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Abstract 

Schema matching is the task of finding semantic cor-
respondences between elements of two schemas. It is 
needed in many database applications, such as integra-
tion of web data sources, data warehouse loading and 
XML message mapping. To reduce the amount of user 
effort as much as possible, automatic approaches com-
bining several match techniques are required. While 
such match approaches have found considerable inter-
est recently, the problem of how to best combine dif-
ferent match algorithms still requires further work. We 
have thus developed the COMA schema matching sys-
tem as a platform to combine multiple matchers in a 
flexible way. We provide a large spectrum of individ-
ual matchers, in particular a novel approach aiming at 
reusing results from previous match operations, and 
several mechanisms to combine the results of matcher 
executions. We use COMA as a framework to com-
prehensively evaluate the effectiveness of different 
matchers and their combinations for real-world sche-
mas. The results obtained so far show the superiority 
of combined match approaches and indicate the high 
value of reuse-oriented strategies. 

1 Introduction 
Schema matching is the task of finding semantic 
correspondences between elements of two schemas [ 11, 
 12,  15]. It is a critical operation in many schema and data 
translation and integration applications, such as integra-
tion of web data sources, data warehouse loading, XML 
message mapping and XML-relational data mapping. Cur-
rently, schema matching is largely performed manually by 
domain experts, and therefore a time-consuming and tedi-
ous process. In web-based applications and services, such 
a manual approach is a major limitation due to the rapidly 
increasing number of data sources, XML message and 
document schemas, and web service interfaces to be dealt 
with. Hence, approaches for automating the schema 
matching tasks as much as possible are badly needed to 
simplify and speed up the development, maintenance and 

use of such applications.   
Numerous researchers have addressed the schema 

matching problem either for specific applications [ 1,  4,  5, 
 7,  8,  9,  11,  15,  16] or in a more generic way for different 
applications and schema languages [ 12,  13,  14]. The pro-
posed techniques for automating schema matching exploit 
various types of schema information, e.g. element names, 
data types and structural properties [ 2,  12,  15,  16,  9] as 
well as characteristics of data instances [ 7,  8,  14,  11,  9]. 
Some approaches utilize auxiliary sources, such as tax-
onomies, dictionaries and thesauri [ 2,  9]. To achieve high 
match accuracy for a large variety of schemas, a single 
technique (e.g., name matching) is unlikely to be success-
ful. Hence, it is necessary to combine different ap-
proaches in an effective way. For this purpose, previous 
prototypes have followed either a so-called hybrid or 
composite combination of match techniques [ 18]. So far 
the hybrid approach is most common where different 
match criteria or properties (e.g., name and data type) are 
used within a single algorithm. Typically these criteria are 
fixed and used in a specific way. By contrast, a composite 
match approach combines the results of several independ-
ently executed match algorithms, which can be simple 
(based on a single match criterion) or hybrid. This allows 
for a high flexibility, as there is the potential for selecting 
the match algorithms to be executed based on the match 
task at hand. Moreover, there are different possibilities for 
combining the individual match results. We know of only 
three recent systems following such a composite approach 
[ 7,  8,  9]. They are all limited to match techniques based 
on machine learning and do not fully utilize the flexibility 
offered by the composite approach (see Section  2).  

To investigate the effectiveness of composite match 
approaches more comprehensively we have developed the 
COMA system for combining match algorithms in a 
flexible way. COMA represents a generic match system 
supporting different applications and multiple schema 
types such as XML and relational schemas. It provides an 
extensible library of match algorithms and supports dif-
ferent ways for combining match results. New match al-
gorithms can be included in the library and used in com-
bination with other matchers. COMA thus allows us to 
tailor match strategies by selecting the match algorithms 
and their combination for a given match problem. More-
over, we use COMA as an evaluation platform to system-
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atically examine and compare the effectiveness of differ-
ent matchers and combination strategies. In the design of 
COMA we observed that in general fully automatic solu-
tions to the match problem are not possible due to the 
potentially high degrees of semantic heterogeneity be-
tween schemas. We thus allow an interactive and iterative 
match process during which the user can provide feed-
back, e.g. to manually provide match correspondences or 
to confirm or reject proposed matches.  

As another contribution we propose a new match ap-
proach that aims at reusing previously obtained match 
results, motivated by the observation that many schemas 
to be matched are very similar to previously matched 
schemas. Reusing the previous match results may thus 
result in significant savings of manual effort. A simple 
form of such an approach is the use of synonym tables 
indicating match correspondences at the level of single 
schema elements. Our new approach tries to reuse match 
results at the level of entire schemas or schema fragments. 
The flexibility of COMA is made possible by the use of a 
DBMS-based repository for storing schemas, intermediate 
similarity results of individual matchers, and complete 
(possibly user-confirmed) match results for later reuse.  

The paper is organized as follows. In Section 2 we 
discuss some related work. Section  3 provides an over-
view of COMA. In Sections  4 and  5 we present the sup-
ported matchers including the reuse-oriented approach.  
Section  6 outlines the strategies for matcher combination. 
Section  7 presents the results of using COMA for evaluat-
ing different strategies for matching real-world schemas. 
Finally, we conclude and discuss some future work. 

2 Related work 
A recent survey on automatic schema matching proposed 
a solution taxonomy differentiating between schema- and 
instance-level, element- and structure-level, and language- 
and constraint-based matching approaches [ 18,  12]. Fur-
thermore, the distinction between hybrid and composite 
combination of matchers is introduced and previous 
match prototypes such as Cupid [ 12], SemInt [ 11], LSD 
[ 7], Dike [ 16], SF [ 13], TranScm [ 15], and Momis [ 2] are 
reviewed.  

Cupid [ 12] represents a sophisticated hybrid match 
approach combining a name matcher with a structural 
match algorithm, which derives the similarity of elements 
based on the similarity of their components hereby em-
phasizing the name and data type similarities present at 
the finest level of granularity (leaf level). In a compara-
tive evaluation Cupid was generally more effective than 
two earlier match prototypes (Dike and Momis).  

LSD (Learning Source Description) [ 7] and its exten-
sion GLUE [ 8] represent powerful composite approaches 
to combining different matchers. Both use machine-
learning techniques for individual matchers and an auto-
matic combination of match results. Machine learning is a 
promising technique especially for evaluating data in-
stances to predict element similarity. On the other hand, 

the accuracy of the predictions depends on a suitable 
training which can incur a substantial manual effort. The 
predictions of individual matchers are combined by a so-
called meta-learner, which weights the predictions from a 
matcher according to its accuracy shown during the train-
ing phase. In various experiments LSD and GLUE 
showed promising results, albeit based on a not well-
defined accuracy metric apparently not taking into ac-
count wrongly proposed match correspondences.  

