Quotient Cube: How to Summarize the Semantics of a
Data Cube

Laks V. S. Lakshmanan
U. of British Columbia
laks@cs.ubc.ca

Abstract

Partitioning a data cube into sets of cells with
“similar behavior” often better exposes the se-
mantics in the cube. E.g., if we find that aver-
age boots sales in the West 10th store of Walmart
was the same for winter as for the whole year,
it signifies something interesting about the trend
of boots sales in that location in that year. In
this paper, we are interested in finding succinct
summaries of the data cube, exploiting regulari-
ties present in the cube, with a clear basis. We
would like the summary: (i) to be as concise as
possible, (ii) to itself form a lattice preserving the
rollup/drilldown semantics of the cube, and (iii)
to allow the original cube to be fully recovered.
We illustrate the utility of solving this problem
and discuss the inherent challenges. We develop
techniques for partitioning cube cells for obtaining
succinct summaries, and introduce the quotient
cube. We give efficient algorithms for computing it
from a base table. For monotone aggregate func-
tions (e.g., COUNT, MIN, MAX, SUM on non-
negative measures, etc.), our solution is optimal
(i.e., quotient cube of the least size). For non-
monotone functions (e.g., AVG), we obtain a lo-
cally optimal solution. We experimentally demon-
strate the efficacy of our ideas and techniques and
the scalability of our algorithms.

1 Introduction

The data cube [8] is one of the most influential oper-
ators in OLAP. It is instructive to classify works on
issues surrounding it into two “generations”. In the
first generation, the main focus was to devise efficient
algorithms for computing the cube — the full cube from

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Jian Pei
Simon Fraser U.
peijian@cs.sfu.ca

Jiawei Han
U. of Illinois
hanj@cs.uiuc.edu

scratch [8, 2, 20], choosing views to materialize un-
der space constraints [11], handling sparsity [14], cube
compression [16, 19, 17], approximation [3, 4, 18], and
computing the cube under user-specified constraints
[5]. In the second generation, researchers began to fo-
cus attention on extracting more “semantics” from a
data cube. E.g., [15] studies the most general contexts
under which observed patterns occur and [12] uses the
cube structure to generalize association rules to a much
broader context.

In this paper, continuing this semantic trend, we
are interested in finding a succinct summary of the
data cube, exploiting regularities present in the cube,
with a clear basis. We would like the summary: (i)
to be as concise as possible, (ii) to itself form a lat-
tice preserving the rollup/drilldown semantics of the
cube, and (iii) to allow the original cube to be fully
recovered. To appreciate the problem, consider the
relation sales(Store, Product, Season, Sale) (see
Figure 1(a)), showing the sales of products in vari-
ous outlets of, say Walmart. Here, Sale is a measure
attribute, the remaining attributes being dimensions.
Abbreviating the attributes T' (Store), P (Product),
S (Season), and L (Sale), a cube grouped by T, P, S
and using an aggregate function agg(L), is just a
shorthand for the 8 group-by queries with each sub-
set of T,P,S forming the group-by. FEach group-
by such as {T, P} corresponds to a set of cells, de-
scribed as tuples over the group-by attributes, e.g.,
(T = West 10th, P = boots), identifying those tuples
in the base table sales that match these conditions.
The set of all cells of a cube form a lattice (e.g., see
Example 1 and Figure 1).

The lattice structure of a cube carries the impor-
tant semantics of from which cells we can roll up or
drill down to which other cells. Another important
piece of semantics in a cube is the knowledge of which
scenarios (or cells) have a similar behavior. For ex-
ample, suppose in a cube over sales, we know the
cells (T' = West 10th, P = boots, S = winter) and
(T' = West 10th, P = boots) register the same aver-
age sales. It tells us something significant about the
trend of boots sales in the West 10th store in the year

in question. We wish to regard these two cells equiv-
alent. Partitioning a cube into equivalence classes of
cells with identical aggregate values helps expose its
semantics better. Besides, it can be used to “reduce”
the cube by using classes of cells in place of cells, thus
making it more amenable to user comprehension and
exploration/analysis. Since the lattice structure of a
cube is semantically important, in using partitions to
reduce a cube, we should use those partitions that pre-
serve the lattice structure: (i) one can drill down from
a cell ¢ to another cell ¢ in the cube exactly when
one can do so from the class of ¢ to that of ¢’ in the
reduced cube lattice; and (ii) one can drill down from
a class C to a class C' in the reduced cube lattice ex-
actly when one can drill down from some cell in C' to
some cell in C' in the original cube lattice.! As we
will show, not all partitions lead to a (reduced) lattice
structure, so we somehow need to choose the parti-
tions right for constructing the reduced cube. The
user can then browse the reduced cube (which pre-
serves the original cube’s semantics), and (s)he can
always “click” on a class whenever (s)he needs to see
its internal details. This is to be contrasted with gen-
eral compression techniques, where the main concern
is reducing the cube size, and there is no requirement
to preserve the lattice structure of the cube.

The problem of computing the so-called reduced
cube using appropriate partitions raises several chal-
lenges. Firstly, as we shall show, a blind approach
of treating all cells with identical aggregate measure
as equivalent, does not help generate a (reduced) lat-
tice. Secondly, classical lattice theory tells us that an
equivalence relation that is also a congruence (i.e., it
respects the lattice structure) always generates a re-
duced lattice. Unfortunately, this does not help us, as
none of the known aggregate functions leads to congru-
ences. Thirdly, assuming we know how to partition a
cube lattice right, we need efficient algorithms to com-
pute the reduced cube. For instance, computing the
quotient after first computing the cube is expensive
and is not an option. We make the following contri-
butions.

e We formalize desirable partitions on a cube lat-
tice using a property called convezity. Intuitively,
it requires equivalence classes to be free from
“holes”. We show that a fundamental notion
of equivalence called cover equivalence, based on
base tuples covered by cells, is convex, and for-
mally establish its connection to finding partitions
based on COUNT and SUM (Section 4).

e We capture equivalence relations preserving the
rollup/drilldown semantics of a cube using a no-
tion called weak congruence and show that on a

L Clearly, it is important to ensure you cannot also drill down
from some cell in C’ to some cell in C, as that would destroy
the lattice structure!

cube lattice, an equivalence relation is a weak con-
gruence if and only if it induces a convex partition
(Section 5.1). Unlike for congruences, all known
aggregate functions admit weak congruences.

e We show the following general result. For any
monotone aggregate function f, the equivalence
relation, defined based on equality of f-values and
preserving connectivity, necessarily induces a con-
vex partition, and hence is a weak congruence.
We give examples of non-monotone functions for
which such an equivalence relation may or may
not induce a convex partition (Section 5.2).

e We formally define the quotient cube lattice of a
cube w.r.t. a weak congruence, and propose it as a
concise semantics-preserving summary of the data
cube. We develop algorithms for computing it di-
rectly from the base table, for both monotone and
non-monotone aggregate functions (Section 6).

e We conducted a comprehensive set of experiments
on both synthetic and real data sets. Our results
show the efficacy of the quotient cube in achiev-
ing considerable reduction in size, while preserv-
ing the rollup/drilldown semantics of the original
cube lattice. They also validate the effectiveness
and scalability of our algorithms (Section 7).

