Continuous K-Nearest Neighbor Queries for
Continuously Moving Points with Updates

Glenn S. Iwerks ¢ it

tComputer Science Department,
Center for Automation Research, and
Institute for Advanced Computer Studies
University of Maryland at College Park
{iwerks,hjs}@umiacs.umd.edu

Abstract

In recent years there has been an increasing
interest in databases of moving objects where
the motion and extent of objects are repre-
sented as a function of time. The focus of this
paper is on the maintenance of continuous k-
nearest neighbor (k-NN) queries on moving
points when updates are allowed. Updates
change the functions describing the motion of
the points, causing pending events to change.
Events are processed to keep the query result
consistent as points move. It is shown that
the cost of maintaining a continuous k-NN
query result for moving points represented in
this way can be significantly reduced with a
modest increase in the number of events pro-
cessed in the presence of updates. This is
achieved by introducing a continuous within
query to filter the number of objects that
must be taken into account when maintain-
ing a continuous k-NN query. This new ap-
proach is presented and compared with other
recent work. Experimental results are pre-
sented showing the utility of this approach.

*This work was supported in part by the National Science
Foundation under grants EIA-99-00268, 11S-00-86162, and EIA-
00-91474.

TThis work was supported in part by the National Institute
for Mental Health and the National Science Foundation under
NIH grant R01-MH64417-01.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

Hanan Samet *

Ken Smith ¢7

$The MITRE Corporation
7515 Colshire Dr.
McLean, Virginia 22102
{iwerks,kps}@mitre.org

1 Introduction

The interaction of GIS and spatial databases has been
a topic of research for many years (e.g., [11]). Until
recently the primary focus of spatial database research
has been on static spatial data which are updated in-
frequently. Examples include buildings, roads, and
land use zones. Common types of queries include spa-
tial join, nearest neighbor, and windowing. An ex-
ample of such a query is one that seeks all the houses
that are for sale within one kilometer of a grade school.
Most spatial database research in the past focused on
data storage, query processing, and display of static
spatial data.

In recent years there has been an increasing inter-
est in databases of objects that are in motion. Ob-
jects in mowving object databases change location fre-
quently. Some examples are vehicles, mobile networks,
and weather systems. Query operators include both
spatial and temporal operators. An example of such
a query is one that seeks all the moving school buses
currently within one mile of a school. The dynamic
nature of the data presents new challenges in data
storage, query processing, and display of the results.

This paper addresses the maintenance of continu-
ous k-nearest neighbor (k-NN) queries in the presence
of updates on moving points, where the motion of the
points is represented as a function of time. The clos-
est analogy to what is done in conventional databases
is a materialized view [4]. The difference is that the
query result may change as objects move in accor-
dance with the definition of its associated function as
time advances, independent of updates.

Our main contribution is a new approach to this
problem called the Continuous Windowing k-NN al-
gorithm (CW). This new approach is based on the
observation that window queries are easier to main-
tain on moving objects than k-NN queries. The CW

algorithm filters objects to be considered as nearest
neighbor candidates using a within query around the
query point. If the within query selects at least k ob-
jects, then only those objects in the within query re-
sult need to be considered when computing the k-NN
query. Using this approach, the cost of maintaining
a continuous query result for moving objects can be
greatly reduced when the moving object representa-
tions stored in the database are updated frequently
during query maintenance.

Experimental results are presented showing the
utility of our approach. Our primary metric for cost
is in the number of disk accesses needed to compute
and maintain a query. This is because accessing data
on disk is several orders of magnitude slower than ac-
cessing data in memory.

Although the examples given in this paper are 1-
dimensional (1D) and show static query objects, the
techniques and algorithms are general and applicable
to higher dimensions and moving query objects.

The rest of this paper is organized as follows. In
Section 2 we give definitions and background on event
driven moving object query processing. Previous work
is reviewed in Section 3. In Section 4, we describe
an extension to previous work to support the main-
tenance of k-NN query results in the presence of up-
dates. In Section 5, we present our new approach to
solving the problem. Performance issues of the dif-
ferent approaches are discussed in Section 6. Experi-
mental results of these two approaches are compared
in Section 7. Conclusions and future work are dis-
cussed in Section 8.

2 Background

In order to represent moving objects, we define a kine-
matic object' as a geometric object having a location
or extent represented as a function of time. In par-
ticular, the point kinematic object (PKO) is an object
class representing the motion of a moving point by
the function p(t) = Z§ + (t — to) ¥, where Z§ is the
start location, to is the start time, and ¥ its veloc-
ity vector. As shorthand, we use pt(zg,v,%to) to de-
note a PKO instance. We assume an object-relational
database environment in which a PKO is an attribute
in a relation r, called a PKO attribute. For simplicity,
and without loss of generality, we consider relations
having one PKO attribute. Each instance of a PKO
attribute value is a PKO object instance, each with
its own unique identifier. The instance of a PKO at-
tribute for some tuple 7 € r is denoted Pko(7). The
tuple in r containing some PKO p is denoted Tuple(p).

1Kinematics is the branch of mechanics that studies the mo-
tion of a body or a system of bodies without giving any consid-
eration to its mass or the forces acting on it.

We make a distinction between two basic types of
queries. First, the within query finds all the objects
within a given distance of a query point. Second, the
k-nearest neighbor query (k-NN) finds the k closest
neighbors to a query point.

To support the maintenance of the results of these
queries we distinguish between two basic types of
events: within events (w-event), and order change
events (oc-events). Events are used to maintain query
results as time advances. Events are processed to keep
the query result consistent as the points move.

A w-event occurs when a PKO moves to be at a
given distance d to a query point. This can happen
either while the PKO is moving closer to, or farther
from the query point. A w-event instance is denoted
as w(p,t) where p is the PKO object, and ¢ is the
time of the event. Figure 1 shows snapshots of a 1-
dimensional PKO data set {a,b,c} and a query point
g at different points in time where a = pt(1,1,1), b=
pt(3.5,1,1), and ¢ = pt(6.5,—1,1). Query point ¢ =
pt(5.5,0,1). A w-event, w(b,2), takes place at time
t = 2 when PKO b comes within distance d = 1.5
of query point ¢. It is crucial to remember that the
query point and distance are part of the query, and
not explicitly represented in the event notation.

t=1 <—g—>——4————4—ob—><————4—0q—«—3—>—->

a q c
t=2 <—4—-0—>|————4——--2—>--4-4:—0———— ->
w-event —7
a cb 9
o F4 - @@) >
1S »___oc-event

a ¢ b
t=6 <—-|————-i————-i—-.(-l(————-l—-g—.—»—— ->

> w-events
[+ q b

=7 <Hd----4---- 4@ - ——4—-.—4—-.—9——>
c a q b
t=75 <-d4----4--- <@ -- .—»1—-.—1———.>+—>

X oc-event__ A

1 2 3 4 5 6 7
coordinate value

Figure 1: Example snapshots of 1D PKO attributes
and events for time interval 1 < ¢t < 7.5. Arrow
lengths indicate the distance traveled in one time unit.

