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Abstract

Phrase matching is a common IR technique
to search text and identify relevant documents
in a document collection. Phrase matching in
XML presents new challenges as text may be
interleaved with arbitrary markup, thwarting
search techniques that require strict contigu-
ity or close proximity of keywords. We present
a technique for phrase matching in XML that
permits dynamic specification of both the
phrase to be matched and the markup to be
ignored. We develop an effective algorithm
for our technique that utilizes inverted indices
on phrase words and XML tags. We describe
experimental results comparing our algorithm
to an indexed-nested loop algorithm that il-
lustrate our algorithm’s efficiency.

1 Introduction

XML, and its ancestor SGML, were originally de-
veloped by the document processing community for
adding both structural and semantic markup to texts.
You are probably familiar with Shakespeare’s plays,
which have been augmented to include markup de-
scribing scenes, speeches, and speakers [9]. Classi-
cal literature abounds in commentaries added by lit-
erary critics (e.g., the Talmud contains commentaries
on Biblical text). XML permits such commentaries to
be easily 1dentified via user-defined annotations. As a
more recent example, the XML documents published
by the Library Of Congress (LOC) [17] contain the
large texts of legislative bills; in these texts, the names
of the sponsors of a bill and the committees to which
a bill is referred are identified in the body of the bill
with markup. XML can also be used to represent the
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output of natural-language processing systems; such
output labels the grammatical structure of natural lan-
guage text, for example, with subjects and verbs, and
noun and adjective phrases [18].

In the absence of markup, phrase matching is a
common technique to search text and identify rele-
vant documents. Phrase matching typically requires
that words in a phrase be contiguous or in close prox-
imity. For example, searching for the phrase “To be,
or not to be” would return very different results than
searching for the same set of words as individual key-
words. Most information retrieval (IR) systems sup-
port phrase matching on text and on HTML docu-
ments, ignoring HTML tags to match phrases.

In extending phrase matching to XML, which per-
mits arbitrary user-defined markup, it should be pos-
sible to specify the individual tags and the complete
annotations (i.e., elements and their content) to ig-
nore. For example, to match the phrase “Mr. English
introduced this bill” in this XML document fragment:

<gponsor>Mr. English</sponsor><footnote>For
himself and<co-sponsor>Mr. Coyne</co-sponsor>.
</footnote> introduced this bill, which was
referred to the <committee-name>Committee

on Financial Services</committee-name>

it 1s necessary to ignore the <sponsor> end tag, and
the entire <footnote> annotation. Specifying that the
<co-sponsor> tag should be ignored does not change
the answer, but not specifying the <sponsor> tag does.

Such customized phrase matching is not supported
by existing IR systems, but future systems could pro-
vide it in various ways. A naive-user interface might
specify a priori the tags and annotations to ignore
given knowledge about the application domain and
the schemas for input documents. An interface to the
LOC archive, for example, might automatically ignore
the co-sponsor and sponsor tags and the footnote
annotations. An expert-user interface might permit
the user to specify the ignored markup, providing him
with more control over phrase matching. Finally, such
customized phrase matching could be easily integrated
into XML query languages, such as XQuery [7], pro-
viding applications with all of XQuery’s functionality
in conjunction with phrase matching.



We present an approach to phrase matching, tai-
lored to XML documents, that permits specification
of the phrase to be matched and the tags and anno-
tations to be ignored. Our approach is appropriate
for systems that specify ignored markup a priori or
dynamically. In particular, our contributions include:

e An efficient algorithm, PIX, for phrase matching
in XML documents that utilizes inverted indices
on phrase words and tags. PIX supports phrase
matching with strict contiguity of phrase words
and also within a proximity of & words. PIX is
optimal among algorithms that scan the complete
inverted lists of query terms and is implemented
as an external, user-defined XQuery function in
the Galax [14] implementation of XQuery.

e An experimental evaluation comparing the PIX
algorithm with an indexed nested loop (INL) al-
gorithm that utilizes the same set of indices as
PIX. Results show that PIX is substantially more
efficient than the INL algorithm on XML docu-
ments that contain nested matches or many tags
and annotations to ignore, and on queries whose
phrases contain many words.

We begin in Section 2 with an example that illus-
trates the requirements for phrase matching in XML
documents. Section 3 describes research relevant to
phrase matching from the domains of information re-
trieval and query processing. Section 4 presents the
INL and PIX algorithms. The results of experiments
comparing exact phrase matching using PIX and the
INL algorithm appear in Section 5.

2 Motivating Example

To illustrate phrase matching in structured docu-
ments, we present a fragment of the XML for Shake-
speare’s play Hamlet in Figure 1. Although an ex-
ample from literature may seem unusual, it has many
characteristics of XML in document-processing appli-
cations, including markup that tags semantically sig-
nificant text and annotations that may contain correc-
tions, clarifications, or instructions.

This document contains large bodies of annotated
text, which is referred to as mized content in XML. In
addition, the document may contain structured regqular
data, such as the play’s title, its playwright and year
of publication. Regular data is typically strictly typed
(e.g., an year element must contain a valid date). Con-
straints on regular data (e.g., element types) and on
mixed content (e.g., permissible markup) are usually
expressed in some XML schema language.

Although regular data and mixed content look sim-
ilar, they differ in practice, because they are queried in

IThis fragment is from Jon Bosak’s collection of Shake-
speare’s plays [9] in XML, annotated with additional markup
and commentary.

different ways. Queries on regular data usually include
exact (in)equality predicates over small typed values,
whereas queries on mixed content include keyword
matches and exact or approximate phrase matches
over large fragments of text. XQuery currently pro-
vides many constructs for querying regular data, and
there is growing interest in extending XQuery for ef-
fectively querying mixed content [2].

