SMOQE: A System for Provid

ing Secure Access to XML

Wenfei Fan* Floris Geertst Xibei Jia Anastasios Kementsietsidis
University of Edinburgh

{wenfei @nf, fgeerts@nf, x.jia@ns,

ABSTRACT

XML views have been widely used to enforce access control, sugata
integration, and speed up query answering. In many apjgitate.g. XML
security enforcement, it is prohibitively expensive to emalize and main-
tain a large number of views. Therefore, views are necegsariual. An
immediate question then is how to answer queriexmn virtual views.
A common approach is to rewrite a query on the view to an etgrivaone
on the underlying document, and evaluate the rewrittenyquEhis is the
approach used in the Secure MOdular Query EnginedQE). The demo
presentssMOQE, the first system to provide efficient support for answer-
ing queries over virtual and possibly recursively defined. views. We
demonstrate a set of novel techniques for the specificatioriewss, the
rewriting, evaluation and optimization gL queries. Moreover, we pro-
vide insights into the internals of the engine by a set ofalisools.

1. INTRODUCTION

Views have been widely used in databases to enforce acaess co
trol, support data integration, and speed up query ansgieamong
other things. For all the reasons that views are essentiahdti-
tional databasessML views are also important formL data. In
many applications, e.g., iIRML security enforcement, views are
necessarilyvirtual: a large number of user groups may want to
query the samgmL document, each with a different access-control
policy. To enforce these policies, we may provide each usmIg
with an xML view [3] consisting of only the information that the
users are allowed to access, such that users may query tagyind
ing data only through their views. Here the views should kgt ke
virtual since it is prohibitively expensive to materialiaad main-
tain a large number of views, one for each user group.

An immediate question in connection wixL views is how to
answer queries posed by users ovirtual view? However desir-
able, forxmL views to be useful in practice this question has to be
answered. A common approaciké. view unfoldingis to rewrite

*Supported in part by EPSRC GR/S63205/01, GR/T27433/01 aBSRE
BB/D006473/1. Wenfei Fan is also affiliated to Bell Laborase, Murray Hill, USA.
tFloris Geertsis a postdoctoral researcher of the FWO Via@mdand is supported in
part by EPSRC GR/S63205/01. He is also affiliated to Hasseltdusity and Transna-
tional University of Limburg, Belgium.

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct coriamleadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

1227

akerment s@ nf }. ed. ac. uk

a user query on views to an equivalent one onutheerlyingdoc-
ument, and evaluate the rewritten query without mateiiaizhe
view. Nevertheless, the query rewriting is nontrivial. Eaample,
XPath, the core okQuery andxsLT, is not closed under rewriting
i.e.,for anXPath query on a recursively defined view there may not
exist equivalenPath query on the underlying document [4]. This
motivates the use of a richer query language in the rewrétmgext
andRegularxpath is the most promising candidate for three main
reasons. FirstRegularXPath is only a mild extension ofPath
which supports general Kleene closyrg" instead of the limited
recursion ‘//' (descendant-or-self axis). Therefore rupeeries al-
ready written inXPath can be useals-isand need not be re-defined,
a necessity if a richer language lik@uery orxsLT was used. Sec-
ond, and more importantlRegularxpPath is closed under rewriting
for XML views, recursively defined or not [4]. SineegularxpPath
subsume«Path, anyxPath query posed on amyML view can be
rewritten to an equivalerkegularxPath query on the underlying
data. Third, there is an increasing interest in uskegularXpPath
as a stand-alone query language, outside the rewritingexont
Given the above, we have developed the Secure MOdular Query
Engine 6MOQE), for facilitating the specification okmML views
and answering okML queries on virtual views. The main features
of smoQEare the following.

e SMOQEsupportxmL views defined by annotating amL schema
with Regularxpath [9] queries, along the same linesae (I1BM
DB2 xML Extender [6]) andaxsD (Microsoft sQL Server [10] and
Oracle [11]). sSMOQE supports recursively defined schema (and
thus views). It also provides a visual tool, referred taS®8OQE,

to help user annotate a schema and definenan view.

e SMOQEIs able to rewrite anygregularxpPath query@ posed by
users on a virtual view to an equivalenRegularxPath queryQ’
on the underlying documer. That is,Q'(T) = Q(V(T)) for
any XML documentZ’, whereV (T") would be thexmL view if it
were materialized. Her@’ is also inRegularxXPath, and is to be
executed on the underlying documéntather than on the view.

e SMOQE encompasses a query engine RagularxpPath queries,
implementing an efficient evaluation algorithm and a nomekix-
ing structure.

