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Abstract

Database support for data mining has be-
come an important research topic. Espe-
cially for large high-dimensional data volumes,
comprehensive support from the database
side is necessary. In this paper we iden-
tify the data intensive subproblem of aggre-
gating high-dimensional data in all possible
low-dimensional projections (for instance es-
timating low-dimensional histograms), which
occurs in several established data mining
techniques.  Second, we show that exist-
ing OLAP SQL-extensions are insufficient for
high-dimensional data and propose a new
SQL-operator, which seamlessly fits into the
set of existing OLAP GROUP BY operators.
Third, we propose efficient implementations
for the operator, which take the limited re-
sources of main memory into account. We
demonstrate on a number of real and synthetic
data sets that for the identified subprob-
lem our new implementations yield a large
speedup (up to factor 10) over existing meth-
ods built in commercially available database
systems.

1 Motivation

Due the flood of data stored in nowadays databases
there is a strong need to find scalable methods to an-
alyze large data volumes efficiently. In the last decade
a number of useful data mining techniques were devel-
oped, including algorithms for building decision trees
and finding clusterings using high-dimensional data.
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One of the main problem addressed is dealing with
large data volumes which do not fit into the main mem-
ory.

From a database perspective we can ask how a
database system can efficiently support data mining al-
gorithms in a general way. Some approaches has been
published in the recent years [24,26] focusing mainly
on classifiers. However, most important in our con-
text is to identify general data intensive tasks, which
are shared by different data mining algorithms.

In this paper we identify the data intensive sub-
problem of aggregating data in all possibles low-
dimensional projections of high-dimensional data.
This task occurs in several data mining algorithms, for
example, the HD-Eye-system [12,13] — an advanced vi-
sual clustering system — needs to derive histograms in
all two-dimensional projections of a high dimensional
data space. Similar situations occur in mining corre-
lations with images [4], also during the build phase of
a decision tree, of baysian classifiers and in cases of
association rule mining.

In our motivation we want to use the simple ex-
ample of determining all low-dimensional histograms
of an high-dimensional data space. The number of
low-dimensional histograms with dimensionality k is
(2) for the dimensionality n of the high-dimensional
data space. This can be a quite large number for in-
stance for n = 256 and k = 2 we have to derive about
(236) = 32640 two-dimensional histograms. Figure 1
demonstrates the explosion of grouping combinations
for a given set of grouping columns. As the data vol-
ume may be very large a transfer possibly over the
network to the data mining client has to be avoided.
As a consequence we propose to perform the data in-
tensive tasks directly within the database and transfer
only aggregated data to the mining client.

For our histogram example the naive approach to
use a database system would be to issue for each his-
togram a single SQL-statement to the database. How-
ever, this causes the database to read the same data
multiple times from the secondary storage. Advanced
database systems also offer the GROUPING SET oper-
ator, which allows to query the database for all his-
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Figure 1: Explosion of the number of grouping combinations for n grouping attributes

tograms using a single SQL statement. The disadvan-
tage here is that the histograms in all projections have
to be enumerated in the query statement. A projection
can be seen as a combination of attributes. The use
of the GROUPING SET operator results into very large
query statements, exceeding the parser capabilities of
most database systems. The second disadvantage is
that the used implementations for the GROUPING SET
operator yields only a minimal performance speed up
over the naive approach.

Our idea is to use a new SQL operator — GROUP-
ING COMBINATION — to avoid the enumeration of at-
tribute combinations used for the aggregation in the
low-dimensional projections of the data space. As a
result the query size will be reasonable small. We also
propose algorithms to evaluate queries using the new
operator, which determine during a single scan of the
data as many histograms as possible fitting into the
given amount of main memory. We will show that
our new algorithms yield a tremendous speedup over
current implementations.

In the reminder of the paper we discuss related work
in section 2. In section 3 we describe the new oper-
ator and how it fits into the setting of other OLAP
Group By operators. In section 4 we propose algo-
rithms to evaluate the operator, which can deal with
very large data volumes and in section 5 we demon-
strate the performance of the algorithms. We conclude
the paper with section 6.