Section 2 motivates the problem and Section 3 sum-
marizes the necessary technical background. Related
work is discussed in Section 1.1. Section 8 briefly
sketches issues like multiple aggregate functions, query
answering, constraints, and incremental maintenance,
while Section 9 summarizes the paper and describes
future work. Proofs of results are omitted for space
limitations, and can be found in the full paper [13].

1.1 Related Work

Works on compressing the cube size such as [16, 4, 7,
10] are of clear relevance to us. However, our main
goal is constructing an exact and concise summary
of a cube that preserves the cube semantics and lat-
tice structure, as opposed to just compressing the cube
size, which distinguishes it from all these works. The
recent work on “condensed cube” by Wang et al. [19)
is perhaps the closest in spirit to our work and we
compare our work with this in some detail next.

The condensed cube approach uses two ideas of
“single base tuple” compression and “projected sin-
gle tuple ” compression as a basis for compressing a
data cube. This idea is similar in spirit to some of
the goals of this paper. The focus of that paper is on
one fixed aggregate function, COUNT (but extends to
SUM). Indeed, for COUNT, as we show, the equiv-
alence relation =qounr defined here is identical to
cover equivalence, another fundamental notion defined
in this paper. The combination of the two compression
ideas above has a flavor similar to cover equivalence.
A main technical focus of our paper is characterizing

I (10)

1(5)

Store | Product | Season | Sale

S1 P1 spring | 5

S1 P1 fall 12
S1 P2 spring | 14
52 P2 spring | 10
S1 P2 fall 25
52 P1 spring | 15
S2 P2 fall 20

(a)

(SLPLS): (S2P25s)". (SLPLA)

(Sl,Pl:e;\‘l) (Sl,ail‘,s/) (aII,Pl/,/s’) (SZ,PE,/aII) (2:30.) @1 P2s)

(SLailall) @IPLal @halls)

I (12); 1V (14)
(SLP2s)

V(15) VI(20) ; VII(25)
(S2PLs) (S2.P2f) | (S1P2f)

)

(s2.8i1al) (all,PZél])

(s1,_é{u,f @ipLf) " (SLP2al) (s_zfl,au)'

(all,al I‘,;) 1

(aII,aI’I’,’aI\)

Figure 1: Base table sales, and its cube lattice and quotient classes (I-VII). Top element false not shown.

properties of partitions that generate reduced cubes
that are guaranteed to be a lattice, a problem never
addressed before. Secondly, by virtue of the theory
developed in our paper, we are able to offer a rich set
of semantic summarization techniques for most pop-
ular aggregate functions, such as MIN, MAX, SUM,
COUNT, AVG, and TOP-k. The algorithms proposed
for condensed cube in [19] include an exact exhaustive
one and an efficient heuristic (and hence, suboptimal)
one. By contrast, we provide efficient optimal algo-
rithms for all monotone aggregate functions. Indeed,
we compare their algorithm MinCube [19] with our
optimal algorithm for computing quotient cube w.r.t.
cover equivalence in Section 7. While our algorithms
for non-monotone aggregate functions are in general
suboptimal (but do satisfy local optimality), we are
not aware of any previous algorithms for this case.
Lastly, [17] proposes an extremely effective technique
for compressing the cube size by means of a data struc-
ture called dwarf cube. Their contribution is orthog-
onal to ours since, unlike us, they are not concerned
with semantics in summarization nor preserving lat-
tice structure. It is also complementary to ours, since
the structure sharing technique of [17] can be applied
to any table, be it the full cube or a reduced cube such
as our quotient cube.

2 Motivation

In this section, we illustrate the problem studied in the
paper and then give a precise problem statement. Our
first example illustrates the concept of a reduced cube
that preserves cube semantics and lattice structure.

Example 1 (Illustrating Reduction)
Consider Figure 1(a) and the data cube on table sales
expressed by the query

SELECT Store, Product, Season, MIN(Sale)
FROM sales
CUBE BY Store, Product, Season

(b)
Figure 1(b) shows the cube lattice,> with
cells not present in the base table, such as

(T=82,P=P1,S=1£) and (the top element) false,
omitted. It has 26 distinct cells. The figure also shows
a partition of the lattice into 7 disjoint equivalence
classes I-VII (shown in solid lines in different colors
and separated by curved dotted lines), with the prop-
erty that all cells in a class have the same MIN(Sale)
value (shown beside each class). Classes I-VII can in-
deed be represented as a lattice, viz., the reduced cube
lattice, as in Figure 2, where a class C (e.g., II) is below
another class C' (e.g., VI) exactly when we can drill
down from some cell in C (e.g., (S2,all,all)) to some
cell in C' (e.g., (S2,dll, f)), in the original cube (see
also Figure 1(b)). For each class, the figure shows the
upper and lower bounds, guiding user’s exploration.
For the sake of completeness, in Figure 2, we also show
the class false, the equivalence class of cells containing
empty set of tuples. We call the reduced cube lattice
the “quotient cube” and define it formally in Section 5.

|

- (GR==15]
Vil (25)
(s1.P2.0)

(sS1.P2,5) (s2,P2,1)
v (14) Vi1 (20)
(sS1,P2,all) (sS2,all,f) (all,P2,f)

(A5
vV (15)
(sz2,P1,all)

(S2,P2,5)

1 (12)

(s2.all,s) call,all.f

(G1.PiD
(s2,p2all)

@@lil,P2,s) [
(s2,all,all) (all,P2,all)
11 (10)

Figure 2: The quotient lattice of Figure 1(b), showing
internal structure of class II

On comparing Figures 1(b) and 2, we observe the
following. (1) The quotient cube of Figure 2 is much
smaller in size than the original cube of Figure 1(b).
The reduction comes from adjacent cube cells shar-

2Following the convention of [5], we draw the lattice with
(all,...,all) at the bottom. So we drill down from a cell ¢ to a
cell ¢’ exactly when ¢ < ¢’ according to the lattice ordering, and
¢’ is above c in the lattice diagram.

ing a common aggregate value, a phenomenon that
occurs frequently, as we will show experimentally in
Section 7. (2) The quotient cube lattice of Figure 2
preserves the rollup/drilldown semantics inherent in
the original cube. E.g., there is an upward edge from
class II to class IV since we can drill down from the
cell, say (all, P2,all) in class I, to cell(S1, P2, all) in
class IV. In general, whenever we can drill down from
a cell ¢ to ¢’ in Figure 1(b), we have an upward path
from the class of ¢ to that of ¢’ in the quotient lattice
of Figure 2. Class I is the bottom element since it con-
tains (all, all, all) from which we can drill down to any
cell. There is no path from III to V since one cannot
drill down from any cell of III to any cell of V in the
original cube. (3) The user may first want to browse
the reduced cube lattice of Figure 2 to observe trends,
and then (s)he can examine the internal structure of
individual classes by “clicking” on them. The figure
shows lower /upper bounds of all classes and the in-
ternal structure of clicked classes (class II). (4) These
observations apply to other aggregate functions too.

