
COMA - A system for flexible combination of
schema matching approaches

Hong-Hai Do Erhard Rahm

University of Leipzig University of Leipzig
hong@informatik.uni-leipzig.de rahm@informatik.uni-leipzig.de

Abstract

Schema matching is the task of finding semantic cor-
respondences between elements of two schemas. It is
needed in many database applications, such as integra-
tion of web data sources, data warehouse loading and
XML message mapping. To reduce the amount of user
effort as much as possible, automatic approaches com-
bining several match techniques are required. While
such match approaches have found considerable inter-
est recently, the problem of how to best combine dif-
ferent match algorithms still requires further work. We
have thus developed the COMA schema matching sys-
tem as a platform to combine multiple matchers in a
flexible way. We provide a large spectrum of individ-
ual matchers, in particular a novel approach aiming at
reusing results from previous match operations, and
several mechanisms to combine the results of matcher
executions. We use COMA as a framework to com-
prehensively evaluate the effectiveness of different
matchers and their combinations for real-world sche-
mas. The results obtained so far show the superiority
of combined match approaches and indicate the high
value of reuse-oriented strategies.

1 Introduction
Schema matching is the task of finding semantic
correspondences between elements of two schemas [11,
 12, 15]. It is a critical operation in many schema and data
translation and integration applications, such as integra-
tion of web data sources, data warehouse loading, XML
message mapping and XML-relational data mapping. Cur-
rently, schema matching is largely performed manually by
domain experts, and therefore a time-consuming and tedi-
ous process. In web-based applications and services, such
a manual approach is a major limitation due to the rapidly
increasing number of data sources, XML message and
document schemas, and web service interfaces to be dealt
with. Hence, approaches for automating the schema
matching tasks as much as possible are badly needed to
simplify and speed up the development, maintenance and

use of such applications.
Numerous researchers have addressed the schema

matching problem either for specific applications [1, 4, 5,
 7, 8, 9, 11, 15, 16] or in a more generic way for different
applications and schema languages [12, 13, 14]. The pro-
posed techniques for automating schema matching exploit
various types of schema information, e.g. element names,
data types and structural properties [2, 12, 15, 16, 9] as
well as characteristics of data instances [7, 8, 14, 11, 9].
Some approaches utilize auxiliary sources, such as tax-
onomies, dictionaries and thesauri [2, 9]. To achieve high
match accuracy for a large variety of schemas, a single
technique (e.g., name matching) is unlikely to be success-
ful. Hence, it is necessary to combine different ap-
proaches in an effective way. For this purpose, previous
prototypes have followed either a so-called hybrid or
composite combination of match techniques [18]. So far
the hybrid approach is most common where different
match criteria or properties (e.g., name and data type) are
used within a single algorithm. Typically these criteria are
fixed and used in a specific way. By contrast, a composite
match approach combines the results of several independ-
ently executed match algorithms, which can be simple
(based on a single match criterion) or hybrid. This allows
for a high flexibility, as there is the potential for selecting
the match algorithms to be executed based on the match
task at hand. Moreover, there are different possibilities for
combining the individual match results. We know of only
three recent systems following such a composite approach
[7, 8, 9]. They are all limited to match techniques based
on machine learning and do not fully utilize the flexibility
offered by the composite approach (see Section 2).

To investigate the effectiveness of composite match
approaches more comprehensively we have developed the
COMA system for combining match algorithms in a
flexible way. COMA represents a generic match system
supporting different applications and multiple schema
types such as XML and relational schemas. It provides an
extensible library of match algorithms and supports dif-
ferent ways for combining match results. New match al-
gorithms can be included in the library and used in com-
bination with other matchers. COMA thus allows us to
tailor match strategies by selecting the match algorithms
and their combination for a given match problem. More-
over, we use COMA as an evaluation platform to system-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

atically examine and compare the effectiveness of differ-
ent matchers and combination strategies. In the design of
COMA we observed that in general fully automatic solu-
tions to the match problem are not possible due to the
potentially high degrees of semantic heterogeneity be-
tween schemas. We thus allow an interactive and iterative
match process during which the user can provide feed-
back, e.g. to manually provide match correspondences or
to confirm or reject proposed matches.

As another contribution we propose a new match ap-
proach that aims at reusing previously obtained match
results, motivated by the observation that many schemas
to be matched are very similar to previously matched
schemas. Reusing the previous match results may thus
result in significant savings of manual effort. A simple
form of such an approach is the use of synonym tables
indicating match correspondences at the level of single
schema elements. Our new approach tries to reuse match
results at the level of entire schemas or schema fragments.
The flexibility of COMA is made possible by the use of a
DBMS-based repository for storing schemas, intermediate
similarity results of individual matchers, and complete
(possibly user-confirmed) match results for later reuse.

The paper is organized as follows. In Section 2 we
discuss some related work. Section 3 provides an over-
view of COMA. In Sections 4 and 5 we present the sup-
ported matchers including the reuse-oriented approach.
Section 6 outlines the strategies for matcher combination.
Section 7 presents the results of using COMA for evaluat-
ing different strategies for matching real-world schemas.
Finally, we conclude and discuss some future work.

2 Related work
A recent survey on automatic schema matching proposed
a solution taxonomy differentiating between schema- and
instance-level, element- and structure-level, and language-
and constraint-based matching approaches [18, 12]. Fur-
thermore, the distinction between hybrid and composite
combination of matchers is introduced and previous
match prototypes such as Cupid [12], SemInt [11], LSD
[7], Dike [16], SF [13], TranScm [15], and Momis [2] are
reviewed.

Cupid [12] represents a sophisticated hybrid match
approach combining a name matcher with a structural
match algorithm, which derives the similarity of elements
based on the similarity of their components hereby em-
phasizing the name and data type similarities present at
the finest level of granularity (leaf level). In a compara-
tive evaluation Cupid was generally more effective than
two earlier match prototypes (Dike and Momis).

LSD (Learning Source Description) [7] and its exten-
sion GLUE [8] represent powerful composite approaches
to combining different matchers. Both use machine-
learning techniques for individual matchers and an auto-
matic combination of match results. Machine learning is a
promising technique especially for evaluating data in-
stances to predict element similarity. On the other hand,

the accuracy of the predictions depends on a suitable
training which can incur a substantial manual effort. The
predictions of individual matchers are combined by a so-
called meta-learner, which weights the predictions from a
matcher according to its accuracy shown during the train-
ing phase. In various experiments LSD and GLUE
showed promising results, albeit based on a not well-
defined accuracy metric apparently not taking into ac-
count wrongly proposed match correspondences.

In [9], Embley et al. describe another composite ap-
proach based on machine learning. In addition to instance-
level matchers a name matcher is supported requiring an
external dictionary (WordNet). The predictions of the
individual matchers are combined using an average func-
tion. Like LSD and GLUE, a training phase is needed.

The evaluation of the structural match algorithm SF
(Similarity Flooding) in [13] used a more realistic metric
for measuring the match accuracy than previous studies. It
takes into account both the share of correctly proposed
match candidates and wrongly suggested match candi-
dates. In our evaluation we will also use this refined met-
ric (Section 7).

To sum up, the composite approach has so far only
been studied in the context of machine learning ap-
proaches focusing on instance-level matchers and using a
specific combination of match results. By contrast we
want to support and evaluate a spectrum of matchers not
confined to machine learning as well as the customizable
combination of their results. A systematic comparative
evaluation of different match algorithms and their combi-
nations based on well-defined accuracy metrics does not
exist so far. To our knowledge, beyond the use of simple
synonym tables the reuse of previous match results has
not yet been studied.