2 Related Work

The problem of how to support data mining applica-
tions by a database system has been studied in three
different contexts. The first context consists in sup-
porting the tasks around data mining. One recent ap-
proach [18] supports data management tasks including
transformations or handling of different data sources.
The proposed OLE DB-DM architecture basically pro-
vides an environment to access data from different
sources in a unified way, which is specific for data min-

ing. Another somewhat complimentary approach by
Chaudhuri et al. [6] is to support database queries,
which use results coming out of a data mining algo-
rithm.

In the second context researchers proposed data
mining specific query languages, which assume the
data mining algorithms (basically association rule min-
ing) to be integrated within the database engine. For
instance the M-SQL language [14] provides a special
MINE operator to support association rule mining.
The MINE RULE operator proposed in [17] is a similar
example for finding generalized association rules. The
Query flocks [25] provides a generate-and-test model
to mine association rules.

Approaches in the third context provide database
support for particular data mining algorithms by ex-
tending the database query language or making use
of known multi-purpose extensions in order to refor-
mulate the algorithms (whole or partially) in terms
of the extended language. This is an very interest-
ing way of tightly coupling the database with mining
algorithms, which has been done for association rule
mining [3, 23], clustering [19] and decision trees [24].
These examples for tight coupling make use of sophis-
ticated SQL queries and several mechanisms for gen-
eral database extensions like user defined table func-
tions and table operators [15]. Another very useful
possibility to extend the database is to provide user-
defined aggregates [26]. The main disadvantage here
is that the mining algorithm has to be written as user-
defined functions or user-defined aggregates, which in-
volves significant code rewrites. Also the capabilities
of the database to optimize the user-defined code are
very limited.

Complementary to user-defined functions is the ap-
proach of extending SQL by application specific op-
erators. One of the advantages of extending SQL by
special operators is the ability of the system to provide
special optimization techniques. [10] demonstrates the
motivation of the OLAP grouping extension by intro-



ducing CUBE and ROLLUP operators. Implementa-
tional perspectives are covered in [1,21,27] (see sec.
4.1 for details).

3 Operator Design

In this section, we outline the design of our proposed
CoMBI operator. In a first step, we show the usage of
our operator and explain its syntax and semantics.

3.1 Overview of SQL Grouping Operators

Using a relational database in a transaction-oriented
environment does not require any sophisticated ag-
gregation functionality. = However, discovering the
database system as the central integration and anal-
ysis platform in the context of predefined statistical
analyses or an Online Analytical Processing environ-
ment, simple grouping functionality could not satisfy
the demand arising from those applications.

Basically two different directions were addressed
from a language design and implementational point of
view. On the one hand, sequence processing was en-
hanced in the SELECT clause by introducing the OVER
clause with column-wise ordering, partitioning and dy-
namic windowing. On the other hand, complex group-
ing was enabled by introducing CUBE and ROLLUP
operators [10].

The CUBE operator generates all possible group-
ing combinations for a given set of grouping columns
resulting in 2™ different grouping combinations for n
grouping columns. The ROLLUP operator addition-
ally considers functional dependencies between group-
ing columns (in case of a classification hierarchy) and
yields n+1 grouping combinations for a list of n group-
ing columns. The GROUPING SETS operator — recently
added to standard SQL' — finally provides a basis to
explicitly specify all grouping combinations. Obvi-
ously all combinations are related to each other. For
example, a data cube of height 1 with two grouping
attributes A1 and A2 may be expressed as follows:

CUBE(A1,A2)

ROLLUP (A1), ROLLUP(A2)

GROUPING SETS(Q), (A1)),

GROUPING SETS(Q), (A2)),

GROUPING SETS((A1,A2), (A1), (A2),())

3.2 Computing Projections
Grouping Extensions

by Exploiting

Aggregation of k-dimensional projections of n-
dimensional data sets with & < n is an important
operations in the context of several data mining appli-
cations [2,4,9,12,20]. A common task of the mentioned
methods is to derive multi-dimensional histograms in
low-dimensional subspaces. For subspaces of dimen-
sionality k all attribute combinations of size (Z) at-
tributes have to be considered. With the number of

lsee ISO/IEC 9075-1:1999/Amd 1:2001 at http://www.iso.ch

attributes reasonably low, we may use the GROUP-
ING SETS clause to specify the necessary combinations
within a single SQL query. For our running exam-
ple we assume that we have four already discretized
attributes (this means the continuous attributes are
binned into discrete buckets) A, Ay, As, and A4 and
we may issue the following statement to compute bin
counts for the histograms in all six two-dimensional
subspaces:

SELECT A1, A2, A3, A4, COUNT(*) AS CNT
FROM ...
GROUP BY GROUPING SETS (
(A1, A2), (A1, A3), (A1, A4),
(A2, A3), (A2, A4), (A3, A4))

In case of high-dimensional data, the specification
of all possible combinations leads to very large query
strings. In general the query size grows in this case like
(Z), which exceeds the parser capabilities of today’s
database systems in case of typical data like images,
music or documents with hundreds of attributes.