Example 2 (Cube with SUM) Consider now the
base table in Figure 3(a). Consider a cube query on
this table with the aggregate SUM. The cube lattice
has 16 cells with non-empty set of tuples. The quo-
tient cube has just 6 classes. Figure 3(b)-(c) shows
the cube and quotient cube lattices, with sum values

shown beside classes. n
TIP[S[M
. SI[PL[s |5
- sr|s |10
g S SLPY Ly Ps |55
[R @
(SLPLall) (Shalls) (@liPLs) (SLPRal) (@liPhs) (S2PLal) (SBalls) | fabe
Stalial) (@PLal) (alialls) @bPhal) (S3albal) VIgs VG V(0
P N ey a3
(all,all,all)
I 1(30)
® ©

Figure 3: Base Table, Cube, and quotient cube for
Example 2.

Many of the remarks on Example 1 apply to this
example as well. The main differences are: (1) The
aggregate functions are different. (2) There are two
distinct classes, III and VI, with the same aggregate
value 15. Had we merged these classes into one, the
resulting class would have a locally disconnected struc-
ture, as can be seen from Figure 3(b). This fails to
preserve the rollup/drilldown semantics of the origi-
nal cube lattice: in the reduced cube (with IIT and
VI merged), there is a drilldown path from II to VI
(which is merged with IIT), and another from III to V;
but in the original cube of Figure 3(b), we cannot drill
down from any cell in IT to any cell in V! Thus, in gen-
eral, partitioning cells solely on the basis of equality
of aggregate values is undesirable.

Problem Statement: In this paper, we are inter-
ested in the following problem. Given a cube, charac-
terize a good way of partitioning its cells into classes
such that: (i) the partition generates a (reduced) lat-
tice, preserving the rollup/drilldown semantics of the
cube lattice, and (ii) the partition is optimal in that it
results in the fewest possible classes. We consider this
problem both for aggregate functions such as MIN,
COUNT, SUM,? etc. that are monotone and for those
like AVG and SUM,* etc. that are not. We are inter-
ested in efficient algorithms for constructing the quo-
tient cube w.r.t. the optimal partition, directly from
the base table.

3 Background

In this section, we review the basic notions needed in
the rest of the paper. A lattice is a partially ordered
set (£, <) such that every pair of elements in £ has
a least upper bound (lub) and a greatest lower bound
(glb). Finite lattices can be represented using a lattice
diagram with lattice elements as nodes such that there
is an upward path from e to e’ exactly when e <¢'. In
this case, we call ¢’ an ancestor of e and e a descen-
dant of ¢/. We say e’ is a parent of e (e a child of
e') whenever €’ is a nearest ancestor of e and e # €.
(Parents are not necessarily unique.) Every subset of
a finite lattice (£, <) has a lub and a glb. So £ has
a unique top element and a bottom element. Birkhoff
[6] is a classic text on lattice theory.

We make use of lattices associated with a data cube
instance. Let b(A1, ..., Ap, M) be a base table, A;’s be-
ing dimensions and M being the measure attribute. A
cell is a tuple over the dimension attributes, where
following [8], we allow the special value all. E.g.,
(a1y--yam), (all,as,...,am—1,all), and (all, ...,all) are
all cells. The cube lattice is defined over the set of
cells, where (1, ..., Zm) = (Y1, -+, Ym) provided when-
ever x; # all, we have y; = x;, for all i. Note that for
cells ¢, ', ¢ < ¢ iff the set of tuples falling in cell cis a
superset of those falling in ¢’. Following the convention
of [11, 5], we assume cube lattices have (all, ..., all) at
the bottom and false as the top. Figures 1(b) and 3(b)
show example cube lattices.

4 Cube Lattice Partitions

In Section 2, we saw that reduced cubes obtained via
cube cell partitions, defined solely on the basis of ag-
gregate measure equality, do not necessarily preserve
the original cube’s rollup/drilldown semantics. The
next example illustrates yet another problem.

Example 3 (Bad Partitions) Figure 4(a)-(b)
shows a base table and part of its cube lattice. Sup-
pose we define cell equivalence solely based on equal-
ity of SUM values. The figure shows two classes C'

3When all measure values are positive or all negative.
4With both positive and negative measure values.

M c® i1y
= ‘ ‘

A B
l l i I =TT~
112 | -4 (all) | CUNE D (6)
2 123 = —
2111 (all,ally |

(a) (b)

Figure 4: (a) Base table; (b) Partial cube lattice illus-
trating problem with SUM partitions.

and D, where C' (SUM 5) contains cells (all,all) and
(1,1), and D (SUM 6) contains the only cell (all,1).
This partition cannot yield a lattice, since we can drill
down from C to D (e.g., from (all,all) to (1,all)),
but also drill down from D to C (e.g., from (all, 1) to
(1,1). A similar example can be easily created keeping
all measures positive, when the aggregate function is
AVG. [

So how do we partition cube cells right? The follow-
ing notion formalizes desirable properties of partitions
that we are looking for.

Definition 1 [Convex Partitions] Let P be a par-
tition and let C' € P be a class. We say C'is convez pro-
vided, whenever C' contains cells ¢ and ¢’ with ¢ < ¢/,
then every intermediate cell ¢”, such that ¢ < ¢" < ¢,
necessarily belongs to C. In words, whenever C' con-
tains a pair of cells, it also contains all cells in between.
We say P is convez provided all its classes are. [

All partitions in Examples 1 and 2 are convex.
Intuitively, convexity means “holes” cannot exist in
classes. The partition described in Example 3 is non-
convex. We have the following proposition concerning
equivalences w.r.t. count and sum values. For count,
notice that we do not eliminate duplicates as per multi-
set semantics.

Proposition 1 [Count and sum]: The equiva-
lence relation defined solely on the basis of equality of
count values is always convex. Suppose the domain of
the measure attribute contains only non-negative (or
only non-positive) values. Then equivalence defined
solely on the basis of equality of sum values is convex.

|

The proposition follows from the observation that
whenever there is a cell ¢ in between ¢ and ¢/, i.e.,
c=c'" <, " must contain all tuples that ¢’ has, and
for COUNT and SUM on positive measure, it cannot
form a hole.

We say an equivalence class is connected if its lo-
cal internal structure is a connected DAG. A partition
is connected provided all its classes are. As seen ear-
lier, partitions defined solely on the basis of equality
of SUM values are not connected in general. We can
define a fundamental partition of cells is one based
on the set of tuples they contain. Specifically, say

that two cells ¢ and ¢’ are cover equivalent, ¢ =cop €,
provided the set of tuples contained in those cells is
the same. Note that cover equivalence of cells implies
their equivalence w.r.t. all aggregate functions, includ-
ing SUM and COUNT. The converse does not always
hold (e.g., MAX or AVG). We can show:

Lemma 1 [Cover Partition]: Let Pgoy be the
partition associated with the cover equivalence relation
=cov - Then Pcoy is necessarily convex. n

The key intuition is that if a cover equivalence class
contained a hole, the set of tuples of the cell forming
the hole would be bounded from above and from be-
low by the sets of tuples contained in two other cells
belonging to the class. But then these two cells must
contain the same set of tuples. By Lemma 1, the par-
tition shown in Example 2 (for SUM on positive mea-
sures) is indeed an example of a cover partition. The
partition shown in Example 1 (for MIN) is different
from cover partition. We now give a generic way to
define equivalence w.r.t. an arbitrary aggregate func-
tion f, in a manner that preserves connectivity. By
the f-value at a cell ¢, we mean the value of function
f applied to the set of tuples contained in c.