To illustrate how matching phrases interacts with
XML markup, we consider the phrases in Table 1.
The table also contains the matches of these phrases
against the text in Figure 1. Suppose we first match
these phrases literally against the XML document?.
Phrase P1 is matched once on line 28. None of the
other phrases match, because of intervening markup.
Phrase P1 is not matched on lines 26 and 31, because
of an intervening <COMMENT> annotation on lines 27—
30; similarly, phrase P2 is not matched on lines 10
and 12, because of an intervening stage direction
(within <STAGEDIR> and </STAGEDIR> on line 11) and
because of additional line boundary markup (</LINE>
on line 10 and <LINE> on line 12).

IR search engines typically ignore markup in HTML
documents when matching phrases. If we ignore all
markup in our example XML document, phrase P4
now matches on line 19 since <PP> is ignored, but
phrase P1 still does not match on lines 26 and 31 nor
does phrase P2 match on lines 10 and 12, because the
content of the annotation and stage direction elements
intervene. Also, phrase P5 is matched spuriously on
lines 36-39, across multiple speeches, which is undesir-
able. These examples motivate differentiating between
two types of markup when matching phrases: individ-
ual tags and complete annotations.

Specifying the tags and annotations to ignore
yields more matches. If we ignore the annotation in
<COMMENT>. . .</COMMENT>, then phrase P1 matches
on lines 26 and 31. If we ignore the annotation in the
parenthetical phrase <PP>...</PP> and the individ-
ual LINE tags, then phrase P3 matches (but phrase P4
does not), but if we just ignore the individual PP tags,
then phrase P4 matches (but phrase P3 does not).
The choice of whether to ignore <PP> as an annota-
tion, or as an individual tag, thus depends on the spe-
cific query. Similarly, if we ignore the entire STAGEDIR
annotation and the individual LINE tags, phrase P2
matches. We also note that there may be multiple
matches and that they may be nested within anno-
tations. The match of phrase P1 on line 28 in the
COMMENT annotation, for example, is nested within the
match in lines 26 and 31 in the original text.

So far, our examples have required exact matches
in which every word in the phrase must occur con-
tiguously in the text (after ignoring specified tags and
annotations), but approximate phrase matching is also
common in practice. One kind of approximation is to

2 As in IR-style search, punctuation is usually ignored.



01: <PLAY>

02: <TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE><YEAR>1601</YEAR>

03: ...

04: <SPEECH>

05: <SPEAKER>HORATIO</SPEAKER>
06: c

07: <LINE>Speak to me:</LINE>

08: <LINE>If there be any good thing to be done,</LINE>
09: <LINE>That may to thee do ease and grace to me,</LINE>

10:  <LINE>Speak to me:k/LINE>
11:  <STAGEDIR>Cock crows</STAGEDIR>

12: <LINE>IT thou art privy] to thy country’s fate,</LINE>

13: .

14: </SPEECH>

15: ...

16: <SPEECH>

17: <SPEAKER>KING CLAUDIUS</SPEAKER>
18:

19: <LINE>The harlot”’s cheekl <PP>beautied with plastering artK/PP></LINE>

20: <LINE>Is not more ugly] to the thing that helps it</LINE>

21: .

22: </SPEECH>

23: ...

24: <SPEECH>

25: <SPEAKER>HAMLET</SPEAKER>
26: <LINE>To be, or not to be:

27: <COMMENT>

28: The line <QUOTE>To be, or not to be: that is the question</QUOTE> is one of the
29: most quoted phrases in the English language.

30: </COMMENT>

31: [that is the questiomn:</LINE>

32: <LINE>Whether ’tis nobler in the mind to suffer</LINE>
33: <LINE>The slings and arrows of outrageous fortune,</LINE>

34:

35: <LINE>The fair Ophelia! Nymph, in thy orisons</LINE>

36: <LINE>Be all my sins remember’d</LINE>
37: </SPEECH>

38: <SPEECH>

39: <SPEAKER>OPHELTAK /SPEAKER>

40: A
41: </SPEECH>
42: </PLAY>

Figure 1: Example XML document fragment

1d | Phrase

| Matches on lines

P1 | To be or not to be that is the question

P2 | Speak to me if thou art privy

P3 | The harlot’s cheek is not more ugly

(26,31) and 28
(10,12)
(19,20)

P4 | The harlot’s cheek beautied with plastering art | 19

P5 | remember’d Ophelia

None

Table 1: Example phrases to match

match phrase words within some “proximity” of other
words. For example, the phrase “The harlot’s cheek 1s
ugly” matches “The harlot’s cheek is not more ugly”
within two intervening words. Many other approxima-
tions are possible, for example, matching the root of a
word by applying a “stemmer” (a language-specific al-
gorithm that determines the morphological root of an
inflected or derived word form) or matching words that
are semantically equivalent or similar to words in the

phrase. Word approximation techniques are orthogo-
nal to and, therefore, can be combined with techniques
that ignore markup. Proximity queries interact with
structure and deserve more attention.

Whether an IR system provides exact or approx-
imate matching, matches are typically reported in a
ranked order. A common ranking metric is the TF-
IDF (term frequency/inverse document frequency) rel-
evance measure, in which a higher weight is assigned to



terms that occur frequently within one document and
infrequently in the corpus of documents. The struc-
ture in XML documents adds another dimension to
ranking, and a ranking function may also incorporate
the properties of ignored tags and annotations.

Customized phrase matching in XML could be re-
alized, for example, by an infix operator fully inte-
grated into a query language such as XQuery, by a
XQuery user-defined function, or by an external func-
tion (i.e., a function not defined in the query language
itself). We have implemented PIX as an external func-
tion that can be called from the Galax implementation
of XQuery.