Another alternative would be to issue a CUBE op-
erator over the given set of attributes and eliminate
the unncessary grouping combinations in a HAVING
clause. For the ongoing example with four attributes,
we would yield the following expression:

SELECT A1, A2, A3, A4, COUNT(*) AS CNT
FROM ...
GROUP BY CUBE(A1, A2, A3, A4)
HAVING NOT(
-- the 1-combination ...
(GROUPING(A1) = 1 AND GROUPING(A2) = 1 AND
GROUPING(A3) = 1 AND GROUPING(A4) = 1)
-- all 3-combinations ...
OR (GROUPING(A1) = 1 AND GROUPING(A2) = 1
AND GROUPING(A3) = 1)

OR ...
-- the 4-combination ...

OR (GROUPING(A1) = O AND GROUPING(A2) = O AND
GROUPING(A3) = O AND GROUPING(A4) = 0))

Although this would return the required two-
dimensional histograms, the queries size — in particular
the HAVING clause — grows in this case with the size
of the subset lattice minus the size of the k-level with
the required combinations. In this setting the query
length grows exponentially in the number of used at-
tributes, which also excludes an efficient handling of
the query string by the database SQL parser.

3.3 The ComMBI Operator

Relying only on existing grouping functionality does
not yield a viable solution to position a database sys-
tem as a solid platform for efficient statistical anal-
yses. Moreover, considering the set of grouping ex-
tensions, we strongly believe that an operator return-
ing all combinations of the same cardinality within
an aggregation lattice is a seamless extension to the
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Figure 2: Relationship of CUBE, ROLLUP, and GROUPING

COMBINATIONS

family of complex grouping operators. Figure 2 illus-
trates the effect of the COMBI operator compared to
CUBE/ROLLUP.

First of all, a CUBE operator returns all possible
combinations, which is (a) not feasible for a large num-
ber of attributes and (b) implies that most of the re-
sulting combinations are eliminated afterwards. Hier-
archical data cubes in general are composed by multi-
ple ROLLUP operators, each for a single dimension, so
that the ROLLUP operator returns the vertical direc-
tion of an aggregation lattice. In the same vein, the
GROUPING COMBINATIONS operator (aka. COMBI op-
erator for short) returns the horizontal direction of an
aggregation lattice.

To summarize, the GROUPING COMBINATIONS Op-
erator returns all (Z) grouping combinations for a
given set of n grouping columns of cardinality k. The
syntax integrates seamlessly into the SQL grouping
extensions of CUBE, ROLLUP, and GROUPING SETS:

GROUP BY GROUPING
COMBINATIONS((A1,A2, ,An), k)
This expression may be seen as a shortcut for the
GROUPING SETS expression with (Z) combinations
each with a cardinality of k, i.e.:

GROUP BY GROUPING SETS((A1,A2,...,Ak),
(A1,A2, ..., Ak-1,Ak+1),

)

The first parameter of the GROUPING COMBINA-
TIONS expression consists of a single grouping combi-
nation. The second parameter k denotes the cardi-
nality of the combinations. Obviously the value of k
is supposed to range from 0 to n with special cases
discussed in the following subsection.

3.4 Additional operator syntax and semantics

In the context of the COMBI operator, it is worth men-
tioning that the semantics of the GROUPING function
applies as well to the GROUPING COMBINATIONS oper-
ator. The GROUPING function denotes for every single
value of a tuple of the resulting table whether the cor-
responding entry is a system generated NULL value
(denoting a super aggregate value) or a user-defined
value. For example consider the following query exe-
cuted on a sample data set with a GROUPING function
defined for A;:

SELECT A1, A2, A3, A4
GROUPING(A1) AS GRP1,
GROUPING(A2) AS GRP2,
GROUPING(A3) AS GRP3,

COUNT(*) AS CNT
FROM ...
GROUP BY GROUPING
COMBINATIONS((A1,A2,A3,A4), 2)

