.e. which
retrieve the underlying objects in the simplest case. For the
ongoing example, Figure 5 shows all necessary model ele-
ments which are part of the logic layer for a specific entity,
i.e. a Doctor object.

<<FrontEnd\iew>>
DoctorView
{@client.view.title=Doctors}

J

Figure 4: Activity Diagram

All C.R.U.D. methods of an entity used by the editor or
listing views are supposed to be defined within an object
marked as <<Service>>-object.

For example, operations with the stereotype <<FrontEnd-
CreateAction>> will be implemented as a create method
with standardized behavior according to the EJB specifi-

1253

<<Senice>>
DoctorMgr

<<FrontEndRefreshAction>>+getAllDoctors() : Collection
<<FrontEndUpdateAction>>+updateDoctor( doctorBO : DoctorBO )
<<FrontEndDeleteAction>>+deleteDoctor( doctorBO : DoctorBO )
<<FrontEndCreateAction>>+createDoctor( doctorBO : DoctorBO )

Figure 5: Sample Service

cation. Furthermore, every retrieve operation must match
a <<FinderMethod>> method of the referenced entity—via
<<EntityRef>>. The specific semantic of this method, e.g.
the corresponding query, can be defined by an OCL con-
straint, or by using the new tagged value @persistence.
operation.query.

The generated application features only the functionality
described in the UML model which normally encompasses
standard functions for data maintenance and data retrieval.
Moreover, the GignoMDA prototype provides options for
projects with advanced claims on their applications, because
almost every generated (Java) class implements a generated
interface. Using the behavioral pattern template method or
strategy, it is possible to integrate one’s own code or change
the behavior of existing functions. Therefore, GignoMDA is
starting framework for ongoing database application devel-
opment.

4. MODEL HINTS

In addition to frontend and application patterns, the un-
derlying database objects have to be modeled. The ma-
jor aspects of data modeling are already provided by UML,
and classes with the stereotype <<Entity>> correspond to
database objects. Additional aspects are (1) check con-
straints or triggers, which are modeled through OCL con-
straints and (2) database indexes for several attributes mod-
eled through corresponding tagged values.

Within our GignoMDA project, we exploit the fact that the
design and the potential content of the database have an
impact on the presentation layer and vice versa by intro-
ducing the concept of model hints. For example, the appli-
cation designer—usually supported by the domain expert—
may specify the number of expected instances of objects or
attributes already during the design phase. Such hints re-
sult in changes of the default behavior of the application
(e.g. prompting for a search dialog to avoid mass loading
when activating the listing view) and in additional DDL op-
erations with respect to underlying database systems (e.g.
enabling partitioning). Hints, in general, are therefore a
central mechanism for cross-layer optimizations in large ap-
plications. Within the GignoMDA project, we distinguish
two kinds of model hints:

e Explicit Hints: Explicit hints are added by the ap-
plication designer via stereotypes or tagged values. An
explicit hint annotates a model element with a specific
role or trait. For example, the stereotype <<Lookup-
Entity>> tells the underlying system that the data are
mostly read-only. The other extreme of the expected




behavior can be annotated by adding the stereotype
<<UpdateEntity>> telling the code generator to op-
tionally add database parameter adjustments for ex-
tensive logging and locking.

Implicit Hints: Implicit hints are derived by the gen-
erator from the specified structure and behavior and
cannot be added by the application designer. For ex-
ample, every association between two objects holds a
tagged value @client.association.displaytype tell-
ing the code generator whether the association should
be displayed as a set of check boxes or using a tabular
list. By indicating the ”check box”-style, the designer
implicitly denotes that the associated table will con-
tain only a few objects. This information, can be used,
for example, to exploit object-relational functionality
of the underlying database system and create a schema
holding the associated objects with a nested table.

