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Abstract

XML queries are usually expressed by means
of XPath expressions identifying portions of
the selected documents. An XPath expression
defines a way of navigating an XML tree and
returns the set of nodes which are reachable
from one or more starting nodes through the
paths specified by the expression. The prob-
lem of efficiently answering XPath queries is
very interesting and has recently received in-
creasing attention by the research community.
In particular, an increasing effort has been
devoted to define effective optimization tech-
niques for XPath queries. One of the main
issues related to the optimization of XPath
queries is their minimization. The minimiza-
tion of XPath queries has been studied for lim-
ited fragments of XPath, containing only the
descendent, the child and the branch opera-
tors. In this work, we address the problem of
minimizing XPath queries for a more general
fragment, containing also the wildcard oper-
ator. We characterize the complexity of the
minimization of XPath queries, stating that
it is NP-hard, and propose an algorithm for
computing minimum XPath queries. More-
over, we identify an interesting tractable case
and propose an ad hoc algorithm handling the
minimization of this kind of queries in poly-
nomial time.
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1 Introduction

Extracting information using an incomplete knowledge
of the data structure is the main issue that has to
be dealt with when extending classical techniques for
querying databases to the field of semistructured data,
and in particular of XML data. The user always knows
what kind of information he is interested in, but rarely
knows where this information is placed or how it is
structured. Therefore, answering a query over an XML
database can make it necessary to explore the data in
several directions.

XML queries are usually expressed by means of
XPath expressions [4], which define a way of navigat-
ing an XML tree (corresponding to some document)
and return the set of nodes which are reachable from
one or more starting nodes through the paths specified
by the expressions.

An XPath expression can be represented graphi-
cally by means of a tree pattern defining some struc-
tural properties of the nodes belonging to the specified
path.

Figure 1: An XML tree

For instance, consider the document represented in
Fig. 1 containing some information about a collec-
tion of books, and the query: “find the titles of all the
books for which at least one author is known”. This
query can be formulated with the XPath expression
bib/book[//author]/title which defines the follow-
ing navigation: starting from an element bib, consider



its children book from which we can reach an element
author by means of any path, and return the title of
these books. This expression is equivalent to the fol-
lowing tree pattern:

Figure 2: A tree pattern

The boxed node in the above tree pattern defines
the output node (corresponding to the element title),
i.e. the information that must be returned. The edge
represented with a double line corresponds to the sym-
bol ‘//’ in the original expression and is called descen-
dant edge. The condition on the element book (we are
interested in books having at least one author) corre-
sponds to the branch in the tree pattern at the node
book. The answer to XPath queries is built by match-
ing the tree pattern representing the query against a
document. In our example, when the tree pattern is
matched on the document in Fig. 1, the content of
the element title on the left-hand side of the tree is
returned.

The efficiency of the matching operation greatly de-
pends on the size of the pattern [8], so it is crucial to
have queries of minimum size. To achieve this goal
we should re-formulate queries avoiding “redundant”
conditions. For instance, consider the following query:
“retrieve the editors that published thrillers and whose
authors have written a thriller”. Looking at the struc-
ture of this query we observe that the first condition
makes the second one redundant. Thus, an equivalent
(and minimal) query can be formulated as: “retrieve
the editors that published a thriller”.

Observe that the problem of minimizing the tree
pattern corresponding to a given query is strictly re-
lated to the problem of checking whether there are
two “subpatterns” (corresponding to some conditions
on intermediate nodes) which are contained one into
the other. That is, it can be reduced to finding a con-
dition expressed in the query which can be subsumed
by another condition specified in the same query. This
problem is called query containment, and has received
a great deal of attention by the research community,
originally for relational queries [3, 9, 10], and, more
recently, for XML queries [5, 12, 13, 15, 17].

The minimization of XPath queries was first stud-
ied in [16], where simple XPath expressions (i.e. with-
out the use of the symbol ‘//’) were considered. The
complexity of minimizing queries expressed using this

restricted fragment of XPath (called XP {/,[ ],∗}) was
shown to be polynomial w.r.t. the size of the query. In
[1], a different fragment of XPath (called XP {/,//,[ ]})
has been studied, showing that queries containing the
operators ‘/’, ‘//’, ‘[]’ but without any occurrence of
the wildcard symbol ‘*’ can be also minimized in poly-
nomial time (a node marked with ‘*’ in a tree pattern
can be matched to a node with any label in a docu-
ment). More efficient algorithms for minimizing tree
patterns in the same fragment XP {/,//,[ ]} have been
recently proposed in [14].

We point out that the minimization problem for
both the XPath fragments analyzed in [16] and [1] can
be efficiently solved as: 1) it can be reduced to solve a
number of instances of containment between pairs of
tree patterns; 2) for these fragments, the containment
between two tree patterns can be decided in polyno-
mial time, as it can be reduced to find a homomor-
phism between them [12]. For more general fragments
of XPath the containment problem is coNP-complete
[12, 13, 17], as it cannot be reduced to find a homo-
morphism between two tree patterns. Moreover, the
technique used in [16] and [1] for minimizing a tree
pattern is based on the property that, for XP {/,[ ],∗}

andXP {/,//,[ ]}, a tree pattern of minimum size equiv-
alent to a given tree pattern p can be found among the
subpatterns of p, i.e. it can be computed by pruning
“redundant” nodes from p. The validity of this prop-
erty for more general XPath fragments has never been
proved.