3 Overview of COMA
A schema consists of a set of elements, such as relational
tables and columns or XML elements and attributes. In
COMA we represent schemas by rooted directed acyclic
graphs. Schema elements are represented by graph nodes
connected by directed links of different types, e.g. for
containment and referential relationships. Schemas are
imported from external sources, e.g. relational databases
or XML files, into the internal format on which all match
algorithms operate. Figure 1 shows our running examples,
a relational and an XML schema for purchase orders
(PO), and their internal graph representation.

The match operation takes as input two schemas and
determines a mapping indicating which elements of the
input schemas logically correspond to each other, i.e.
match. The match result is a set of mapping elements
specifying the matching schema elements together with a
similarity value between 0 (strong dissimilarity) and 1
(strong similarity) indicating the plausibility of their cor-
respondence. Similar to previous work, we focus on one-
to-one (1:1) match relationships. However, match algo-
rithms may determine multiple match candidates with

different similarities for a schema element and finally
select one of them or leave the final choice to the user.

 Figure 2 illustrates match processing in COMA on
two input schemas S1 and S2. Match processing either
takes place in one or multiple iterations depending on
whether an automatic or interactive determination of
match candidates is to be performed. Each match iteration
consists of three phases: an optional user feedback phase,
the execution of different matchers and the combination
of the individual match results. In interactive mode, the
user can interact with COMA for each iteration to specify
the match strategy (selection of matchers, of strategies to
combine individual match results), define match or mis-
match relationships, and accept or reject match candidates
proposed in the previous iteration. The interactive ap-
proach is useful to test and compare different match
strategies for specific schemas and to continuously refine
and improve the match result. In automatic mode, the
match process consists of a single match iteration for
which a default strategy is applied or strategy specified by
input parameters. This mode is especially useful for appli-
cations already knowing their most suitable match strat-
egy or implementing their own user interaction interface.

We now describe the steps of the match process in
more detail. After being converted to the internal graph
format introduced above, the schemas are traversed to
determine all schema elements for which the match algo-
rithms calculate the similarity values. We represent
schema elements by their paths, i.e. sequences of nodes
following the containment links from the root to the cor-
responding nodes. Shared schema fragments or elements,
such as Address in PO2, will result in multiple paths for
which we can independently determine match candidates.

COMA supports user interaction by a so-called User-
Feedback matcher to capture match and mismatch infor-
mation provided by the user including corrected match
results from the previous match iteration. This matcher
ensures that approved matches (and mismatches) are as-
signed the maximal (and minimal) similarity and that
these values remain unaffected by the other matchers dur-
ing the matcher execution step. The user-provided simi-
larity values influence the similarity computations for the

neighbourhood of the respective elements and can thus
improve the match accuracy of structural matchers.

A main step during a match iteration is the execution
of multiple independent matchers chosen from the
matcher library. The matchers currently supported fall
into three classes: simple, hybrid and reuse-oriented
matchers. They exploit different kinds of schema infor-
mation, such as names, data types, and structural proper-
ties, or auxiliary information, such as synonym tables and
previous match results. Each matcher determines an in-
termediate match result consisting of a similarity value
between 0 and 1 for each combination of S1 and S2
schema elements. The result of the matcher execution
phase with k matchers, m S1 elements and n S2 elements
is a k x m x n cube of similarity values, which is stored in
the repository for later combination and selection steps.
 Table 1 shows a sample extract from the similarity cube
for the purchase order schemas of Figure 1.
Matcher PO1 Elements PO2 Elements Sim

PO1.ShipTo.shipToCity 0.65
PO1.ShipTo.shipToStreet 0.3

Type-
Name

PO1.Customer.custCity

PO2.DeliverTo.Address.
City

0.80
PO1.ShipTo.shipToCity 0.78
PO1.ShipTo.shipToStreet 0.73

Name-
Path
 PO1.Customer.custCity

PO2.DeliverTo.Address.
City

0.53
Table 1. Similarity values computed for PO1 and PO2
The final step in a match iteration is to derive the

combined match result from the individual matcher results
stored in the similarity cube. This is achieved in two sub-
steps: aggregation of matcher-specific results and selec-
tion of match candidates. First, for each combination of
schema elements the matcher-specific similarity values
are aggregated into a combined similarity value, e.g. by
taking the average or maximum value. Table 2 shows the
result of this step for the example of Table 1 using the
average strategy. Second, we apply a selection strategy to
choose the match candidates for a schema element, e.g. by
selecting the elements of the other schema with the best
similarity value exceeding a certain threshold. For the
example in Table 2 we could thus determine

CREATE TABLE PO1.ShipTo (
poNo INT,
custNo INT REFERENCES PO1.Customer,
shipToStreet VARCHAR(200),
shipToCity VARCHAR(200),
shipToZip VARCHAR(20),
PRIMARY KEY (poNo)) ;

CREATE TABLE PO1.Customer (
custNo INT,
custName VARCHAR(200),
custStreet VARCHAR(200),
custCity VARCHAR(200),
custZip VARCHAR(20),
PRIMARY KEY (custNo)) ;

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name=“PO2" >

<xsd:sequence>
<xsd:element name=“DeliverTo" type="Address"/>
<xsd:element name=“BillTo" type="Address"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Address" >

<xsd:sequence>
<xsd:element name=“Street" type="xsd:string"/>
<xsd:element name=“City" type="xsd:string"/>
<xsd:element name=“Zip" type="xsd:decimal"/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

DeliverTo

Address

Street City Zip

BillTo

PO2
a) A relational schema and an XML schema

b) Their corresponding graph representation

Containment linkContainment link

Legends:

NodeNode

shipToCity

shipToStreet

ShipTo

shipToZip

custCity

custStreet

Customer

custZip

PO1

poNo custNo

custNamecustNo

Figure 1. External and internal schema representation

PO1 elements PO2 elements Combined sim
PO1.ShipTo.shipToCity 0.72
PO1.Customer.custCity 0.67
PO1.ShipTo.shipToStreet

PO2.DeliverTo.Address.
City

0.52

Table 2. Similarity values combined from Table 1

PO1.ShipTo.shipToCity as the match candidate of
PO2.DeliverTo.Address.City.

COMA supports the determination of undirectional or
directional match results. In the former case, match can-
didates are determined for both input schemas. Moreover,
an S1 element s1 is only accepted as a match candidate for
an S2 element s2 if s2 is also a match candidate of s1. For
instance, in the above example we would accept
PO1.ShipTo.shipToCity as the match candidate of
PO2.DeliverTo.Address.City only if there are no better
PO2 match candidates for PO1.ShipTo.shipToCity than
PO2.DeliverTo.Address.City. In the case of a directional
match, the goal is to find all match candidates only with
respect to one of the schemas, say S2. Hence, it is only
tried to find match candidates for S2 elements while ac-
cepting that S1 elements remain unmatched. This ap-
proach has been followed by most previous studies and is
motivated by the fact that many applications require such
a directional match (e.g., to integrate a new data source
with schema S1 into a data warehouse or mediator with
global schema S2). If the target schema S2 is small com-
pared to S1 the match problem is substantially simplified.

4 Matcher library
 Table 3 gives an overview of the matchers we have

implemented and tested so far. We characterize the kinds
of schema and auxiliary information they exploit. In the
following we first describe the simple matchers followed
by the hybrid matchers. The more complex reuse-oriented
matcher Schema is discussed in Section 5.
4.1 Simple matchers
Element names represent an important source for assess-
ing similarity between schema elements. This can be done
syntactically by comparing the name strings or semanti-
cally by comparing their meanings. Approximate string
matching techniques [10] have already been employed in
other fields, such as record linkage [20] and data cleaning
[19], to detect duplicate database records concerning the
same real-word entity, i.e. matching at the instance level.
In COMA, we have implemented four simple approxi-
mate string matchers:
Affix: This matcher looks for common affixes, i.e. both
prefixes and suffixes, between two name strings.
n-gram: Strings are compared according to their set of n-
grams, i.e. sequences of n characters, leading to different
variants of this matcher, e.g. Digram (2), Trigram (3).