An oc-event occurs when two PKO objects change
order with respect to their distance to a query point.
An oc-event instance is denoted as oc(p,t) where p is
the point involved, and ¢ is the time. Figure 1 shows
the oc-event oc(b, 4), which corresponds to time ¢t = 4
when object b is moving closer to ¢ than another PKO
c. In the example here, PKO c is the nearest neighbor
prior to the event. In the case of a k-NN query, the Kt
neighbor is the other point involved in the event. It
is important to note that this other point involved is
part of the query result, and not explicitly represented

in the event notation. Likewise, the query point is
part of the query and not explicitly represented in the
event notation.

For some event e (either a w-event or an oc-event),
Pko(e) denotes the PKO explicitly represented in that
event (e.g., Pko(w(p,t)) = p). The time of an event
is denoted as Time(e) (e.g., Time(w(p,t)) = t). If e
is a null event (denoted e = @), then Time(e) = oo.
Since a PKO instance is an object with a unique id,
we can retrieve the tuple to which the PKO instance
belongs. To indicate the tuple containing some PKO
instance p we write Tuple(p). The Euclidean distance
between PKO instances p and ¢ at time ¢ is ||p, ¢, t|| =

(1), a(t)| = /(a(t) — p(?))*

procedure SE_Within(r,q,d,t)

1. Q«0, W«0
2. foreach tuple 7 € r do
3. if ||Pko(7),q,t|| < d then W <~ WUT
4. e < next_w_event(Pko(T), ¢, d,t)
5. if Time(e) < co then Q «+~ QUe
6. end foreach
7. while Q #0 do
8. e + Pop(Q), t <« Time(e)
9. if W N Tuple(Pko(e)) = @ then
10. W « W U Tuple(Pko(e))
11. e + next_w_event(Pko(e), ¢,d, t)
12. if Time(e) < co then Q«+ QUe
13. else W « W — Tuple(Pko(e))

14. end while
Figure 2: SE_Within(r, ¢, d,t)

Event-driven within query processing is performed
by examining all within events in temporal order while
updating the result appropriately?. Figure 2 gives a
simple event-driven algorithm SE_Within() for main-
taining a within query. For example, consider the
1D scenario in Figure 1, and a query to find all ob-
jects within distance d = 1.5 of ¢. Initially, relation
r containing tuples with PKO attributes {a,b,c}? is
scanned (lines 2-6) to find the initial result at time
t =1, W = {c}, and the next w-event for each
point. The w-events are inserted into the priority
@, so that @ = {w(b,2),w(c,6),w(a,7)}. Function
Pop(Q) removes the next event from priority queue
@ and returns it. Function next_w_event(p, ¢,d,t) re-
turns the next event after time ¢ when the PKO p
will be at distance d from ¢, or it returns a null event
with time stamp oo if no such event exists. This is
a simple computation based on solving the equation
|p(time), q(time)| = d for time. For dimensionality
greater than 1, this is a quadratic equation with a
closed form solution. If the roots exist and are real

2There are cases when an object may only “touch” the event
threshold and then move back (closer or farther) to its former
state. Due to space limitations, these cases are not discussed
here.

3For brevity only the PKO attributes of tuples are shown.

numbers, then the next one greater than ¢ is returned.
Events are processed one-by-one (Figure 2, lines 7—
14). If a PKO is moving closer to the query point
then the w-event is called an enter event. If a PKO is
moving farther away from the query point then the w-
event is called an exit event. Line 9-12 process enter
events adding the incoming object to the within result
and computing the next exit event. Line 13 processes
exit events removing the object from the within result.
No new events are generated by exit events. Figure 3
shows a trace of the event processing portion of the
algorithm (lines 7-14) up to time ¢ = 7 for the 1D
example in Figure 1 where d = 1.5.

line #|e Q w t
8 w(b,2) |{w(c,6),w(a,7)} ct |2
10 Bl Bl {v, C} Bl
11 w(b, 8) ” ” ”
12 i W(C7 6)= W(aa 7)5 W(b7 8)} i i
8 w(c,6) | {w(a,7),w(b,8)} ” 6
13 ” ” {6} |”
8 w(a,7) |{w(b,8)} ? 7
10 ”» ” {a, b} ”
11 w(a,13)| ” N
12 ” {w(b, 8),w(a, 13)} ” ”

Figure 3: Trace of SE_Within() event processing for
the 1D example in Figure 1 up through ¢t = 7.

An event-driven k-NN query processing algorithm
finds the soonest oc-event to occur in the future out
of all possible oc-events. This is called the nearest
neighbor event (nn-event) because it will cause the k-
NN query result to change. A nn-event is an oc-event,
but not every oc-event is a nn-event. Figure 4 outlines
a simple event-driven algorithm to maintain a 1-NN

query.

procedure SE_Nearest_Neighbor(r, ¢,t)

1. nn <« 0, done + false
2. foreach tuple 7 € r do
3. if nn = 0V ||Pko(7), ¢,t|| < ||Pko(nn),q,t|| then
4. nn < T
5. end foreach
6. while —done do
7. e+ 0
8. foreach 7 € r A7 # nn do
9. e’ + next_oc_event(Pko(7), g,Pko(nn),t)
10. if e=0V Time(e¢’) < Time(e) then e + ¢
11. end foreach
12. if e # 0 then t < Time(e), nn « Tuple(Pko(e))
13. else done < true
14. end while

Figure 4: SE_Nearest_Neighbor(r, ¢, 1)

The algorithm first scans r to find the nearest
neighbor nn. The algorithm then examines every ob-
ject to find the next oc-event for that object. Func-
tion next_oc_event(p, g, nn,t) returns the next oc-event
after time ¢ with respect to query point ¢, and the
nearest neighbor nn. If no such event exists, then

it returns a null event with time stamp oo. This is
a simple computation based on solving the equation
|p(time), g(time)| = |nn(time), q(time)| for time. For
dimensionality greater than 1 this is a quadratic equa-
tion with a closed form solution. If the roots exist and
are real numbers, then the next one greater than ¢ is
returned. When the next nn-event comes due, the
algorithm again examines every object and computes
their oc-events to find the next nn-event. Figure 5
shows a trace of the event processing portion of the
algorithm (lines 6-14) up to time ¢t = 7.5 for the 1D
example in Figure 1.