Main Contribution. In our work we show some fun-
damental results on minimization:

1. we show that given a tree pattern p belonging to
the fragment of XPath XP {/,//,[ ],∗} (containing
branches, descendant edges and the wildcard sym-
bol), a minimum tree pattern can be found among
the subpatterns of p. This result allows us to de-
sign a sound and complete algorithm for tree pat-
tern minimization;

2. we show that the decisional problem “given a car-
dinal k and a tree pattern p in XP {/,//,[ ],∗}, does
there exist a tree pattern p′ (equivalent to p) whose
size is less than or equal to k?” is coNP-complete;

3. we identify an interesting subclass ofXP {/,//,[ ],∗}

which can be minimized efficiently (i.e. in poly-
nomial time).

We point out that the containment problem has
been already characterized for the wholeXP {/,//,[ ],∗},
and its restricted fragments XP {/,//,[ ]}, XP {/,//,∗}

and XP {/,[ ],∗}. On the other side, the complexity
of the minimization problem has been characterized



only for the above restricted fragments, but not for
the whole XP {/,//,[ ],∗}.
Plan of the paper In Section 2 we introduce basic
notions about tree patterns and define the notations
that will be used throughout the rest of the paper. In
Section 3 we illustrate in detail our goal, and state
the main theoretical results of this work. In Section
4 we introduce a framework for reasoning about the
minimization of XPath queries, and use it for defining
an algorithm for minimization. In Section 5 we ana-
lyze the complexity of the minimization problem and,
finally, in Section 6 we introduce a form of XPath ex-
pressions which can be minimized efficiently.

2 Preliminaries

In this paper we model XML documents as unordered
node labelled trees over an infinite alphabet. We point
out that, even if by choosing this model we disregard
the order of XML documents, this is not a limitation
since the fragment of XPath we use ignores the order of
the document. We assume the presence of an alphabet
N of nodes and an alphabet Σ of node labels.

Trees and Tree patterns

A tree t is a tuple (rt, Nt, Et, λt), where Nt ⊆ N is
the set of nodes, λt : Nt → Σ is a node labelling
function, rt ∈ Nt is the distinguished root of t, and
Et ⊆ Nt × Nt is an (acyclic) set of edges such that
starting from any node ni ∈ Nt it is possible to reach
any other node nj ∈ Nt, walking through a sequence
of edges e1, . . . , ek.

Given a tree t = (rt, Nt, Et, λt), we say that a tree
t′ = (rt′ , Nt′ , Et′ , λt′) is a subtree of t if the following
conditions hold:
1. Nt′ ⊆ Nt;

2. the edge (ni, nj) belongs to Et′ iff ni ∈ Nt′ , nj ∈
Nt′ and (ni, nj) ∈ Et.

The set of trees defined on the alphabet of node labels
Σ will be denoted as TΣ.

Definition 1 A tree pattern p is a pair 〈tp, op〉,
where:

1. tp = (rp, Np, Ep, λp) is a tree;

2. Ep is partitioned into the two disjoint sets Cp and
Dp denoting, respectively, the child and descen-
dent branches;

3. op ∈ Np is a distinguished output node 1.

1We do not consider tree patterns with a set of output nodes
(called k-ary tree patterns) since a unique output node (unary
tree patterns) suffice to express XPath queries. However, it can
be shown that the containment (and equivalence) problem be-
tween k-ary tree patterns is equivalent to the containment (and
equivalence) between unary tree patterns.

Observe that, the alphabet of labels can include the
wildcard symbol ‘*’;

Given a set F ⊆ {/, //, [ ], ∗}, we shall denote by
XPF the fragment of XPath which uses only opera-
tors in F . The class of tree patterns used in our frame-
work corresponds to a fragment of XPath studied in
[12], denoted XP {[ ],∗,/,//} , consisting of the expres-
sions which can be defined recursively by the following
grammar:

exp → exp/exp exp//exp exp[exp] σ ∗ .

where σ is a symbol in Σ, and the symbol ‘.’ stands
for the “current node”.

Given an XP {/,//,[ ],∗} expression e, a tree pattern
p corresponding to e can be trivially defined. For in-
stance, the XPath expression a[b/*//c]//d can be
represented by the tree pattern shown in Fig. 3.

Figure 3: A pattern corresponding to a[b/*//c]//d

Given a tree t and a tree pattern p, an embedding e
of p into t is a total function e : Np → Nt, such that:

1. e(rp) = rt,

2. ∀(x, y) ∈ Cp, e(y) is a child of e(x) in t,

3. ∀(x, y) ∈ Dp, e(y) is a descendant of e(x) in t, and

4. ∀x ∈ Np, if λp(x) = a (where a 6= ∗) then
λt(e(x)) = a.

Given a tree pattern p and a tree t, p(t) denotes
the unary relation p(t) = {x ∈ Nt| ∃ an embedding
e of p into t s.t. e(op) = x}.
Fig. 4 shows two examples of embedding of the tree

pattern of Fig. 3 into two distinct trees.

Models and Canonical Models of Tree Patterns

The models of a tree pattern p defined over the alpha-
bet Σ are the trees of TΣ which can be embedded by p.
The set of models of p is Mod(p) = {t ∈ TΣ|p(t) 6= ∅}.