In [ 9], Embley et al. describe another composite ap-
proach based on machine learning. In addition to instance-
level matchers a name matcher is supported requiring an 
external dictionary (WordNet). The predictions of the 
individual matchers are combined using an average func-
tion. Like LSD and GLUE, a training phase is needed.  

The evaluation of the structural match algorithm SF 
(Similarity Flooding) in [ 13] used a more realistic metric 
for measuring the match accuracy than previous studies. It 
takes into account both the share of correctly proposed 
match candidates and wrongly suggested match candi-
dates. In our evaluation we will also use this refined met-
ric (Section  7). 

To sum up, the composite approach has so far only 
been studied in the context of machine learning ap-
proaches focusing on instance-level matchers and using a 
specific combination of match results. By contrast we 
want to support and evaluate a spectrum of matchers not 
confined to machine learning as well as the customizable 
combination of their results. A systematic comparative 
evaluation of different match algorithms and their combi-
nations based on well-defined accuracy metrics does not 
exist so far. To our knowledge, beyond the use of simple 
synonym tables the reuse of previous match results has 
not yet been studied. 

3 Overview of COMA 
A schema consists of a set of elements, such as relational 
tables and columns or XML elements and attributes. In 
COMA we represent schemas by rooted directed acyclic 
graphs. Schema elements are represented by graph nodes 
connected by directed links of different types, e.g. for 
containment and referential relationships. Schemas are 
imported from external sources, e.g. relational databases 
or XML files, into the internal format on which all match 
algorithms operate.  Figure 1 shows our running examples, 
a relational and an XML schema for purchase orders 
(PO), and their internal graph representation.  

The match operation takes as input two schemas and 
determines a mapping indicating which elements of the 
input schemas logically correspond to each other, i.e. 
match. The match result is a set of mapping elements 
specifying the matching schema elements together with a 
similarity value between 0 (strong dissimilarity) and 1 
(strong similarity) indicating the plausibility of their cor-
respondence. Similar to previous work, we focus on one-
to-one (1:1) match relationships. However, match algo-
rithms may determine multiple match candidates with 



different similarities for a schema element and finally 
select one of them or leave the final choice to the user.  

 Figure 2 illustrates match processing in COMA on 
two input schemas S1 and S2. Match processing either 
takes place in one or multiple iterations depending on 
whether an automatic or interactive determination of 
match candidates is to be performed. Each match iteration 
consists of three phases: an optional user feedback phase, 
the execution of different matchers and the combination 
of the individual match results. In interactive mode, the 
user can interact with COMA for each iteration to specify 
the match strategy (selection of matchers, of strategies to 
combine individual match results), define match or mis-
match relationships, and accept or reject match candidates 
proposed in the previous iteration. The interactive ap-
proach is useful to test and compare different match 
strategies for specific schemas and to continuously refine 
and improve the match result. In automatic mode, the 
match process consists of a single match iteration for 
which a default strategy is applied or strategy specified by 
input parameters. This mode is especially useful for appli-
cations already knowing their most suitable match strat-
egy or implementing their own user interaction interface.  

We now describe the steps of the match process in 
more detail. After being converted to the internal graph 
format introduced above, the schemas are traversed to 
determine all schema elements for which the match algo-
rithms calculate the similarity values. We represent 
schema elements by their paths, i.e. sequences of nodes 
following the containment links from the root to the cor-
responding nodes. Shared schema fragments or elements, 
such as Address in PO2, will result in multiple paths for 
which we can independently determine match candidates.  

COMA supports user interaction by a so-called User-
Feedback matcher to capture match and mismatch infor-
mation provided by the user including corrected match 
results from the previous match iteration. This matcher 
ensures that approved matches (and mismatches) are as-
signed the maximal (and minimal) similarity and that 
these values remain unaffected by the other matchers dur-
ing the matcher execution step. The user-provided simi-
larity values influence the similarity computations for the 

neighbourhood of the respective elements and can thus 
improve the match accuracy of structural matchers.  

A main step during a match iteration is the execution 
of multiple independent matchers chosen from the 
matcher library. The matchers currently supported fall 
into three classes: simple, hybrid and reuse-oriented 
matchers. They exploit different kinds of schema infor-
mation, such as names, data types, and structural proper-
ties, or auxiliary information, such as synonym tables and 
previous match results. Each matcher determines an in-
termediate match result consisting of a similarity value 
between 0 and 1 for each combination of S1 and S2 
schema elements. The result of the matcher execution 
phase with k matchers, m S1 elements and n S2 elements 
is a k x m x n cube of similarity values, which is stored in 
the repository for later combination and selection steps. 
 Table 1 shows a sample extract from the similarity cube 
for the purchase order schemas of  Figure 1. 
Matcher  PO1 Elements PO2 Elements Sim 

PO1.ShipTo.shipToCity 0.65 
PO1.ShipTo.shipToStreet 0.3 

Type-
Name 

PO1.Customer.custCity 

PO2.DeliverTo.Address.
City 

0.80 
PO1.ShipTo.shipToCity 0.78 
PO1.ShipTo.shipToStreet 0.73 

Name-
Path 
 PO1.Customer.custCity 

PO2.DeliverTo.Address.
City 

0.53 
Table 1. Similarity values computed for PO1 and PO2 
The final step in a match iteration is to derive the 

combined match result from the individual matcher results 
stored in the similarity cube. This is achieved in two sub-
steps: aggregation of matcher-specific results and selec-
tion of match candidates. First, for each combination of 
schema elements the matcher-specific similarity values 
are aggregated into a combined similarity value, e.g. by 
taking the average or maximum value.  Table 2 shows the 
result of this step for the example of  Table 1 using the 
average strategy. Second, we apply a selection strategy to 
choose the match candidates for a schema element, e.g. by 
selecting the elements of the other schema with the best 
similarity value exceeding a certain threshold. For the 
example in  Table 2 we could thus determine 

CREATE TABLE PO1.ShipTo (
poNo INT,
custNo INT REFERENCES PO1.Customer,
shipToStreet VARCHAR(200),
shipToCity VARCHAR(200),
shipToZip VARCHAR(20),
PRIMARY KEY (poNo)          ) ;

CREATE TABLE PO1.Customer (
custNo INT,
custName VARCHAR(200),
custStreet VARCHAR(200),
custCity VARCHAR(200),
custZip VARCHAR(20),
PRIMARY KEY (custNo)         ) ;

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name=“PO2" >

<xsd:sequence>
<xsd:element name=“DeliverTo" type="Address"/> 
<xsd:element name=“BillTo" type="Address"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Address" > 

<xsd:sequence>
<xsd:element name=“Street" type="xsd:string"/> 
<xsd:element name=“City" type="xsd:string"/> 
<xsd:element name=“Zip" type="xsd:decimal"/>

</xsd:sequence>
</xsd:complexType> 
</xsd:schema>

DeliverTo

Address

Street City Zip

BillTo

PO2
a) A relational schema and an XML schema

b) Their corresponding graph representation

Containment linkContainment link

Legends:

NodeNode

shipToCity

shipToStreet

ShipTo

shipToZip

custCity

custStreet

Customer

custZip

PO1

poNo custNo

custNamecustNo

 
Figure 1. External and internal schema representation 

PO1 elements PO2 elements  Combined sim 
PO1.ShipTo.shipToCity 0.72 
PO1.Customer.custCity 0.67 
PO1.ShipTo.shipToStreet 

PO2.DeliverTo.Address.
City 

0.52 

Table 2. Similarity values combined from  Table 1 



PO1.ShipTo.shipToCity as the match candidate of 
PO2.DeliverTo.Address.City. 