This motivating example illustrates that phrase
matching in XML documents is not a trivial problem.
Solutions to this problem should permit dynamic (i.e.,
at query time) specification of ignored tags and anno-
tations; handle multiple and nested matches; permit
specification of arbitrary document fragments as the
search context; and support approximate matching.
The PIX algorithm meets these requirements: it per-
mits specification of the phrase to be matched either
exactly or within a word proximity, the document con-
texts in which to restrict the phrase match, and the
tags and annotations that should be ignored. The al-
gorithm can also rank the results during matching.

3 Related Work

XQuery 1.0 provides many constructs for querying reg-
ular data, such as path expressions for navigating doc-
ument structure and predicate expressions for condi-
tionally selecting fragments of documents. There is
growing interest in extending XQuery 1.0 with full-text
operators for effectively querying mixed content [2].

Information retrieval techniques, including exact
phrase match and the approximation methods noted
earlier, are described in classical TR texts [5, 19].
These techniques typically treat documents as “bags
of terms” and employ inverted indices on terms in doc-
uments for fast lookup of specific terms. They do not
address the problem of phrase matching within struc-
tured documents.

More recent techniques combine IR keyword match-
ing with queries over document structure [4, 5, 11,
12, 13], often implemented as extensions to XPath or
XQuery. An example that combines phrase match-
ing with document structure might be: “for each text
node that contains the phrase ‘more ugly’, return the
node and its preceding and following sibling nodes”.
Such queries can be easily expressed in XPath, but re-
quire that all words in a phrase occur within one text
node (i.e., words cannot be separated by intervening
tags or annotations). XXL [20] and XIRQL [13] are
examples of systems that focus on using word approx-
imation techniques in combining IR search with XML
structure. XQuery-TR [10] is an extension of XQuery
that supports restriction of phrase matching to docu-

ment fragments (as in PIX) and ranks document frag-
ments by applying TF-IDF weights dynamically to
document fragments. In the XKeyword system [16],
words may be matched anywhere in a document and
ranking is based on a document graph distance be-
tween the matched words. The XRank [15] system also
supports keyword search and ranks results by combin-
ing the specificity of a match (i.e., all words in one
element or within descendants of an element), the dis-
tance between keywords, and any intervening markup.
A key difference with these previous systems is that
PIX supports customized phrase matching, permitting
the specification of which markup to ignore.

4 Algorithms

We now define two algorithms for phrase matching in
XML documents, a simple indexed nested loop (INL)
algorithm and the stack-based merge algorithm used
in PIX. Both algorithms process document contexts in
document order, keeping track of nesting of document
contexts, potential matches, and ignored markup to
minimize redundant traversals. We begin by defining
the algorithms’ required input, their expected output,
and the inverted indices on words and tags that they
use. The input to each algorithm is:

e Set of context tags C' = c1,...,cm
o Set of ignored tags T' = #1, ..., 1%
o Set of tags of ignored annotations A = ay,...a,

e List of phrase words, in order W = [wy, ..., w]

The set C' contains the tags of nodes in which to
restrict phrase matching. (In our example, SPEECH
is a context tag). The set T' contains the individual
tags to ignore, the set A contains the tags of complete
annotations to ignore within phrase matches, and list
W contains the phrase words.

Before query processing, each element and text
node in an input document is assigned a (start, end)
interval, as in [1]. For our purposes, each text node
contains one word, so we abbreviate a text interval
(4,7) as i. Intervals permit fast checking of the descen-
dant and following-sibling relationships. For example,
if node n has interval (s, e) then any node n’ with inter-
val (s;, e;) such that s < s; and e; < e is a descendant
of n; if s; = e + 1, then n’ is the first sibling node
following n, i.e., n and n’ are contiguous in the doc-
ument. Figure 2 contains a fragment of our example
document labeled with intervals.

The output of each algorithm is a set of (context
interval i., witness set {m}) pairs. The interval i,
denotes an occurrence of a node whose tag is in C.
Each of its witnesses is output, where a witness m is
an ordered list of intervals [i1, ..., i,] such that:



<SPEECH(; 44)>
<SPEAKER; 4)>HAMLET;</SPEAKER>
<LINE(s 43)>[Tog be7, org motg tojq bej;:
<COMMENT ;2 38)>

Theis lineiq <QUDTE(15726)>\T016 be17, orig notig tozy bezr: thata: iszs theay quest10n25\</QUDTE>

iso7 onezg ofag thezp mosts; quotedss phrasesss inzs thess Englishse languageaz.

</COMMENT>
thatsg isso thes; questionsg:</LINE>
</SPEECH>

Figure 2: Example document fragment labeled with intervals

1. 71 denotes an occurrence of word wq, and 7, de-
notes an occurrence of word wq,v > q,

2. i..start < i;.start and 7,.end < i..end,
3. for each 1 < j < w,17;.end = ¢4, .start — 1,

4. there exists m’, a subsequence of m of length ¢,
such that the kth interval in m' denotes wy, and

5. each interval in the remainder subsequence m\ m’
denotes an occurrence of ignored markup.

The first constraint guarantees that the first (last) in-
terval in the witness denotes the first (last) phrase
word. The second constraint guarantees the witness
is contained within the given context. The third guar-
antees that the words and ignored markup in the wit-
ness are contiguous. The fourth constraint guarantees
that all the words in the phrase occur in order. The
last constraint guarantees that the remaining intervals
in the witness denote ignored markup. Figure 3(a)
contains the output of matching phrase P1 within a
SPEECH context ignoring LINE tags and COMMENT an-
notations. It contains one result, which contains two
matching witnesses.