Hints therefore play a general role in enabling cross-layer
optimization based on the central specification. The ex-
amples given above are supposed to illustrate the power of
model hints, of which GignoMDA supports a large variety.
Furthermore, we are able to derive different optimization
strategies for different architectures from the hints in the
architecture-independent UML model.

5. DEMONSTRATION DETAILS

Our prototypical implementation, which we would like to
present at VLDB, is based on the AndroMDA Framework
[1]. On the modeling side, as mentioned above, the approach
proposes an extension of the UML design methodology via a
UML profile to specify persistence aspects, security, business
logic and potential user interactions. On the code genera-
tion side, the prototype extends the AndroMDA framework
by adding additional MDA cartridges and extending other
already existing modules to consider the additional seman-
tics specified in the UML model. Figure 1 illustrates our
entire approach.

As target platform for the presentation layer, GignoMDA
currently supports the Eclipse-RCP platform [6] using the
dynamic component model for plug-ins, update manage-
ment, menu and preferences management. On the middle
tier, annotated business objects are represented as session-
and entity beans. In order to capture the special adjust-
ments required to reflect the semantics of implicit and ex-
plicit hints, we are currently restricting the use of database
systems to MySQL, PostgreSQL, Microsoft SQL Server and
Oracle 10 Xe.

The demo at VLDB comprises an in-depth explanation of
all necessary concepts demonstrating the GignoMDA pro-
totype. Within our demonstration, we will show how the
different types of annotations (stereotypes, activity graphs,
use models, etc.) in the UML model are used to build
a fully functional three-tier database application regarding
data maintenance and retrieval activities. We will show how
to model and how to generate applications on the fly. For
this purpose, we will prepare a set of database applications
from various fields, like data warehouses or management of
biological data to show the applicability of our approach for
a large variety of applications. These examples will have a

1254

different granularity of complexity to show that we are able
to model database applications with low as well as with high
complexity. In addition to the prepared examples, we will
also model new specific database applications with visitors
of VLDB. Moreover, those interested in the demonstration
will see how changes in the model affect the resulting code.
Furthermore, we will describe the optimization hints in very
detail and present their utilization. Model changes in that
context may comprise modifications of the database scheme
and changes in the set of model hints.

6. CONCLUSION

In this paper, we have presented our GignoMDA Project
that aims at the enrichment of the automatic generation of
complex multi-layer database applications through the con-
sideration of non-functional properties. In the near future,
building large applications will definitely be based on an ex-
tensive portion of generated code. Furthermore, efficient im-
plementations require a global view on the general problem
ranging from the presentation layer down to the persistence
layer and database optimization layer. In summary, we see
GignoMDA as a first step towards a new application de-
velopment paradigm where several implicit and explicit op-
timization tasks are automatically considered: Just model
and click the ” Generate”-button.

To realize this vision, further research activities in the soft-
ware as well as the database direction are necessary. In near
future, we want to enrich the functionality of GignoMDA to
software and database evolution aspects, so that our Gig-
noMDA approach can be used for the whole software devel-
opment process. In those activity, we will also investigate
how to model the such evolutions. Another point of interest
is, how more complex OCL constraints can be used. The
advantage of the usage of OCL contraints is their domain
independent character and they are not limited to a specific
profile.

7. REFERENCES
[1] AndroMDA. http://www.andromda.org.

[2] Eclipse RCP framework. http://www.eclipse.org/rcp.
[3] GignoMDA. http://www.gigno.de.vu/.
[

4] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA
Ezxplained. The Model Driven Architecture: Practice
and Promise. Addison-Wesley, 2003.

[5] OCL 2.0 Spezifikation.

http://www.omg.org/docs/ptc/03-10-14.pdf.

[6] Eclipse technology overview.
http://www.eclipse.org/whitepapers/eclipse-

overview.pdf.

Dave Thomas and Brian M. Barry. Model driven
development: the case for domain oriented
programming. In OOPSLA ’03: Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 2-7, New York, NY, USA, 2003. ACM Press.