COMA supports the determination of undirectional or 
directional match results. In the former case, match can-
didates are determined for both input schemas. Moreover, 
an S1 element s1 is only accepted as a match candidate for 
an S2 element s2 if s2 is also a match candidate of s1. For 
instance, in the above example we would accept 
PO1.ShipTo.shipToCity as the match candidate of 
PO2.DeliverTo.Address.City only if there are no better 
PO2 match candidates for PO1.ShipTo.shipToCity than 
PO2.DeliverTo.Address.City. In the case of a directional 
match, the goal is to find all match candidates only with 
respect to one of the schemas, say S2. Hence, it is only 
tried to find match candidates for S2 elements while ac-
cepting that S1 elements remain unmatched. This ap-
proach has been followed by most previous studies and is 
motivated by the fact that many applications require such 
a directional match (e.g., to integrate a new data source 
with schema S1 into a data warehouse or mediator with 
global schema S2). If the target schema S2 is small com-
pared to S1 the match problem is substantially simplified. 

4 Matcher library 
 Table 3 gives an overview of the matchers we have 

implemented and tested so far. We characterize the kinds 
of schema and auxiliary information they exploit. In the 
following we first describe the simple matchers followed 
by the hybrid matchers. The more complex reuse-oriented 
matcher Schema is discussed in Section  5. 
4.1 Simple matchers 
Element names represent an important source for assess-
ing similarity between schema elements. This can be done 
syntactically by comparing the name strings or semanti-
cally by comparing their meanings. Approximate string 
matching techniques [ 10] have already been employed in 
other fields, such as record linkage [ 20] and data cleaning 
[ 19], to detect duplicate database records concerning the 
same real-word entity, i.e. matching at the instance level.  
In COMA, we have implemented four simple approxi-
mate string matchers: 
Affix: This matcher looks for common affixes, i.e. both 
prefixes and suffixes, between two name strings. 
n-gram: Strings are compared according to their set of n-
grams, i.e. sequences of n characters, leading to different 
variants of this matcher, e.g. Digram (2), Trigram (3).  

EditDistance: String similarity is computed from the 
number of edit operations necessary to transform one 
string to another one (the Levenshtein metric [ 10]). 
Soundex: This matcher computes the phonetic similarity 
between names from their corresponding soundex codes. 

Further simple matchers are UserFeedback (Section 3), 
a semantic matcher, Synonym, and a DataType matcher:   
Synonym: This matcher estimates the similarity between 
element names by looking up the terminological relation-
ships in a specified dictionary. Currently, it simply uses 
relationship-specific similarity values, e.g., 1.0 for a syn-
onymy and 0.8 for a hypernymy relationship. 
DataType: This matcher uses a synonym table specifying 
the degree of compatibility between a set of predefined 
generic data types, to which data types of schema ele-
ments are mapped in order to determine their similarity. 
Matcher Type Matcher Schema Info Auxiliary Info 

Affix Element names - 
n-gram Element names - 

Soundex Element names - 
EditDistance Element names - 

Synonym Element names Extern. dictionaries 
DataType Data types Data type compatibility 

table 

Simple 

UserFeedback - User-specified  
(mis-) matches 

Name Element names - 
NamePath Names+Paths - 
TypeName Data types+Names - 

Children Child elements - 

Hybrid 

Leaves Leaf elements - 
Reuse-oriented Schema - Existing schema-level 

match results 
Table 3. Implemented matchers in the matcher library 

4.2 Hybrid matchers 
The hybrid matchers use a fixed combination of simple 
matchers and other hybrid matchers to obtain more accu-
rate similarity values. The approach applied for combin-
ing the results of the constituent matchers follows the 
same principles used for combining the matcher results in 
the final phase of the match process (or iteration). The 
details of how matchers are combined within a hybrid 
matcher are explained in Section  6.  

We currently support two hybrid element-level match-
ers, Name and TypeName, and three hybrid structural 
matchers, NamePath, Children and Leaves. All approaches 
rely to different degrees on similarities derived from ele-
ment names for which combinations of the simple match-
ers discussed above can be utilized (e.g. Synonym, etc.).  
Name: This matcher only considers the element names 
but is a hybrid approach because it combines different 

Matcher
Library

Simple matchers:
•n-gram, Synonym, ...

Hybrid matchers: 
•NamePath, TypeName, ...

Reuse-oriented matchers:
•Schema, ...

Schema Import Match Iteration

Matcher 1

Matcher 2

Matcher 3
Schema S2

Schema S1

Combination
Strategies

Aggregation of matcher-specific results:
•Max, Average, Weighted, Min

Match direction:
•SmallLarge, LargeSmall, Both

Match candidate selection:
•Threshold, MaxN, MaxDelta

User Interaction 
(optional)