EditDistance: String similarity is computed from the
number of edit operations necessary to transform one
string to another one (the Levenshtein metric [10]).
Soundex: This matcher computes the phonetic similarity
between names from their corresponding soundex codes.

Further simple matchers are UserFeedback (Section 3),
a semantic matcher, Synonym, and a DataType matcher:
Synonym: This matcher estimates the similarity between
element names by looking up the terminological relation-
ships in a specified dictionary. Currently, it simply uses
relationship-specific similarity values, e.g., 1.0 for a syn-
onymy and 0.8 for a hypernymy relationship.
DataType: This matcher uses a synonym table specifying
the degree of compatibility between a set of predefined
generic data types, to which data types of schema ele-
ments are mapped in order to determine their similarity.
Matcher Type Matcher Schema Info Auxiliary Info

Affix Element names -
n-gram Element names -

Soundex Element names -
EditDistance Element names -

Synonym Element names Extern. dictionaries
DataType Data types Data type compatibility

table

Simple

UserFeedback - User-specified
(mis-) matches

Name Element names -
NamePath Names+Paths -
TypeName Data types+Names -

Children Child elements -

Hybrid

Leaves Leaf elements -
Reuse-oriented Schema - Existing schema-level

match results
Table 3. Implemented matchers in the matcher library

4.2 Hybrid matchers
The hybrid matchers use a fixed combination of simple
matchers and other hybrid matchers to obtain more accu-
rate similarity values. The approach applied for combin-
ing the results of the constituent matchers follows the
same principles used for combining the matcher results in
the final phase of the match process (or iteration). The
details of how matchers are combined within a hybrid
matcher are explained in Section 6.

We currently support two hybrid element-level match-
ers, Name and TypeName, and three hybrid structural
matchers, NamePath, Children and Leaves. All approaches
rely to different degrees on similarities derived from ele-
ment names for which combinations of the simple match-
ers discussed above can be utilized (e.g. Synonym, etc.).
Name: This matcher only considers the element names
but is a hybrid approach because it combines different

Matcher
Library

Simple matchers:
•n-gram, Synonym, ...

Hybrid matchers:
•NamePath, TypeName, ...

Reuse-oriented matchers:
•Schema, ...

Schema Import Match Iteration

Matcher 1

Matcher 2

Matcher 3
Schema S2

Schema S1

Combination
Strategies

Aggregation of matcher-specific results:
•Max, Average, Weighted, Min

Match direction:
•SmallLarge, LargeSmall, Both

Match candidate selection:
•Threshold, MaxN, MaxDelta

User Interaction
(optional)

Matcher execution Combination of
match results

Similarity cube

UserFeedback
S2→S1

S1→S2

S2→S1

S1→S2

Mapping

Figure 2. Match processing in COMA

simple name matchers. It performs some pre-processing
steps, in particular a tokenization to derive a set of com-
ponents (tokens) of a name, e.g. POShipTo → {PO, Ship,
To}. Moreover it expands abbreviations and acronyms,
e.g. PO → {Purchase, Order}. The Name matcher then
applies multiple simple matchers, such as Affix, Trigram,
and Synonym, on the token sets of the names and com-
bines the obtained similarity values for tokens to derive
similarity values between element names (see Section 6).
NamePath: This matcher matches elements based on
their hierarchical names, i.e. both structural aspects and
element names are considered. It first builds a long name
by concatenating all names of the elements in a path to a
single string. It then applies Name to compute the similar-
ity between these long names. Considering the complete
name path of an element provides additional tokens for
name matching which may improve match accuracy. For
instance, this can be helpful to find match candidates at
different schema levels, e.g. PurchaseOrder.ShipTo.Street
and PurchaseOrder.shipToStreet. On the other hand, it is
possible to distinguish between different contexts of the
same element, e.g. ShipTo.Street and BillTo.Street.
TypeName: This element matcher combines the DataType
and Name matcher, i.e. it matches elements based on a
combination of their name and data type similarity.
Children: This structural matcher is used in combination
with a leaf-level matcher. It determines the similarity be-
tween two inner elements based on the combined similar-
ity between their child elements, which in turn can be
both inner and leaf elements. The similarity between the
inner elements needs to be recursively computed from the
similarity between their respective children. The similar-
ity between the leaf elements is obtained from the leaf-
level matcher, for which TypeName is used as the default.
Leaves: This structural matcher is also used in combina-
tion with a leaf-level matcher, for which TypeName is set
as the default. In contrast to the Children strategy, this
matcher only considers the leaf elements to estimate the
similarity between two inner elements. This strategy aims
at more stable similarity in cases of structural conflicts. In
 Figure 1, for example, elements shipToStreet, shipToCity,
etc., are children of ShipTo in PO1, while in PO2, their
matching elements are not children of DeliverTo, but of
Address. Children will therefore only find a correspon-
dence between ShipTo and Address, while Leaves can also
identify a correspondence between ShipTo and DeliverTo.

5 Reuse of previous match results
The consideration of reuse-oriented matchers is motivated
by our expectation that many schemas to be matched are
similar (or identical) to previously matched schemas. The
use of auxiliary information such as synonym dictionar-
ies, thesauri, already represents such a reuse-oriented ap-
proach utilizing confirmed correspondences at the level of
schema elements (names or data types). Our goal is to
generalize this idea and reuse multiple match correspon-
dences at the same time at the levels of schema fragments
or entire schemas.

As a first step, we have implemented two simple re-
use-oriented matchers that can be invoked and combined
like other matchers. One of them, Schema, tries to reuse
match results for entire schemas, the other, Fragment, op-
erates on schema fragments. In both cases we use a spe-
cial compose operation, MatchCompose, to derive a new
match result from existing ones. We first introduce
MatchCompose. Due to lack of space, we then only de-
scribe Schema.
5.1 The MatchCompose operation
Given two match results, match1: S1↔S2 and match2:
S2↔S3 sharing schema S2, MatchCompose derives a new
match result, match: S1↔S3, between S1 and S3. The
operation assumes a transitive nature of the similarity
relation between elements, i.e. if a is similar to b and b to
c, then a is (very likely) also similar to c. Of course wrong
match candidates may be determined in cases where the
transitivity property does not hold.

In the context of information retrieval, transitive simi-
larity estimations have been applied to derive the similar-
ity of words based on terminological relationships, such
as synonymy and hypernymy [4, 17]. A common ap-
proach to determine the transitive similarity is to multiply
the individual similarity values [2]. This approach, how-
ever, may lead to rapidly degrading similarity values. For
instance, for

firstNameNamestNamecontactFir →←→← 7050 ..

the similarity between contactFirstName and firstName
would become 0.5*0.7=0.35, which is unlikely to reflect
the similarity, which we would expect for the two names.
We thus prefer the alternatives for combining the results
of different matchers, such as Average (Section 6.1), for
calculating transitive similarities, resulting in similarity
value 0.6 in the last example.