Existing xML query systems support neither answering (Regu-
lar) XPath queries on virtuatmL views, nor efficient evaluation of
RegularXpPath queries. While one can transla&egularXPath to
XQuery, this approach is penalized by the overhead of evalyati
and optimizing full-fledgekQuery when dealing with much sim-
pler RegularxPath. To our knowledgesMOQEis the first system
that provides efficient support for answeriRggularxpath queries
over virtual and possibly recursively defingshiL views, as well as
sophisticated evaluation techniques particularlyRegularxpath.

] View [
,/: Definition

Query
Result

6
.
XII#IL
Document

Result Collecting
5 \"
c

Cans",«'

T ammai
Automata
Constructing

Eval. Using HyPE
and
Opt. Using TAX

Indexing
and
Compressing

XSD graph

y A3

=StAxX

-

= or DO

- “\\l
XML

Document

M

.
||||||||||Il\‘

Rewriter Indexer

Q: represents a visualizer in iSMOQE component . i
o 1, 2, 3, 4, 5, 6: queries on XML doc processing flow

A.1, A.2, A.3 : view processing flow; B.1, B.2, B.3: queries on views processing flow

Figure 1: The sMOQEArchitecture

As an immediate applicatiorsMOQE provides a generic, flexible
access-control mechanism foxML data, preventing the disclosure
of confidential or sensitive information to unauthorizeenss

We have fully implemented@MOQE Leveraging its visual tool
1SMOQE, the demonstration is to show, step by step, (a) kew
views can be specified by annotatingab, (b) how user queries
on XML views are rewritten and answered, and (c) h@MOQE
optimizes and evaluatégegularxpPath queries. It will also demon-
strate the efficiency of the evaluation algorithms and thgaich of
various optimization techniques implementedsmoQE

2. SYSTEM ARCHITECTURE

As shown in Fig. 1,SMOQE consists of four major modules:
(a) isMOQE, a visual tool through which a user can defixiaL
views, inspect the query rewriting and evaluation, and lseguery
results (a small user icon is used to indicate all the systempo-
nents accessible throughMoQE); (b) a queryrewriter (indicated
by a box at the left of the figure) for translating usegularxpPath
queries posed orRML views to equivalenRegularxpPath queries
on the underlying document; (c) a quesyaluator (indicated by
a box in the middle of the figure) for processirggular XPath
queries; and (d) amdexer(indicated by a box at the right of the
figure), which is used by the evaluator to build indexes artit op
mize queries.

XML view definition. SMOQEsupports two view definition modes.
One mode allows users to definexanL view by leveragingsmMoQE

RegularXPath
Files Help

Query | Result | Index [Schema [Message |
| Load ‘Iamd[nls[phnenix,'diskjpanOZ,'50343603jwnrkspate[regxpalh]dala]hns\fiaw,xs
[nosnita] [seavence] ¢
T [paien]| | et \
T
I—':
\—D diagnosis
o schi -4 S T -
? E 5; ETa ¥ <xsd element maxOccurs="unbaunded" mindccurs="0" =
Ked glemernt ref="hos:patient's> =
D wsdelement <HSA CUEMY [
o 9 vt complexType | = || hospital/department /patientpsit ftreatment/medication /iagnosis ftext
& 3 xscl complexTyne 0="hean disease’] L
o [et complexType || < fHsAOUErY> -~
[yeset. comnlexTone | ¥ HML

Ready...