Matcher execution Combination of 
match results

Similarity cube

UserFeedback
S2→S1

S1→S2

S2→S1

S1→S2

Mapping

 
Figure 2. Match processing in COMA 



simple name matchers. It performs some pre-processing 
steps, in particular a tokenization to derive a set of com-
ponents (tokens) of a name, e.g. POShipTo → {PO, Ship, 
To}. Moreover it expands abbreviations and acronyms, 
e.g. PO → {Purchase, Order}. The Name matcher then 
applies multiple simple matchers, such as Affix, Trigram, 
and Synonym, on the token sets of the names and com-
bines the obtained similarity values for tokens to derive 
similarity values between element names (see Section  6). 
NamePath: This matcher matches elements based on 
their hierarchical names, i.e. both structural aspects and 
element names are considered. It first builds a long name 
by concatenating all names of the elements in a path to a 
single string. It then applies Name to compute the similar-
ity between these long names. Considering the complete 
name path of an element provides additional tokens for 
name matching which may improve match accuracy. For 
instance, this can be helpful to find match candidates at 
different schema levels, e.g. PurchaseOrder.ShipTo.Street 
and PurchaseOrder.shipToStreet. On the other hand, it is 
possible to distinguish between different contexts of the 
same element, e.g. ShipTo.Street and BillTo.Street.  
TypeName: This element matcher combines the DataType 
and Name matcher, i.e. it matches elements based on a 
combination of their name and data type similarity.  
Children: This structural matcher is used in combination 
with a leaf-level matcher. It determines the similarity be-
tween two inner elements based on the combined similar-
ity between their child elements, which in turn can be 
both inner and leaf elements. The similarity between the 
inner elements needs to be recursively computed from the 
similarity between their respective children. The similar-
ity between the leaf elements is obtained from the leaf-
level matcher, for which TypeName is used as the default.  
Leaves: This structural matcher is also used in combina-
tion with a leaf-level matcher, for which TypeName is set 
as the default. In contrast to the Children strategy, this 
matcher only considers the leaf elements to estimate the 
similarity between two inner elements. This strategy aims 
at more stable similarity in cases of structural conflicts. In 
 Figure 1, for example, elements shipToStreet, shipToCity, 
etc., are children of ShipTo in PO1, while in PO2, their 
matching elements are not children of DeliverTo, but of 
Address. Children will therefore only find a correspon-
dence between ShipTo and Address, while Leaves can also 
identify a correspondence between ShipTo and DeliverTo.  

5 Reuse of previous match results 
The consideration of reuse-oriented matchers is motivated 
by our expectation that many schemas to be matched are 
similar (or identical) to previously matched schemas. The 
use of auxiliary information such as synonym dictionar-
ies, thesauri, already represents such a reuse-oriented ap-
proach utilizing confirmed correspondences at the level of 
schema elements (names or data types). Our goal is to 
generalize this idea and reuse multiple match correspon-
dences at the same time at the levels of schema fragments 
or entire schemas.  

As a first step, we have implemented two simple re-
use-oriented matchers that can be invoked and combined 
like other matchers. One of them, Schema, tries to reuse 
match results for entire schemas, the other, Fragment, op-
erates on schema fragments. In both cases we use a spe-
cial compose operation, MatchCompose, to derive a new 
match result from existing ones. We first introduce 
MatchCompose. Due to lack of space, we then only de-
scribe Schema. 
5.1 The MatchCompose operation 
Given two match results, match1: S1↔S2 and match2: 
S2↔S3 sharing schema S2, MatchCompose derives a new 
match result, match: S1↔S3, between S1 and S3. The 
operation assumes a transitive nature of the similarity 
relation between elements, i.e. if a is similar to b and b to 
c, then a is (very likely) also similar to c. Of course wrong 
match candidates may be determined in cases where the 
transitivity property does not hold.  

In the context of information retrieval, transitive simi-
larity estimations have been applied to derive the similar-
ity of words based on terminological relationships, such 
as synonymy and hypernymy [ 4,  17]. A common ap-
proach to determine the transitive similarity is to multiply 
the individual similarity values [ 2]. This approach, how-
ever, may lead to rapidly degrading similarity values. For 
instance, for  

firstNameNamestNamecontactFir →←→← 7050 ..  

the similarity between contactFirstName and firstName 
would become 0.5*0.7=0.35, which is unlikely to reflect 
the similarity, which we would expect for the two names. 
We thus prefer the alternatives for combining the results 
of different matchers, such as Average (Section  6.1), for 
calculating transitive similarities, resulting in similarity 
value 0.6 in the last example.  

 Figure 3a and b illustrate the approach for the match 
PO1↔PO3 derived from composing the two match re-

sim13PO3PO1

1.0emailEmail
0.8firstNameName
0.8lastNameName

sim13PO3PO1

1.0emailEmail
0.8firstNameName
0.8lastNameName

sim23PO3PO2

1.0emaile-mail
0.6firstNamename
0.6lastNamename

sim23PO3PO2

1.0emaile-mail
0.6firstNamename
0.6lastNamename

sim12PO2PO1

1.0e-mailEmail
1.0nameName

sim12PO2PO1

1.0e-mailEmail
1.0nameName

Containment linkContainment linkLegends: Element corresondenceElement corresondence

PO1.Contact
Name

Email

lastName

firstName

company company

PO3.Contact

email

match

b) match=MatchCompose(match1, match2)a) match1: PO1↔PO2 and match2: PO2↔PO3

Name

Email

company

PO2.Contact

name

e-mail

PO3.Contact
lastName

firstName
email

match1 match2
PO1.Contact

match1

match2

match

company

ovals: Mappings

c) relational representation for MatchCompose

Average

 
Figure 3. MatchCompose example 



sults match1: PO1↔PO2 and match2: PO2↔PO3. To 
efficiently calculate the MatchCompose result, match, we 
use a relational representation for the input match results. 
 Figure 3c shows the tables representing match1, match2 
and match. In these tables each tuple specifies a 1:1 corre-
spondence between elements of the respective schemas 
together with their similarity. MatchCompose then corre-
sponds to the natural join between the two input tables.   

The example in  Figure 3 also shows that MachCompose 
and thus Schema may miss some correspondences, e.g. 
between company of PO1 and PO3, due to the absence of 
a match counterpart in PO2. Furthermore, MatchCompose 
may return undesirable correspondences when elements 
of the “intermediate” schema are related to several ele-
ments of the other schemas to be matched. In  Figure 4, the 
composition of two mappings returns all possible 
matches, i.e. ShipTo.Contact is matched to both De-
liverTo.Contact and InvoiceTo.Contact, while only the 
former match is likely to be correct. However, these nega-
tive effects can be limited, as shown in our evaluation in 
Section 7, by combining MatchCompose results with the 
results of other matchers. 
PO1.ShipTo.Contact

PO2.Contact
PO1.BillTo.Contact

PO3.DeliverTo.Contact

PO3.InvoiceTo.Contact
match1 match2  

Figure 4. MatchCompose with undesirable m:n matches 

5.2 The Schema reuse matcher  
 Figure 5 illustrates the schema-level reuse approach im-
plemented in the Schema matcher. All previous match 
results are maintained within the repository and can be 
exploited for reuse. Given two schemas S1 and S2 to 
match, Schema identifies all schemas S, i.e. Si, Sj, Sk, for 
which there is a pair of match results relating S with both 
S1 and S2 in any order. For each such pair MatchCompose 
is applied to produce a S1↔S2 match result. If there are 
multiple such results, they in turn can be combined using 
any strategy for aggregation (e.g., Average) and selection 
(Section  6), and the combined result is stored in the simi-
larity cube for further processing in the match process.  