Recall that both algorithms are dynamic, i.e., the
phrases to match and the tags and annotations to ig-
nore are not known until query time. Therefore, one
inverted index is built off-line, in one pass, for every
tag and word in the input document. Each index is
a list of intervals sorted by start position and may be
accessed sequentially. Each index is also a partial func-
tion from a start position to an interval, that is, given
a start position ¢ and index L, probe(L,i) returns the
interval (7, ) if it exists in L. The partial function is
implemented by a B-Tree over the sorted interval list.
Figure 3(b) contains some of the indices for our exam-
ple document fragment. Evaluating probe(L»¢,», 10)
returns (10,10), and probe(L»pe», 13) returns nothing.

At query time, the relevant indices are:

L¢: Index of all intervals of context tags in C'.
Ly ;+ Index of all intervals of word w;.
L+ Index of all intervals of ignored tag ¢;.

Lg;: Index of all intervals of ignored annotation a;.

We also conceptually construct two more indices,
which are never materialized:

LE;,: Index U;{(s,s), (e, e) such that (s,e) € L}
sorted by first component.

Lpr: Index of all ignored markup
U((U;jLa;), (U;LEY:,)) sorted by first component.

For ecach ignored-tag interval in L, the index LFE,
contains one interval for the start position and one for
the end position; this allows the algorithms to skip
over individual tags, but not their content. The index
L is an interval list over all ignored markup in L,
and LE;;. Neither index is materialized, but is imple-
mented using priority queues over the indexed lists Ly,
and L,;. Both algorithms use Lc, Las, and Ly, .

4.1 Indexed Nested-Loop (INL) Algorithm

Figure 4 contains the pseudo-code for the INL algo-
rithm, which is a variant of a nested loop algorithm.
Each occurrence of the first word w; in a context in-
terval is a partial witness. For each such word, INL
attempts to construct a complete witness by adding
a contiguous sequence of ignored markup and other
phrase words in order. In particular, for each con-
text interval, we probe Ly, to find the first word in
the phrase contained in the context interval (lines 1-
3) and construct a partial witness containing this word
(lines 6-7). We then probe the index containing the
ignored markup (Lpr) and the index containing the

next word in the phrase (Lw(matchPos+1) ), attempting

to extend the current witness contiguously. If we can-
not extend the witness, we discard it and start again
(lines 11-12). We continue extending the witness until
every word is matched, then add the complete witness
to the context interval’s set of witnesses (line 17-19).
When no more witnesses can be matched in the cur-
rent context interval, we output the context interval
and its set of witnesses (line 21) and continue with the
next context interval (line 1).

Note that the outer-loop of the INL algorithm is
evaluated once for each context interval and that each
witness is constructed independently of all other wit-
nesses. This may result in redundant work, for exam-
ple, when a context or annotation interval is nested
within another context interval (as in Figure 2), be-
cause the intervals of the nested witness are traversed



{(1,49), LspegcH | Liine | Lcomment | Lto | DLie | - | Lguestion
{[s,7,8,9, 10, 11, (1,44) | (5,43) | (12,38) (6,6) 7.7 (25,25)
(12, 38), 39, 40, 41, 42 1, (10, 10) | (11,11) (42,42)
[ 16, 17, 18, 19, 20, 21, (16, 16) | (17,17)
22, 23, 24, 251 }} (20, 20) | (21,21)
(a) (b)

Figure 3: (a) Example output of phrase matching algorithms, (b) Indices for document fragment in Figure 2

1. for each context interval i. in Lc¢ {

2. witnessSet = { }

3. index probe Ly, to find first interval #
4, such that descendant (74, i.)

5. repeat {

6. matchPos = 1;

7. m=1[a 1;

8. repeat {

9. probe (Lw(matchPos+1) U Ly) to find
10. i with 5 .start = last(m).end+1;
11. if (no match found) break;

12. if (i € Lw(matchPos+1)) matchPos++;
13. m = append(m, @) ;

14. /* Matched last word in phrase */
15. } until (matchPos = ¢q)

16. /* If a complete witness is found, save it */
17. if (matchPos = ¢)

18. witnessSet = witnessSet U { m };
19. i = next(Ly,)

20. } until not(descendant (4, i.))

21. output (i., witnessSet)

22. }

23. descendant (i, @) {
24, 5 .start > ix.start and ¢ .end < #.end

25. }

Figure 4: Indexed nested loop algorithm

once when matching the witness itself and one or more
times when matching the witness in which it is nested.

Indexed nested loop algorithms are well studied and
understood for relational databases. The INL algo-
rithm is expected to have similar characteristics when
the XML data is akin to relational data (e.g., there is
no nesting of contexts) and when there are few tags
and annotations to ignore. In cases where XML’s het-
erogeneity is instantiated, the INL algorithm tends to
perform a large number of probes, many of which may
be redundant. We study this behavior experimentally
in Section 5.

4.2 PIX Stack-Based Merge Algorithm

Just as the INL algorithm is analogous to index-nested
loop algorithms for relational data, the PIX stack-
based merge algorithm is analogous to traditional sort-
merge join algorithms. Like all sort-merge algorithms,
the PIX algorithm scans its input only once. In partic-
ular, PIX scans L, the combined list of words and ig-
nored markup in order and uses a stack .S to keep track
of nested context and annotation intervals and partial

witnesses as they are identified within the nested in-
tervals. These structures are defined as:

L: Priority queue over U(Lc, (UjLuw, ), Lar).
S: Stack of (interval, witnessSet, matchSet)s.