 Figure 3a and b illustrate the approach for the match
PO1↔PO3 derived from composing the two match re-

sim13PO3PO1

1.0emailEmail
0.8firstNameName
0.8lastNameName

sim13PO3PO1

1.0emailEmail
0.8firstNameName
0.8lastNameName

sim23PO3PO2

1.0emaile-mail
0.6firstNamename
0.6lastNamename

sim23PO3PO2

1.0emaile-mail
0.6firstNamename
0.6lastNamename

sim12PO2PO1

1.0e-mailEmail
1.0nameName

sim12PO2PO1

1.0e-mailEmail
1.0nameName

Containment linkContainment linkLegends: Element corresondenceElement corresondence

PO1.Contact
Name

Email

lastName

firstName

company company

PO3.Contact

email

match

b) match=MatchCompose(match1, match2)a) match1: PO1↔PO2 and match2: PO2↔PO3

Name

Email

company

PO2.Contact

name

e-mail

PO3.Contact
lastName

firstName
email

match1 match2
PO1.Contact

match1

match2

match

company

ovals: Mappings

c) relational representation for MatchCompose

Average

Figure 3. MatchCompose example

sults match1: PO1↔PO2 and match2: PO2↔PO3. To
efficiently calculate the MatchCompose result, match, we
use a relational representation for the input match results.
 Figure 3c shows the tables representing match1, match2
and match. In these tables each tuple specifies a 1:1 corre-
spondence between elements of the respective schemas
together with their similarity. MatchCompose then corre-
sponds to the natural join between the two input tables.

The example in Figure 3 also shows that MachCompose
and thus Schema may miss some correspondences, e.g.
between company of PO1 and PO3, due to the absence of
a match counterpart in PO2. Furthermore, MatchCompose
may return undesirable correspondences when elements
of the “intermediate” schema are related to several ele-
ments of the other schemas to be matched. In Figure 4, the
composition of two mappings returns all possible
matches, i.e. ShipTo.Contact is matched to both De-
liverTo.Contact and InvoiceTo.Contact, while only the
former match is likely to be correct. However, these nega-
tive effects can be limited, as shown in our evaluation in
Section 7, by combining MatchCompose results with the
results of other matchers.
PO1.ShipTo.Contact

PO2.Contact
PO1.BillTo.Contact

PO3.DeliverTo.Contact

PO3.InvoiceTo.Contact
match1 match2

Figure 4. MatchCompose with undesirable m:n matches

5.2 The Schema reuse matcher
 Figure 5 illustrates the schema-level reuse approach im-
plemented in the Schema matcher. All previous match
results are maintained within the repository and can be
exploited for reuse. Given two schemas S1 and S2 to
match, Schema identifies all schemas S, i.e. Si, Sj, Sk, for
which there is a pair of match results relating S with both
S1 and S2 in any order. For each such pair MatchCompose
is applied to produce a S1↔S2 match result. If there are
multiple such results, they in turn can be combined using
any strategy for aggregation (e.g., Average) and selection
(Section 6), and the combined result is stored in the simi-
larity cube for further processing in the match process.

S1 ↔ S2

S1↔ Si, S2 ↔ Si
Search
repository

Match-
Compose

Aggregation,
Direction & Selection

Existing match results

S1 ↔ S2

Similarity cube

S1↔ Sj, Sj ↔ S2

Sk ↔ S1, S2 ↔ Sk
Match
problem

Match
result

Figure 5. Schema-level reuse in the Schema matcher

Despite the high level of reuse in Schema (schema
level), we believe that there is a high probability to find
the necessary match result pairs for MatchCompose in an
environment where many schemas are managed and
matched to each other. Furthermore, schemas from the
same application domain usually contain many similar
elements, which are typical to this domain, so that their
mappings can provide good reusable candidates.

6 Combination of similarity values
In this section we describe how similarity results from
different matchers are combined in COMA to derive a
combined match result. Such a combination of similarity

values is used in two main cases: within the implementa-
tion of our hybrid matchers to combine the results of the
constituent matchers and in the final step of a match proc-
ess (or iteration) to combine the results of independent
matchers to obtain a complete match result. Both cases
are implemented by a series of aggregation and selection
operations on the similarity cube containing the similarity
values calculated by a set of matchers M (Figure 6). To
determine the complete match result for two input sche-
mas two main steps are needed; step 3 is optional:
• Aggregation of matcher-specific results: In the first sub-

step, similarity values computed by multiple matchers
are aggregated to a combined similarity value for each
pair of schema elements. With m S1 elements and n S2
elements we obtain an m x n matrix of combined simi-
larity values.

• Selection of match candidates: To determine the best
match candidate(s), we rank the correspondences ac-
cording to their similarity values per schema element
and apply a filter strategy to determine the most plausi-
ble ones. The result of this step is a combined match re-
sult with 0, 1 or more match candidates per schema
element. In the case of an undirectional match, the
match candidates for both schemas are determined.

• Computation of combined similarity: The match result
from the previous step can be aggregated into a single
similarity value for the two schemas, called schema
similarity. It depends on the chosen matchers and their
combination strategy.

[S1, S2, 0.7]
Combined
similarity

3

Aggregation1 Aggregation1 Computation of comb. similarity3 Computation of comb. similarity3
Match results

2

Direction/Selection2 Direction/Selection2

M
 m

atch
er

s

1

S1
 e

le
m

en
ts

S2 elements

.........
0.8s2s1

S1→S2

.........
0.8s2s1

S1→S2

.........
0.8s1s2

S2→S1

.........
0.8s1s2

S2→S1

Similarity cube Similarity matrix

S2 elements
S1

 e
le

m
en

ts

Figure 6. Combination of match results

These three steps are also needed for hybrid matchers
to combine the similarity values for its constituent match-
ers. However, in this case these steps are not applied to
similarity values of schema elements but to similarity
values for the components of schema elements. For in-
stance, a name matcher determines the similarity of names
from the similarities of the name tokens, and a structural
matcher can derive the similarity of inner nodes from the
similarity values of their children or leaves. As a result,
the sets S1 and S2 in Figure 6 for which similarity values
are processed now refer to these components of schema
objects. For hybrid matchers, these similarity values of
the components can be determined by different matchers
resulting in a similarity cube which has to be aggregated.
Now, the third step is no longer optional but required to
derive a single similarity value, the element similarity, for
a pair of schema objects (names, inner nodes) by combin-
ing the similarity values of the match candidates deter-
mined in step 2.

To sum up, we use steps 1 and 2 for combining simi-
larity values to obtain the complete match result. For hy-
brid matchers we need the additional step 3. In the follow-
ing we present the approaches for these steps that COMA

currently supports; additional approaches can easily be
added. We finally discuss the default combinations used
for the various hybrid matchers.
6.1 Aggregation of matcher-specific results
One of the following strategies can be used to aggregate
matcher-specific similarity values for every element pair:
1. Max: This strategy returns the maximal similarity

value of any matcher. It is optimistic, in particular in
case of contradicting similarity values. Furthermore,
matchers can maximally complement each other.

2. Weighted: This strategy determines a weighted sum
of similarity values of the individual matchers and
needs relative weights which should correspond to the
expected importance of the matchers.

3. Average: This strategy represents a special case of
Weighted and returns the average similarity over all
matchers, i.e. considers them equally important.

4. Min: This strategy chooses the lowest similarity value
of any matcher. As opposed to Max, it is pessimistic.

6.2 Direction and selection of match candidates
As discussed in Section 3, COMA supports determination
of directional or undirectional match results. Given two
schemas S1 and S2 with |S2|≤|S1|, match candidate selec-
tion can be performed in the following directions:
1. LargeSmall: In this directional approach, we match

the larger schema S1 against the smaller target S2, i.e.
elements from S1 are ranked and selected with respect
to each S2 element.

2. SmallLarge: As opposed to LargeSmall, match candi-
date selection is performed based on ranking S2 ele-
ments for each S1 element.

3. Both: This strategy considers the results from both
match directions, LargeSmall and SmallLarge. Further-
more, an S1 and an S2 element are only accepted as a
matching pair if it is identified as such in both direc-
tions.
To determine the match candidates from S1 for an

element s2 in S2 we use the similarity matrix to rank the
S1 correspondences in descending order of their similarity
value. For selecting the match candidates one of the
following strategies can be used:
1. MaxN: The n S1 elements with maximal similarity are

selected as match candidates. n=1, i.e. Max1, repre-
sents the natural choice for 1:1 correspondences. Gen-
erally, n>1 is useful in interactive mode to allow the
user to select among several match candidates.