S1 ↔ S2

S1↔ Si, S2 ↔ Si
Search
repository

Match-
Compose

Aggregation, 
Direction & Selection

Existing match results

S1 ↔ S2

Similarity cube

S1↔ Sj, Sj ↔ S2

Sk ↔ S1, S2 ↔ Sk
Match 
problem

Match 
result

 
Figure 5. Schema-level reuse in the Schema matcher 

Despite the high level of reuse in Schema (schema 
level), we believe that there is a high probability to find 
the necessary match result pairs for MatchCompose in an 
environment where many schemas are managed and 
matched to each other. Furthermore, schemas from the 
same application domain usually contain many similar 
elements, which are typical to this domain, so that their 
mappings can provide good reusable candidates. 

6 Combination of similarity values 
In this section we describe how similarity results from 
different matchers are combined in COMA to derive a 
combined match result. Such a combination of similarity 

values is used in two main cases: within the implementa-
tion of our hybrid matchers to combine the results of the 
constituent matchers and in the final step of a match proc-
ess (or iteration) to combine the results of independent 
matchers to obtain a complete match result. Both cases 
are implemented by a series of aggregation and selection 
operations on the similarity cube containing the similarity 
values calculated by a set of matchers M ( Figure 6). To 
determine the complete match result for two input sche-
mas two main steps are needed; step 3 is optional: 
•  Aggregation of matcher-specific results: In the first sub-

step, similarity values computed by multiple matchers 
are aggregated to a combined similarity value for each 
pair of schema elements. With m S1 elements and n S2 
elements we obtain an m x n matrix of combined simi-
larity values.  

•  Selection of match candidates: To determine the best 
match candidate(s), we rank the correspondences ac-
cording to their similarity values per schema element 
and apply a filter strategy to determine the most plausi-
ble ones. The result of this step is a combined match re-
sult with 0, 1 or more match candidates per schema 
element. In the case of an undirectional match, the 
match candidates for both schemas are determined. 

•  Computation of combined similarity: The match result 
from the previous step can be aggregated into a single 
similarity value for the two schemas, called schema 
similarity.  It depends on the chosen matchers and their 
combination strategy.  
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Figure 6. Combination of match results 

These three steps are also needed for hybrid matchers 
to combine the similarity values for its constituent match-
ers. However, in this case these steps are not applied to 
similarity values of schema elements but to similarity 
values for the components of schema elements. For in-
stance, a name matcher determines the similarity of names 
from the similarities of the name tokens, and a structural 
matcher can derive the similarity of inner nodes from the 
similarity values of their children or leaves. As a result, 
the sets S1 and S2 in  Figure 6 for which similarity values 
are processed now refer to these components of schema 
objects. For hybrid matchers, these similarity values of 
the components can be determined by different matchers 
resulting in a similarity cube which has to be aggregated. 
Now, the third step is no longer optional but required to 
derive a single similarity value, the element similarity, for 
a pair of schema objects (names, inner nodes) by combin-
ing the similarity values of the match candidates deter-
mined in step 2.  

To sum up, we use steps 1 and 2 for combining simi-
larity values to obtain the complete match result. For hy-
brid matchers we need the additional step 3. In the follow-
ing we present the approaches for these steps that COMA 



currently supports; additional approaches can easily be 
added. We finally discuss the default combinations used 
for the various hybrid matchers. 
6.1 Aggregation of matcher-specific results 
One of the following strategies can be used to aggregate 
matcher-specific similarity values for every element pair:  
1. Max: This strategy returns the maximal similarity 

value of any matcher. It is optimistic, in particular in 
case of contradicting similarity values. Furthermore, 
matchers can maximally complement each other. 

2. Weighted: This strategy determines a weighted sum 
of similarity values of the individual matchers and 
needs relative weights which should correspond to the 
expected importance of the matchers. 

3. Average: This strategy represents a special case of 
Weighted and returns the average similarity over all 
matchers, i.e. considers them equally important. 

4. Min: This strategy chooses the lowest similarity value 
of any matcher. As opposed to Max, it is pessimistic. 

6.2 Direction and selection of match candidates 
As discussed in Section  3, COMA supports determination 
of directional or undirectional match results. Given two 
schemas S1 and S2 with |S2|≤|S1|, match candidate selec-
tion can be performed in the following directions: 
1. LargeSmall: In this directional approach, we match 

the larger schema S1 against the smaller target S2, i.e. 
elements from S1 are ranked and selected with respect 
to each S2 element. 

2. SmallLarge: As opposed to LargeSmall, match candi-
date selection is performed based on ranking S2 ele-
ments for each S1 element. 

3. Both: This strategy considers the results from both 
match directions, LargeSmall and SmallLarge. Further-
more, an S1 and an S2 element are only accepted as a 
matching pair if it is identified as such in both direc-
tions. 
To determine the match candidates from S1 for an 

element s2 in S2 we use the similarity matrix to rank the 
S1 correspondences in descending order of their similarity 
value. For selecting the match candidates one of the 
following strategies can be used:  
1. MaxN: The n S1 elements with maximal similarity are 

selected as match candidates. n=1, i.e. Max1, repre-
sents the natural choice for 1:1 correspondences. Gen-
erally, n>1 is useful in interactive mode to allow the 
user to select among several match candidates.  

2. MaxDelta: The S1 element with maximal similarity is 
determined as match candidate plus all S1 elements 
with a similarity differing at most by a tolerance value 
d, which can be specified either as an absolute or rela-
tive value. The idea is to return multiple match candi-
dates when there are several S1 elements with the 
same or almost the same similarity value.  

3. Threshold: All S1 elements showing a similarity 
exceeding a given threshold value t are selected.  
A single approach may return imprecise match candi-

dates. While Threshold may return too many match candi-
dates, MaxN and MaxDelta may return match candidates 
with too little similarity. Thus, we support considering 
several criteria at the same time, in particular MaxN or 
MaxDelta in combination with a low threshold, e.g. 0.5.  

6.3 Computation of combined similarity 
As discussed above, hybrid matchers require an additional 
step to obtain a combined similarity value for sets of ele-
ment components. For this purpose we support two strate-
gies, namely Average and Dice. They work on the output of 
step 2 consisting of a list of match candidates for sets S1 
and S2. Assuming at most one match candidate per S1 and 
S2 element we determine the combined similarity as fol-
lows:   
1. Average: The average similarity is determined by 

dividing the sum of the similarity values of all match 
candidates of both sets S1 and S2 by the total number 
of set elements, |S1|+|S2|. 