Definition 2 [Connected Partitions] Let f be
any aggregate function. Then we define the equiv-
alence =; as the reflexive transitive closure of the
following relation R: for cells ¢, ¢’ in the cube lattice,
¢ R ¢ holds iff: (i) the f-value at ¢ and ¢’ is the same,
and (ii) ¢ is either a parent or a child of ¢'. m

Recall that equivalence defined solely w.r.t. equality
of sum or count values is not identical to cover equiva-
lence. However, for =gy and =count , defined as in
Definition 2, we can show the following

Lemma 2 [Cover vs. COUNT/SUM equiva-
lence] : The equivalence =qouyr defined as above
coincides with the cover equivalence =¢,, - Further-
more, suppose the measure attribute domain contains
only positive or only negative values. Then on a cube
lattice, the equivalence =gyy defined as above coin-
cides with the cover equivalence. [

The above result testifies to the fundamental nature
of cover partitions. For SUM, if the measure attribute
contains both positive and negative values, it is pos-
sible to have a pair of parent and child cells, say ¢, ¢/,
such that the sets of tuples covered by them are not
the same, yet, the associated SUM values are the same.
This is true even when the values are all non-negative
(or all non-positive), since tuples with measure value
0 can create the above situation.

5 Partitions Preserving Semantics

We shall formalize what it means for a partition to
preserve the rollup/drilldown semantics of a cube lat-
tice.

5.1 Weak Congruences

Let £ be any cube lattice and = any equivalence rela-
tion on its cells. We say that = is a congruence pro-
vided for every ¢, c',d,d" € L, whenever we have ¢ = ¢/,
d=d', and ¢ < d, we also have ¢’ < d'. Informally, a
congruence on a lattice is an equivalence relation that
respects its partial order in a strong sense. It induces a
partition such that a cell in one class is a descendant of
a cell in another iff this holds regardless of the choice
of representative cells from the classes. While this is a
nice property, in the context of cube, no known natu-
ral partitions on the basis of aggregate value equality
satisfy this property. Indeed, even =¢,, , a fundamen-
tal equivalence, is not a congruence. To remedy this
situation, we propose the following:

Definition 3 [Weak Congruence] Let (£, <) be
any cube lattice and = any equivalence relation on its
cells. We say that = is a weak congruence provided for
every ¢,c',d,d € L, whenever we have c = ¢, d = d,
¢=<dandd <, we also have ¢ = d. n

Intuitively, a weak congruence is an equivalence re-
lation that respects the lattice partial order in a weaker
sense: it says whenever a pair of cells is related in a
certain way according to this partial order, cells equiv-
alent to them cannot be related in the opposite way,
unless they are all equivalent. The following observa-
tion makes the intuition clearer:

e An equivalence relation on a (cube) lattice is a

weak congruence iff the partition P induced by
it is such that for any distinct classes C,D € P,
whenever there are cells ¢ € C and d € D with
¢ = d, then for every d' € D and ¢’ € C, we have
d £ .

In the sequel, we call any lattice partition satisfying
the above property a WC partition. Weak congruences
induce a “reduced” lattice defined as follows.

Definition 4 [Quotient cube lattice] Let (£, <)
be a cube lattice and let = be a weak congruence on
L. Then the quotient cube lattice is a lattice, denoted
(L/=, <), such that the elements of £/= are the
equivalence classes of cells in £ w.r.t. =. For classes
C, D in the quotient lattice, C' < D exactly when Jc €
C,3d € D, such that ¢ < d w.r.t. L. [

It is straightforward to show that £/ = is indeed a
lattice whenever = is a weak congruence. While every
congruence is a weak congruence, the practical utility
of weak congruences stems from the fact that unlike
for congruences, many natural partitions on cube lat-
tices correspond to weak congruences. The following
theorem establishes a link between convexity and weak
congruence.

Theorem 1 [Convexity and weak congruence] :
Let (£, <) be any lattice, = an equivalence relation
on £, and let P be the partition induced by =. Then
= is a weak congruence iff P is convex. [

The intuition behind this theorem is that a weak
congruence makes it impossible for two equivalence
classes of cells to be descendants of each other. Con-
vexity, on the other hand, says there should be no
hole in any class of the partition. Intuitively, convex-
ity prevents a class from being both below and above
another class, for otherwise, one of the classes would
have a hole in it. It follows from this theorem that
all examples of partitions that we have seen so far, in-
cluding those defined w.r.t. MIN, SUM, COUNT, or
w.r.t. cover equivalence are WC partitions. An excep-
tion is the equivalence given in Example 3, which is
not a weak congruence. The significance of the WC
property is that it allows us to unambiguously con-
struct the quotient lattice of the cube lattice w.r.t.
the WC partition. The quotient lattice preserves the
rollup/drilldown semantics of the original cube lattice,
while typically having a much smaller size.

Given a cube lattice, we seek WC partitions that
are as coarse as possible, since coarser partitions yield
fewer classes. Given two partitions P, P’ on any set,
we say P is coarser than P’, provided every class of
P’ is contained in some class of P. In other words,
classes of P’ are not split between classes in P. It is
well known that the set of partitions on a fixed set
with the “coarser than” ordering is a lattice itself and
thus one can speak of partitions that are mazimally
coarse (abbreviated mazimal) in a given collection of
partitions, maximality being defined as for any partial
order. Given a cube query with aggregate function f,
we can now ask: (i) is there a unique maximal WC
partition on the cube lattice? (ii) how efficiently can
we compute a maximal WC partition directly from the
base table? These questions are settled in the next
sections.

5.2 Role of Aggregate Functions

It turns out answers to these questions tend to de-
pend on the nature of the aggregate function. Recall
that aggregate functions are defined over multi-sets of
values. For multi-sets S,T, we write S C T when-
ever every element of S also occurs in T and with no
smaller multiplicity. Say that an aggregate function f
is monotone whenever one of the following conditions
holds: (i) for multi-sets S,7T, whenever S C T, we
have f(S) < f(T); or (ii) for multi-sets S, T, whenever
S CT, wehave f(S) > f(T). We have the following:

Theorem 2 [Monotone Aggregate Functions]:
Let f be a monotone aggregate function and (£, <) a
cube lattice. Then there is a unique maximally coarse
WC partition on £. Furthermore, this partition co-
incides with the partition induced by the equivalence
relation =y defined in Definition 2. L]

Theorem 2 is good news for cubes involving mono-
tone aggregate functions. For such functions, it says
forming the partition using Definition 2 is guaranteed
to produce the unique coarsest WC partition on the

cube lattice. This has the following advantages. Se-
mantically, this means there is a unique way to parti-
tion the cube lattice maximally while preserving cube
semantics. As we will see in Section 6, it also has im-
portant implications for computational efficiency. Be-
fore leaving this section, we note that this theorem
covers many aggregate functions of practical interest,
including MIN, MAX, COUNT, SUM?, and TOP-k.
For AVG, and for SUM on positive and negative mea-
sure values, we have seen (Example 3) that an equiv-
alence defined solely on the basis of equality of aggre-
gate values is not convex and hence is not WC either.
What can we say of equivalences w.r.t. SUM or AVG
that are defined instead according to Definition 2? Our
next example settles this question.