Figure 2: The visual tool in ismoQEfor specifying views

a StAX [7] (Streamingapi for XML, a new standardpi for XML

pull parsing, to be included in Java6) mode. In them mode,

the whole document tree will be loaded into memory in order to
evaluate a query. One the other handSiax mode the document
does not need to be loaded into memory and only one sequential
scan of the document from disk is needed for the evaluatidre T
StAX mode allows to process larger documents efficiently and of-
fers significant advantages over main-memxpPath engines such

as Xalan [13] and Saxon [12], which need to randomly access th
document during evaluation.

Visual aid. iSMOQE is the front-end that both provides a user-
friendly interface tosMOQE, and it opens a window of the system
to let user visually monitor the internals of the engine. dbsists
of a graphical querying interface, a semi-automatic viefiniteon
tool, and query, automaton, index and result visualizatiots.

3. DEMONSTRATION OVERVIEW

The demonstration aims to show the following: (a) how users
may definexmL views by means of schema annotation, with the
aid of isMOQE (b) how sMOQE answersRegular XPath queries
posed on a virtuakML view by using the rewriter, without materi-
alization; (c) how the evaluator sfiMOQEprocessefegularxpPath
queries; (d) how the indexing structuresMoQEhelps query opti-
mization and processing; and (e) he®8MOQE helps users browse
the query result as well as help implementers monitor quesy p
cessing. These provide a complete picture for how one canm-lev
agesMOQEto enforcexML access control (via view definition and
view gquery answering) and evaluaegularXPath queries, among
other things. Below we present a brief introduction to thehie
nigues ofsMOQE for supporting these functionalities, as well as a

to annotate a view schema. The other mode is by means of auto-more detailed description of the demonstrationt. each of these.

mated view derivation as proposed in [3]: for each user granp
authorized security administrator annotates dbeument schema
to specify the part of information that the users are graotedee-
nied access to, using simple boolean predicates; shQEauto-
matically translates the specification to the definition ¢fassibly
recursively definedxmL view, along with a view schema that is
exposed to the users.

Query support. SMOQEsupportRegularxpPath in two query eval-
uation modes: a user may pose a query either (a) directly @n th
underlyingxMmL document provided that the user is granted access
to it, or (b) on anxmL view specified for the group which the user
is in. In the former case, the evaluator processes the quetlieo
underlying document, capitalizing on the indexer. In thtelecase,

the user query is first translated to an equivalent query eruth
derlying document, and then the rewritten query is answieyate
evaluatorwithoutmaterializing the view.

XML documents. SMOQE supports two modes: oM mode and

1228

Specifying XML views. Like DAD [6] and AXsD [10, 11], SMOQE
supportsxmL views by means of an access control policy which
annotates a schema witkegular XPath expressions. For exam-
ple, Fig. 3(a) shows a schema for a hospitab, while Fig. 3(b)
shows an access control policy that only exposes the recbys
tients that took medication for “autism”. Notice that forcaety
reasons, the policy hides the names and test informatiohesiet
patients. Given such a policgMOQE automatically generates the
view specification and viewTd shown in Fig. 3(c) and Fig. 3(d),
respectively. Conceptually, ammL view defined in this way uses
the RegularXpPath queries in the specification to extract data from
the underlying document, and populate the view using thaeted
data, strictly following the schema. Although no actualwimate-
rialization occurs, the procedure assures that the vienemsénse,
i.e.,it conforms tahe view schema. A unique feature of hi@OQE
view language is that it allows the schema to be recursive tfzuns
supportgecursivelydefinedxmL views.

production: hospital— patient

production: hospital— patient

hospital ann(hospital,patient) |visit/treatment/ oo (hospital, patient¥ patient|[visit/
¢>x< medication = ‘autism’] treatment/medication = ‘autism’] hosni
h ospital
patient production: patient— pname, visit, parent production: patient— treatmerit, parent e
M * ann(patient, pname) N oo (patient, treatment} visit/treatment

ann(patient, visite N
production: parent— patient
production: visit — treament, date
ann(visit, treatment} [medication]

pname parent

visit
treatment {ate
A A
test medication

(a) documenpTD D

ann(treatment, test) N
(b) access control policgo

production: parent— patient

[medication]
oo(patient, parenty parent

patiant

oo(parent, patient patient {reatment parent

production: treatment— test + medication production: treatment— medication

medication

(d) view pTD Dy

oo (treatment, medicatiorr medication
(c) view specificationro derived fromSy

Figure 3: Enforcement of access control by security views

We demonstrate how users can leverag®oQE to define a
view. As shown in Fig. 2jSMOQE supports a visual view speci-
fication tool that provides the user with amL schema graph. The
user can click on any node (element type) in the graph, and mp
RegularXPath query annotating the corresponding elements.