2. Dice: This strategy is based on the Dice coefficient [ 6] 
and returns the ratio of the number of elements which 
can be matched over the total number of set elements.  
 Figure 7 illustrates the two approaches. Unlike Aver-

age, the individual similarity values in Dice do not influ-
ence the overall similarity of the sets. Hence, Dice returns 
a higher similarity value than Average and thus is more 
optimistic. Average and Dice can also be applied to manu-
ally derived match results to compute the similarity be-
tween two schemas. With all element similarities set to 
1.0, both strategies will return the same schema similarity. 
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Figure 7. Examples for computing combined similarity 

6.4 Construction of hybrid matchers 
To determine the combination strategy for a hybrid 
matcher, a tuple of 4 sub-strategies is to be specified, e.g. 
(Max, Both, Max1, Average), one for each step in our com-
bination scheme.  Table 4 shows the default constituent 
matchers and combination strategies used in our hybrid 
matchers to compute similarity values for single pairs of 
schema elements. While the Name matcher covers all 
three steps, other approaches either require only the first 
step (TypeName) or the last two steps (Children, Leaves). 
Note that any strategy specified for computing combined 
similarity will presuppose Both as direction strategy in 
step 2. 

Default combination strategy Hybrid 
matcher 

Default 
matchers (1) Aggreg.  (2) Direct. & Select.  (3) Comb. sim 

Name Trigram, 
Synonym 

Max Both, Max1 Average 

TypeName DataType, 
Name 

Weighted
 (0.3, 0.7) 

- - 

Children TypeName - Both, Max1 Average 
Leaves TypeName - Both, Max1 Average 

Table 4. Construction of hybrid matchers 
Name computes element similarities by combining the 

similarity values for the names’ token sets. Token simi-
larities are determined using multiple simple matchers, 
such as Trigram and Synonym. In step 1, we use Max for 



aggregating the matcher-specific similarity values from 
the cube, motivated by the fact that tokens are typically 
similar according to only some simple matchers. For ex-
ample, string matchers such as Trigram find no similarity 
for Ship and Deliver, while a semantic matcher such as 
Synonym can detect the synonymy and assign a high simi-
larity value. In step 2, we consider both directions and 
apply Max1 to the similarity matrix to obtain two sets of 
directional token correspondences. Finally, in step 3, the 
name similarity between the token sets is then computed 
using the Average strategy. 

TypeName combines DataType and Name, each of 
which produces a single similarity value for a pair of 
schema elements. For step 1, we use the Weighted strategy. 
Steps 2 and 3 are not needed because we already have a 
single similarity value after step 1. The default weights of 
the name and data type similarity, 0.7 and 0.3, respec-
tively, permit to match attributes with similar names but 
different data types. When several attributes exhibit about 
the same name similarity, candidates with higher data 
type compatibility are preferred. 

In Children and Leaves we compare two sets of ele-
ments, which are either the children or leaves of two inner 
elements. Thus steps 2 and 3 are necessary. Because only 
one matcher is used for determining the leaf similarities, 
we do not need step 1 but directly obtain the similarity 
matrix from the results of the single leaf matcher. 

7 Evaluation on real world schemas 
We performed a comprehensive evaluation of the match 
processing strategies supported by COMA on several 
complex real world schemas. The main goal was to 
investigate the impact of different combination strategies, 
i.e. aggregation, direction, selection, computation of com-
bined similarity, on match quality, and to compare the 
effectiveness of different matchers, i.e. single matchers 
and their combinations, with and without reuse. We first 
describe the design and methodology of our evaluation. 
We then present the results for the combination strategies, 
the single matchers and matcher combinations, and the 
match sensitivity in different match tasks. 
7.1 Experimental design 
For our evaluation we used 5 XML schemas for purchase 
orders, CIDX, Excel, Noris, Paragon, and Apertum, taken 
from www.biztalk.org. For short, we refer to them as 1, 2, 
etc., respectively. Table 5 summarizes the characteristics 
about the test schemas. Except for schema 1, the number 
of paths is different from the number of nodes, indicating 
the use of shared fragments in the schemas. Previous 
match studies mostly used smaller schemas [ 9,  13]. The 
size of schemas can impact match accuracy because it 
determines the search space for match candidates. 

Schemas 1 2 3 4 5 
Max depth  4 4 4 6 5 
#Nodes / paths 40 / 40 35 / 54 46 / 65 74 / 80 80 / 145 
#Inner nodes / paths 7 / 7 9 / 12 8 / 11 11 / 12 23 / 29 
#Leaf nodes / paths 33 / 33 26 / 42 38 / 54 63 / 68 57 / 116 

Table 5. Characteristics of test schemas  

We defined 10 match tasks, each matching two differ-
ent schemas. To provide a basis for evaluating the quality 
of different automatic match strategies we first manually 
performed the match tasks.  Figure 8 gives an impression 
about the problem size in each match task. #Matches indi-
cates the number of correspondences to be identified. The 
similarity between the schemas (Schema Similarity) is 
computed using the Dice strategy (Section  6.3) as the ratio 
between #Matched Paths and #All Paths.1 This similarity 
is mostly around 0.5, showing that the schemas are much 
different even though they are from the same domain.  
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Figure 8. Problem size in schema matching tasks 

Measures for match quality: To evaluate the quality of 
our match operations, we compare the manually deter-
mined real matches (R) for a match task with the matches 
P returned by automatic match processing. We determine 
the true positives, i.e. correctly identified matches, I, as 
well as the false positives, i.e. false matches, F=P\I, and 
the false negatives, i.e. missed matches, M=R\I. Based on 
the cardinalities of these sets, the following quality meas-
ures are computed:  

•  
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sents a combined measure for match quality [ 13], taking 
into account the post-match effort needed for both re-
moving false and adding missed matches.  

Precision and Recall originate from the information 
retrieval field and have also been used in other match 
studies [ 11,  1]2. Note that neither Precision nor Recall 
alone can accurately assess the match quality. Recall can 
easily be maximized at the expense of a poor Precision by 
returning all possible correspondences, i.e. the cross 
product of two input schemas. Similarly, a high Precision 
can be achieved at the expense of a poor Recall by return-
ing only few (correct) correspondences. On the other side, 
Overall proportionally depends on both Recall and Preci-
sion and thus represents a single metric suitable for com-
paring match quality. Unlike Precision and Recall, Over-

                                                           
1 In our manually derived match results, all element similarities are set to 
1.0 so that Average and Dice yield the same schema similarity 
2 In [ 1] they are called soundness and completeness, respectively 



all can have negative values if the number of the false 
positives exceeds the number of the true positives, i.e. 
Precision<0.5. In this case, the post-match effort can be 
regarded as higher than the gain from the automatic match 
operation, which is then rather useless. In the ideal case, 
when all and only the real matches are returned, i.e. 
I=P=R, F=M=∅ , the measures reach their highest values 
Precision=Recall=Overall=1. In all other cases, Overall is 
smaller than both Precision and Recall making it difficult 
to achieve higher values than, say, 0.5.  
Experiment methodology and execution: To determine 
the effectiveness of the match operations we used COMA 
only in automatic mode in this study, i.e. we did not con-
sider possible improvements by user feedback and itera-
tive refinements of the generated match result.  