Note that SE_Nearest_Neighbor() does not have a
queue for events. This is because the nearest neigh-
bor changes on each nn-event thereby rendering previ-
ously computed oc-events irrelevant. The asymptotic
running time for SE_Nearest_Neighbor() is O(E,, * N)
where FE,, is the number of nn-events processed
throughout the course of the query maintenance, and
N is the cardinality of r. The asymptotic running
time for SE_Within() is O(N + E,,) where E,, is the
number of w-events processed throughout the course
of the query maintenance.

line # | 7 | e e nn |t
7 -0 - c 1
8 a
9 ” ”

10 ” | oc(a,6.5)
8 b |7 B i
9 ”» ”
10 >
12 K > K
7 > |0 ? ? ?
8 a |” ? ? ”
9 ” ” oc(a, 7.5) ” ”
1 0 ” ”
8 c |7 ? ? ?
9 o oc(c, 00)
12 ” ? ” a 7.5

Figure 5: Example trace of SE_Nearest_Neighbor()
event processing (lines 6-14, Figure 4) for the 1D ex-
ample in Figure 1 up to time t = 7.5.

These simple algorithms serve to illustrate the fun-
damental differences in processing nn-events vs. pro-
cessing w-events. The oc-events from which the nn-
event is chosen are dependent on the query result
which changes when a nn-event occurs. This makes all
previous oc-events computed with respect to the old
query result irrelevant. This results in a need to com-
pute new oc-events when the query result changes. On
the other hand, pending w-events do not become irrel-
evant when the query result changes because w-events
are independent of the query result. Any success-
ful approach to maintaining continuous k-NN queries
must have a way to reduce the number of oc-events

considered for the next nn-event when nearest neigh-
bor changes. One approach presented in previous
work is to use an index to aggregate objects arranged
in a hierarchy to reduce the number of objects con-
sidered each time the next nn-event is computed [13].
Another is to maintain a list of objects sorted by dis-
tance from the query point trading an increase in the
number of events processed for a decrease in the num-
ber of objects considered per event [7].

3 Previous Work

Event processing of PKO data has been studied in do-
mains such as simulation [3, 8], computational geom-
etry [2], and moving object databases. Most work in
moving object databases has focused on indexing and
support of ad-hoc spatial queries [1, 10, 12, 15]. More
recently, continuous spatial queries of kinematic data
have been studied [7, 13]. However, to the best of our
knowledge, no previous work reporting experimental
results on maintaining continuous k-NN queries in the
presence of updates on kinematic data sets has been
reported.

3.1 Plane-Sweeping Technique

In [7], Mokhtar et. al. describe a method to maintain
the k-NN query result on sets of PKO data over time.
The algorithm starts by creating a list of PKO’s sorted
by their current distance from a query point. Events
are then computed corresponding to the instances in
time when any point will change its position on the
list with its neighbor. These events are inserted in
a priority queue sorted by time. If an object is up-
dated, then any events on the queue involving that
object are recomputed. The list of PKQ’s is updated
as each event is processed in temporal order. The first
k elements on the list form the k-NN result set.

The asymptotic size of the priority queue is O(n)
where n is the number of moving points. The number
of points that need to be examined when an event is
processed is O(1) since only immediate neighbors on
the list need to be examined. If n is large, it would
be reasonable to assume that much of the event queue
would reside on disk. The rate of events that need
to be processed in this approach depends on the dis-
tribution and motion characteristics of the data set,
but it would be easy to imagine cases were the num-
ber of events processed over a given amount of time
would be much greater than for the algorithm pre-
sented in Figure 4 because an event is processed ev-
ery time any two objects change order on the list and
not just when an object changes order with the near-
est neighbor. The performance behavior in practice
of this algorithm remains unclear since the paper is

theoretical, and no implementation details or experi-
mental results are presented.

3.2 TPR-tree

The Time Parameterized R-tree (TPR-tree) described
in [10] by Saltenis et. al. is an index for kinematic data
sets. It is a disk-based object hierarchy R-tree variant.
In the R-tree, each node is stored in one disk page.
Each node has an associated minimum bounding box
(MBB). Leaf nodes contain the minimum bounding
boxes (MBB) for the objects themselves. Each inter-
nal node has an MBB for each subtree bounding the
objects in the subtree.

The bounding boxes (BB) in a TPR-tree need not
be minimal. Each BB is moving hyper-rectangle spec-
ified by two PKO objects defining opposite corners of
the BB. Each dimensional component of the velocity
vector of one of the BB corner points is the minimum
for all objects bounded by the box. Similarly, each di-
mensional component of the opposing point defining
the BB is the maximum velocity vector component
for all bounded objects. This ensures that all objects
bounded by the box stay bounded as time progresses,
but the BB rarely stays minimal. The TPR-tree inser-
tion and deletion algorithms try to compensate for this
lack of tight containment in a number of ways. One is
that on each update, the BB is adjusted to be minimal
at the time of the update. Another is that the algo-
rithm tries to put objects moving in a similar manner
(e.g., speed, direction), or to a similar destination, in
the same leaf node. Even with these adjustments, the
TPR-tree tends to degenerate as time progresses and
must be rebuilt periodically. Saltenis et. al. use the
TPR-tree to support ad-hoc spatio-temporal window
queries.

3.3 TP KNN Algorithm

In [13], Tao and Papadias describe a method, called
the time parameterized k-NN algorithm (TP KNN),
to compute the k-nearest neighbors (k-NN) of a kine-
matic data set, and the nn-event. This algorithm
works for both PKO objects and objects with kine-
matic bounding boxes. Tao and Papadias use the
TPR-tree in their experiments, but assert that any
object hierarchy index for kinematic data will work.
To compute the initial k-NN result set, they evaluate
the position of the bounding boxes in the index and
kinematic data objects at the query start time. The
initial result set is then found using established k-NN
algorithms. They consider both a depth-first (DF) [9]
and best-first (BF) [6] k-NN algorithm in their ap-
proach.

To find the k nearest neighbors, the DF algorithm
examines each node starting at the root of the index

tree. The bounding box of each subtree is placed on
a local priority queue sorted by its distance from the
query object. The first object on the queue is popped,
and the process is repeated recursively. When the first
leaf node is reached, the closest k objects in the leaf
are put in a global array. The recursion then unwinds
to the parent node where the next node in the local
queue is popped off. If the next node on the queue is
closer to the query object than the current k** near-
est neighbor then the algorithm is invoked recursively
on that node. If it is not closer, then the rest of the
nodes on the local queue may be ignored. This is be-
cause they can not contain any objects closer to the
query object than the current k** nearest neighbor.
The recursion continues to unwind until a closer node
is found or the recursion exits. When subsequent leaf
nodes are processed, each object in the leaf is com-
pared to the current k** nearest neighbor and added
to the result set if they are closer. This results in a
new even closer k** nearest neighbor. The distance to
the k** nearest neighbor defaults to infinity until the
k neighbor candidates are initially found. The BF al-
gorithm is similar to the DF algorithm except that it
uses a global priority queue to order the index nodes
by distance from the query point. Thus the next clos-
est node is always examined first regardless of which
node was just processed.