A|B | M A|B | M

1116 1 (1| 4

1123 1126

21219 1 (3| 2
b1 b2

Figure 5: Two base tables. M is the measure attribute.

Example 4 (Non-monotone aggregate functions)

For the base table by (A, B, M) in Figure 5, note that
the cells (all,all), (all,1), (all,2), and (1,1) all have
the same average value, 6. Since they are connected,
they are equivalent under =,,¢, defined according
to Definition 2. However, they are not equivalent to
(1,all), with an average value of 4.5, S0 =, is not
a weak congruence for this table. However, for table
ba(A, B, M) in Figure 5, =, generates the equiva-
lence classes I = {(all, all), (1,all), (all,1), (1,1)} with
average 4, IT = {(all,2),(1,2)} with average 6, and
IIT = {(all,3), (1,3)} with average 2, and can be seen
to be a weak congruence. Thus, for AVG, whether or
not =,y is a weak congruence depends on the base
table data! This is also true for SUM when both posi-
tive and negative values are allowed. In the full paper,
we show there are (usually unnatural) non-monotone
aggregate functions g for which =, is always a weak
congruence!

|

Observations: While for a non-monotone aggregate
function f, the partition induced by =; may or may
not be WC, we can always construct a WC partition.
E.g., for table b, (A, B, M) in Example 4 above, for
which =, is not a weak congruence. there are two®
maximal convex partitions:

e Py with classes — I = {(all,all), (all,2)}, IT =
{1,all)}, 11T = {(all,1),(1,1)}, and IV =
{(2,all), (2,2)}, with averages 6,4.5,6, and 9, and

5When the domain of the measure attribute does not contain
both positive and negative values.
81t can be shown there are only two.

ClassId | A B | C| MIN(M) Desc
I S1|{P1|s |5 (A& B&C)
II S2 | P2|s |10 (A&C Vv B&(C)

Figure 6: Representation of Quotient Cube of Figure 1,
showing classes I and II.
e P, with classes — A = {(all, all), (all,2), (all, 1)},
B = {(17(1”)}5 c = {(151)}a and D =
{(2,all), (2,2)}, with averages 6,4.5,6, and 9.

Both P; and P are different from the cover partition:

o Pooy with classes: a = {(all,all)}, f = {(1,all)},

v={(all,1),(1,1)}, 6 ={(2,all),(2,2)},and n =
{(all,2)}, with averages 6,4.5,6,9, and 6.

Of these, P» is incomparable with P, whereas P is
strictly coarser than Pcoy, and so preserves the infor-
mation in the cover partition. An important point is
that the cover partition is the coarsest partition that at
once captures equivalence w.r.t. all possible aggregate
functions.

5.3 Tabular Representation of Quotient Cube

A quotient cube of a base table b(Ay, ..., A, M) can
be represented by storing, for each class, its upper
bound(s), and an indication how far it can be general-
ized while staying in the class. As an example, Figure 6
shows a representation for class IT the quotient cube
of Example 1. For class II, it shows its upper bound
(S2, P2, s), the MIN(M) value 10, and the fact that we
can generalize (S2, P2,s) to as far as (all, P2,all) or
(52, all, all), without leaving class II. That is, it can
be expanded on dimensions A and C' or on dimensions
B and C, and this is captured by the descriptor value
(A&C Vv B&C). As Figure 2 shows, these are exactly
the lower bounds of class II. This representation is pre-
cise in the sense that a cell belongs to a class iff it lies
between its upper bound and one of its lower bounds.
Thus, a quotient cube can be represented by storing
each of its classes in this way.

6 Algorithms

In this section, we propose efficient algorithms for com-
puting the quotient cube. An obvious algorithm for
computing the quotient cube is as follows. First, com-
pute the cube from the base table. Then, start an ex-
haustive search from the bottom element, (all, ..., all),
and begin identifying classes. At any stage, if a new
cell has an aggregate value different from that of a
class below it, assign it a new class. Otherwise, add it
to the class if the addition will not create a hole in the
class, a test that can be expensive to implement. This
algorithm is clearly not practical. We can improve this
algorithm by: (a) incorporating class formation with
cube computation so we do not incur too much I/0O,
and (b) exploiting the Apriori-like property that when-
ever a cell (e.g., (2,all)) covers an empty set of tuples,
any specialization (e.g., (2,1),(2,2), etc.) of the cell

will cover empty set as well and hence can be pruned.
We refer the reader to [13] for details. In Section 6.1,
we develop a much more efficient algorithm based on
depth-first search for computing the quotient cube lat-
tice, for monotone aggregate functions. In Section 6.2,
we develop another algorithm for non-monotone func-
tions.

6.1 Depth-First Search

Algorithm 1 (Depth-first Search)

Input: base table B, monotone aggregate function f;
Output: Quotient cube;

Method:
Step 1: let b = (all, ..., all); call DFS(b, B,0);

Step 2: merge those temp classes sharing some common
upper bounds: if C; and Cs share a same upper bound
¢, then merge them;

//e.g., if MIN((a,b)) = MIN((a,all)) = MIN((all, b));
the temp classes of the two cells (a,all) and (all,b)
should be merged, since they share the upper bound
(a,b).

Step 3: output classes, and their bounds, but only out-
put true lower bounds, by removing lower bounds that
have descendants in the merged class;

//e.g., when we process DFS on (all, b, all), it may in
turn call a DFS on (all,b,c) and then form a temp
class C1 = {(all,b,c),(d,b,c)}. Later, when the search
branches to (all, all, c), it may form another temp class
{(all, all, c),(d,b,c)}. The two classes share a common
upper bound and so are merged. In the merged class,
(all, b, c) is not a lower bound anymore and hence should
be removed.

Function DFS(c, B, k)
// cis a cell and B, is the corresponding partition of the
base table;

Step 1: Compute aggregate of cell ¢ by one scan of B.;

in the same scan, collect dimension-value statistics info
for CountSort;
//similarly to the BUC algorithm;

Step 2: Compute the set of upper bounds UB(c) of the

class of ¢, by “jumping” to the appropriate upper bounds
depending on the aggregate function used;
//see text for details.

Step 3: Record a temp class with lower bound ¢ and up-
per bound(s) in UB(c);
Step 4: for each upper bound d in UB(c), do

[4.1] if there is some j < k s.t. c[j] = all and d[j]! =all,
then such a bound has been examined before; do nothing.
//e.g. suppose when searching (all, all, c, all), we find
that (a,all, c,d) is an upper bound. Then it must have
been explored in the (a, all, all, all) branch.

[4.2] else for each k < j < n s.t. d[j] = all do

for each value z in dimension j of base table
let d[j] = z; form By;
if By is not empty, call DFS(d, Bg, j);

Step 5: return

Figure 7: A depth-first search algorithm.