Matchers Aggregat. Direction Selection CombSim 
5 single   No 

reuse 11 combi-
nations 

-Max 
-Average 
-Min 

-Average 
-Dice 

2 single   Reuse 

12 combi-
nations 

-Max 
-Average 
-Min 

-LargeSmall 
-SmallLarge 
-Both 

-MaxN(1-4) 
-Delta(0.01-0.1) 
-Thr(0.3-1.0) 
-Thr(0.5)+ 
    MaxN(1-4) 
-Thr(0.5)+ 
    Delta(0.01-0.1) -Average 

 

Σ =  16 + 14 3 3 36 2 
Table 6. Tested matchers and combination strategies 

We performed a systematic evaluation for all relevant 
matchers and combination strategies (see  Table 6). Our 
evaluation encompassed a number of series, in each of 
which we applied a different choice of matchers and com-
bination strategies. Altogether, we conducted 12,312 se-
ries. Each series in turn consisted of 10 experiments deal-
ing with the (10) predefined match tasks. The quality 
measures were first determined for single experiments and 
then averaged over all experiments in each series (hereaf-
ter average Precision, etc.).  

Due to their limited focus, the simple matchers alone 
do not perform well on real world schemas. Therefore, we 
only tested the more powerful hybrid matchers and their 
combinations. Each matcher was tested with all possible 
combinations of the strategies for aggregation, direction, 
selection, and computation of combined similarity, 
whereby the different strategies for aggregation and for 
computation of combined similarity are not relevant for 
the single matchers and the single reuse matchers, respec-
tively. The Weighted aggregation strategy was not consid-
ered because we did not want to make any assumption 
about the importance of the individual matchers. For each 
selection strategy, we chose a generous parameter range, 
in which the best result is to be expected. In particular, we 
tested MaxN with up to 4 candidates, MaxDelta (or short 
Delta) with relative deltas between 0.01 and 0.1 (i.e., 1-
10%), Threshold (or short Thr) with threshold values be-
tween 0.3 and 1.0. Furthermore, we tested the combina-
tions of MaxN and MaxDelta, respectively, with Threshold 
using a low threshold of 0.5. 

For semantic name matching in the Synonym matcher, 
we constructed a synonym file with some trivial abbrevia-
tions, such as, No, Num, and domain-specific synonyms, 

such as (ship, deliver), (bill, invoice). This auxiliary in-
formation was used uniformly in all experiments. 
7.2 Combination strategies 
We first performed series with the 16 no-reuse matchers: 
the 5 single hybrid matchers, all their pair-wise combina-
tions, and the combination of all 5 hybrid matchers (here-
after All). In the no-reuse case the best average Overall 
obtained for the 10 match tasks is 0.73, and the worst is 
-88.0, i.e. Precision is almost 0 and Recall almost 1. 
 Figure 9 shows the distribution of the series with respect 
to different Overall ranges. The x-axis covers the entire 
value range of Overall. The distribution of the series with 
average Overall>0 is shown in successive ranges 0.0-0.1, 
..., 0.7-0.8, while the series with average Overall<0 are 
aggregated in one single range Min-0.0. Most series have 
negative average Overall, indicating poor matchers and/or 
combination strategies. Only 3 series yield average Over-
all in the range of 0.7-0.8. 
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Figure 9. Distribution of series in different Overall ranges 

   In order to identify the best matchers and combination 
strategies, we concentrate on the best series having aver-
age Overall>0.  Figure 10 shows the share of the series 
belonging to single strategies of aggregation, direction 
and selection, respectively, with respect to all series en-
countered in each Overall range. Note that in each dia-
gram, the number of the series belonging to the single 
strategies stays equal due to the exhaustive evaluation. 
For example in  Figure 10a, over the entire x-axis, we have 
#Max series = #Min series = #Average series = 2376 despite 
their unproportional appearance. Hence, the distribution 
of the series indicates the quality of the respective strat-
egy: a strategy of high quality should show a high pres-
ence in higher Overall ranges. We now discuss the quality 
of the single combination strategies. 
•  Aggregation: Max is only represented in Overall ranges 

below 0.1. This is because of, first, its optimistic nature, 
and second, the inaccuracy of several hybrid matchers 
(Section  7.3). In such cases, the pessimistic Min and 
compensating strategy Average are more stable. In par-
ticular, series with Min and Average are equally repre-
sented in the Overall range 0.0-0.6; however only Aver-
age yields greater average Overall. Thus, while Max is 
only suitable for combining accurate matchers, Min and 
Average are also able to cope with inaccurate ones. 

•  Direction: SmallLarge is only represented in Overall 
ranges below 0.3, while LargeSmall can reach average 
Overall of up to 0.6. This shows the impact of the dif-
ferent size between the source and the target schema on 
the quality of directional matching. SmallLarge tries to 
find match candidates for the larger target schema from 
the smaller source schema, resulting in a larger match 



result apparently with a greater inaccuracy than for Lar-
geSmall. On the other side, Both can produce much better 
results than both LargeSmall and SmallLarge and is less 
dependent on the size of the input schemas.  

•  Selection: From the many selection strategies tested, we 
first determined the most effective parameter settings 
for each approach.  Figure 10c shows the share of series 
for these best selection strategies. Surprisingly, the 
Threshold approach, which is often used in previous 
work, shows the worst result. The average Overall val-
ues for its best variant Threshold(0.8) are always below 
0.3. MaxN(1) and Threshold(0.5)+MaxN(1) can produce 
average Overall of up to 0.7. Most successful are 
Delta(0.02) and Threshold(0.5)+Delta(0.02) with average 
Overall beyond 0.7.  

•  Computation of combined similarity:3 We observe in 
general some degradation of match quality using Dice, 
compared to Average, for computing combined similar-
ity in the hybrid matchers. The best average Overall of 
Dice and Average is 0.67 and 0.73, respectively.  