In the TP KNN algorithm, once the k nearest
neighbors are found, the next nn-event is found. This
is the so called TP component of the approach de-
scribed in [13]. Finding the initial k-NN result is
called the non-TP component. The TP component is
obtained using the same neighbor finding methods as
the non-TP component, but now instead of ordering
nodes and objects by distance from the query point,
they are ordered by their next oc-event time (referred
to as their influence time in [13]). The oc-event times
of the aggregate kinematic BB’s will always be less
than or equal to the oc-event times of the objects that
they bound. In this way, the algorithm avoids exam-
ining every kinematic object when trying to compute
the nn-event. Tao and Papadias support continuous k-
NN queries by invoking the TP component each time
the nn-event is processed. Their approach does not
support updates during query processing.

4 Extending TP KNN for Updates

In this section we extend the continuous TP KNN
algorithm presented in [13] to support updates dur-
ing processing of the query, termed the extended TP
(ETP) algorithm. Later in Section 5 we present a new
contribution of our own, the Continuous Windowing
KNN algorithm (CW) algorithm, and compare it to
the ETP algorithm. The notation and functions de-

fined in Section 2 are used in this section.

One simple approach to extend the continuous TP
KNN algorithm is to invoke the non-TP and TP com-
ponents of the algorithm whenever an update occurs.
A more efficient approach, Extended_TP_Knn() (ETP)
given in Figure 6, is based on the observation that
the TP and non-TP components are only needed if
an update affects points in the k-NN result set, af-
fects points involved in the nn-event, or introduces an
oc-event earlier than the current nn-event.

procedure Extended_TP_Knn(r,g,k,t)

1. tpr < TP_Build_Index(r)

2. TP_Compute_Knn_Result(tpr, ¢, k,t, K)

3. e« TP_Find_Next_Knn_Evt(tpr,q,t, K)

4. while — done do

5. u < Next_Update(r)

6. while Time(e) < Time(u) do

7. if Tuple(Pko(e)) N K = () then

8. K <+ (K U Tuple(Pko(e))) — Kth(K)

9. e < TP_Find_Next_Knn_Evt(tpr, g, Time(e), K)
10. end while
11. if update u is an insertion then
12. e < TP_Process_Insert(u, tpr,q, e, K)
13. else
14. e « TP_Process_Delete(u, tpr, g, ¢, K)

15. end while

Figure 6: Extended_TP_Knn() (ETP)

In Figure 6, parameter r is a relation with schema
R, q is the PKO query point, k is the number of neigh-
bors to find, and ¢ is the current time. Variable K is
the query result, ¢pr is the TPR-tree index, u is an up-
date tuple where Time(u) denotes the time of the up-
date, and e is the nn-event. Function Next_Update(r)
returns the next scheduled update u for relation r. If
no updates are currently pending, then it returns a
null update with time stamp oo. For simplicity, we
assume there is always at least one update or event
pending; otherwise, the process can simply sleep un-
til one is available. Function Kth(K) returns the &
nearest neighbor of K at the time K was last modified.

The algorithm starts by using TP_Build_Index() to
build the TPR-tree (line 1). It then applies the non-
TP component of the TP KNN algorithm (described
in [13] and Section 3.3) to find the initial k-NN query
result in a call to TP_Compute_Knn_Result() (line 2). A
call to TP_Find_Next_Knn_Evt() computes the nn-event
using the TP component of the TP KNN algorithm.
If no such event exists, then TP_Find_Next_Knn_Evt()
returns a null event with time stamp co. The main
loop then processes updates and events in the order
of the time of their arrival until some arbitrary termi-
nation condition is met (e.g., time limit, event limit,
update limit). For each event processed, the result set
is adjusted if needed, and then the earliest nn-event
is computed using the TP component of the TP KNN
algorithm again (lines 7-9).

function TP_Process_Insert(u,tpr, ¢, €, K)
TPR_Insert(tpr,Pko(u))
if |[Pko(u),q, Time(u)|| < [|Pko(Kth(K)), g, Time(u)||
then
K + (K Uu) — Kth(K)
e < TP_Find_Next_Knn_Evt(tpr, ¢, Time(u), K)
else
e’ + next_oc_event(Pko(u), ¢,Pko(Kth(K)), Time(u))
if Time(e’) < Time(e) then e «+ ¢
return e

©W 0o ~NO U WN -

Figure 7: TP_Process_Insert()

TP_Process_Insert() handles the insertion of tuples
(see Figure 7). TPR_Insert() inserts the PKO attribute
into the TPR-tree index (line 1). If u is closer to
the query point than the current k** nearest neighbor
then the current k** nearest neighbor is removed, u
is added to K, and then the new nn-event is found
(lines 2-5). If u is not closer to ¢ than the current
k" nearest neighbor, then the next oc-event for only
u is computed using next_oc_event(). If the oc-event
for w is earlier in time than the current nn-event then
it becomes the new nn-event (lines 6-8).

a q c
=2 <-H4--@=Pi----H4---- ——-l—-ﬁ—.————)——>
a p b
t=25 <-4---@»--g4----
insertp-/’

w-event ——*

t325<-4----4od—e>let;p--\-jxo+.- -4----> >
t=35 <—-|————-|.—>—-|——---< ';”-4----)--

\\/ delete ¢
1 2 3 4 7
coordinate val ue

4—“4————) >

- -0

Figure 8: Example snapshots in time of 1D PKO’s,
events, and updates up to time ¢ = 3.5. Arrow length
indicates distance traveled in one unit of time.

Figure 8 is a 1D example with updates. Columns 1
through 4 in Figure 9 show how updates given in the
example affect pending events for the ETP algorithm.

t U nn|e (ETP) [Q (CW)
- c |oc(b,4) |{oc(b,4),

W(C5 6)5 W(a‘7 7)’ W(b7 8)}
2.5 |insert p [c |oc(p,3.5) | {w(p, 3),0c(b,4),

W(C, 6)’ W(a, 7)’ W(b7 8)}
3.0 |- ¢ |oc(p,3.5) | {oc(p,3.5),w(p,4.2),

W(C, 6)’ W(a’i 7)7 W(b7 8)}
3.25 | delete p|c |oc(b,4) |{oc(b,4),

W(C, 6)5 W(a7 7)7 W(b7 8)}
3.5 |delete c |b |oc(a,7.5)|{w(a,7),w(b,8)}

Figure 9: Event trace for the example in Figure 8.