A1 A2 A3 A4 GRP1 GRP2 GRP3 CNT

al_1 a2_1 NULL NULL O 0 1 17
al_2 a2_1 NULL NULL O 0 1 11
NULL a2_1 a3_1 NULL 1 0 0 23

As the resulting table may have many NULL val-
ues, we propose an alternative way of formating the
result to code the position of the groups in additional
rows declared by a new GROUPINGPOs function which
avoids the NULL values. An example for the syntax
and the results are shown below:

SELECT C1,C2
GROUPINGPOS(C1) AS GRPPOS1,
GROUPINGPOS(C2) AS GRPPOS2,

COUNT(*) AS CNT
FROM ...
GROUP BY GROUPING
COMBINATIONS((A1,A2,A3,A4), (C1,C2))

C1 C2  GRPPOS1 GRPPOS2 CNT
al_1 a2_1 1 2 17
al_2 a2_1 1 2 11
a2_1 a3_1 2 3 23

For the second syntax style the number of result
columns is only of the order the cardinality of the com-
bination size k instead of the number of attributes n.
Also the huge amount of NULL values does not occur.
To avoid ambiguous parameter settings the size of the
combinations is coded by the number of result columns
(in the example Cy and Cy), which are enclosed by the
second bracket block.

Additionally, special cases have to be considered re-
garding the cardinality of the grouping combinations
k and the number of attributes n.

e For k = n, the GROUPING COMBINATIONS opera-
tor returns a single set with all grouping columns
given as the first parameter, e.g.:

GROUP BY GROUPING

COMBINATIONS((A1,A2, ., An), n)
GROUP BY GROUPING SETS((A1,A2,...,An))
GROUP BY A1,A2,...,An

e For k = 1, the operator corresponds semantically
to a grouping set with n single sets, each consist-
ing of exactly a single grouping column. More
exactly:



GROUP BY GROUPING

COMBINATIONS((A1,A2, .,An), 1)

GROUP BY GROUPING SETS((A1),(A2),...,(An))

e For k = 0, the proposed GROUPING COMBINA-
TIONS operator produces a single grouping com-
bination encompassing all tuples of the underlying
table, e.g.

GROUP BY GROUPING

COMBINATIONS((A1,A2, ...,An), 0)
is equal to a query without any explicit GROUP
By clause but an aggregation function in the SE-
LECT clause.

To put it into a nutshell from a language point of view,
the aggregation within subspaces of high-dimensional
data is an important task within a huge variety of data
mining applications. Unfortunately, the currently ex-
isting SQL language constructs are not well suited to
fulfill those requirements. The proposed GROUPING
COMBINATIONS operator extends the set of GROUP
By operators designed especially for the OLAP con-
text and provides a uniform and flexible meaning to
support such subspace aggregations.

4 CowmBI Operator Implementation

Within this subsection, we focus on the implementa-
tional perspective of the operator design and demon-
strate different methods to compute the required
grouping combinations. In a first step, we review ex-
isting algorithms used to support the computation of
general grouping conditions. Thereafter we illustrate
the main memory and the sortorder based computa-
tion of the COMBI operator.

4.1 Implementational Perspectives of OLAP
Operators

The introduction of the CUBE operator triggered a
huge variety of implementations. Since all optimiza-
tion strategies apply to the other members of the
grouping operators as well, we simply refer to the
CUBE operator attracting the main attention within
the research community. The naive implementation of
a CUBE operator basically consists of the multiple ex-
ecution of the query, each run computing a different
grouping combination. Obviously this approach comes
close to the method of holding the information at the
client and calling the database to compute a single
grouping combination with a simple SQL statement.
The main idea of rewrite optimization strategies
is based on subset stacking. Using this strategy, a
grouping combination can be computed from the re-
sult of a preceding group by operation, if the current
group by operator is restricted to a subset of grouping
columns. The problem is to pick the optimal source

for a given group by combination according to smallest
parent (minimal data transfer) and sharing sort orders
(avoiding additional sort operators).

A greedy based algorithm considering only the local
decisions between two levels of an aggregation lattice
is given in [1]. An optimal method in the number
of sort operations is given in [21]. The same idea is
used to efficiently compute iceberg cubes [8], i.e. data
cubes with a HAVING clause. The grouping combina-
tions are computed in a bottom up manner so that
grouping combinations may be eliminated as early as
possible if the predicate can not be satisfied for higher
dimensional data cubes [5], [11].