The list L is implemented as a priority queue over
Lc, Ly, and Ly,. FEach entry on the stack S is
an (interval, witnessSet, matchSet) tuple, where
interval is a context or annotation interval i,
witnessSet is a set of the complete witnesses matched
in ¢, and matchSet is a set of matches {m}. A match
m is a (partialWitness, matchPos) pair, where
partialWitness is an interval list and matchPos is
the index of the last phrase word matched in the
partial witness. Because the first word in a phrase
may be repeated within the phrase, we maintain a set
of partial witnesses. For example, given the phrase
“wy we wy ws” and the input “w; wy wi wh Wi ws”,
both [wi wy w)] and [w]] are valid partial witnesses.
We refer to the interval in the top entry of the stack
as the “top interval” and, similarly, for the “top wit-
ness set” and “top match set”.

Figure 5(left-top) gives the PIX algorithm. The
PIX algorithm scans L, the combined list of words
and ignored markup in order (lines 1-2). The interval
i is either a new context interval (lines 3-7) or a word
or ignored markup (lines 8-20).

If 7 is a context interval and 7 is not a descendant of
the top interval, then the top interval and its partial
witnesses will never be complete, so we clean the stacks
by calling the procedure output-and-clean (lines 4-
6), which pops S until 7 is a descendant of the top
interval or S is empty (lines 25-33). As context inter-
vals are popped from S, their witness sets are output
(lines 27-28) and are propagated up the stack to their
closest containing interval (lines 30-31). After clean-
ing the stack, we create a new interval in which to
match phrases by calling new-interval on line 7.

If i 1s either a phrase word or ignored markup and
S is empty, we discard the interval, because there is
no current context (line 9). Otherwise, if 7 is not a de-
scendant of the top interval, we again clean the stacks
(lines 10-11).

Once we have a word or markup ¢ that is a de-
scendant of the top interval, we attempt to cre-
ate or extend a partial witness. If ¢ is markup,
we call extend-with-markup (lines 13-14). In
extend-with-markup, we attempt to extend each par-
tial witness in the top match set (lines 43-45). If some



1. while (not(empty(L))) {

2. t = remove-first([);

3. if (¢ € L¢) { /* iis context interval */

4. if (not (empty(9))) &&

5. not (descendant (¢, top (S . interval)))
6. output-and-clean(?) ;

7. new-interval (7) ;

8. } else { /* iis word or ignored markup */
9. if (empty(S)) break;

10. if (not(descendant (i, top(S).interval)))
11. output-and-clean(s) ;

12. /* i is descendant of top(S).interval */
13. if (i € La) {

14. extend-with-markup (?) ;

15. if (¢ € Lag)

16. /* i is nested annotation */

17. new-interval (7 ;

18. } else if (i € Lw_pos)

19. extend-with-word (i, pos)

20. }

21. }

22. if (not(empty(S))) output-and-clean((0,0));
23.

24. output-and-clean(? {

25. repeat {

26. ¢ = pop(S);

27. if (c.interval € Lg) /* context interval */
28. output (c.interval, c.witnessSet);

29. /* Propagate nested witnesses up stack */
30. top(S) .witnessSet =

31. top(S) .witnessSet U c.witnessSet;

32. } until (empty (S or

33. descendant (i,top(S) .interval));
34. }

35. new-interval(? {
36. push((i, {}, {}), 9;
37. }

38. discard-partial-match(m) {
39. top(S) .matchSet = top(S) .matchSet - {m}
40. }

41. extend-with-markup(?) {
42. for each m € top(S).matchSet {

43. if (i.start =
44. last (m.partialWitness).end + 1)
45. m.partialWitness =
append (m.partialWitness, @) ;
46. else
47. discard-partial-match(m)
48. }
49. }

50. extend-with-word(:, pos) {
51. if (pos = 1) {
52. top (S) .matchSet =
top(S) .matchSet U ([ i1, 1);
53. } else {

54. for each m € top(S).matchSet {
55. if (m.matchPos + 1 = pos and i¢.start =
56. last(m.partialWitness).end + 1) {
57. m.partialWitness =
append (m.partialWitness, ¢);
58. m.matchPos++;
/* Once matched complete phrase */

59. if (m.matchPos = ¢q) {
60. /* Add to top witness set */
61. top(S) .witnessSet = top(S) .witnessSet

U { m.partialWitness }
62. discard-partial-match(m)
63.
64. } else
65. discard-partial-match(m)
66. }
67. }
68. }

Figure 5: PIX stack-based merge algorithm and auxiliary functions

partial witness cannot be extended, it is discarded
(line 47). An ignored annotation, in addition to ex-
tending a partial witness, may contain witnesses itself,
so we push a new interval for the annotation (lines 15-
17) and continue matching phrases within the annota-
tion. Phrase matching within an annotation interval is
identical to that within a context interval, except that
witnesses within an annotation are propagated up the
stack and output along with all the other witnesses in
the nearest context interval.

If 7 1s a word, we attempt to create or extend a par-
tial witness by calling extend-with-word (lines 18-
19). Tf i denotes the first word wq, extend-with-word
starts a new partial witness (lines 51-52), otherwise, it
attempts to extend contiguously each partial witness
(lines 53-58). If a witness is completed, it is added to
the witness set of the top interval (lines 59-63) If some
partial witness cannot be extended, it is discarded
(lines 64-66). When L is exhausted, we output the
remaining complete witnesses on the stack (line 22).

The PIX algorithm generalizes the structural join
algorithms of [1] by taking the order of words in a
phrase into account. All the algorithms use stacks
to identify ancestor-descendant pairs by sequentially
scanning through interval lists, but only PIXbuilds
sets of partial witnesses and incrementally extends
them.