Rewriter. While it is always possible to rewrite RegularXxpPath
guery Q on a view to an equivalent quexy’ on the underlying
document, the size a@’, if directly represented aRegularxpPath
expressions, may be exponential in the siz€)d#]. The SMOQE
rewriter overcomes the challenge by employing an autometian
acterization ofQ’, denoted byvFA (mixed finite state automatpn
[4], which islinear in the size ofQ. An MFA of Q' is a finite state
automaton i{FA, characterizing the data-selection pathi) an-
notated with alternating automatara, capturing the predicates of
Q’). For example, Fig. 4(a) depicts thea M, characterizing the
RegularXPath query:

Qo = hospital/patient[(parent/patiefityisit/treatment/test/
and visit/treatment[medication/text()="headache"]}/pnam

In the MFA M, theNFA consists of state)(1, 3, 24) and repre-
sents the selection patiospital/patient/pnamé is annotated with
an AFA (linked to state3 via a dotted arrow) capturing the pred-
icate of Qo (the part enclosed ih]). The notion ofmFA is pro-
posed bysMOQEto characteriz&egularxpPath queries. It is quite
different from automata developed fePath andxmL stream pro-
cessing €.g.,tree automata of [8]xFilter [1], YFilter [2], xPush
machine [5]).

The demonstration will show the following, which are vismat
by means ofSMOQE.

e The MFA characterization oRegular XPath queries. Given a
Regular XPath query@, SMOQE automatically generates KaFA
characterizing). As an example, Fig. 4(b) displays theAa M,
of the queryQo given earlier.

e The process of query rewriting. Given amL view definitionV’
and aRegularXpPath query@ posed onV/, iSMOQE demonstrates
how the sSMOQE rewriter works by displaying theiFA represen-
tation of the rewritten query)’, which is automatically generated
by the rewriter, and is equivalent @ when being executed on the
underlying document.

Evaluator. The SMOQE evaluator implements a novel algorithm
for processingRegularXPath queries represented mfFA’'s. The
algorithm, referred to asyPE (Hybrid Pass Evaluation) [4], takes
anMFA as input and evaluates it on amL tree. A unique feature

of HyPE is that it needs a single top-down depth-first traversal of
the XML tree, during whictHyPE both evaluates predicates of the
input query (equivalentlyara of the MFA) and identifies potential
answer nodes (by evaluating thea of the MFA). The potential
answer nodes are collected and stored in an auxiliary siejate-
ferred to ascans (candidate answers), which is often much smaller
than thexmL document tree. After the traversal of the document
tree,HyPE only needs a single pass ofins to select the nodes that

1229

are in the answer of the input query. This is the reason s¥hgQE
is capable of efficiently processimggularxPath queries no matter
whether it is in thebom mode or in thestAX mode.

To our knowledge, previous systems require at least twoegass
of XML tree traversal to evaluate ev&mrath queries. For exam-
ple, to evaluate akPath queryg on anxML documentT’, Arb [8]
requires a bottom-up pass dfto evaluate all the predicates @f
followed by a top-down pass to evaluate the selecting path &f
uses tree automata, which are more complex thes and require
a pre-processing step (another scarfdfto parse the document
and convert it to a special data format (a binary representatf
T). In contrastSMOQEIs able to evaluat®egularxpath queries,
more complex thatxPath queries. TheMOQE evaluator requires
neither pre-processing of the data nor the constructiomeef au-
tomata. It only needs a single pass of the document duringhwhi
often prunes a large number of nodes that do not contributeeto
answer of the query.