The way of supporting complex grouping opera-
tors inside the database consists in providing a spe-
cial physical plan operator or special index structures
to boost the computation process. Representatives of
the second alternatives may be seen in cube trees [22]
and cube forests [16]. For our implementation, the
first alternative to implement a completely new oper-
ator is intensively discussed in [7] and [27] within the
context of the CUBE operator. The most similar ap-
proach to our implementation of the COMBI operator
is discussed in [27]. In a first step, the data stream is
split into chunks of the size of the main memory. In a
second step, the result of the CUBE operator is com-
puted step-by-step for each chunk. In opposite to the
COMBI operator, the primary goal of this approach is
to find the optimal sort order to benefit from subset
stacking, which is not possible for the COMBI operator.

4.2 Main Memory Based Implementation

The main requirement regarding the implementations
of the COMBI operator is to compute as many group-
ing sets as possible during a single scan of the data.
The intermediate results of the different grouping sets
reside in main memory during the scan. In principle
there are two possibilities to organize the results in
the main memory. First, if we can compute an upper
bound of the number of groups of a specific group-
ing set, we could store the intermediate results of this
grouping set in an array with constant access time. For
the histogram example we represent all possible multi-
dimensional grid cells in an array. However, we have to
pay for the constant access time with the wasted mem-
ory resulting from unused grid cells (grid cells with no
data point in).

The second possibility is to store only the needed
intermediate results of the different grouping sets in a
hash map container. Alternatively for the hash map
also a search tree structure could be used. In terms
of the histograms this means that only those grid cells
are stored, which contain at least one single data point.
The efficient use of memory is payed by an approxi-
mated constant or logarithmic access time.

The main memory based algorithm is the most I/0
efficient algorithm among our implementation for the



Algorithm 1 Main memory based algorithm for the
COMBI operator.

Algorithm 2 Partitioned algorithm for the CoMBI
operator.

Require: Relation R(A1,...,A,),k with 0 < k < mn,
ContainerType=hash map or array
1: if ContainerType=hash map then
2: (= initialize the data structures for all group-
ing combinations (Ai,...,A4,) of size k with
container hash map
3: else
4:  (C:= initialize the data structures for all group-
ing combinations (Ai,...,A4,) of size k with
container array
end if
for all tuple t € R do
for all Grouping Combinations ¢ € C' do
add the projection ¢.P(t) to c.container
end for
10: end for
11: Return C
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CoOMBI operator, because only one single table scan
of the data table is needed. However, the number of
grouping combinations may be to large to fit into the
main memory at the same time. To handle the prob-
lem that not all grouping combinations fit into the
main memory, we suggest to consider only a subset
of them during a single scan of the data table and to
apply multiple scans. This strategy however (similar
to the approach of [27]) implies that the set of group-
ing combinations is split into partitions resulting in
a minimal number of scans. For example, consider
for grouping colummns A,B,C, and D with |A] = 5,
|B| = 4, |C] = 3, |[D| = 2 and a space constraint
of 20 units. All six 2-combinations could be com-
puted within 4 scans if the partioning scheme applies
to {AB},{AC},{AD,CD},{BC,BD}. The size of the
available main memory can be given as a parameter of
the algorithm. For simplicity, we rely on the number
p, 1 <p< (Z) of grouping combinations, which are
determined during a scan of the data table.

The partitioned algorithm is an efficient extension
of the main memory algorithm to deal with a limited
amount of memory. Good choices for the parameter p
depending on the data distribution can be found with
sampling from the data table or using statistics of the
data table.

4.3 Sort Based Implementation

While the above algorithm implements a partition-
ing scheme on a grouping combination basis, the fol-
lowing approach exploits the existence of an ordering
scheme of the underlying data and reduces the over-
head needed for a complete re-scan. For example, for
three grouping columns A, B, and C with a space
constraint of one single 2-combination, the above ap-
proach may decide to compute the AB-combination
in a first scan, followed by AC' and BC combinations

Require: Relation R(A1,...,A,),k with 0 < k < mn,
ContainerType=hash map or array, p with 1 <
p<(3)

1: for i=0;i<[(})/p];i++ do
2:  if ContainerType=hash map then
3: C':= initialize the data structures for p group-
ing combinations of size k with container hash
map
else

C':= initialize the data structures for p group-
ing combinations of size k with container ar-
ray

end if

for all tuple t € R do
for all Grouping Combinations ¢ € C' do

add the projection ¢.P(t) to c.container

10: end for

11:  end for

12:  write out C

13: end for
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in the following scans. The total costs accumulate to
three full database scans. In the opposite, the order-
based implementation utilizes the ordering scheme of
the underlying data insofar as all combinations are si-
multaneously computed as much as possible.