4.3 Analysis of PIX Algorithm

The PIX algorithm traverses once each of the inter-
val lists of phrase words, ignored tags, ignored anno-
tations, and contexts. It maintains in memory one
stack, whose maximum depth is bounded by the max-
imum nesting depth of context and annotation inter-
vals. Thus, the stack is bounded by the nesting depth
of the XML document. Each entry on the stack main-
tains a set of partial witnesses, consisting of one or
more matches of the phrase words and any ignored
markup. The number of partial witnesses is bounded
by the number of occurrences of the first word in the



1. extend-with-word(:, pos) {

2. for each m € top(S) .matchSet {

3. if (m.matchPos + 1 = pos and i.start =

4 last(m.partialWitness).end + 1) {

5 m.partialWitness =
append(m.partialWitness, ¢);

6. m.matchPos++;
/* Once matched complete phrase */
7. if (m.matchPos = ¢q) {
8. /* Add to top witness set */
9. top(S) .witnessSet = top(S) .witnessSet
U { m.partialWitness }
10. discard-partial-match(m)
11. }
12. } else if (m.skipped + i.start -
last(m.partialWitness).end - 1 <= k) {
13. m.skipped += i.start -
last (m.partialWitness).end - 1;
14. m.partialWitness =
append(m.partialWitness, ¢);
15. } else {
16. discard-partial-match(m)
17.
18. if (pos = 1) {
19. top (S) .matchSet =
20. top(S) .matchSet U ([ ¢ 1, 1, 0);
21, }
22.
23. }

Figure 6: Procedure extend-with-word modified to
support proximity matching

phrase. The size of each partial witness depends on
the number of words in the phrase, and the number
of occurrences of intervening markup to be ignored.
When this is small, which is often the case, the stacks
fit in main memory. The I/O complexity of the PIX
algorithm is, hence, linear in the sum of the input and
output sizes. This makes it optimal among all algo-
rithms that read their entire input and produce the
complete output.

4.4 PIX with Proximity Phrase Matching

We can easily extend the PIX algorithm to support
phrase matching within a proximity of £ words. We
include a counter (skipped) in each match m in
matchSet; the counter contains the number of words
that have been skipped while constructing the m’s par-
tial witness. A partial witness can be extended as long
as its skipped value is < k.

Figure 6 contains the procedure extend-with-word
modified to support word proximity. We attempt to
extend contiguously each partial witness just as in the
original procedure (lines 3—12). If the partial witness
cannot be contiguously extended with the new word,
but the number of skipped words would not exceed k,
we extend the partial witness and increment the num-
ber of skipped words (lines 12-15). Otherwise, the

partial witness is discarded, because 1t cannot be ex-
tended and its proximity limit is exceeded (line 16).
Finally, if 7 denotes the first word w, we start a new
partial witness (lines 18-21) — we do this after examin-
ing the other partial witnesses as the first word might
also extend some of these as a skipped word.

Consider the data “w; wy w| ws wh wh ws” and
the query phrase “wy wy w3z w4” matched within three
words. After the word w} is processed, there are two
partial witnesses: ([wy, wa, w, w3, wh, w§],3,3) and
([wy, ws, wh, wh], 3, 1). In the first partial witness, the
words w}, wh, wh are skipped words; in the second par-
tial witness, the word wg is a skipped word. Each
of these partial witnesses can be extended with w4
to obtain complete witnesses. Note that this algo-
rithm reports the first witness beginning with a par-
ticular occurrence of wy, but does not report all over-
lapping witnesses. For example, it does not report
wy wy w) ws why wh wy in which the phrase words
wsy, w), w3 are the skipped words.

4.5 Ranking Results

An important aspect of keyword and phrase matching
in IR 1s to associate a score with each match. In prin-
ciple, PIX can apply any user-defined ranking function
during matching. For concreteness, we briefly outline
one possible strategy for ranking witnesses that ac-
counts for the relative importance of phrase words,
the importance and size of ignored markup, and the
number of skipped words. Our strategy assigns IDF
weights to individual phrase words, where the IDF
weight is the inverse of the number of context nodes
containing occurrences of the phrase word in the cor-
pus. In a witness, a phrase word is assigned a TF-IDF
weight identical to its IDF weight (since there is just
one occurrence). Each ignored markup is assigned IDF
weights similarly, by counting the number of context
nodes containing distinct occurrences of the markup
in the corpus. In a witness, the TF-IDF weight associ-
ated with an ignored markup is the product of (i) the
number of occurrences of the markup in the witness
and (ii) its IDF weight. Finally, the score of a witness
is computed as the difference of two terms: (i) the sum
of the TF-IDF weights of all the query phrase words,
and (ii) the sum of the TF-IDF weights of all the ig-
nored markup. This strategy assigns a lower score
to witnesses that ignore more important markup (as
measured by its IDF weight) and more occurrences of
markup. In proximity phrase matching, the score of
a witness is inversely proportional to the number of
skipped words.

5 Experiments

We compare the INL and PIX algorithms experimen-
tally to understand their relative performance and the
key parameters influencing it. When used to imple-
ment relational joins, index-nested loop tends to out-



Doc Index Context #Context #  #lgnored #lgnored

File Size Size Node Nodes Phrase Witnesses Tags Annots
WSJprd 1.5MB 2.3MB <NP> 13 “country funds” 13 0 0
WSJmrg 2.5MB 4.5MB  <FILE> 1 “Pierre Vinken ...” 1 9 2
Brown 15.0MB 25.7MB <PP> 8  “in the United States” 8 2 0

Table 2: Characteristics of Treebank Data and Queries

perform sort merge when the outer-most relation is
small and the inner relations are accessible via indices,
and sort merge tends to outperform index-nested loop
when the input relations are sorted and are of compa-
rable size. When used to implement phrase matching),
we expect the INL and PIX algorithms to behave simi-
larly. First, we present experiments that support these
expectations. Second, we consider how varying pa-
rameters, that are unique to XML and our customized
phrase matching, impact the relative performance of
the INL and PIX algorithms.