In the demonstration we show the following.

e The efficiency of thesmoQEevaluator. We show th&MOQEis
capable of efficiently evaluatingegularxpath queries, in both the
DOM mode or thestAX mode. Furthermore, it outperforms popular
XPath engines such as Xalan [13].

e The insight of AlgorithmHyPE. Using iSMOQE we reveal the
details of the evaluation akegularxpath queriesNFA). For ex-
ample, Fig. 5 shows the evaluation of thiea M, given earlier
on anxMmL document. It demonstrates hoW, traverses the doc-
ument and which nodes are selected and storeaiirs.

Indexer. SMOQE proposes and implements a new indexing struc-
ture, referred to asax (Type-Aware XML indgx4], to optimize
query processing. The novelty 0Ax is that it classifies the infor-
mation of descendants of each node based on their elemea# typ
While several labeling and indexing techniques were d@ezidor
optimizing the evaluation okPath queries, they focus mainly on
optimizing the evaluation of ‘//' (descendant-or-self gxby test-
ing efficiently whether, given two nodes, one is a descenofittie
other. As such, they are limited in scope. In contrasi is ef-
fective in pruning large document subtrees during the aetadn of
XPath queries with or without *//’, by keeping track of descants
of certain types that have been and have not been checkedhat ea
node. ThesmoQEindexer constructs theax index, compresses it
before it is stored in disk, and uploads it from disk when rekd
The demonstration shows the following.

e The effectiveness ofax. It demonstrates the impact ofx on
the performance of the evaluator by turning on the indexesuse
the setting when the indexer is off.

e The insight of TAX. iSMOQE is able to show how theMOQE
indexer buildstax on anxmL document. For example, Fig. 6 is an
1SMOQEdisplay of TAX on anxmL tree.

The output visualizer. iSMOQEis able to display the output of the
query evaluation in two modes: (a) the text mode, which prisse

TEXT_EQUAL
'headache'

(a) ThemFa Mg for Qo

RegularXPath
Files Help

Query rResuI(rlndeu rSchema rMessage |

Queny ‘,'hnspilal]patiem[,j(parem,rpa(ienl)"_rtrea(mem,'lesl and treatment|

Jchild::hospital fchild:: patient[{self::node//child: treatment fchild::test and child

[EOERERE @ eatment[{child:: medication/child::textd = "headache"))]/child:: pname

i | parseTree | TreePauernLike

|9 test
¢ [3 LocatianPath
¢ CICHILD
[treartment
¢ [Predicate
&=
¢ [CJ LocationPath
¢ CJCHILD
D medication
[Textnodestap =

Automaton | ReverseAutomaton | Al

Ready...

(b) The tool inismoQEfor visualizing query and automaton

Figure 4: The MFA M characterizing query Qo

hospital
patiem.’w .
® patient patien
©) 3
parmit - > visit)
\ anaZHE | visit 1‘4 o parent
p:atienl Lreau\nenl]‘0 pname Irgzl‘tmlcsm /
978 medicatio}lrearlllem p ‘ 1;) patient
\ 2
treatment “cold” rest it 737
1‘1 19 12 medication visit
W parent
test (@ astate in NFA annotated by a false AFA |
12 . “headache” N treatment
@ astawein NFA 1 patient
Cans: @ C
24 candidate answer visit T
real answer (©) ® © lb
9.7.8 states in AFA ‘ trcal]n‘rllcnt \
pruned subtree 24 24 test
12

Figure 5: Evaluation of M using HyPE

the answer of the query as a documenxin. syntax; (b) the tree
mode, which displays the answer of the query as a tree; it pro-
vides an interactive interface such that users may click mode to
browse its subtree.