Canonical models of a tree pattern p are models
having the same shape as p. That is, a canonical
model of p is a tree which can be obtained from p by
substituting descendant edges with chains of *-marked
nodes of any length, and then replacing every * label
(both * labels which were originally in the pattern and
those which have been obtained transforming descen-
dant edges) with any symbol in Σ. The set of canonical



models of a pattern p will be denoted as m(p). The
subset of canonical models of p obtained by expand-
ing descendant edges into chains of *-labelled nodes
of length at most ω, and replacing the ∗ with a new
symbol z (i.e. z is not used for labelling any node of
p) will be denoted as mz

ω(p).
In Fig. 4 two examples of model and canonical

model of the tree pattern p of Fig. 3 are shown.

Figure 4: A model and a canonical model of a tree
pattern

Containment and equivalence between tree pat-
terns

Given two tree patterns p1, p2, we say that p1 is con-
tained in p2 (p1 ⊆ p2) iff ∀t p1(t) ⊆ p2(t).

We say that p1 and p2 are equivalent (p1 ≡ p2) iff
p1 ⊆ p2 and p2 ⊆ p1 (i.e. ∀t p1(t) = p2(t)). The set
of patterns which are equivalent to a given pattern p
will be denoted as Eq(p).

The containment and equivalence problems are ba-
sically identical (equivalence between two tree patterns
is a two way containment), and their complexity has
been widely studied. In the table shown in Fig. 5 we
report some results about the complexity of the con-
tainment problem for some fragments of XPath.

Fragment Complexity

XP {/,//,[ ],∗} co-NP complete

XP {/,//,∗} P

XP {/,[ ],∗} P

XP {/,//,[ ]} P

Figure 5: Complexity of the containment problem

An important result on containment which is not
reported in the above table is that for a pair of sub-
pattern p ∈ XP {/,//,∗} and q ∈ XP {/,//,[ ],∗} checking
whether p ⊇ q can be done in polynomial time [12].

Boolean tree patterns

A boolean tree pattern is a “nullary” tree pattern,
that is a tree pattern with no output node. A pattern
p with this property is called “boolean” since p(t) can

be seen as a boolean function which evaluates to true
if an embedding between p and t exists (the true value
corresponds to a set with an empty singleton), false
otherwise (the false value corresponds to an empty
set).

The notions of model and canonical model can be
extended to boolean tree patterns. That is, the models
of a boolean tree pattern p are the trees of TΣ on which
p evaluates to true: Mod(p) = {t ∈ TΣ|p(t) is true}.
Analogously, the canonical models of p are models hav-
ing the same “shape” as p.

Also the notions of containment and equivalence
between tree patterns can be trivially extended to
boolean patterns. In particular, for boolean tree pat-
terns the containment problem reduces to implication:
p1 ⊆ p2 iff ∀t p1(t) ⇒ p2(t), whereas the equivalence
problem reduces to verifying whether ∀t p1(t) ≡ p2(t).

As shown in [12], the containment and equivalence
problems for “general” tree patterns and boolean tree
patterns are equivalent. That is, two tree patterns
p1, p2 can be always translated into two boolean pat-
terns p′1, p

′
2 such that p1 ⊂ p2 iff p′1 ⊂ p′2. The same

property holds for the equivalence problem, which can
be seen as a two way containment. Therefore, for the
sake of simplicity, in the following we will use boolean
tree patterns for studying the tree pattern minimiza-
tion problem (we shall not care about output nodes).

Given a boolean tree pattern p = 〈tp, ∅〉, we say that
the boolean tree pattern p′ = 〈tp′ , ∅〉 is a subpattern
of p if the following conditions hold:

1. Np′ ⊆ Np;

2. the edge (ni, nj) belongs to Cp′ iff ni ∈ Np′ , nj ∈
Np′ and (ni, nj) ∈ Cp;

3. the edge (ni, nj) belongs to Dp′ iff ni ∈ Np′ , nj ∈
Np′ and (ni, nj) ∈ Dp;

Given a pattern p, we define size(p) = |Np| and
minsize(p) = minp′∈Eq(p)(size(p

′)).

Notations on tree patterns

In the following we denote the subpattern of p rooted
in any node n and containing all the descendant nodes
of n as spn. The following figure explains this notation.

Moreover, given a tree pattern p whose root r has
m children c1, . . . , cm, we will denote as sp1, . . . , spm

the subpatterns spc1
, . . . , spcm

(i.e. the subpatterns of
p directly connected to r by either a child or descen-
dant edge containing all the descendant nodes). We
will denote as pj the subpattern of p obtained from
spj adding r to spj and connecting it to the root of
spj in same way as it was connected in p. Obviously,
for any pair pi and spi it holds that minsize(pi) =



Figure 6: A pattern p and its subpatterns spb, spd, spa

minsize(spi) + 1. Furthermore, we will denote as
SP (p) and P (p), respectively, the sets of all the spi

and pi in p.
Fig. 7 shows the meaning of this notation for a tree

pattern p whose root has 2 children. In the examined
case, P (p) = {p1, p2} and SP (p) = {sp1, sp2}.

Figure 7: Examples of subpatterns

Given a pattern p and a subpattern p′ of p, we de-
note as p − p′ the pattern obtained from p by prun-
ing p′. Given a pattern p and a node n of p, we de-
note as p− n the pattern obtained from p after prun-
ing the subpattern spn. Analogously, given a set of
nodes N ′ = {n1, . . . , nl}, we denote as p − N ′ the
pattern obtained from p by pruning all the subpat-
terns spn1

, . . . , spnl
. Finally, given a set of positive

integers X = {x1, . . . , xl}, we denote as p−X the pat-
tern obtained from p by pruning all the subpatterns
spx1

, . . . , spxl
.