The main idea of the algorithm is as follows. If
the aggregate function used in the cube is a monotone
function, then from a cell ¢, we can precisely determine
all upper bounds of the class to which ¢ belongs, and
indirectly, all lower bounds of this class. Each upper

and lower bound forms a border point of a class and
together they completely characterize the class. As-
suming we know how to “jump” from a cell to upper
bounds of its class, note that such a jump is natu-
rally implemented with a depth-first search. We next
explain the idea of “jumping”.

First, suppose we wish to compute the partition
w.r.t. the cover equivalence =¢,, . Suppose we are at
a cell c. An upper bound ¢’ of the class that ¢ belongs
to is determined as follows. ¢’ agrees with ¢ on every
dimension where the value of ¢’ is not all. For any
dimension ¢ where the value of ¢ is all, suppose a fixed
value, say z;, appears in dimension ¢ of all tuples in the
partition B, of the table that matches the conditions
of cell ¢. Then the value of ¢’ on every such dimen-
sion i is the repeating value x; for that dimension. For
cover equivalence, this is the only upper bound of the
class of ¢ that is reachable from c. E.g., if the base ta-
ble contains just the tuples (2,1,1,2,5), (2,1,2,2,10),
and (1,2,2,2,20), then from the cell ¢ = (2, all, all, all)
we can jump to the upper bound (2,1, all, 2) since the
value 1 occurs in every tuple of dimension B, while 2
appears in every tuple of dimension D in the partition
B. of the base table (that contains the first two tuples).
Consider a different aggregate function, say MIN. Let
v be the MIN value for a cell c. Then every base ta-
ble tuple contained in cell ¢ which has value v for the
measure M is indeed an upper bound of the class that
¢ belongs to. MAX is handled similarly. When pos-
itive and negative measure values do not both occur,
SUM is handled almost similarly to cover equivalence
except tuples with measure value 0, if any, that are in
a cell are ignored. In this case, the equivalence =gyy
are coarser than cover equivalence (see remarks fol-
lowing Lemma, 2). Upper bounds corresponding to an
equivalence relation w.r.t. TOP-k and defined to pre-
serve connectivity as in Definition 2 are determined
similarly to MAX except the top k values must be
preserved when jumping to an upper bound.

The algorithm is given in Figure 7. The first
part deals with cleanup that must be done in a post-
processing stage. The second part implements depth-
first search. It combines cube computation with equiv-
alence class determination, accomplished by first de-
termining class upper bounds and then jumping to
them. Note that cells in between bounds are never
visited in the computation, achieving considerable sav-
ings. We have included short examples beside some of
the major steps.

Note that by virtue of the results established in Sec-
tion 5.2, it follows that the quotient cube constructed
by Algorithm 1 is optimal.

6.2 Non-monotone Case

The breadth-first search algorithm outlined in the be-
ginning of Section 6 would work for any aggregate
function but is not practical. We next propose a more

efficient algorithm for non-monotone functions. The
idea is that cover equivalence always produces a con-
vex partition with the property that all cells in a class
have the same aggregate value. It just may not be a
maximal such partition, as illustrated in Example 4.
We start by computing the cover partition, using Al-
gorithm 1. Then we merge equivalence classes, bottom
up, whenever this won’t create holes. As stated, it is
not clear this leads to an efficient algorithm, since we
need to test whether merging a class to the result of
previously merging one or more classes would preserve
convexity. It turns out that this test can be done ef-
ficiently by doing some additional bookkeeping while
computing the cover partition.

M_2
X 10 /MTEL 77777777777 ,,/
12 e o s>
VI 1oV v 11X T
% ———=_/ _
13 N 5 |

111 10

15

Figure 8: Illustrating Algorithm Class-Merge: part of
quotient lattice w.r.t. cover partition, showing AVG
values beside classes

Figure 9 gives the algorithm. It proceeds bottom
up, merging a cover class P with another class, or a set
of previously merged classes, C', whenever P has the
same aggregate measure value as C, P is a parent of
some class in C, and all classes that are descendants of
P and are ancestors of some class in C' are themselves
contained in C. Whenever P is found mergeable, we
must also include all its child classes with the same
measure. The reason is that if these child classes were
not already merged to C at a lower level, it can only be
because their sole connection with classes in C is es-
tablished for the first time via P. Besides, if adding P
to C' will not violate convexity, adding its children can-
not either. Figure 8 illustrates the algorithm, where
a part of a quotient lattice w.r.t. cover partition is
shown, with AVG values shown beside each cover class.
Consider class III. While it shares the same aggregate
value as IV, they cannot be merged right away since
they are not connected. Consider class VII with the
same aggregate value as III. It passes the ancestor-
descendant test so they are merged. At this time, the
child IV of VII can be merged too. Next, consider
C={I1I,VII,IV} and P = X. Now, there is a class
belonging to the intersection of ancestors of (classes
in) C and descendants of P, namely class VI, which
does not itself belong to C. So, the algorithm will not
merge P = X with C above. For efficiency reasons,
the algorithm groups all cover classes at a given level
by the aggregate measure value, (by hashing). In the
algorithm, by the level of a previously merged class we
mean the highest level of any cover class in it. We can
show:

Lemma 3 [Correctness of Class-Merge]: Al-

gorithm Class-Merge correctly computes a quotient
lattice w.r.t. some maximal convex partition that is
coarser than the cover partition. [

Algorithm 2 (Class-Merge)

Input: base table B, non-monotone aggregate function f;
Output: Quotient cube w.r.t. a maximal convex partition;
Method:

1. Obtain quotient cube Q of B w.r.t. cover partition,
using Algorithm DFS.

2. group classes at each level of Q) by aggregate value,

using hashing.

3. process lattice @ level by level, bottom up:

4. for each unprocessed class C at the current level {
for each parent class P of C' at the next higher
level with the same measure value as C {

o if ((desc(P) Nanc(C) C C))

e add P as well as all children of P in C’s
measure group to C; in this case, mark
all the latter children “processed”; re-

place C, P, and the above children by
the new merged class; } }

Figure 9: Algorithm Class-Merge: anc(C) denotes an-
cestors of any cover class in C.

7 Experimental Results

To evaluate the effectiveness of quotient cubes and the
efficiency of quotient cube computation, we conducted
a comprehensive set of experiments. In this section,
we report a summary of our results. All experiments
are conducted on a 450Hz PC with 256 Mb main mem-
ory and running Microsoft Windows NT 4.0. All the
programs are coded using Microsoft Visual C++ 6.0.
We used both synthetic and real data sets to evaluate
the effectiveness as well as run time of the algorithms.
We measure effectiveness using a metric called reduc-
tion ratio, defined as the size of the quotient cube
as a proportion of the original cube. So the smaller
the ratio the better. In our experiments, we stored a
quotient cube by explicitly storing both lower bounds
and upper bounds for each class, instead of the more
compact representation discussed in Section 5.3. This
made the implementation easier but at the price of a
less compact representation. Still, as the experimental
results will show, we were able to achieve substantial
reductions in most cases. The algorithms we tested
are: QC_Cov, the algorithm for constructing optimal
quotient cube w.r.t. cover partition, QC_MIN, the al-
gorithm for constructing optimal quotient cube w.r.t.
=um1nN, and MinCube, the efficient heuristic algorithm
for compressing cube, proposed in [19]. Note that the
first two are really instances of Algorithm 1 proposed
for general monotone aggregate functions, but the run
time and reduction ratio will be quite different depend-
ing on the aggregate function used. In addition, for
testing the effectiveness of quotient cube w.r.t. AVG,

we implemented a version of Algorithm 2. We refer to
it as QC_AVG below.