2. MaxDelta: The S1 element with maximal similarity is
determined as match candidate plus all S1 elements
with a similarity differing at most by a tolerance value
d, which can be specified either as an absolute or rela-
tive value. The idea is to return multiple match candi-
dates when there are several S1 elements with the
same or almost the same similarity value.

3. Threshold: All S1 elements showing a similarity
exceeding a given threshold value t are selected.
A single approach may return imprecise match candi-

dates. While Threshold may return too many match candi-
dates, MaxN and MaxDelta may return match candidates
with too little similarity. Thus, we support considering
several criteria at the same time, in particular MaxN or
MaxDelta in combination with a low threshold, e.g. 0.5.

6.3 Computation of combined similarity
As discussed above, hybrid matchers require an additional
step to obtain a combined similarity value for sets of ele-
ment components. For this purpose we support two strate-
gies, namely Average and Dice. They work on the output of
step 2 consisting of a list of match candidates for sets S1
and S2. Assuming at most one match candidate per S1 and
S2 element we determine the combined similarity as fol-
lows:
1. Average: The average similarity is determined by

dividing the sum of the similarity values of all match
candidates of both sets S1 and S2 by the total number
of set elements, |S1|+|S2|.

2. Dice: This strategy is based on the Dice coefficient [6]
and returns the ratio of the number of elements which
can be matched over the total number of set elements.
 Figure 7 illustrates the two approaches. Unlike Aver-

age, the individual similarity values in Dice do not influ-
ence the overall similarity of the sets. Hence, Dice returns
a higher similarity value than Average and thus is more
optimistic. Average and Dice can also be applied to manu-
ally derived match results to compute the similarity be-
tween two schemas. With all element similarities set to
1.0, both strategies will return the same schema similarity.

74.0
34

)8.08.00.1()0.18.08.0(=
+

+++++

86.0
34

33 =
+
+

•Average (S1, S2) =

•Dice (S1, S2) =

Combined similarity

S1(s11, s12, s13, s14)

S2(s21, s22, s23)

1.0s21s13
0.8s22s12
0.8s23s11

S1 → S2

1.0s21s13
0.8s22s12
0.8s23s11

S1 → S2

0.8s11s23
0.8s12s22
1.0s13s21

S2 → S1

0.8s11s23
0.8s12s22
1.0s13s21

S2 → S1
Input sets Match results

Figure 7. Examples for computing combined similarity

6.4 Construction of hybrid matchers
To determine the combination strategy for a hybrid
matcher, a tuple of 4 sub-strategies is to be specified, e.g.
(Max, Both, Max1, Average), one for each step in our com-
bination scheme. Table 4 shows the default constituent
matchers and combination strategies used in our hybrid
matchers to compute similarity values for single pairs of
schema elements. While the Name matcher covers all
three steps, other approaches either require only the first
step (TypeName) or the last two steps (Children, Leaves).
Note that any strategy specified for computing combined
similarity will presuppose Both as direction strategy in
step 2.

Default combination strategy Hybrid
matcher

Default
matchers (1) Aggreg. (2) Direct. & Select. (3) Comb. sim

Name Trigram,
Synonym

Max Both, Max1 Average

TypeName DataType,
Name

Weighted
 (0.3, 0.7)

- -

Children TypeName - Both, Max1 Average
Leaves TypeName - Both, Max1 Average

Table 4. Construction of hybrid matchers
Name computes element similarities by combining the

similarity values for the names’ token sets. Token simi-
larities are determined using multiple simple matchers,
such as Trigram and Synonym. In step 1, we use Max for

aggregating the matcher-specific similarity values from
the cube, motivated by the fact that tokens are typically
similar according to only some simple matchers. For ex-
ample, string matchers such as Trigram find no similarity
for Ship and Deliver, while a semantic matcher such as
Synonym can detect the synonymy and assign a high simi-
larity value. In step 2, we consider both directions and
apply Max1 to the similarity matrix to obtain two sets of
directional token correspondences. Finally, in step 3, the
name similarity between the token sets is then computed
using the Average strategy.

TypeName combines DataType and Name, each of
which produces a single similarity value for a pair of
schema elements. For step 1, we use the Weighted strategy.
Steps 2 and 3 are not needed because we already have a
single similarity value after step 1. The default weights of
the name and data type similarity, 0.7 and 0.3, respec-
tively, permit to match attributes with similar names but
different data types. When several attributes exhibit about
the same name similarity, candidates with higher data
type compatibility are preferred.

In Children and Leaves we compare two sets of ele-
ments, which are either the children or leaves of two inner
elements. Thus steps 2 and 3 are necessary. Because only
one matcher is used for determining the leaf similarities,
we do not need step 1 but directly obtain the similarity
matrix from the results of the single leaf matcher.

7 Evaluation on real world schemas
We performed a comprehensive evaluation of the match
processing strategies supported by COMA on several
complex real world schemas. The main goal was to
investigate the impact of different combination strategies,
i.e. aggregation, direction, selection, computation of com-
bined similarity, on match quality, and to compare the
effectiveness of different matchers, i.e. single matchers
and their combinations, with and without reuse. We first
describe the design and methodology of our evaluation.
We then present the results for the combination strategies,
the single matchers and matcher combinations, and the
match sensitivity in different match tasks.
7.1 Experimental design
For our evaluation we used 5 XML schemas for purchase
orders, CIDX, Excel, Noris, Paragon, and Apertum, taken
from www.biztalk.org. For short, we refer to them as 1, 2,
etc., respectively. Table 5 summarizes the characteristics
about the test schemas. Except for schema 1, the number
of paths is different from the number of nodes, indicating
the use of shared fragments in the schemas. Previous
match studies mostly used smaller schemas [9, 13]. The
size of schemas can impact match accuracy because it
determines the search space for match candidates.

Schemas 1 2 3 4 5
Max depth 4 4 4 6 5
#Nodes / paths 40 / 40 35 / 54 46 / 65 74 / 80 80 / 145
#Inner nodes / paths 7 / 7 9 / 12 8 / 11 11 / 12 23 / 29
#Leaf nodes / paths 33 / 33 26 / 42 38 / 54 63 / 68 57 / 116

Table 5. Characteristics of test schemas

We defined 10 match tasks, each matching two differ-
ent schemas. To provide a basis for evaluating the quality
of different automatic match strategies we first manually
performed the match tasks. Figure 8 gives an impression
about the problem size in each match task. #Matches indi-
cates the number of correspondences to be identified. The
similarity between the schemas (Schema Similarity) is
computed using the Dice strategy (Section 6.3) as the ratio
between #Matched Paths and #All Paths.1 This similarity
is mostly around 0.5, showing that the schemas are much
different even though they are from the same domain.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

1<->2 1<->3 1<->4 1<->5 2<->3 2<->4 2<->5 3<->4 3<->5 4<->5

Match tasks

S
ch

em
a

S
im

ila
ri

ty

0
25
50
75
100
125
150
175
200
225
250

#M
at

ch
es

 /
#P

at
h

#Matches #Matched Paths
#All Paths Schema Similarity

Figure 8. Problem size in schema matching tasks

Measures for match quality: To evaluate the quality of
our match operations, we compare the manually deter-
mined real matches (R) for a match task with the matches
P returned by automatic match processing. We determine
the true positives, i.e. correctly identified matches, I, as
well as the false positives, i.e. false matches, F=P\I, and
the false negatives, i.e. missed matches, M=R\I. Based on
the cardinalities of these sets, the following quality meas-
ures are computed:

•
FI

I

P

I
Precision

+
== estimates the reliability of the

match predictions

•
R

I
Recall = specifies the share of real matches that is

found

• 





 −=

−
=

+
−=

Precision
Recall

R

FI

R

MF
Overall

1
21 * repre-

sents a combined measure for match quality [13], taking
into account the post-match effort needed for both re-
moving false and adding missed matches.