Reasoning about containment using models

We can reason about containment between tree pat-
terns using the notions of model and canonical model
described above. In particular, the following result
holds [12]:

Fact 1 For any (boolean) tree patterns p and q, the
following assertions are equivalent: 1) p ⊆ q, 2)
Mod(p) ⊆ Mod(q), 3) m(p) ⊆ Mod(q), 4) mz

ω(p) ⊆
Mod(q), where ω is one plus the longest chain of *-
labelled nodes not containing descendant edges in q.

As mz
ω(p) is a finite set of trees, the equivalence

between 1) and 4) permits us to test the containment
p ⊆ q by generating all the trees inmz

ω(p) and checking
whether they all belong to Mod(q).

3 Problem statement

The problem of minimizing a tree pattern can be
formulated as follows:

Given a tree pattern p, construct a tree pattern pmin

which is equivalent to p and having minimum size
(i.e. size(pmin) = minsize(p)).

This problem has been recently investigated for dif-
ferent fragments of XPath expressions. In particular,
in [16] it has been shown that the tree pattern mini-
mization problem can be solved in polynomial time for
XP {[ ],∗}, and in [1] a sound and complete polynomial
time algorithm minimizing a pattern in XP {[ ],//} has
been defined.

The latter cases are tractable as, for the above frag-
ments of XPath, the following two properties hold:

1. a minimum size tree pattern equivalent to p can
be found among the subpatterns of p;

2. the containment between two tree patterns p, q
(p ⊆ q) is equivalent to the problem of finding a
homomorphism from q to p. A homomorphism h
from a pattern q to a pattern p is a total mapping
from the nodes of q to the nodes of p such that:

• h preserves node types (i.e. ∀u ∈ Nq λq(u) 6=
‘*’ ⇒ λq(u) = λp(h(u)));

• h preserves structural relationships (i.e.
whenever v is a child (resp. descendant) of
u in q, h(v) is a child (resp. descendant) of
h(u) in p).

The former property ensures that a tree pattern of
minimum size can be obtained from p by “pruning”
some of its nodes, until no node can be further re-
moved preserving the equivalence of the obtained pat-
tern w.r.t. p. The latter property can be used for
checking whether a node of a pattern is redundant
(i.e. it can be removed) efficiently, as finding a ho-
momorphism can be done in polynomial time. Fig. 8
shows a pair of patterns p, q such that there exists a
homomorphism from q to p proving that p ⊆ q.

Unfortunately, property 2 does not hold for
more general XPath fragments. In particular, for
XP {/,//,[ ],∗}, the existence of a homomorphism be-
tween q and p suffices for asserting p ⊆ q, but is not
a necessary condition. Fig. 9 shows a pair of patterns



Figure 8: A homomorphism between two tree patterns

Figure 9: Two tree patterns which are not related via
a homomorphism

p, q such that no homomorphism from q to p exists,
although p is contained into q.

No homomorphism between the tree patterns q and
p of Fig. 9 exists as, even if the right-hand side branch
of q can be mapped onto the right-hand side branch of
p, the node b of the left-hand side branch of q cannot
be mapped onto any node of p.

However, it can be proved that, although no homo-
morphism between p and q exists, p ⊆ q holds. In
fact, it is easy to see that any canonical model t of
p is a model of q. This can be shown by considering
that canonical models of p are obtained by expanding
descendant edges of p into (possibly empty) chains of
*-labelled edges, and then “reasoning by cases”.

Canonical models of p obtained by expanding the
descendant edge connecting the nodes a and b in the
left-hand side branch of p into a child edge can be
embedded by q in the same way as the tree t′ in Fig.
10. In this case, q maps the portion of t′ corresponding
to the “right-hand side” portion of p. Otherwise, when
expanding the descendant edge connecting the same
pair of nodes a and b into a chain of at least one *-
labelled node, the canonical model can be embedded
by q in the same way as the tree t′′ in Fig. 10. In this
case, q maps the portion of t′ corresponding to the
“right-hand side” portion of p. This phenomenon can

be seen as a form of disjunction, which is not caught by
homomorphism and makes the containment problem
harder.
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Figure 10: Embedding of the pattern q of Fig. 9

Thus, deciding whether p ⊆ q by searching for a
homomorphism between q and p leads to a sound but
not complete algorithm.

As regards property 1, observe that, if property
1 does not hold we cannot minimize a query by
simply pruning some of its parts, since it is neces-
sary to consider also queries having a completely dif-
ferent structure. For instance, consider the query
Q = (σName=‘a′R ∪ σName=‘b′R) on a relational
schema {R} expressed using named relational alge-
bra. This query can be completely reformulated,
changing the selection condition, obtaining a query
Q′ = (σName=‘a′∨Name=‘b′R), that requires only one
selection operation. Obviously the possibility of ob-
taining in this way a minimum size query makes the
minimization problem harder.

The work of [12] shows that the presence of both //
and ∗ in our XPath fragment adds a limited form of
disjunction. Indeed, they show that, considering the
XPath fragment XP {/,//,[ ],∗}, the containment of a
pattern p in the disjunction of patterns p1, . . . , pk can
be reduced to the containment of two pattern p′ and
p′′. Thus, while for both the fragment XP {/,[ ],∗} (an-
alyzed in [16]) and XP {/,//,[ ]} (analyzed in [1]) it is
easy to show that property 1 holds, it is not straight-
forward to prove that the same property holds for the
fragment XP {/,//,[ ],∗}.