The following example with grouping columns A,
B, C and a cardinality of |A| = 4, |B| = 3, and
|C| = 2 evaluating the SQL expression GROUP-
ING COMBINATIONS((A4, B, (), 2) yields the following
trace. For each record of the underlying data, the trace
shows the corresponding action ( S() implies storing
the value of the combination in main memory and in-
creasing the number of required storage units, W()
denotes writing the value to the output and releasing
the allocated main memory storage space).

A B C Action Storage
1: A1 Bl C1 ==> S(A1B1)
S(A1C1)
S(B1C1) 3
2: A2 Bl C1 ==> S(A2B1)
S(A2C1) 5
3: A3 Bl C1 ==> S(A3B1)
S(A3C1) 7
4: A4 Bl C1 ==> S(A4B1)
S(A4C1)
W(B1C1) 8
5: A1 B2 C1 ==> S(A1B2)
S(B2C1) 10
6: A2 B2 C1 ==> S(A2B2) 11
7: A3 B2 C1 ==> S(A3B2) 12
8: A4 B2 C1 ==> S(A4B2)
W(B2C1) 12
9: A1 B3 C1 ==> S(A1B3)
S(B3C1) 14



10: A2 B3 C1 ==> S(A2B3) 15
11: A3 B3 C1 ==> S(A3B3) 16
12: A4 B3 C1 ==> S(A4B3)
W(B3C1)
W(A1C1)
W(A2C1)
W(A3C1)
W(A4C1) 12
13: A1 B1 C2 ==> S(A1C2)
S(B1C2)
W(A1B1) 13
14: A2 Bl C2 ==> S(A2C2)
W(A2B1) 13
15: A3 Bl C2 ==> S(A3C2)
W(A3B1) 13
16: A4 Bl C2 ==> S(A4C2)
W(B1C2)
W(A4B1) 12
17: A1 B2 C2 ==> S(B2C2)
W(A1B2) 12
18: A2 B2 (€2 ==> W(A2B2) 11
19: A3 B2 C2 ==> W(A3B2) 10
20: A4 B2 C2 ==> W(A4B2)
W(B2C2) 8
21: A1 B3 C2 ==> S(B3C2)
W(A1B3)
W(A1C2) 9
22: A2 B3 C2 ==> ...
23: A3 B3 (2 ==>
24: A4 B3 C2 ==>

From this sample trace, we may deduce the follow-
ing observations as a basis for the proposed generic
algorithm. First of all, the optimal ordering of n
grouping columns requires with regards to the car-
dinality of the grouping columns that the condition
|A;| > |A; + k| for £ > 0 and 1 <4 < n holds. Every
other ordering scheme may apply as well but reduces
the savings gained by applying the algorithm (in fact,
the approach outlined in previous subsection may be
seen as an extreme variant without any ordering of the
underlying data stream).

Secondly, the order-based processing implies a par-
titioning scheme of the grouping columns. More
formally, if Aq,...,A, reflect the list of all group-
ing columns, Aq, ..., A are called dependant grouping
columns with A; the most and A, the least depen-
dant column. Ag4q,..., A, are called invariant group-
ing columns. In the above example, for lines 1 to 12,
A and B are dependant columns while C' is an invari-
ant column, i.e. all grouping combinations with an
invariant grouping column can be given to the output
as soon as there is a change in the least dependant
column B, e.g. W(B1C1) at line 4.

The basic algorithm of the sort based implementa-
tion is given in 3. In the first phase, all required group-
ing combinations ¢(t) are considered for each single
tuple ¢ of the raw data. If main memory is already al-
located for this combination, the histogram value will
be updated (S(g())). Otherwise, a new slot holding
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Figure 3: sequence of producing partial results

the information is allocated. In the second phase, all
combinations held within main memory are checked
as a candidate of an early result production (W (g())
operation). Figure 3 shows the three different 2D-
projections of the three grouping columns illustrating
the sequence of the generation of the single grouping
combinations.