Precision and Recall originate from the information
retrieval field and have also been used in other match
studies [11, 1]2. Note that neither Precision nor Recall
alone can accurately assess the match quality. Recall can
easily be maximized at the expense of a poor Precision by
returning all possible correspondences, i.e. the cross
product of two input schemas. Similarly, a high Precision
can be achieved at the expense of a poor Recall by return-
ing only few (correct) correspondences. On the other side,
Overall proportionally depends on both Recall and Preci-
sion and thus represents a single metric suitable for com-
paring match quality. Unlike Precision and Recall, Over-

1 In our manually derived match results, all element similarities are set to
1.0 so that Average and Dice yield the same schema similarity
2 In [1] they are called soundness and completeness, respectively

all can have negative values if the number of the false
positives exceeds the number of the true positives, i.e.
Precision<0.5. In this case, the post-match effort can be
regarded as higher than the gain from the automatic match
operation, which is then rather useless. In the ideal case,
when all and only the real matches are returned, i.e.
I=P=R, F=M=∅ , the measures reach their highest values
Precision=Recall=Overall=1. In all other cases, Overall is
smaller than both Precision and Recall making it difficult
to achieve higher values than, say, 0.5.
Experiment methodology and execution: To determine
the effectiveness of the match operations we used COMA
only in automatic mode in this study, i.e. we did not con-
sider possible improvements by user feedback and itera-
tive refinements of the generated match result.

Matchers Aggregat. Direction Selection CombSim
5 single No

reuse 11 combi-
nations

-Max
-Average
-Min

-Average
-Dice

2 single Reuse

12 combi-
nations

-Max
-Average
-Min

-LargeSmall
-SmallLarge
-Both

-MaxN(1-4)
-Delta(0.01-0.1)
-Thr(0.3-1.0)
-Thr(0.5)+
 MaxN(1-4)
-Thr(0.5)+
 Delta(0.01-0.1) -Average

Σ = 16 + 14 3 3 36 2
Table 6. Tested matchers and combination strategies

We performed a systematic evaluation for all relevant
matchers and combination strategies (see Table 6). Our
evaluation encompassed a number of series, in each of
which we applied a different choice of matchers and com-
bination strategies. Altogether, we conducted 12,312 se-
ries. Each series in turn consisted of 10 experiments deal-
ing with the (10) predefined match tasks. The quality
measures were first determined for single experiments and
then averaged over all experiments in each series (hereaf-
ter average Precision, etc.).

Due to their limited focus, the simple matchers alone
do not perform well on real world schemas. Therefore, we
only tested the more powerful hybrid matchers and their
combinations. Each matcher was tested with all possible
combinations of the strategies for aggregation, direction,
selection, and computation of combined similarity,
whereby the different strategies for aggregation and for
computation of combined similarity are not relevant for
the single matchers and the single reuse matchers, respec-
tively. The Weighted aggregation strategy was not consid-
ered because we did not want to make any assumption
about the importance of the individual matchers. For each
selection strategy, we chose a generous parameter range,
in which the best result is to be expected. In particular, we
tested MaxN with up to 4 candidates, MaxDelta (or short
Delta) with relative deltas between 0.01 and 0.1 (i.e., 1-
10%), Threshold (or short Thr) with threshold values be-
tween 0.3 and 1.0. Furthermore, we tested the combina-
tions of MaxN and MaxDelta, respectively, with Threshold
using a low threshold of 0.5.

For semantic name matching in the Synonym matcher,
we constructed a synonym file with some trivial abbrevia-
tions, such as, No, Num, and domain-specific synonyms,

such as (ship, deliver), (bill, invoice). This auxiliary in-
formation was used uniformly in all experiments.
7.2 Combination strategies
We first performed series with the 16 no-reuse matchers:
the 5 single hybrid matchers, all their pair-wise combina-
tions, and the combination of all 5 hybrid matchers (here-
after All). In the no-reuse case the best average Overall
obtained for the 10 match tasks is 0.73, and the worst is
-88.0, i.e. Precision is almost 0 and Recall almost 1.
 Figure 9 shows the distribution of the series with respect
to different Overall ranges. The x-axis covers the entire
value range of Overall. The distribution of the series with
average Overall>0 is shown in successive ranges 0.0-0.1,
..., 0.7-0.8, while the series with average Overall<0 are
aggregated in one single range Min-0.0. Most series have
negative average Overall, indicating poor matchers and/or
combination strategies. Only 3 series yield average Over-
all in the range of 0.7-0.8.

#All Series = 8208

270

207

62

136

114

179

160

03
0

30
60
90

120
150
180
210
240
270
300

Min 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Overall

#S
er

ie
s

7077

Figure 9. Distribution of series in different Overall ranges

 In order to identify the best matchers and combination
strategies, we concentrate on the best series having aver-
age Overall>0. Figure 10 shows the share of the series
belonging to single strategies of aggregation, direction
and selection, respectively, with respect to all series en-
countered in each Overall range. Note that in each dia-
gram, the number of the series belonging to the single
strategies stays equal due to the exhaustive evaluation.
For example in Figure 10a, over the entire x-axis, we have
#Max series = #Min series = #Average series = 2376 despite
their unproportional appearance. Hence, the distribution
of the series indicates the quality of the respective strat-
egy: a strategy of high quality should show a high pres-
ence in higher Overall ranges. We now discuss the quality
of the single combination strategies.
• Aggregation: Max is only represented in Overall ranges

below 0.1. This is because of, first, its optimistic nature,
and second, the inaccuracy of several hybrid matchers
(Section 7.3). In such cases, the pessimistic Min and
compensating strategy Average are more stable. In par-
ticular, series with Min and Average are equally repre-
sented in the Overall range 0.0-0.6; however only Aver-
age yields greater average Overall. Thus, while Max is
only suitable for combining accurate matchers, Min and
Average are also able to cope with inaccurate ones.

• Direction: SmallLarge is only represented in Overall
ranges below 0.3, while LargeSmall can reach average
Overall of up to 0.6. This shows the impact of the dif-
ferent size between the source and the target schema on
the quality of directional matching. SmallLarge tries to
find match candidates for the larger target schema from
the smaller source schema, resulting in a larger match

result apparently with a greater inaccuracy than for Lar-
geSmall. On the other side, Both can produce much better
results than both LargeSmall and SmallLarge and is less
dependent on the size of the input schemas.

• Selection: From the many selection strategies tested, we
first determined the most effective parameter settings
for each approach. Figure 10c shows the share of series
for these best selection strategies. Surprisingly, the
Threshold approach, which is often used in previous
work, shows the worst result. The average Overall val-
ues for its best variant Threshold(0.8) are always below
0.3. MaxN(1) and Threshold(0.5)+MaxN(1) can produce
average Overall of up to 0.7. Most successful are
Delta(0.02) and Threshold(0.5)+Delta(0.02) with average
Overall beyond 0.7.

• Computation of combined similarity:3 We observe in
general some degradation of match quality using Dice,
compared to Average, for computing combined similar-
ity in the hybrid matchers. The best average Overall of
Dice and Average is 0.67 and 0.73, respectively.