In our work we provide two main contributions:



1. we show that property 1 still holds for
XP {/,//,[ ],∗};

2. on the basis of the latter property, we investi-
gate the problem of minimizing tree patterns in
XP {/,//,[ ],∗}, and show that it is NP -hard2.

Moreover, we provide an algorithm for minimizing
a tree pattern.

4 A framework for minimizing XPath

queries

In this section we provide two fundamental contri-
butions. First, we prove that property 1 holds for
XP {/,//,[ ],∗} (i.e. a minimum size tree pattern equiv-
alent to p ∈ XP {/,//,[ ],∗} can be found among the
subpatterns of p). Then, we define an algorithm for
minimizing a tree pattern query.

In order to prove that property 1 still holds for
XP {/,//,[ ],∗} we have to introduce various lemmas.
Although the “partial” results stated in these lemmas
are not of practical use for the definition of algorithms
for minimization of tree patterns, they constitute a
general framework for reasoning about tree patterns.

Our first result regards the containment of two pat-
terns p and q. In particular, we prove that if p is
contained in q, then each subpattern qj of q contains
at least one subpattern pi of p.

Lemma 1 Let p and q be two patterns with root r,
such that p ⊆ q. Then, for each subpattern qj ∈ P (q)
there exists a subpattern pi ∈ P (p) s.t. pi ⊆ qj.

An application of Lemma 1 is sketched in Fig. 1, where
two patterns p, q s.t. p ⊆ q are reported. In this
case, q1 contains p3, q2 contains p3, and q1 contains
p1. Note that the subpattern p2 of p is not contained
in any subpattern qi of q.

Figure 11: Explaining Lemma 1

2A more precise characterization of the optimization problem
states that it is in FP

NP

The above lemma allows us to reason about the con-
tainment of two patterns in terms of the containment
of their subpatterns. We can use this lemma to derive
a first result about equivalent patterns: If two patterns
p and q are equivalent, but the root of p has more chil-
dren than the root of q, then some subpatterns pi are
“redundant”.

Lemma 2 Let p and q be two patterns rooted in r s.t.
p ≡ q, and let m and n, with m > n, be the number
of children of r in p and, respectively, q. Then, there
exists a set S ⊂ SP (p) consisting of m−n subpatterns
spi such that p− S ≡ p.

The above lemma can be applied to the patterns p
and q of Fig. 12. These two patterns are equivalent,
but the root of p has more children than the root of
q. As stated by Lemma 2 one of the subpatterns pi

is redundant. In this case, the subpattern p2 can be
removed from p obtaining an equivalent subpattern.

Figure 12: Two equivalent patterns with a different
“shape”

The following Lemma states another important re-
sult. It implies that all the patterns which have mini-
mum size and are equivalent to a given pattern p have
a common structural property: their roots have the
same number of children.

Lemma 3 Let p and q be two equivalent patterns
rooted in r having the same number of child and de-
scendant nodes of r, and let q be of minimum size.
Then, there not exists a subpattern spk ∈ SP (p) such
that p− spk ≡ p.

The above Lemma states that, if a pattern has min-
imum size, the conditions expressed by the subpat-
terns connected to its root cannot be expressed using
a smaller set of subpatterns (i.e. conditions). The
following Lemma strengthens this result, as it ensures
that, given a pair of patterns p, q such that p ≡ q and
q has minimum size, if the root of p has the same num-
ber of children as the root of q, then every subpattern
pi expresses a condition equivalent to some subpattern
qj in q. This result makes it possible to associate each
pi in p with a unique qj in q.



Lemma 4 Let p and q be two equivalent patterns
whose roots have the same number of child and descen-
dant nodes, and let q be of minimum size. For each
subpattern pi ∈ P (p) there exists a unique subpattern
qj ∈ P (q) directly connected to rq s.t pi ≡ qj.

Another important result regarding patterns mini-
mality is stated by the following Lemma, which indi-
cates the conditions that might lead a pattern to be not
minimal. More formally, a pattern has not minimum
size if at least one of its subpatterns pi is redundant
(i.e. it expresses a condition which can be subsumed
by another subpattern pj) or has not minimum size
(i.e. the conditions expressed by this subpattern can
be reformulated in a more coincise form).

Lemma 5 A pattern p in XP {[ ],/,//,∗} is not of min-
imum size iff at least one of the following conditions
hold:

1. there exists a pair of subpatterns pi,pj s.t. pi ⊆ pj;

2. there exists a subpattern pi of p which is not of
minimum size.

The above lemmas suffice to show the following theo-
rem, which states that, given a tree pattern p, a pat-
tern pmin ∈ Eq(p) can be found among the subpat-
terns of p.

Theorem 1 Given a pattern p in XP {/,//,[ ],∗} if
minsize(p) = k then there exists a subpattern pmin

of p such that p ≡ pmin and size(pmin) = k.

Proof. As minsize(p) < size(p), from Lemma 5 we
have that either there exists at least a pair of subpat-
terns pi, pj s.t. pi ⊆ pj , or there exists at least one
subpattern pi of p which is not minimum. Therefore we
can remove from p all the subpatterns spj (correspond-
ing to some pj containing another pi) thus obtaining a
subpattern p′ which is equivalent to p. The subpattern
p′ can possibly coincide to p if there weren’t any pairs
pi, pj s.t. pi ⊆ pj .