We used the Zipf distribution [21] for generating
synthetic data. It is a standard data set used for test-
ing performance of algorithms under a variety of con-
ditions. In addition, we also used the real dataset con-
taining weather conditions at various weather stations
on land for September 1985 [9]. This weather dataset
has been frequently used in calibrating various cube al-
gorithms, as well as most recently, for demonstrating
the effectiveness of the MinCube algorithm of [19]. We
ran a comprehensive set of tests on both data sets and
performed numerous measurements, with each test re-
peated thrice. For brevity, we present only a represen-
tative set of results here.

7.1 Synthetic Data

First, consider monotone aggregate functions. We
used SUM (on positive measures) and MIN as repre-
sentative examples. Note that QC_Cov exactly corre-
sponds to SUM on positive measures. MinCube is an
approximation to the quotient cube w.r.t. SUM. We
organize our findings as follows.

Effectiveness: Here, the goal is to gauge the extent
of reduction ratio achieved by different algorithms. Of
course, it makes no sense to compare QC_Cov (or Min-
Cube) with QC_MIN as they are solving different prob-
lems. Yet, we plot the results in a common graph for
brevity and also for a comparison of trends. We ran
all three algorithms on a synthetic data set with Zipf
distribution, with Zipf factor fixed at 2.0 and number
of tuples held at 200 K, and the number of dimensions
ranging from 2 to 10. The result is shown in Fig-
ure 10(a). With number of tuples fixed, as the dimen-
sionality increases, the data gets sparse, so all algo-
rithms achieve higher reduction as sparsity increases.
However, QC_Cov achieves much better reduction ra-
tio (about 3 times better) than MinCube. Even in 4
dimensions the reduction ratio is about 55%. Not sur-
prisingly, QC_MIN achieves by far the best reduction
ratio. E.g., we found that for 4 dimensions, it achieved
a reduction ratio of 0.26%. The intuition is that the
number of classes for QC_MIN is strongly correlated
with (but not equal to)” the number of distinct mea-
sure values. In a parallel direction, we also ran tests by
freezing number of tuples and dimensions and varying
cardinality and observed a very similar behavior w.r.t.
the resulting variation in sparsity. We do not show
those results.

To measure the effect of data skew, we fixed the
number of dimensions at 6, the number of tuples at
200 K, and varied the Zipf factor from 0 (uniform) to
3.0 (high skew) (Figure 10(b)). As data gets more
skewed, all algorithms undergo an increase in their
reduction ratio, but MinCube undergoes a rapid in-
crease, while QC_Cov increases at a more modest rate

"Because of duplicate tuples.

and QC_MIN is quite stable. The explanation is that
as data gets skewed, tuples tend to get concentrated
into a smaller dense region of the data space with cor-
responding increase in the number of classes. The sta-
bility of QC_MIN can again be traced to the strong
correlation of its number of classes with the distinct
number of measure values.

Scalability: We also measured how effectiveness as
well as algorithm run times scale up as the number of
tuples goes up. We held the Zipf factor at 2.0, the
number of dimensions at 6, and increased the number
of tuples from 200 K to 1.5 million. Figure 10(c) shows
the results. Reduction ratio goes up for all three algo-
rithms. Again, MinCube shows the sharpest increase
while QC_Cov has a modest growth rate and QC_MIN
is least affected by the number of tuples. As the num-
ber of tuples increases, while other things are constant,
data gets more dense. So, a rationale similar to the
previous results explains these results too. Also, it is
important to note that QC_Cov is an exact algorithm
while MinCube is an approximate one.

The run times of the algorithms against number of
tuples (under the same conditions) are shown in Fig-
ure 10(d), which also shows the run time of BUC (the
Bottom-Up Cube algorithm of [5]). All algorithms
have an essentially linear scalability. We found that
QC_Cov is typically about twice faster than BUC (and
about 6 times faster than MinCube). The reason is
that QC_Cov computes only a small subset of cells
compared to BUC which also translates into less out-
put overhead. QC_MIN is slower than BUC (but still
faster than MinCube) since the “jumping” idea, a key
part of Algorithm 1 is more expensive for MIN than
for Cover.

We tested QC_AVG on both synthetic and real data
sets and report only the results on the real data sets.

7.2 Real data
We used the weather data set mentioned above. It con-
tains 1,015,367 tuples (about 27.1 MB). The attributes
with cardinalities are as follows: station-id (7,037),
longitude (352), solar-altitude (179), latitude (152),
present-weather (101), day (30), weather-change-code
(10), hour (8), and brightness (2). We generated 8
datasets with 2 to 9 dimensions by projecting the
weather dataset on the first & dimensions (1 < k <9).
We ran MinCube and QC_Cov on the full data set.
Figure 11(a) shows the results. As expected, both
algorithms achieve better reduction ratio as the di-
mensionality increases (recall the sparsity argument).
But again, QC_Cov achieves a much sharper decrease
in reduction ratio (i.e., much greater reduction) than
MinCube and its trend is more stable. We also tested
the algorithms for their run times and found a behav-
ior consistent with the observations for the synthetic
data sets above, so we suppress the results.

So far, we have mainly shown performance of quo-
tient cube algorithms for monotone aggregate func-

Reduction ratio (%)

Reduction ratio (%)

80

70
60
50
40
30

MinCube

%

s 4 s & 7 8 o
Dimensionality
(a)
base tuples = 200 K
Zipf factor = 2.0

10

MinCube >
L QC_Cov —*x— > i
QC_MIN —m=—
. >

Reduction ratio (%)

Runtime (seconds)

60

50
40
30
20 |

10 &

MinCube

3000

2500

2000

1500

1000

500

L L
1.5 2 2.5 3

Zipf factor

base tuples = 200 K
dimensions = 6

MinCube >

3
20 | *_/*/W
10 g
o - . . - - . .
(o] 200 400 600 800 1000 1200 1400

i n H L L L
o 200 400 600 800 1000 1200 1400

Number of tuples (k)

c
Zipf factor = 2.0
dimensions = 6

Figure 10: Evaluating reduction

Number of tuples (k)

Zipf factor = 2.0
dimensions = 6

ratio and run time of algorithms: Zipf distribution.