Algorithm 3 Sort based algorithm

Require: Relation R
{G: set of grouping combinations}
{M: main memory slots}
1: for all tuple t € R do
2:  {Phase 1: compute all grouping combinations}
3. for all grouping combinations g € G do
4: if (g(t) already allocated in main memory)
then
update S(g(t))
else
allocate new S(g(t))
end if
end for
10:  {Phase 2: check for partial results}
11:  for all grouping combinations g € M do

12: if (g() is ready for early output) then
13: write to output W(g())

14: end if

15:  end for

16: end for

The benefit of the order-based implementation com-
pared to previous algorithms consists in the advantage
of a lower overall storage capacity. Compared to the
main-memory implementation with a storage overhead
of (4%3)+ (4%2) + (3%2) = 26 for computing all three
combinations simultaneously, the order-based imple-
mentation exhibits a storage capacity of only 16 units,
because combinations of invariant grouping columns
may be given to the output during the scan. Compared
to the partioned implementation, the main advantage
of the order-based approach is that with a restricted
storage capacity, the potentially succeeding scans do



not have to start at the beginning but at the position
where the storage overflow occurred in the preceding
run. For example, with only 5 units main memory
for the above sample scenario, 4 scans are required to
starting at line 1,3, 6, and 11. The net cost (with 24
as the cost for scanning the full data set) compute to
79 lines = 3.3 scans. With a main memory capacity of
9 units, only a single rescan starting at line 5 yielding
overall net cost of 1.8 scans. Table 1 compares the
total costs for each the implementation with regard to
the sample scenario.

The basic algorithm is depicted in algorithm 4.
The extension regarding the simple sort based im-
plementation consists of a mechanism controlling the
necessity of a rescan using the boolean variable
reScanlnitiated. Moreover, the variable reScanLine
records the current position for the start of the po-
tentially next re-scan. From a database point of view,
this intermediate scan requires the existence of an in-
dex based organisation of the raw data accoding to the
sort, order.

Algorithm 4 Partial ReScan algorithm
Require: Relation R
{G: set of grouping combinations
M: main memory slots}
{First initialize parameters}

1: reScanLine := currentLine := 1
2: repeat
3:  reScanlnitiated := false
4:  for all tuple t € R starting at currentLine do
5: {Phase 1: compute all grouping combina-
tions}
6: currentLine4+
7 for all grouping combinations g € G do
8: if (g(t) already allocated in main memory)
then
9: update S(g(t))
10: else if (enough memory available AND reS-
canlnitiated == false) then
11: allocate new S(g(t))
12: else if (reScanlnitiated == false) then
13: reScanlnitiated := true
14: reScanLine := currentLine
15: end if
16: end for
17: {Phase 2: check for partial results}
18: for all grouping combinations g € M do
19: if (g() is ready for early output) then
20: write to output W(g())
21: end if
22: end for

23:  end for

24:  currentLine := reScanLine
25: until reScanlnitiated # true
26: end

To summarize, the benefits of the sort-based imple-

mentation may be seen from two perspectives. On the
one hand, the implementation requires less main mem-
ory compared to the hash/array based implementation
and produces results as early as possible so that suc-
ceeding operators may work in a pipelined manner. On
the other hand, tight memory restrictions (especially
for high dimensional grouping combinations), imply
that necessary rescans do not have to restart from the
beginning of the raw data set.

5 Performance Analysis

For our experiments we implemented a prototype of
the COMBI operator on top of the DB2 database sys-
tem (V8.1) in C++. The prototype accesses the
database via ODBC driver. As test data we used syn-
thetic data consisting of a mixture of Gaussian and
uniform distributions and a real data set, which comes
from a simulation of a biological molecule. The syn-
thetic data set has 100 attributes with 300000 data
points (tuples) and the biology data set has 19 at-
tributes with 100000 data points. In our current pro-
totype we implemented the main memory based and
the partition based algorithm with array and hash map
containers. We conducted the experiments on a Linux
Pentium with 512 MB RAM.