If, after pruning all the redundant subpatterns,
minsize(p) = size(p′) then we have proven the the-
orem, as p′ is a subpattern of p and has minimum size.
Otherwise, from Lemma 5 we know that, as there is
no pair p′i, p

′
j s.t. p′i ⊆ p′j , there exists a set NotMin

(with cardinality at least 1) of subpatterns p′i of p′

which are not minimum. Each of these subpatterns
consists of a tree pattern having the same root as p′,
and whose root is connected to a unique child. It is
trivial to show that each p′i is not minimum iff sp′i
(obtained from p′i removing its root) is not minimum.
We can apply iteratively the same reasoning to each

non minimum sp′i ∈ NotMin, replacing it in p′ with a
minimum subpattern sp′′i of sp′i obtained from sp′i as
shown above. At the end of this process, p′ will be a
subpattern of p s.t. neither there is a pair pi, pj s.t.
pi ⊆ pj , nor there is one subpattern pi of p which is not
minimum. Therefore, for Lemma 5, p′ has minimum
size. 2

4.1 An Algorithm for tree pattern minimiza-
tion

Theorem 1 suggests a technique for minimizing a tree
pattern, as it states that a minimum tree pattern
equivalent to a given tree pattern p can be found
among the subpatterns of p. The following algorithm
implements the idea used for the proof of Theorem 1.

Algorithm 1 works as follows. First, it checks
whether there is any subpattern pi of p which is “re-
dundant” w.r.t. the remainder of p. That is, it checks
whether pi ⊇ p − spi, where spi is obtained from
pi by removing its root, for each pi. Then, if such
a “redundant” pattern is found, it is removed from
p. After removing all the “redundant” subpatterns in
SP (p), the algorithm is recursively executed on the not
pruned subpatterns spi. Finally, every minimized pat-
tern spmin

i is connected to the root in the same way as
the corresponding spi was connected to the root using
the function assemble.

Algorithm 1
FUNCTION Minimize
Input: p (a tree pattern)

Output: pmin (a minimum tree pattern equivalent to p)

begin

pmin = p;
For each pi ∈ P (pmin) do

if (pi ⊇ pmin − spi)
pmin = pmin − spi;

SPnew = ∅;
For each spi ∈ SP (pmin) do

SPnew = SPnew ∪Minimize(spi);
pmin = assemble(pmin, SPnew);
return pmin;

end

Figure 13: An algorithm minimizing a tree pattern

For deciding the containment between pairs of pat-
terns we can use the sound and complete algorithm
introduced in [12], that is to our knowledge the only
one defined for the fragment XP {/,//,[ ],∗}. In the
latter work an upper bound on the complexity of
this algorithm has been stated: given two patterns
p, p′ ∈ XP {/,//,[ ],∗} deciding whether p ⊆ p′ requires
at most O(|p| · |p′| · (w′ + 1)d+1) steps, where |p| is
the size of p, |p′| is the size of p′, d is the number of



descendant edges in p and w′ is one plus the longest
chain of ‘∗’ in p′.

Using this result, we can state an upper bound for
the complexity of Algorithm 1. We denote the number
of branches of p as b, the maximum degree of any node
of p as r, the length of the longest chain of ‘∗’ in p plus
one as w, and the number of descendant edges of p as
d.

Proposition 1 (Upper bound) Algorithm 1 works
in O(b · r · |p|2 · (w + 1)d+1).

Proof. For each branching node bi of p, Algorithm 1
calls the subroutine for checking containment as many
times as the number of children of bi. Therefore, the
algorithm performs at most b · r containment checking
step, and each of these steps has a cost bounded by
O(|p|2 · (w + 1)d+1) (as shown in [12]). 2

Observe that the efficiency of Algorithm 1 can
be improved by speeding up the containment test.
Lemma 1 ensures that checking if pi ⊇ p − spi is
equivalent to testing the containment of pi in any of
the subpatterns pj with j 6= i, that is: pi ⊇ p− spi iff
∃j 6= i|pi ⊇ pj . The upper bound on the number of
operations that must be executed using this strategy
is smaller than the upper bound expected on the
number of operations that should be performed if
the containment test were executed between pi and
the whole p − spi. We can show this, for the sake
of simplicity, considering a pattern p consisting of
three tree patterns p1, p2, p3, such as the one on
the left-hand side of Fig. 12. We check whether
p1 is redundant using both the two described ap-
proaches. First, we check whether p1 ⊇ p2,3, where
p2,3 = p−p1; then, we decide p1 ⊇ p2 and p1 ⊇ p3 sep-
arately. In former case we have the following bound:
B1 = |p1|·|p2,3|·(w1+1)d23+1. In the latter case, check-
ing the containment will have the following bound:
B2 = |p1| · |p2| · (w1 +1)d2+1 + |p1| · |p3| · (w1 +1)d3+1,
where d23 = d2 + d3. It is easy to prove that
this bound is better than the first one. In fact,

B2 = |p1|·|p2|·(w1+1)
d23+1

(w1+1)d3
+ |p1|·|p3|·(w1+1)

d23+1

(w1+1)d2
≤

|p1|·|p2|·(w1+1)
d23+1+|p1|·|p3|·(w1+1)

d23+1

(w1+1)dmin
=

|p1|·(w1+1)
d23+1·(|p2|+|p3|)

(w1+1)dmin
= |p1|·(w1+1)

d23+1·(|p23|+1)

(w1+1)dmin
=

B1

(w1+1)dmin
+ |p1|·(w1+1)

d23+1

(w1+1)dmin
= B1

(w1+1)dmin
+

B1

|p23|·(w1+1)dmin
= B1 ·

|p23|+1

|p23|·((w1+1)dmin )
≤ B1,

where dmin = min{d2, d3}.
The above considerations can be easily extended to

a pattern p consisting of a generic number of patterns
p1, p2, . . . , pn.