The results show that in the no-reuse cases the best
single strategies for aggregation, direction, selection and
computation of combined similarity are Average, Both,
Threshold(0.5)+Delta(0.02) or Delta(0.02), and Average,
respectively. To verify whether the combined use of these
strategies can also yield the best match results we identify
the best series for the matcher combinations (10 pair-wise
plus All) and examine their combination strategies used.
Among these 11 combinations, 3 do not produce any posi-
tive average Overall and are ignored. We observe that
• all 8 remaining combinations achieve their best result

with Average for aggregation and Both for direction
• all 8 employ a combined selection strategy of Thresh-

old(0.5) and a Delta strategy: 4 use Delta(0.02) and 4 re-
maining utilize different delta values (0.03 and 0.04)

• 7 use Average for computing combined similarity
Thus we choose (Average, Both, Thresh-

old(0.5)+Delta(0.02)) as the default combination strategies,
while Average is set as the default strategy for computing
combined similarity in the hybrid matchers. Using these
default strategies, All (among 8 above) achieves the high-
est average Overall, 0.73, in the no-reuse test and thus is
chosen as the default matcher combination.
7.3 Single matchers and matcher combinations
For all match tasks, we used the default match operation
to automatically derive the corresponding match results,
which were stored in the repository in addition to the
manually derived match results. We then performed fur-

3 Due to lack of space, we do not present a figure for this comparison.

ther series for 14 reuse strategies: two variants of the
Schema matcher called SchemaM and SchemaA, their pair-
wise combinations with the 5 single hybrid matchers, and
their combination with all hybrid matchers (hereafter
named All+Schema). While SchemaM reuses the manually
determined match results of different match tasks, Sche-
maA is based on the reuse of the automatically derived
match results of the default match operation. Considering
these two cases illustrates the improvements possible by
reusing manually confirmed match results over uncon-
firmed results. For every match task, say 1↔3, SchemaM
and SchemaA apply MatchCompose to 3 pairs of match
results from other match tasks, namely (1↔2, 2↔3),
(1↔4, 3↔4), and (1↔5, 3↔5).

-0,3
-0,2
-0,1

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Nam
ePath

Typ
eNam

e

Lea
ve

s

Chil
dr

en
Nam

e

Sch
em

aM

Sch
em

aA

avg Precis ion avg Recall avg Overall

No reuse Reuse

Figure 11. Quality of single matchers

 Figure 11 shows the quality of the single matchers, distin-
guished between the no-reuse and reuse-oriented ones and
sorted on their average Overall. We make the following
observations about the quality of the hybrid matchers:
• As expected, redundancy in schemas, i.e. shared ele-

ments, causes instability of some matchers, such as
Name, TypeName, Children, Leaves. These matchers are
not able to distinguish between different element con-
texts, resulting in a high number of false positives in
several match tasks (negative values of Overall).

• NamePath shows a better quality than Name and is
among the no-reuse matchers the best one in terms of
Precision and Overall. Using hierarchical names repre-
sents an effective method for distinguishing between
different contexts of a shared element. However, it is
also more restrictive in predicting match candidates than
considering single element names. Usually, NamePath
results in lower Recall but higher Precision than Name.

• TypeName shows a slightly better quality than Name,
indicating that incorporating data type information can
be valuable. For the considered PO schemas the im-
provements are small because most leaf elements in our
test schemas are either of type String or Number.

• TypeName, Leaves and Children show approximately the
same Recall, because first, both Leaves and Children use

a) Aggregation (2376 series/strategy)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Min 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Overall

S
er

ie
s

sh
ar

e

Max

Min

Average

a) Direction (2736 series/strategy)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Min 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Overall

Both

SmallLarge

LargeSmall

c) Best selection (228 series/strategy)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Min 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Overall

Thr(0.8)
MaxN(1)

Thr(0.5)+MaxN(1)

Delta(0.02)

Thr(0.5)+Delta(0.02)

Figure 10. Distribution of series with respect to combination strategies

TypeName as the leaf matcher, and second the number of
inner element matches is much lower than that of leaf
matches. Leaves yields a slightly better quality than Chil-
dren for the PO schemas.

The Schema reuse matchers show the best quality
among the single matchers. While the best no-reuse
matcher, NamePath, achieved an average Overall of only
0.45, SchemaA and SchemaM achieved significantly better
average Overall values of 0.62 and 0.73, respectively.
This is because both the automatically and manually de-
rived match results have provided many candidates for
reuse. As expected, the manually derived match results
allow for a substantial improvement over the reuse of
automatically determined match results. Compared to the
no-reuse schemes, SchemaA and SchemaM achieve only
slightly better Recall but significantly better average Pre-
cision of 0.85 and 0.88, respectively. This shows that the
problem of false n:m matches has been compensated to a
great extent by combining multiple MatchCompose results.

We now discuss the quality of different matcher com-
binations considering both no-reuse and reuse matchers.
When evaluating the combination of the reuse schemes
with other matchers, we noted that the above identified
strategies that worked best for combining no-reuse match-
ers were also effective for SchemaA but not so much for
SchemaM. Instead, SchemaM combinations mostly achieve
their best quality with combination strategies (Min, Lar-
geSmall, Delta(0.1), Average). This apparently traces back
to the fact that the similarity is uniformly set to 1.0 for all
element correspondences in the manually derived match
results. We will conduct further research in order to un-
derstand this behavior in more detail.

 Figure 12 shows the quality of the best matcher com-
binations sorted on their average Overall. Due to lack of
space we only present the results for SchemaM for the re-
use combinations. We observe that the matcher combina-
tions in general allow much better match quality than the
single hybrid matchers. The best no-reuse combination,
All, achieves average Overall of 0.73, the best reuse com-
bination, All+SchemaM, reaches the best average Overall
observed in our entire evaluation, 0.82. This is because
the combined matchers inherit the high stability of Name-
Path and SchemaM, while eliminating many false matches
of Name, TypeName, Leaves, or Children.

Matcher combinations

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

All+
Sch

em
aM

Sch
em

aM
+Nam

ePath

Sch
em

aM+Nam
e

Sch
em

aM
+Typ

eNam
e

Sch
em

aM
+Lea

ve
s

Sch
em

aM
+Chil

dre
n All

Nam
ePath

+Le
ave

s

Nam
ePath+Typ

eN
ame

Nam
ePath

+Child
re

n

Nam
ePath+Nam

e

avg Precision avg Recall avg Overall

Figure 12. Quality of best matcher combinations

Among the no-reuse combinations, All performs best
because many aspects are examined at the same time to

contribute to the overall similarity between elements.
NamePath+Leaves also represents an effective no-reuse
combination with an improvement of 20% and 80% of
average Overall compared to NamePath and Leaves, re-
spectively. The combined scheme exploits three kinds of
schema information, element names, data types, and
structural information, in an intelligent way: examining
paths to identify the context of shared elements while
considering leaves to cope with structural conflicts. Be-
cause of the restrictiveness of NamePath in match predic-
tion, its combinations achieve very high Precision. Com-
binations with Leaves yield better quality that those with
Children.

The reuse combinations are always better than the no-
reuse combinations. They exhibit only small differences
in match quality with very high average Precision (>0.90).
Their maximal average Recall observed is 0.89, indicating
that previous match results cannot always provide all re-
use candidates required for a new match task.
7.4 Match sensitivity

Besides the matchers and combination strategies, ex-
ternal factors, such as schema characteristics, can also
impact match quality. Figure 13 shows the relationship
between schema size, schema similarity and the best
Overall achieved using any no-reuse and (manual) reuse
strategy for each match task. Again, the reuse approaches
clearly outperform the no-reuse approaches. However, we
observe that, regardless of the match strategy used, match
quality usually degrades with an increase of schema size.
Several reuse strategies achieve optimal or close to opti-
mal Overall values in the smaller match tasks but are lim-
ited to an Overall value of 0.7 for the larger problems.
Intuitively, a match task of the same size becomes
“harder”, if the schema similarity drops. For example,
quality of automatic matching degrades substantially from
task 3↔5 to 4↔5, and from 2↔4 to 3↔4 due to, on the
on side, increase of schema size, and on the other side,
decrease of schema similarity.