The demonstration will also show another feature sfioQe
iSMOQE is able to mark nodes in axmL document (in the tree
mode) with different colors, indicating whether or not a ead
visited during the query evaluation, whether or not it is jputhe
auxiliary structurecans, and which optimization techniques con-
tribute to its pruning if it is not in the answer of the queryhi§
opens a window to the blackbox of query processing, alloveing
to assess the effectiveness of various optimization teciesi

Summing up, we demonstrate the supporssfoQE for differ-
entxmL view specification methods, its ability to evalua&egular
XPath queries, its capability of answerimggularXPath queries
posed on virtuakML views without materialization, the efficiency
of the sSMOQE evaluator and the effectiveness of thRIOQE in-
dexer. Furthermore;SMOQE visualizes the connection between
RegularxPath queries and automata representation, the index struc-
ture built onxmML data, the huge nodes pruning when the automata
are running, and the contributions of different optimiaatitech-
nigues to the pruning.

4. REFERENCES

[1] M. Altinel and M. J. Franklin. Efficient filtering of XML
documents for selective dissemination of information. In
VLDB, 2000.

[2] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fissh

1230

RegularxPath

Files Help
Query | Result [Incex | Schema | Message |
|_; Load |data/hospita r Build | Wirite StoreDoc | ReadDo
[hospial comtaxNode-1267 [(81,82) (81,82) (79,80) ||
[name (42,43 (79,807 (79,80) (42,43} (81,82) (81,82)
> [deparmant (81,82) (79,80) (79,80) (81,82} (0,0 (73,80) (0,0)
o=] department (79.80) (BL32) |
cormtaxNode-1268 [(81,81) |
¢ £ department comtaxMode-1269 [(31,81) (81,81) (81,81) | |
o [patient (81,811]
o [patient comtaxMode-1270 [(81,81)] L
¢ O patient comtaxhode-1271 [(8L,81)]
0 comtaxNode-1272 [(81,81)]
pname comtaxNode-1273 [(82,82) (82,82) (79,79) ||
o [Jaddress (42,42 (79,79) (79,79) (42,42) (81,82) (82,82)
o] parent (82,82) (79,79) (79,79) (82,82} (0,00 (73,79) (0,0)
o I sibling (79,79) B2,82)]
o [nisit comtaxiode-1274 [(82,82) (82,82)
s (79,79) (42,42) (79,79) (79,79} (42,42) (82,82)
patient (82,82) (82,82) (79,79) (79,79} (82,82) (0,0
o [patient (79,79 (0,00 (79,79 (82,82) |
o [patient cormaxMode-1275 [(32,82) |
o (A patient comtaxNode-1276 [(82,82) (32,82)
(82,82} (82,82} |
:ﬁm“e"‘ Comtaxhode-1277 [(82,82)]
Sl patient comtaxNode-1278 [(82/82)] ||
o Clpatient comtaxNode- 1273 [(82,82)] =

The time for creating COMTAX index is: 349 ms

Figure 6: TAX index

Path sharing and predicate evaluation for high-performanc
XML filtering. TODS 28(4):467-516, 2003.

[3] W. Fan, C. Y. Chan, and M. Garofalakis. Secure XML
querying with security views. ISIGMOD, 2004.

[4] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Reagit
regular XPath queries on XML views.
http://www.Ifcs.inf.ed.ac.uk/research/database/itavg. pdf.

[5] A. K. Gupta and D. Suciu. Stream processing of XPath

queries with predicates. BIGMOD, 2003.

IBM. DB2 XML Extender.

http://iwww-3.ibm.com/software/data/db2/extendedéxi!

JSR 173. Streaming API for XML.

http://www.jcp.org/en/jsr/detail?id=173

C. Koch. Efficient processing of expressive node-satgct

queries on XML data in secondary storage: A tree

automata-based approachMhDB, 2003.

M. Marx. XPath with conditional axis relations. EDBT,

2004.

Microsoft. XML support in microsofsQL server 2005,

December 2005http://msdn.microsoft.com/library/en-

us/dnsql90/html/sql2k5xml.asp/

Oracle. Oracle Database 10g Release 2 XML DB Technical

Whitepaper.

http://www.oracle.com/technology/tech/xml/xmidb/aahtml

SAXON. The XSLT and XQuery processor.

http://saxon.sourceforge.net

[13] Xalan.http://xalan.apache.org

(6]
(7]
(8]

9]

[10]

[11]

[12]