We used the computation of histograms in projec-
tions of high-dimensional spaces as example applica-
tion, which occurs in many data mining algorithms as
a data intensive subtask. In our first experiments we
showed how the COMBI operator algorithms scale up
with an increasing number of grouping combinations
each corresponding in our case to a histogram in a
projection. We compared our algorithms firstly with
the naive GROUP BY approach, which determines each
grouping combination using a separate SQL statement
and secondly with the GROUPING SETS operator.

Figure 4 shows the details of the comparison. In
figure 4(a,b) we used the smaller data set and deter-
mined histograms in two-dimensional projections. The
two-dimensional histograms are parameterized to have
at most 20 x 20 = 400 bins, which are almost popu-
lated with data points. The GROUPING SET operator
showed a slightly better performance than the naive
approach using GROUP By. But it converges with in-
creasing number of grouping combinations towards the
naive approach and due to internal restrictions of the
database system it is not applicable for more than 100
grouping combinations. The speedup is determined
with the minimal execution time of GROUP BY and
GROUPING SETS. As the histograms are small and al-
most all bins are populated, the array based implemen-
tation shows a better performance than the hash map
based implementation. As the histograms are small
only a single scan of the data is needed. The largest
performance gain over the existing database algorithm
shows the array based implementation, which is ten
times faster than GROUPING SETS or GROUP By.



MainMemory Partitioned SortBased | SortBased
Storage Requirment | 4*3+4%2+3*2 = 26 | max(4*3, 4*2, 3*2) 5 9
No of Scans 1 3 3.3 1.8
Table 1: Comparison of different CoOMBI-implementations
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Figure 4: Experimental comparision of the array and hash map based implementations for the COMBI operator with

GROUPING SETS and GROUP BY.

In the second experiment, which is shown in the
parts (c) and (d) of figure 4, we used the large syn-
thetic data set (100 attributes, 300.000 tuples) and
determined the histograms for a fraction of the set of
three-dimensional projections of the 100 dimensional
space. As mentioned above, the GROUPING SET op-
erator is not applicable in this scenario, because of
internal restrictions of the database system. As the
size of the histograms is 40 x 40 x 40 = 16000 grid
cells, we used the partition-based algorithm, which al-
lows the computation of 600 histograms during a single
scan. This bound explains the bumps at the left side
of the speedup curves, where the speedups are maxi-
mal. Also in this case the array-based implementation
shows the best performance with an speedup of 22 over
the otherwise only possible naive approach based on a
number of GROUP BY statements.

The previous experiments may lead to the conclu-
sion that the array-based variant outperforms the hash
map based implementation in every case. However,
this is only true, when not much memory of the array is
wasted. In our example application this may happen,
when the dimensionality of the projected histograms
grows a little bit and/or the number of bins per di-
mension gets larger. In figure 4(e) we demonstrate
that in the later case of larger cardinality of bins per
dimension beyond a certain point the hash map-based
implementation performs much better. The dimen-

sionality of the projected histograms is fixed to three
dimensions in this experiment. The other case is elab-
orated in the experiment shown in figure 4(f), where
the projected histograms have a dimensionality of four
with 40 bins per dimension. Due to the larger dimen-
sionality there are several empty bins in the histograms
which contain no data points and waste memory in the
array based implementation. With the specific setting
the array based approach can store and compute 30
histograms during a scan, while the hash map based
algorithm can handle 220 histograms per scan. As a
consequence the array based implementation have to
perform much more scans — visible as small steps in
the plots — as the hash map based one. However, both
algorithms outperform also in this case the GROUP-
ING SETS operator and the GROUP By approach by
magnitudes.

6 Conclusion

In this paper we identified aggregation in subspaces
formed by combinations of attributes as an impor-
tant task common to many data mining algorithms.
In order to get a tight coupling of database and min-
ing algorithm we exploited several existing formula-
tions of the problem in SQL. The main drawbacks of
the existing operators are (1) very large query size
and/or (2) suboptimal performance. We proposed a



new operator fitting seamlessly into the set of OLAP
GROUP BY extensions. We introduce the new operator
at the language level with proper syntax and seman-
tics and we provided several algorithms for the imple-
mentation. Experimentally we evaluated the pros and
cons of different implementations and showed that our
algorithms outperform existing operator implementa-
tions by magnitudes. We believe that our new oper-
ator could make a database system a good basis for
many business intelligence applications especially in
the more sophisticated data mining application area.
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