Remark We point out that Algorithm 1 is based

on a top-down strategy. Obviously, we could define
an analogous algorithm for minimization based on a
bottom-up approach. However the asymptotic com-
plexity would not change. The main difference be-
tween the two approaches is that using a bottom-up
strategy we are guaranteed that when we test the con-
tainment between two subpatterns, these subpatterns
have minimum size. As the cost of deciding the con-
tainment between two patterns depends on their size,
this could possibly lead to an improvement of effi-
ciency. However, if a subpattern is redundant and is
rooted “closely” to the root, then Algorithm 1 removes
it without performing any minimization step. In con-
trast, a bottom-up algorithm would first minimize this
subpattern and then check whether it is redundant.
This strategy can be inefficient, especially when the
redundant subpattern is already of minimum size.

An algorithm exploiting a bottom-up strategy for
minimization is given in Section 6. This algorithm is
specialized for the minimization of a particular form
of tree patterns, for which the bottom-up strategy is
optimal.

5 Complexity results

Algorithm 1 works in exponential time w.r.t. the size
of the pattern to be minimized, as stated in Proposi-
tion 1. In this section we analyze the complexity of the
problem of minimizing XPath queries in XP {/,//,[ ],∗},
showing that unfortunately it is not possible to define
an algorithm performing much better than ours. In
fact, we will show that the decisional problem “given
a cardinal k and a tree pattern p in XP {/,//,[ ],∗}, does
there exist a tree pattern p′ (equivalent to p) whose size
is less than or equal to k?” is coNP-complete. In order
to characterize the complexity of this problem, we first
characterize the complexity of the following decisional
problem.

Lemma 6 Let p be a pattern in XP {/,//,[ ],∗} and
k a positive integer. The problem of testing if
minsize(p) > k is NP -complete.

Proof. (Sketch)
(Membership) Due to space limitations, we only pro-
vide the intuition underlying this part of the proof. A
polynomial size certificate proving that minsize(p) >
k should contain a set X of k nodes of p that cannot
be removed obtaining an equivalent pattern. However,
verifying whether this set of nodes can be removed
from p yielding an equivalent pattern cannot be done
in polynomial time, as checking the equivalence be-
tween patterns is in coNP. Therefore, the certificate
should contain for each node x ∈ X a “sub-certificate”
(a canonical model of p) showing that the tree pattern



obtained after removing x is more general than the
original tree pattern (i.e. p ∈ m(p)−Mod(p− spx)).
(Completeness) We prove that the problem is complete
for the classNP by showing a reduction of the problem
of checking that a pattern q1 is not contained into a
pattern q2.

Given two patterns q1 and q2, we build a pattern p
that consists of two chains of n nodes both attached
to the root of p. The nodes of the first chain are all
labelled with a new symbol “x”, whereas the nodes of
the second chain are labelled with “*”. We attach the
pattern q1 at the end of the first chain, and the pattern
q2 at the end of the second chain, as shown in Fig. 14.

Figure 14: The tree pattern p

We choose n > 2 max(size(q1), size(q2)) and test
whetherminsize(p) ≥ 2·n. Clearly, minsize(p) > 2·n
iff q1 * q2. Indeed, if q1 * q2 then p1 * p2. Fur-
thermore p2 * p1 by construction, since p2 consists
of a chain of ∗ nodes and p1 consists of a chain of
nodes labelled with the symbol “x”. This implies
that neither sp1 nor sp2 can be removed from p yield-
ing an equivalent pattern, and, since minsize(sp1) >
n and minsize(sp2) > n, then minsize(p) ≥ 1 +
minsize(sp1) + minsize(sp2) > 2 · n. Suppose now
that q1 ⊆ q2 this implies that p1 ⊆ p2 and then p2 ≡ p.
Thus minsize(p) < 2 ·n since size(p2) ≤ n+ size(q2),
and size(q2) ≤

n
2 . 2

Theorem 2 Let p be a pattern in XP {/,//,[ ],∗} and k
a positive integer. The problem of testing if there exits
a pattern p′ equivalent to p such that size(p′) ≤ k is
coNP -complete.

Proof. (Sketch) It straightforwardly follows from
Lemma 6 and Theorem 1. 2

6 Tractability Results

Theorem 6 states that the problem of minimizing a
tree pattern query in XP {/,//,[ ],∗} is NP-Hard. In this
section we will discuss a form of tree pattern queries
which can be minimized efficiently (i.e. in polynomial

time). That is, we will describe some limitations on
the “shape” of a tree pattern which make this problem
easier.

Definition 2 A limited branched tree pattern p is a
tree pattern in XP {/,//,[ ],∗} such that:

1. every non leaf node of p may have any number of
children;

2. if a node n has k children n1, . . . , nk, then at least
k − 1 of the patterns spni

(where i ∈ [1..k]) are
linear (i.e. spni

∈ XP {/,//,∗}).

In the following figure we show some examples of
patterns satisfying Definition 2.