In Figure 8 a tuple with PKO attribute p =
pt(2.75,2.5,2.5) is inserted into relation r. This is
handled in lines 6-8 of Figure 7 resulting in a change

of the nn-event (Figure 9, row 2, column 4).

function TP_Process_Delete(u, tpr,q,e, K)
TPR_Remove(tpr,Pko(u))
if KNu#0 then
TP_Compute_Knn_Result(tpr, ¢, | K|, Time(u), K)
e < TP_Find_Next_Knn_Evt(tpr, ¢, Time(u), K)
else if Tuple(Pko(e)) = u then
e + TP_Find_Next_Knn_Evt(tpr, ¢, Time(u), K)
return e

NOo O WN

Figure 10: TP_Process_Delete()

TP_Process_Delete() handles deletion of tuples (see
Figure 10). TPR_Remove() deletes the PKO attribute
from the TPR-tree index (line 1). If w is part of the
current query result, then the query result and nn-
event must be recomputed from scratch using both
the non-TP and TP components of the TP KNN al-
gorithm (lines 2—4). If w is not part of the result but is
involved in the current nn-event then a new nn-event
is found using the TP component of the TP KNN al-
gorithm (lines 5-6). For example, at time ¢ = 3.25

in Figure 8, p is deleted. The TP component of the
TP KNN algorithm is used (lines 5-6 in Figure 10) in
finding the next nn-event (Figure 9, row 4, column 4).
The deletion of the nearest neighbor ¢ at time ¢ = 3.5
in the example of Figure 8 requires that both the TP
and non-TP components of the TP KNN algorithm
be used (lines 2-4 Figure 10).

w(g,t6)

Radius of
oc(b,t2)

Window at
“— distance d
Figure 11: Example illustrating the CW approach.
Only oc-events involving PKO’s a and b in the window
indicated by the outer circle are considered for the
next nn-event with respect to nearest neighbor nn and
query PKO ¢g. PKO’s g and h are not considered for
the next nn-event until they enter the window.

5 Continuous Windowing KNN (CW)

The Continuous Windowing KNN algorithm (CW) is
our main contribution. It is motivated by the observa-
tion that w-events are fundamentally less expensive to
process than oc-events (see Section 2). The basic ap-
proach of the CW algorithm is to filter the number of
moving points that need be considered when process-
ing oc-events by maintaining a within query around
the same query point containing at least k points in

the within query result. Figure 11 is an example where
the outer circle is the within window. Only PKO’s in-
side the window are considered in searching for the
next nn-event. Conceptually, the data set is divided
into two subsets of points: those that are close to the
query point, and those that are far away. Although
overall this introduces more events than just those
that result in a change to the k-NN query result, it
makes processing the oc-events cheaper. For the al-
gorithm presented below we assume that the query
point is moving, but not updated. Section 6 discusses
updates to the query point.

function Continuous_Windowing_Knn(r, g, k,c,d,t)

1. CW_Load(r,q,d,t,W,Q)
2. CW_Compute_Knn_Result(q, k,t, W, K, Q)
3. u < Next_Update(r), e« Pop(Q)
4. while — done do
5. if ((W|<k)V(cxk<|W|) then return false
6. if Time(u) < Time(e) then
7. CW_Process_Update(u, ¢,k,d, W, K, Q)
8. u Next_Update(r)
9. else
10. if ¢ is a w-event then
11. CW _Process_Within_Evt(e, ¢, k,d, W, K, Q)
12. else CW_Process_Nn_Evt(e, g,k,d, W, K, Q)
13. e « Pop(Q)
14. end while
15. return true

Figure 12: Continuous_Windowing_Knn() (CW)

The CW algorithm is shown in Figure 12. All no-
tation, variables and functions are as described in the
previous sections unless otherwise specified. Parame-
ter ¢ > 1 is a small number. Variable e can be either
a w-event or an oc-event.

procedure CW_Compute_Knn_Result(q, k,t, W, K, Q)
I« list of all 7 € W sorted by ||Pko(7),q,t||
K < list of first k elements of [
min_e < 0 /* Time(min_e = 0) = oo */
foreach tuple 7 € W A7 # Kth(K) do

e « next_oc_event(Pko(7), ¢,Pko(Kth(K)), t)
if Time(e) < Time(min_e) then min_e < e
end foreach
if Time(min_e) < co then Q + Q Umin_e

W N WN -

Figure 13: CW_Compute_Knn_Result()

The algorithm starts by computing a within query
result W for distance d from PKO ¢. The body of
CW _Load() is identical to lines 1-6 of Figure 2 which
scans relation r to find all PKO’s within distance d of
query point g at time ¢ and stores them in W. It also
computes all future w-events and places them on prior-
ity queue Q. The k-NN result K is computed from the
contents of W, not r, by CW_Compute_Knn_Result()
(described below). The main loop then processes up-
dates and events in temporal order until the constraint
(W] > k)A(cxk > |W|) fails, or some arbitrary termi-
nation condition is met (e.g., time limit, event limit,

update limit).

procedure CW_Process_Update(u, gq,k,d, W, K, Q)

if ||Pko(u), ¢, Time(u)|| < d then

if v is insert then W« W Uu

else W« W —u

CW _Update_Knn_Result(g, k, Time(u), W, K, Q)
e < next_w_event(Pko(u), ¢, d, Time(u))
if Time(e) < co then

if v is insert then Q «+ QUe

else Q+— Q@ —e

Figure 14: CW_Process_Update()

Parameter d is initially chosen so that k < |W| <
¢ * k where ¢ > 1 is a small number such that ¢ x k is
the upper bound on the number of objects that may
comfortably fit in main memory. If this constraint
fails as the objects move, then the algorithm will not
have enough information (i.e., |W| < k), or enough
main memory (i.e., ¢ * k < |W|) to maintain K. In
this case, the algorithm must exit and restart at the
time it left off with an adjusted value for d. The query
result maintained up to the time of constraint failure
remains valid.

CW_Compute_Knn_Result(), shown in Figure 13,
computes K from W. By our assumption that W fits
in main memory, this can be achieved without any
disk accesses. All tuples in W are sorted by the dis-
tance of their PKO attribute from ¢ at time ¢. The set
K consists of the first k elements of the list*. Proce-
dure CW_Compute_Knn_Result() also inserts the next
nn-event in). This is done by computing all oc-events
for the tuples in W and inserting the next oc-event to
occur (the nn-event) into @ if it exists.

CW_Process_Update() is invoked when r is up-
dated (see Figure 14). If u is within distance d of
q at update time, then two things happen. First,
W is updated appropriately (lines 2-3). Second,
CW_Update_Knn_Result() in line 4 updates the k-NN
results set and any pending nn-event on @ if needed.
Finally, any w-event associated with tuple u is calcu-
lated and added to @, or removed from () as needed
(lines 5-8).

O ~NOO P WwWN-

procedure CW_Update_Knn_Result(q, k,t, W, K, Q)
1. K+ 0

2. Remove any pending nn-event from @

3. CW_Compute_Knn_Result(g, k,t, W, K, Q)
Figure 15: CW_Update_Knn_Result()

A very simple solution for CW_Update_Knn_Result()
is shown in Figure 15. If CPU time is a factor, then a
more efficient case-by-case approach may be needed.
Since we assume that W and K will fit in main mem-
ory, the only impact on the number of disk accesses

4For simplicity, and brevity, we do not consider the case
when two PKO attributes are exactly at the same distance from
q at time ¢

occurs when modifying @) to change the nn-event.