0
0,1

0,2
0,3

0,4
0,5
0,6

0,7
0,8

0,9
1

1<->2 1<->3 2<->3 1<->4 2<->4 3<->4 1<->5 2<->5 3<->5 4<->5

Match tasks

O
ve

ra
ll

/ S
im

ila
ri

ty

0
24

48
72

96
120
144

168
192

216
240

#P
at

h

Overall(No Reuse) Overall(Manual Reuse)
#All paths Schema Similarity

Figure 13. Impact of schema characteristics on match quality

To analyze the stability of the matchers across the
match tasks, we identify for each match task the hybrid
matcher(s) / combination(s) producing the match result
with those maximal Overall values. This is done for reuse
and no-reuse strategies, respectively. We observe that All
and All+Schema outperform all hybrid matchers and other
combinations and yield the best Overall for 5 and 6, re-
spectively, out of 10 match tasks, while showing some
minor degradation of at most 10% in the remaining tasks.

Compared to other matchers, All and All+Schema show
thus the highest stability across our match tasks.
7.5 Evaluation conclusions
We have systematically investigated and compared the
effectiveness of different matchers and combination
strategies. We were able to determine a very effective
default combination strategy for aggregating matcher-
specific results and selecting match candidates. Average
proved to be the aggregation method of choice as it could
best compensate shortcomings of individual matchers.
Our undirectional match approach Both supports very
good precision and thus produced usually better match
results than directional approaches. Most accurate match
predictions can be achieved by selecting match candidates
showing the (approximately) highest similarity exceeding
a minimal threshold.

We observe that the composite approaches are very ef-
fective. Although single matchers may be imprecise, their
combination can effectively improve the match quality. In
contrast to single matchers, matcher combinations simul-
taneously analyze schema elements under different as-
pects, resulting in more stable and accurate similarity for
heterogeneous schemas. The stable behavior of the default
combination strategy indicates that it can be used for
many match tasks thereby limiting the tuning effort.

Despite its simplicity the reuse approach proved to be
very successful. The Schema approaches achieve the best
quality among the single matchers, showing that the map-
pings between schemas from the same application domain
can provide good candidates for reuse. Furthermore, the
reuse-oriented matcher combinations are the best strate-
gies in our entire evaluation and improved the match qual-
ity by more than 10% over the best no-reuse approaches.

The best matchers achieve average Precision of 95%,
Recall of 80%, and Overall of 70% or better, representing
a substantial saving in manual matching effort. For small
match tasks, Overall values of close to 1.0 are achieved
but for larger match problems, Overall was limited to
about 0.6 – 0.7. While this was influenced by a moderate
degree of schema similarity, we see potential for im-
provement by adding further matchers, e.g. those exploit-
ing instance-level data and reusing large-scale dictionaries
and standard ontologies. We also want to experiment with
more comprehensive strategies for match candidate selec-
tion, such as the stable marriage approach [13].

8 Summary and future work
In this paper, we presented the generic schema match sys-
tem COMA, which provides an extensible library of sim-
ple and hybrid match algorithms and supports a powerful
framework for combining match results. The user can
tailor match strategies by selecting the matchers and their
combination for a given match problem. Hybrid matchers
can also be configured easily by combining existing
matchers using the provided combination strategies. We
have developed a novel matcher based on a special com-
pose operation for reusing previous match results. For a

flexible combination of independent matchers we store all
similarity values determined by matchers within similarity
cubes of a DBMS-based repository. COMA can be used
in automatic mode or interactively in order to provide user
feedback and to continuously improve the match result.

We used COMA to systematically evaluate different
aspects of match processing, i.e. aggregation of matcher-
specific results, match direction, match candidate selec-
tion, and computation of combined similarity, and differ-
ent matcher usages, i.e. single matchers vs. matcher com-
binations, no-reuse vs. reuse approaches. We believe that
our evaluation insights can be of valuable help for the
development and evaluation of further match algorithms.

In future work, we plan to add other match and com-
bination algorithms in order to improve match quality.
Furthermore, we will apply COMA to additional schema
types and applications, such as in the bioinformatics do-
main.
Acknowledgements
We thank Sergey Melnik and the anonymous reviewers
for many useful comments. This work is supported by
DFG grant BIZ 6/1-1.
References
1. Berlin, J., A. Motro: Autoplex: Automated Discovery of Content for
Virtual Databases. CoopIS 2001, 108-122
2. Bergamaschi, S., S. Castano, M. Vincini, D. Beneventano: Semantic
Integration of Heterogeneous Information Sources. Data & Knowledge
Engineering 36: 3, 215–249, 2001
3. Bernstein, P.A., A. Halevy, R. A. Pottinger: A Vision for Manage-
ment of Complex Models. SIGMOD Record 29: 4, 55–63, 2000
4. Bright, M.W. et al: Automated Resolution of Semantic Heterogene-
ity in Multidatabase. ACM Trans. Database Systems 19: 2, 1994
5. Castano, S., V. De Antonellis: A Schema Analysis and Reconcilia-
tion Tool Environment. IDEAS 1999, 53-62
6. Castano, S, V. De Antonellis, M.G. Fugini, B. Pernici: Conceptual
Schema Analysis: Techniques and Applications. ACM Trans. Database
Systems 23: 3, 286-333, 1998
7. Doan, A.H., P. Domingos, A. Halevy: Reconciling Schemas of
Disparate Data Sources: A Machine-Learning Approach. SIGMOD 2001
8. Doan, A.H., J. Madhavan, P. Domingos, A. Halevy: Learning to
Map between Ontologies on the Semantic Web. WWW 2002
9. Embley, D.W. et al.: Multifaceted Exploitation of Metadata for
Attribute Match Discovery in Information Integration. WIIW 2001
10. Hall, P., G. Dowling: Approximate String Matching. Computing
Survey 12: 4, 381-402, 1980
11. Li, W., C. Clifton: SemInt: A Tool for Identifying Attribute Corre-
spondences in Heterogeneous Databases Using Neural Network. Data
and Knowledge Engineering 33: 1, 49-84, 2000
12. Madhavan, J., P.A. Bernstein, E. Rahm: Generic Schema Matching
with Cupid. VLDB 2001
13. Melnik, S., H. Garcia-Molina, E. Rahm: Similarity Flooding: A
Versatile Graph Matching Algorithm. ICDE 2002
14. Miller, R.J. et al.: The Clio Project: Managing Heterogeneity. SIG-
MOD Record 30:1, 78-83, 2001
15. Milo, T., S. Zohar: Using Schema Matching to Simplify Heteroge-
neous Data Translation. VLDB 1998, 122-133
16. Palopoli, L., G. Terracina, D. Ursino: The System DIKE: Towards
the Semi-Automatic Synthesis of Cooperative Information Systems and
Data Warehouses. ADBIS-DASFAA 2000, 108–117
17. Rada, R. et al.: Development and Application of a Metric on Seman-
tic Nets. IEEE Trans. Systems, Man, and Cybernetics 19: 1, 1989
18. Rahm, E., P.A. Bernstein: A Survey of Approaches to Automatic
Schema Matching. VLDB Journal 10: 4, 2001
19. Rahm, E., Do, H.H.: Data Cleaning: Problems and Current Ap-
proaches. IEEE Bulletin on Data Engineering 23:4, 2000
20. Winkler, W.E.: Advanced Methods for Record Linking. Section on
Survey Research Methods (American Statistical Association), 1994