5.1 Platform and Data

Both the INL and PIX algorithms are implemented in
Java. We use the Berkeley DB package [6] to build
and access the indices. Berkeley DB is implemented
in C and a Java interface is provided by wrapping the
C functions using the Java native interface. All the
experiments were executed on a Dell computer with a
2Ghz CPU, 1GB of memory, and a 34GB drive running
Windows 2000. We executed each query five times
with a cold cache and computed the average execution
time. Times are in seconds and sizes in megabytes.

Our data sets include real data from the Tree-
bank corpus published by the Linguistic Data Corpo-
ration [18] and synthetic data generated by the XMach
XML document generator [8]. The Treebank data is
the result of natural-language analysis of text excerpts
from the Wall Street Journal and from the Brown
corpus of popular literature. Table 2 describes the
documents. The “WSJprd” and “Brown” documents
contain the corresponding texts labeled with syntactic
annotations. The “WSJmrg” document is the same
as “WSJprd” additionally labeled with parts-of-speech
annotations (i.e., “WSJmrg” has more markup).

Synthetic data is generated by the XMach XML
document generator. The generator takes as in-
put a list of words, their frequencies in the gener-
ated document, and an output document size, and
generates a document of the given size containing
text with the given word frequencies. The base-
line query (@p) matches the phrase “w; ws”, ig-
nores one tag (tag), and ignores one annotation
(annot). To generate our baseline documents, we
replace the most frequently occurring word in the
XMach-generated document with a witness of the
form: <tag>wn</tag><annot>...</annot>wuy.

The small baseline document (Dgpqn) is 150KB in
size and contains one context node (the immediate
child of the root node) and 680 witnesses (because the

‘ Witnesses reported

One All
INL 0.06s 0.06s
PIX | 25.21s 27.10s

Table 3: Query time for WSJmrg data set

most frequent word occurs 680 times); the second base-
line document is 30MB (Dp;4). Neither document con-
tains nested context nodes or annotation nodes nested
at a depth greater than one. All other documents used
in the experiments are variants of these two baseline
documents, in which other words are replaced with the
witness described above, tags or annotations to ignore,
or context nodes. We specify in the following sections
how other documents are constructed from these base-
line documents.

We report the time to find all witnesses in all con-
text nodes (all-wits). In some cases, we report the
time to find just the first witness in all context nodes
(one-wit), but in general, the times to report the first
witness are similar to reporting all witnesses and there-
fore do not differentiate the algorithms.

5.2 Applicability of Known Results

We expect the INL algorithm to outperform the PIX
algorithm when the inverted index of the first phrase
word is small, because the INL algorithm will perform
few probes of the other indices. In the WSJmrg data
set, the phrase query is “Pierre Vinken will join the
board”, and the context is those nodes with tag NP.
There are nine distinct tags to ignore and two distinct
annotations. In this data set, the first word “Pierre”
occurs exactly once in the document, meaning that
the INL algorithm does a minimal number of probes,
whereas the PIX algorithm scans the combined list of
words and ignored markup to find the first occurrence
of the first word. The resulting query times (in Ta-
ble 3) differ significantly.

We confirmed this difference on synthetic docu-
ments varying in size from 2-20MB in which the
lengths of the inverted indices L, and L,, varied.
When L, is substantially smaller than L,,,, the INL
algorithm outperforms the PIX algorithm, because
INL makes only a few probes of L,,,, whereas the PIX
algorithm sequentially reads the entire lists. As the
length of L,,, approaches the length of L,,,, the PIX
algorithm outperforms INL.

One way to improve the performance of the PIX
algorithm is to build a skip list for each word and ig-
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Figure 7: Increasing document size

nored tag over the priority queue L. This effectively
combines the priority queue L with the individual lists
Lc, Ly, and Ly ; and would permit the PIX algorithm
to skip over long sequences of words or markup at the
head of the priority queue L that cannot contribute to
a witness. We plan to do this in future work on PIX
and expect this will substantially improve PIX when
the relative lengths of word lists differ significantly.

As expected, both algorithms are insensitive to
changes in document size when the number of con-
text nodes and the number of witnesses per context
node remain constant. In Figure 7, we create doc-
uments from 150KB to 100MB in size by appending
to Dgsmair copies of a second document that has no
words in common with Dgpan. As in Dgmai, each re-
sulting document contains one context node with 680
witnesses. Because both algorithms use indices, they
retrieve only the relevant words and markup to match
a phrase.

5.3 Exploring Variability in Data and Queries

Next, we explore the impact of various parameters of
XML documents and phrase queries on the relative
performance of the two algorithms.

Witnesses and context nodes

First, we consider the effect of the number of context
nodes and number of witnesses in the data. Recall
that our baseline query matches the phrase “wjwsy”
and ignores the tag (tag) and the annotation (annot).