For example, consider Figure 8. Columns 1 through
3, and 5 of Figure 9 show how @) changes for each time
step of the example. At ¢t = 2.5 a tuple with PKO
attribute p = pt(2.75, 2.5, 2.5) is inserted into relation
r. Location p(2.5) is farther from ¢ than d = 1.5 so
a new w-event w(p,3) is added to the priority queue
Q@ (handled by lines 5-8 of Figure 14). At time t = 3
the w-event is processed and the new nn-event e =
oc(p,3.5) is inserted into the queue (lines 10-11 of
Figure 12). At time t = 3.25 p is deleted, and the
new nn-event, oc(b,4), is computed by examining the
elements of W = {b, ¢} (all lines of Figure 14). At time
t = 3.5 the nearest neighbor ¢ is deleted (all lines of
Figure 14).

procedure CW_Process_Within_Evt(e, ¢,k,d, W, K, Q)
if W N Tuple(Pko(e)) = 0@ then
W <« W U Tuple(Pko(e))
Q@ < Q U next_w_event(Pko(e), q,d, Time(e))
else
W « W — Tuple(Pko(e))
CW_Update_Knn_Result(g, k, Time(e), W, K, Q)

Figure 16: CW_Process_Within_Evt()

CW_Process_Within_Evt() in Figure 16 is invoked
on w-events. An enter event is a w-event where
Pko(Tuple(e)) is moving closer to the query point. An
exit event is when it is moving farther away. For an
enter event, Tuple(e) is added to W and the subse-
quent exit event is calculated and inserted in @ (lines
2-3). Time t = 3 of Figure 8 shows an example en-
ter event. In the example, the event generates a new
nn-event e = oc(p,3.5). On an exit event, Tuple(e)
is simply removed from W (line 5). Any change in
W could also change the k-NN result, or the nn-
event. The result K and the associated nn-event
are reexamined and changed if needed in the call to
CW_Update_Knn_Result() (line 6).

CW_Process_Nn_Evt(), invoked in line 12 of Fig-
ure 12, handles nn-events. Again, since K and
W both fit in memory, and K is calculated using
W, not r, processing nn-events does not induce any
new disk accesses except for a possible update to
Q. CW_Process_Nn_Evt() could simply be a call to
CW_Update_Knn_Result() (Figure 15). For brevity,
these algorithms do not show how to handle cases
when events or updates happen at exactly the same
time.

O U WN

6 Performance Issues

Analysis of algorithms for kinematic data is difficult
without making many simplifying assumptions. Per-
formance is dependent on many factors such as data
set size, location distribution, velocity distribution,
distribution of updates among tuples, and update fre-

quency distribution. Rather than attempting a rigor-
ous analysis on an overly constrained subset of these
factors, this section discusses some key performance
issues of the ETP, CW, and Plane-Sweeping technique
(PS) (described in Section 3.1), and how these factors
play a part in the performance of each algorithm.

We assume that for large data sets, the majority of
the data is stored on disk. Accesses to disk are orders
of magnitude slower than memory, so cost is measured
in number of disk accesses. For the sake of discussion,
assume that all PKO data and query objects share
the same location, velocity, and update rate distribu-
tions. Ignoring esoteric cases, assume that all points
are moving relative to the query point, and that they
are not all moving in the same direction and at the
same speed. Note that there are no implementation
details for the PS method presented in [7] so we need
to make assumptions for this approach in order to
analyze it. PS creates a sorted list Lpg of all PKO
objects by distance to the query point, and has an
event queue (Qps. Let us assume an implementation
using B-tree variants for both Lpg, and @ ps to sup-
port efficient insertions and deletions. The CW event
priority queue @ cw is implemented using a B+-tree
variant (see Section 7).

Initial Build: All three methods require an initial
scan of some relation r. ETP scans r to build the
TPR-tree index. CW scans the relation to find the
query result and pending w-events. PS creates a list
sorted by distance.

Data Structure Size: Let n be the size of the PKO
data set. The asymptotic upper bound for the TPR-
tree, Lpg (ignoring @ ps for now), and Qcw data
structures is O(n). The lower bounds for each data
structure are not the same. The entire data set must
be inserted into the TPR-tree and L pg giving a lower
bound of Q(n). The best case for CW is when no
objects outside the within query result will enter the
within query window in the future. In this case, the
only objects involved in events in Q¢ow are those
in the within query result giving a lower bound of
Q(W|). Given our assumption that |W| <« n, it is
likely that the size of Q cw will be much smaller than
the data structures for the other approaches.

Rebuilds: Rebuilding these structures from scratch
may be required on occasion. Let UI be the aver-
age time period between two updates for a single ob-
ject. By experimentation, Saltenis et. al. determined
the TPR-tree performance degrades after time UI be-
cause almost all the entries have been updated by that
time causing the index to degenerate due to increas-
ing overlap of the index nodes. They conclude the
TPR-tree should be rebuilt when time UI is reached.
The PS priority queue @) ps needs to be rebuilt when-
ever the query point is updated because all the events

on the queue will no longer be valid. The expected
time between updates to the query point is also UI if
we assume the same update rate distribution for the
query point as the rest of the data set. A rebuild is
also needed for CW when the query point is updated
for the same reason. A rebuild is also needed in the
CW approach if the constraints on |W| fail. The fail-
ure rate for these constraints depends heavily on the
characteristics of the data and the method used to
determine d. At the least, we would expect the CW
method to rebuild more often than the other methods.

Number of Fvents: Only the nn-events are pro-
cessed in the ETP approach. This makes ETP opti-
mal in the number of events processed throughout the
course of a query. There is only one event pending at
any one time. CW processes additional w-events. The
number of w-events over the course of a query, or on
the event queue at any one time, depends on the selec-
tivity of the within window and the motion character-
istics of the data. PS processes an oc-event every time
a neighbor changes position in Lpg. This includes
the nn-event. The number of events on @) pg at any
one time is O(n). Since these events are when PKQ'’s
change order in Lpg, it is easy to imagine cases when
the distance between neighbors on the list are small
and thus many of these events on the queue will be im-
minent (e.g., points moving with different speeds and
directions). In such cases, many more events would
be processed over the course of a query than what the
CW method would require.