Figure 15: Tree patterns satisfying the normal form of
Definition 15

The three patterns in Fig. 15 correspond, respec-
tively, to the following expressions:

1. b/a[b/*//c]//d/a[d/*/a[c/a]/d/*]//c/d;

2. a/b/*[d/b//*/d]//c/b[//d/a]//a/*/a[*/c]//b;

3. a[b/d//c]//d/a[c/d]/d/*/b[a//a]/d/b[a]/b;

Theorem 3 Let p be a limited branched tree pattern.
A minimum pattern pmin equivalent to p can be found
in polynomial time (w.r.t. the size of p).

Proof. Lemma 5 implies that p can be minimized
by checking the containment between each subpattern
rooted in a branching node and the other subpatterns
rooted in the same node, for every branching node.
Let b1, . . . , bm be the m branching nodes of p ordered
according to their depth (i.e. b1 is the nearest to the
root, whereas bm is the deepest).

We can minimize p starting from bm. This node is
the root of only linear subpatterns. Applying Lemma
5 on spbm

we have that the subpattern spbm
can be

minimized in polynomial time, as 1) linear patterns
have minimum size, and 2) the containment between



pairs of linear patterns can be decided in polynomial
time (see [12]). Let spmin

bm
be a pattern of minimum size

equivalent to spbm
, and let p1 be the pattern obtained

from p by replacing spbm
with spmin

bm
.

Next, we consider bm−1 in p1. The pattern spbm−1

consists of k subpatterns such that k− 1 of these sub-
patterns are linear and the remainder one is composed
of a linear pattern connecting bm−1 to spmin

bm
. From

Lemma 5 we have that spbm
can be minimized in poly-

nomial time, as 1) linear patterns have minimum size,
2) the subpattern consisting of a linear pattern con-
necting bm−1 to spmin

bm
has minimum size, and 3) the

containment between a linear pattern and a pattern in
XP {/,//,[ ],∗} can be decided in polynomial time (see
[12]).

We can apply the same reasoning iteratively. Af-
ter the m-th iteration we have a pattern pm ∈ Eq(p)
having minimum size. 2

Following the schema of the proof of Theorem 3
we can define an algorithm which minimizes a limited
branched pattern efficiently. This algorithm is shown
in Fig. 16.

Algorithm 2
FUNCTION Minimize
Input: p (a bounded branched tree pattern)

Output: pmin (a minimum tree pattern equivalent to p)

begin

pmin = p;
B = {b1, . . . , bm}; //the set of branching nodes of p

while (B 6= ∅)
b = deepest(B);
q = spb;
Redq = ∅; //“redundant” subpatterns of q;

For each qi ∈ P (q) do

For each qj ∈ P (q) do

if (i 6=j)∧ (qi is linear)∧ (qj /∈Red)∧ (qi ⊇ qj)
Redq = Redq ∪ {qi};

q = q −Redq;
pmin = replace(pmin, spb, q);
B = B − {b};

end while;

return pmin;
end

Figure 16: An algorithm minimizing a limited
branched tree pattern

We point out that Algorithm 2 has some differences
w.r.t the algorithm for minimization presented in the
previous section. In fact, it is based on a bottom-
up schema. Instead of visiting the pattern starting
from the root, it considers all of its branching nodes

starting from the deepest one. Therefore, at each step
it operates on patterns of minimum size (every sub-
pattern rooted in a branching node either is linear or
has been minimized at some previous step), so that
it must never decide the containment of a linear pat-
tern into a non linear one (as a non linear pattern of
minimum size can never contain a linear one). Vicev-
ersa, it must decide the containment between linear
patterns and possibly the containment of non linear
patterns into linear ones, which can be done in poly-
nomial time (as shown in [12]). If we used Algorithm
1 for minimizing a limited branched tree pattern, we
should possibly check the containment between linear
patterns and non linear ones in both directions, so we
could not be guaranteed on the polynomial bound.

7 Conclusions and Future Works

In this paper we have studied the minimization prob-
lem for tree patterns belonging to the fragment of
XPath XP {/,//,[ ],∗} (i.e. the fragment containing
branches, descendant edges and the wildcard sym-
bol) and have provided some relevant contributions.
First, we have proved the global minimality property:
a minimum tree pattern equivalent to a given tree pat-
tern p can be found among the subpatterns of p, and
thus obtained by pruning “redundant” branches from
p. On the basis of this result, we have designed a
sound and complete algorithm for tree pattern min-
imization which works, in the general case, in time
exponential w.r.t. the size of the input tree pattern.
Secondly, we have characterized the complexity of the
minimization problem, showing that the correspond-
ing decisional problem is coNP -complete, and have
studied a “tractable” form of tree pattern which can
be minimized in polynomial time, providing an ad-hoc
algorithm for the efficient minimization of this class of
tree patterns.

Currently, we are investigating the possibility to ex-
tend our minimization framework to deal with XPath
queries that must satisfy some constraints such as join
conditions on tree pattern nodes. An example of join
condition is shown on the left-hand side of Fig. 17.
In this case, the join condition involves the two nodes
of p with label a and says that they should be the
same node. The tree pattern pmin on the right-hand
side of Fig. 17 is a minimum tree pattern equivalent
to p, but it is not a sub pattern of p. Therefore, the
introduction of these constraints makes the minimiza-
tion problem harder, as the global minimality property
does not hold.



Figure 17: Two equivalent tree patterns
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