In the first test, we start with the baseline document
Dpig and fix the number of context nodes to one and
vary the number of witnesses, by replacing the second
(third, fourth, etc.) most frequent word in Ds;, with
the witness <tag>wy</tag><annot>...</annot>us.
The resulting documents contain 204000 to 530255
witnesses. In the second test, we start with the base-
line document Dy, and fix the number of witnesses
per context node to 680. We increase the number of
context nodes from 1 to 121 by replicating Dgpmqn to
create new documents. Figure 8 plots the results of
evaluating () on these documents. Both PIX and INL
grow linearly with increasing numbers of context nodes

Correl- #Context #Witnesses/
ation | Replace  with Nodes Context Node
(0,0) | b1 & by w1 1-200 63-19000

b3 & b4 w2
(1,1) | b1 &by wi w2 1-350 680-238000

(1,0.5) by wi w2 1-250 1046260000

b2 w2

(0.5,1) by wi W2 1-250 1046260000

ba wi

Table 4: Documents with varying word correlations

and witnesses per context node, but PIX is about four
times faster than INL and this difference increases with
document size. This is due to the cost of index probing
by INL, but also due to the increase in the number of
context nodes, because INL probes every list for each
context node.

Next, we start with the baseline document Dy, 4y
and generate documents that vary the correlations be-
tween the two words w; and ws in the match phrase.
We generate a new document by replacing the four
words by, bs, bz and by In Dyp,e that occur with the
highest frequencies with the match phrase “wyws” or
the individual words w; or ws. Then we replicate
these four documents to create documents up to 60MB
in size. Table 4 describes the generated documents;
the correlation specifies the ratio of the number of co-
occurrences of w; and ws to the number of occurrences

of each word, i.e., # (w1 w2)/#wy and # (w1 wy)/F#Hws.

Figure 9 plots the results of evaluating Qg on these
generated documents. We observe that PIX is up to
two times faster than INL. We note that in the (1,0.5)
test, the first word list (L, ) is half as long as the sec-
ond word list (L, ), and on the largest document, PTX
is only slightly faster than INL. This example comple-
ments the results in Section 5.2 in which we observed
that INL does well when the first word list is much
shorter than all other lists.

Finally, we fixed the number of context nodes and
witnesses per context node, and varied the number of
words in the phrase query from two to seven. We ob-
served that PIX is about four times faster than INL
and this difference increased with the number of phrase
words, because INL probes all the word lists to con-
struct a complete witness. (Graph omitted due to
space constraints).

Nesting of annotations and context nodes

Next, we consider the effect of varying the nest-
ing of annotations and context nodes. We begin
with the baseline document Dy;,, and gener-
ate three new documents. In the first, we re-
place each occurrence of <annot>...</annot>
by <annot><tag>wi</tag><annot>. ..
</annot>ws</annot>. This creates another level
of annotation nesting as well as a new witness. In
the second and third documents, we again double
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the nesting levels, thus we have <annot> elements
at nesting depths one, two, four, and eight, with a
witness at each level. Figure 10(a) plots the results of
evaluating Qp on these documents.

Lastly, we vary the nesting of context nodes. We
start with the baseline document Dy;g, fix the total
number of context nodes, but increase the nesting
depth of context nodes from 1 to 2, 4, and 8. Fig-
ure 10(b) contains the query times for @p. In the
“low” test, we set the number of witnesses per con-
text node to 136000, and in the “high” test, we set the
number of witnesses to 236400. In both cases, as the
nesting level of context nodes increases, INL increases
linearly, whereas PIX remains constant. For a witness
contained in a context node nested n levels deep, the
INL algorithm accesses the witness n times — once for
each nested context node — wheres the PIX algorithm
accesses the witness once and passes the nested witness
up the stack to ancestor context nodes.

Experiments on the real data support this observa-
tion. In the WSJprd data set, most of the <NP> context
nodes are nested, and all the witnesses are matched
in context nodes at nesting depth three. The match
phrase is “country funds” and there are no tags or an-
notations to ignore and thirteen context nodes each
containing one witness. Table 5 gives the query times
for INL and PIX. PIX is more than four times faster

Witnesses reported

One All
WSJprd INL | 3.91s 4.03s
PIX | 0.45s 0.95s
Brown INL | 16.12 16.12
PIX | 15.12 15.13

Table 5: Query time for WSJprd and Brown data sets

than INL, because INL is constructing each witness
three times as often as PIX.

In the Brown data set, the <PP> context nodes are
never nested. The phrase to match is “in the United
States” and there are two distinct tags to ignore and
no annotations to ignore. In this data set, there are
eight context nodes containing one witness each, and
all such context nodes are at nesting level one. In
Table 5, we can see that PIX is only slightly faster
than INL as INL does little redundant work.

6 Discussion

We have presented a customizable approach to phrase
matching, tailored to XML documents, that permits
specification of the phrase to be matched exactly or
within a proximity of £ words, the document context
in which to restrict the phrase match, and the markup
(tags and annotations) that should be ignored within
the context. To support such XML phrase matching,
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we have designed an efficient stack-based merge algo-
rithm, PIX, that utilizes inverted indices on phrase
words and tags. We have demonstrated the superior-
ity of the PIX algorithm over the competing INL al-
gorithm both analytically and experimentally. An in-
teresting observation is that, since our PIX algorithm
traverses the input only once, it can be adapted to
streaming processing of XML documents.

There are many interesting directions of future work
on the topic of combining document-style and struc-
tured querying in XML. We discussed briefly the is-
sue of ranking XML phrase matches in the presence
of ignored markup and proximity matching. An in-
teresting problem is to adapt the PIX algorithm for
efficiently computing top-K matches, under a ranking
metric. This would require early pruning of context
nodes and partial witnesses that are guaranteed not
to contribute to the final answer. One can also extend
PIX to permit a more sophisticated specification of the
context nodes and the markup to be ignored, using
XPath and XQuery expressions. With this increased
expressive power, efficient query evaluation becomes
even more challenging. Another open problem is iden-
tifying an effective way to combine proximity phrase
matching with proposals for approximate matching of
structured XML queries (see, e.g., [3]).
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