60

M i i " MinCube >
QC_Cov —*—
50 > .|

Reduction ratio (%)

. h
2 3 4 5 6 7 8 9
Number of dimensions

(a)

Reduction ratio (%)
a
o
T T T

. n
4 5 6 7
Number of dimensions

N
w

Figure 11: Evaluating reduction ratio of algorithms: the real weather data set.

tions. We also implemented and tested QC_AVG. We
found that in general, QC_AVG does achieve substan-
tial reduction (i.e., low reduction ratio) compared with
QC_Cov. However, while it is true that the algorithm
is indeed polynomial time, the current run time is still
high. E.g., for a data set with 10 K tuples and 6 di-
mensions, it took about 68 seconds. Given this, we re-
port below only results on reduction ratio achieved by
QC_AVG on small samples (e.g., 10 K) of the real data
set. We varied the dimensionality from 2 to 7. The
results, depicted in Figure 11(b), show an interesting
behavior. In general, QC_AVG achieves a much better
reduction ratio than QC_Cov. However, as dimension-
ality increases, its additional “gain” on top of QC_Cov
is almost negligible, when the number of tuples is fixed.
We also observed the run time of QC_AVG goes up as
the dimensionality increases as well. This raises an in-
teresting tradeoff. At high dimensionalities, the user
may thus prefer to use QC_Cov (and benefit from its
very efficient computation) without losing much in the
way of reduction ratio. Currently, designing more ef-
ficient algorithms for quotient cube w.r.t. AVG is an
interesting open problem.

In sum, our experiments show that QC_Cov and
QC_MIN are a highly scalable algorithms and achieve
a substantially better reduction ratio than MinCube.
They also showed the effectiveness of quotient cubes
w.r.t. other functions such as MIN and AVG. These
points were established on both synthetic and real data
sets, and under a variety of conditions.

8 Discussion

The proposal, of quotient cube as a semantics-
preserving compression technique, and of efficient algo-
rithms for its computation, is the first step in a large
project where we are investigating effective and effi-
cient computation, exploration, analysis, and mining
of data cube. In this section, we describe our vision
of the project as well as why we believe quotient cube
will be useful in practice.

Our current work focuses on the following aspects.
(1) We have developed strategies for handling multi-
ple aggregate functions, showing the notion of quo-
tient cube is robust. As a generic point, one can al-
ways use the quotient cube w.r.t. the cover partition

for handling queries involving any aggregate functions.
(2) Efficient algorithms for answering queries against
a quotient cube. Our algorithms do not uncompress
the cube, but rather rely on the ability to organize the
bounds associated with classes intelligently to make
query answering fast. (3) Algorithms for incremen-
tal maintenance of a quotient cube, based on a pre-
cise characterization of when classes must be split or
merged in the face of updates. (4) Incorporating con-
straints (e.g., the well-known iceberg constraint). We
have extended the notion of quotient cube to deal with
constraints. The full paper [13] addresses these issues
in detail. We are currently building a prototype sys-
tem based on quotient cube.

A possible criticism (which applies to cube com-
pression in general) is if an OLAP server chooses to
use a partial materialization strategy for the cube a la
[11], what is the relevance of quotient cube. There are
two answers to this question. Firstly, it is straight-
forward to adapt our quotient cube algorithm so it
only materializes the chosen views. Secondly, an ef-
fective compression technique opens up the possibility
of using full materialization, as a competitive strategy,
given the efficiency of query answering it buys. Fur-
thermore, since it is semantics-preserving, it promotes
user exploration much better than partial materializa-
tion might.

9 Summary and Future Work

We proposed the quotient cube as a succinct summary
of a data cube lattice, preserving its rollup-drilldown
semantics. It gives a quick and concise summary to the
user based on which they may decide to explore dif-
ferent regions of the cube. Quotient cubes are based
on partitions on the cube lattice and we characterized
those partitions that lead to a reduced lattice struc-
ture. Monotone aggregate functions yield a unique
maximal convex partition while non-monotone ones
do not. For both cases, we developed efficient algo-
rithms for computing the quotient cube and experi-
mentally demonstrated their utility and effectiveness,
as well scalability for the monotone case. In fact, our
algorithms significantly outperform the previously pro-
posed MinCube algorithm. There are several interest-
ing questions. Designing scalable algorithms for quo-
tient cube for AVG is important. Can we develop a
notion of approximate quotient cube that buys sub-
stantial further compression for the price of a small
sacrifice in accuracy? Computing quotient cube on
streaming data is an important problem. Our ongoing
research addresses some of these issues.

Acknowledgements: We are grateful to Hongjun Lu and
his group, especially Wei Wang, for both giving us their
source code and for their considerable help in clarifying
some of the experimental details. Thanks to H.V. Jagadish
and Raymond Ng for careful reading of the manuscript
and critical feedback. Comments from the anonymous re-

viewers helped improve the presentation significantly. This
work was supported by grants from NSERC, NCE/IRIS,
and NSF.

References

[1] R. Agrawal & R. Srikant. Fast algorithms for mining
association rules in large databases. VLDB’94:487-499.

[2] S. Agarwal, et al. On the computation of multidimen-
sional aggregates. VLDB’96:506-521.

[3] D. Barbara & M. Sullivan. Quasi-cubes: Exploiting ap-
proximation in multidimensional databases. SIGMOD
Record, 26:12-17, 1997.

[4] D. Barbara & X. Wu. Using loglinear models to com-
press datacube. WAIM’00:811-822.

[5] K. Beyer & R. Ramakrishnan. Bottom-up computation
of sparse and iceberg cubes. SIGM0OD’99:859-870.

[6] G. Birkhoff, Lattice Theory, 2nd ed., New York, Amer-
ican Math. Soc. (Col. Pub. vol. 25), 1948.

[7] S. Geffner et al. Relative prefix sums: An efficient
approach for querying dynamic OLAP data cubes.
ICDE’99:328-335.

[8] J. Gray et al. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-
Total. ICDE’96:152-159.

[9] C. Hahn et al. Edited synoptic cloud reports from
ships and land stations over the globe, 1982-1991.
cdiac.est.ornl.gov/ftp/ndp026b/SEP85L.Z, 1994.

[10] C.-T. Ho et al. Partial-sum queries in data cubes using
covering codes. PODS’97:228-237.

[11] V. Harinarayan et al. Implementing data cubes effi-
ciently. SIGMOD’96:205-216.

[12] T. Imielinski et al. Cubegrades: Generalizing Associ-
ation Rules. Tec. Rep., Rutgers U., Aug. 2000.

[13] L.V.S. Lakshmanan et al. Quotient Cube: How to
summarize the semantics of a data cube. Tech. Rep.
UBC, Nov.’01.

[14] K. Ross & D. Srivastava. Fast computation of sparse
datacubes. VLDB’97:116-125.

[15] G. Sathe & S. Sarawagi. Intelligent Rollups in Multi-
dimensional OLAP Data. VLDB’01:581-540.

[16] J. Shanmugasundaram et al. Compressed Data Cubes
for OLAP Aggregate Query Approximation on Contin-
uous Dimensions. KDD’99:223-232.

[17] Y. Sismanis et al. Dwarf: Shrinking the Petacube.
SIGMOD’02.

[18] J. S. Vitter et al. Data cube approximation and his-
tograms via wavelets. CIKM’98:96-104.

[19] W. Wang et al. Condensed cube: An effective ap-
proach to reducing data cube size. ICDE’02.

[20] Y. Zhao et al. An array-based algorithm for simulta-
neous multidimensional aggregates. SIGMOD’97.

[21] G.K. Zipf. Human Behavior and The Principle of
Least Effort. Addison-Wesley, 1949.