Cost of Events: The cost of processing each event
for each method is not the same. For the PS method it
is only necessary to examine the immediate neighbors
of objects that switch order on Lpg to find the next
time they will switch order with their new neighbors.
Assuming a B-tree structure for Lpg gives a cost of at
most O(logn) to find the neighbors. The cost of event
updates in @ pg is also O(logn). The CW approach
is even cheaper requiring no disk accesses to exam-
ine other objects when either a w-event or oc-event
is processed because all the objects that need to be
examined are already in main memory. The only cost
is in updating the event queue which is O(logn). In
the ETP approach, the cost of processing an event is
O(logn) for the depth first (DF) TP component, and
O(n) for the best first (BF) TP component of the al-
gorithm. The worst case for BF happens when all ob-
jects are at the same distance from the query point. In
practice this is unlikely in low dimensional data sets,
and experiments show BF and DF perform similarly
on uniformly distributed data. The ETP method has
no event queue. The entire cost of the ETP method
lies in the TPR-tree operations.

7 Experiments

This section presents experimental results comparing
the ETP (Section 4) and CW (Section 5) algorithms.
Due to time and space constraints, we did not imple-
ment the PS algorithm since the approach is theoreti-
cal and no implementation details were given in [7]. In
any case, by our analysis, it appears that the PS data
structures will be large, O(n). It also appears that
the frequency of events would likely be higher than
the CW or ETP approaches, since the differences in
distances between objects on the list will be small,
especially in the case of uniform data.

In our experiments, we first replicate the results
obtained by Tao and Papadias in [13] for their con-
tinuous version of the TP KNN algorithm without
updates and compare this to the CW algorithm (Fig-
ure 17(a)). We then compare the the ETP (both TP
BF and TP DF variants) and CW algorithms while
updating the data set during query maintenance for
different values of various parameters such as update
rate, distribution, and values of k.

We use code provided by Saltenis et. al. from their
original implementation of the TPR-tree [10]°. This
was built on the GiST [5] code version 0.9betal. We
extended this with DF and BF algorithms for the TP
and non-TP components of the TP KNN algorithm.

To implement the CW priority queue, we use a B+-
tree variant of a priority search tree called the Event
B-tree (EB-tree). In our implementation, every PKO
has a unique id, or key. The priority queue is a B+-
tree ordered by key to support efficient insertions and
deletions of events. In addition to propagating the
min-max key up the B+-tree, the earliest event time
of all events in each subtree is also propagated up to
the root. The earliest event in the tree is found by
following the minimum event time down the branches
of the tree to the leaf in which it is stored. This is
implemented by extending the same GiST code used
by Saltenis et. al.

To generate data, we use the data generator de-
scribed in [10] modified slightly to generate normal
distributions in addition to the uniform distribution.
This code was also provided by Saltenis et. al. and
used in their original experiments for the TPR-tree.

For comparability we attempt to reproduce the
data and parameters as closely as possible to those
experiments reported by Saltenis et. al. in [10] (TPR-
tree with updates), and Tao and Papadias in [13] (TP
KNN algorithm). When we borrow experimental pa-
rameters from other work, we indicate where it came
from with the paper reference.

In our experiments, we use 2D data sets [10, 13]

5A special thanks to Saltenis et. al. and Tao et. al. for
making their code available for use and study.

0L
0 10 20 30 40 50 60
nn—events

(a) Accesses vs. nn—events (no updates)

138§ CW U 50K i: ' q 350K W U ok —o— N
[TP BF UT50K 300K TP BF UT50K
80K [TPDFUTB0K B~ { , TP DF UT50K —5—
8 70K {1 @250K r
(7] g
& 60K 1 8200K |
S 50K 1 s
é 40K 4 %150K [
© 30K 1 100K |
20K ;
10K 50K

0 10 20 30 40 50 60
nn-events

(b) Accesses vs. nn—events (with updates) (c) Accesses vs. Updates

Figure 17: Experiment results

with uniform [10, 13] and normal [13] distributions in
a 1000x1000 world [10] with an average velocity uni-
formly distributed in (0,3] [10]. Our simulations run
for 60 time units [10]. Let UI be the average interval
between two updates for a single object. We use a
value of UI = 60 [10] unless otherwise specified. The
time interval between successive updates is uniformly
distributed between 0 and 2 % UT [10]. Uniform data
sets of size n are denoted U._n. The normal distribu-
tions have a mean location of (500,500). The standard
deviation and data set size for normal distributions are
specified in the figures. The query point was selected
at random from the initial data set, but is not updated
during a simulation run. Parameter k = 10 [13] unless
otherwise specified. The within distance d = 50 for
the within portion of the CW algorithm in all cases.

Disk pages are 1024 bytes [13]. The disk cache is 50
pages [10, 13] using a least recently used (LRU) [10,
13] replacement policy for both methods. A TPR-tree
leaf node holds 50 2D PKO objects (PKO function
coefficients, object id), and an internal node holds up
to 28 entries (kinematic rectangle, node id) [10]. A
leaf node of the EB-tree holds 24 events (event, PKO
function coefficients, object id, int {not used}) for 2D
PKO objects, and an internal node holds up to 66
entries (event, object id, node id).

Updates are performed by deleting the old value
and inserting the new value [10]. No new objects are
introduced or removed after the initial load. Disk
accesses are computed as an average over 200 data
sets [10, 13] and k-NN queries (one query per data
set). The ETP and CW methods were run on the
same data sets and queries.

Figures 17 and 18 show the cost to maintain queries

CW U_25K
140K [\ TPBFU_25K

20K M 1

0
60

120 . 240 480
update interval (Ul)
(a) Accessesvs. Ul

300K T 200K W 25K =<
250K | TPBF, 25K] TPBF U25K L
A 150K 4 7
200K |
<] A
§150K » A A4 F100K |
S100K | °
50K |
BOK [1
L AR SR —

100 200 300 U
standard deviation
(b) Accesses vs. Distribution

0 Yy Y
5 10 15 20k25 30 35 40
(c) Accesses vs.k

Figure 18: Experiment results

after the initial build and query result computation.
The disk cache is flushed after the initial build be-
fore the initial query result is computed. Figure 17(a)
shows disk accesses vs. nn-events without updates.
ETP outperforms CW by over two orders of mag-
nitude when there are no updates. This is because
the ETP algorithm does not have to process w-events,
and the DF and BF k-NN algorithms exhibit better
locality in disk accesses by making good use of the
cache. Accesses to the EB-tree are more random. As
reported in [13], the BF method performs slightly bet-
ter than the DF method. Figure 17(b) shows disk
accesses vs. nn-events with updates. In this case, up-
dates to the TPR-tree increase the number of disk ac-
cesses performed by the ETP algorithm. Figures 17(a)
and 17(b) only show up to 60 nn-events because not all
experiments had the same number of nn-events. The
stopping condition for our experiments was based on
elapsed time, not the number of events. All exper-
iments did have at least 60 nn-events, so averaging
disk accesses up to 60 nn-events is meaningful. Fig-
ure 17(c) shows disk accesses vs. number of updates.
Performance in this figure is similar to Figure 17(b).
This is because both the expected update rate and
event rate are uniformly distributed. CW outperforms
ETP by an nearly an order of magnitude when there
are updates in our experiments. All three figures seem
to exhibit near linear growth in any case.

We show only the TP BF variant of the ETP al-
gorithm in the remainder of the experiments, since
the TP BF and TP DF performance was similar for
updates. Figure 18(a) shows disk accesses vs. UI.
Even for a long average update interval, UI = 480,
the CW approach outperforms ETP by an order of

magnitude. The graph suggests that even a very small
number of updates significantly degrades the ETP al-
gorithm’s performance. Figure 18(b) shows disk ac-
cesses vs. distribution for a data set size of 25000
objects. From left to right, the first three data sets
are normally distributed with standard deviations of
100, 200, and 300, respectively, while the last distri-
bution is uniform. In the CW algorithm, data with
a smaller standard deviation was clustered leading to
larger within results and thus a larger event queue us-
ing the constant within distance of d = 50. Similar
performance is exhibited by the ETP algorithm for a
different reason. Clustering of the data causes the BF
and DF k-NN algorithms to search more subtrees of
the TPR-tree index before the search can terminate.
This is because more nodes are at similar distances
(or have similar oc-event times) from the query point.
This means fewer nodes are pruned in the search. Bet-
ter means for determining d may improve the perfor-
mance of the CW algorithm in the case of non-uniform
data On the other hand, there is no obvious means
of improving the ETP performance in this case. Fig-
ure 18(c) shows that the performance of both methods
to be insensitive to different & values.

Figure 19(a) demonstrates that the total number of
events processed using the ETP method is less than for
the CW method. In our experiments, the CW method
outperforms the ETP method in the total number of
disk accesses in spite of an increased number of events
processed when data is updated during query main-
tenance. Figure 19(b) shows the linear growth in the
number of disk accesses for the initial build and query
computation vs. data set size demonstrating that the
CW method is cheaper to build. The size of the CW
event queue is smaller than the TPR-tree used by the
ETP method as shown in Figure 19(c).

The experimental results are promising. They help
show that fewer disk accesses can be obtained when
updates are allowed during query maintenance using
the CW method vs. the ETP approach. The degra-
dation of the ETP algorithm is primarily due to the
increased overhead needed to maintain the TPR-tree
when updates occur. Our experiments also show the
cost of the initial build of the data structure is cheaper
for CW in the case of uniform data distributions.

8 Conclusion

The CW method outperformed the ETP method when
updates occur during query maintenance. In our ex-
periments, we chose a fixed d suitable for the data sets;
however, a good choice for d depends on the selectivity
characteristics of the data. The next step in our re-
search is to examine different approaches for determin-
ing an appropriate d for a given data set. One possible

cwWu
2% 153y X
$1200
1000
5
g 800
5 600
= 400
Baof, —AH—B
0
125K 25K 50K
data set size (bytes)
(a) Total eventsvs. Data set size
140K 1800K
CW U 7 cwWu
120K | TPBFU X N Ble0oKk [TrarY K- »
100K 400K T 1
81200K | 1
80K 21000K t 1
¥ 60K g 800K f 1
S oK g 600K 1 1
o 400K 1
20K B 200K t o—o—1
0 (O e ——
12,51 50K 125K 25K 0K

5
data set size (bytes)
(c) Data structure size vs. Data set size

K 25K
data set size (bytes)
(b) Build accessesvs. Data set size

Figure 19: Experiment results

approach is to use selectivity estimation techniques for
moving objects such as those described in [14]. This
introduces an extra overhead cost of maintaining addi-
tional supporting data structures such as histograms.
Another promising approach is to use a simple heuris-
tic to handle the case when the selectivity constraint
is violated. For example, if less than k objects are se-
lected, then increase d by some factor and recompute.
If the number of objects selected becomes too large,
then decrease d accordingly and recompute. This also
introduces extra overhead to rebuild the query from
scratch when a constraint exception occurs. There is
also no reason why d can not vary as a function of
time to handle non-uniform data sets. Comparison of
these and other techniques for determining d is the
next step for future work.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing
moving points. In Proceedings of the 19th ACM
Symposium on Principles of Database Systems,
pages 175-186, Dallas, TX, May 2000.

[2] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. In 8th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages
747-756, New Orleans, LA, January 1997.

[3] R. M. Fujimoto. Parallel discrete event simula-
tion. Communications of the ACM, 33(10):30-53,
October 1990.

[4] A. Gupta, I. S. Mumick, and V. S. Subrahma-
nian. Maintaining views incrementally. In Pro-
ceedings of the ACM SIGMOD Conference, pages
157-166, Washington, D.C., May 1993.

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

J. M. Hellerstein, J. F. Naughton, and A. Pfeffer.
Generalized search trees for database systems. In
U. Dayal, P. M. D. Gray, and S. Nishio, edi-
tors, Proceedings of the 21st International Con-
ference on Very Large Data Bases, pages 562—
573, Zurich, Switzerland, September 1995.

G. R. Hjaltason and H. Samet. Distance brows-
ing in spatial databases. ACM Transactions
on Database Systems, 24(2):265-318, June 1999.
(Also University of Maryland Computer Science
TR-3919).

H. Mokhtar, J. Su, and O. Ibarra. On moving
object queries. In Proceedings of the 21st ACM

Symposium on Principles of Database Systems,
pages 188-198, Madison, WI, June 2002.

Standards Committee on Interactive Simula-
tion (SCIS). IEEFE Std 1278.1-1995. IEEE Com-
puter Society, USA, March 1996.

N. Roussopoulos, S. Kelley, and F. Vincent. Near-
est neighbor queries. In Proceedings of the ACM
SIGMOD Conference, pages 71-79, San Jose,
CA, May 1995.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and
M. A. Lopez. Indexing the positions of contin-
uously moving objects. In Proceedings of the
ACM SIGMOD Conference, pages 331-342, Dal-
las, TX, May 2000.

H. Samet. The Design and Analysis of Spatial
Data Structures. Addison-Wesley, Reading, MA,
1990.

A. P. Sistla, O. Wolfson, S. Chamberlain, and
S. Dao. Modeling and querying moving objects.
In Proceedings of the 13th IEEE Conference on
Data Engineering (ICDE), pages 422-432, Birm-
ingham, U.K., April 1997.

Y. Tao and D. Papadias. Time-parameterized
queries in spatio-temporal databases. In Pro-
ceedings of the ACM SIGMOD Conference, pages
334-345, Madison, WI, June 2002.

Y. Tao, J. Sun, and D. Papadias. Selectivity es-
timation for predictive spatio-temporal queries.
In Proceedings of 19th IEEE International Con-
ference on Data Engineering (ICDE), pages 417
428, Bangalore, India, March 2003.

J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree-
based dynamic attribute indexing method. The
Computer Journal, 41(3):185-200, 1998.