The results show that in the no-reuse cases the best 
single strategies for aggregation, direction, selection and 
computation of combined similarity are Average, Both, 
Threshold(0.5)+Delta(0.02) or Delta(0.02), and Average, 
respectively. To verify whether the combined use of these 
strategies can also yield the best match results we identify 
the best series for the matcher combinations (10 pair-wise 
plus All) and examine their combination strategies used. 
Among these 11 combinations, 3 do not produce any posi-
tive average Overall and are ignored. We observe that 
•  all 8 remaining combinations achieve their best result 

with Average for aggregation and Both for direction  
•  all 8 employ a combined selection strategy of Thresh-

old(0.5) and a Delta strategy: 4 use Delta(0.02) and 4 re-
maining utilize different delta values (0.03 and 0.04)  

•  7 use Average for computing combined similarity 
Thus we choose (Average, Both, Thresh-

old(0.5)+Delta(0.02)) as the default combination strategies, 
while Average is set as the default strategy for computing 
combined similarity in the hybrid matchers. Using these 
default strategies, All (among 8 above) achieves the high-
est average Overall, 0.73, in the no-reuse test and thus is 
chosen as the default matcher combination. 
7.3 Single matchers and matcher combinations  
For all match tasks, we used the default match operation 
to automatically derive the corresponding match results, 
which were stored in the repository in addition to the 
manually derived match results. We then performed fur-

                                                           
3 Due to lack of space, we do not present a figure for this comparison.  

ther series for 14 reuse strategies: two variants of the 
Schema matcher called SchemaM and SchemaA, their pair-
wise combinations with the 5 single hybrid matchers, and 
their combination with all hybrid matchers (hereafter 
named All+Schema). While SchemaM reuses the manually 
determined match results of different match tasks, Sche-
maA is based on the reuse of the automatically derived 
match results of the default match operation. Considering 
these two cases illustrates the improvements possible by 
reusing manually confirmed match results over uncon-
firmed results. For every match task, say 1↔3, SchemaM 
and SchemaA apply MatchCompose to 3 pairs of match 
results from other match tasks, namely (1↔2, 2↔3), 
(1↔4, 3↔4), and (1↔5, 3↔5). 

-0,3
-0,2
-0,1

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Nam
ePath

Typ
eNam

e

Lea
ve

s

Chil
dr

en
Nam

e

Sch
em

aM

Sch
em

aA

avg Precis ion avg Recall avg Overall

No reuse Reuse 

 
Figure 11. Quality of single matchers 

 Figure 11 shows the quality of the single matchers, distin-
guished between the no-reuse and reuse-oriented ones and 
sorted on their average Overall. We make the following 
observations about the quality of the hybrid matchers:  
•  As expected, redundancy in schemas, i.e. shared ele-

ments, causes instability of some matchers, such as 
Name, TypeName, Children, Leaves. These matchers are 
not able to distinguish between different element con-
texts, resulting in a high number of false positives in 
several match tasks (negative values of Overall). 

•  NamePath shows a better quality than Name and is 
among the no-reuse matchers the best one in terms of 
Precision and Overall. Using hierarchical names repre-
sents an effective method for distinguishing between 
different contexts of a shared element. However, it is 
also more restrictive in predicting match candidates than 
considering single element names. Usually, NamePath 
results in lower Recall but higher Precision than Name. 

•  TypeName shows a slightly better quality than Name, 
indicating that incorporating data type information can 
be valuable. For the considered PO schemas the im-
provements are small because most leaf elements in our 
test schemas are either of type String or Number.   

•  TypeName, Leaves and Children show approximately the 
same Recall, because first, both Leaves and Children use 
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Figure 10. Distribution of series with respect to combination strategies 



TypeName as the leaf matcher, and second the number of 
inner element matches is much lower than that of leaf 
matches. Leaves yields a slightly better quality than Chil-
dren for the PO schemas.  

The Schema reuse matchers show the best quality 
among the single matchers. While the best no-reuse 
matcher, NamePath, achieved an average Overall of only 
0.45, SchemaA and SchemaM achieved significantly better 
average Overall values of 0.62 and 0.73, respectively. 
This is because both the automatically and manually de-
rived match results have provided many candidates for 
reuse. As expected, the manually derived match results 
allow for a substantial improvement over the reuse of 
automatically determined match results. Compared to the 
no-reuse schemes, SchemaA and SchemaM achieve only 
slightly better Recall but significantly better average Pre-
cision of 0.85 and 0.88, respectively. This shows that the 
problem of false n:m matches has been compensated to a 
great extent by combining multiple MatchCompose results.  

We now discuss the quality of different matcher com-
binations considering both no-reuse and reuse matchers. 
When evaluating the combination of the reuse schemes 
with other matchers, we noted that the above identified 
strategies that worked best for combining no-reuse match-
ers were also effective for SchemaA but not so much for 
SchemaM. Instead, SchemaM combinations mostly achieve 
their best quality with combination strategies (Min, Lar-
geSmall, Delta(0.1), Average). This apparently traces back 
to the fact that the similarity is uniformly set to 1.0 for all 
element correspondences in the manually derived match 
results. We will conduct further research in order to un-
derstand this behavior in more detail.  

 Figure 12 shows the quality of the best matcher com-
binations sorted on their average Overall. Due to lack of 
space we only present the results for SchemaM for the re-
use combinations. We observe that the matcher combina-
tions in general allow much better match quality than the 
single hybrid matchers. The best no-reuse combination, 
All, achieves average Overall of 0.73,  the best reuse com-
bination, All+SchemaM, reaches the best average Overall 
observed in our entire evaluation, 0.82. This is because 
the combined matchers inherit the high stability of Name-
Path and SchemaM, while eliminating many false matches 
of Name, TypeName, Leaves, or Children. 
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Figure 12. Quality of best matcher combinations  

Among the no-reuse combinations, All performs best 
because many aspects are examined at the same time to 

contribute to the overall similarity between elements. 
NamePath+Leaves also represents an effective no-reuse 
combination with an improvement of 20% and 80% of 
average Overall compared to NamePath and Leaves, re-
spectively. The combined scheme exploits three kinds of 
schema information, element names, data types, and 
structural information, in an intelligent way: examining 
paths to identify the context of shared elements while 
considering leaves to cope with structural conflicts. Be-
cause of the restrictiveness of NamePath in match predic-
tion, its combinations achieve very high Precision. Com-
binations with Leaves yield better quality that those with 
Children. 

The reuse combinations are always better than the no-
reuse combinations. They exhibit only small differences 
in match quality with very high average Precision (>0.90). 
Their maximal average Recall observed is 0.89, indicating 
that previous match results cannot always provide all re-
use candidates required for a new match task. 
7.4 Match sensitivity 

Besides the matchers and combination strategies, ex-
ternal factors, such as schema characteristics, can also 
impact match quality.  Figure 13 shows the relationship 
between schema size, schema similarity and the best 
Overall achieved using any no-reuse and (manual) reuse 
strategy for each match task. Again, the reuse approaches 
clearly outperform the no-reuse approaches. However, we 
observe that, regardless of the match strategy used, match 
quality usually degrades with an increase of schema size. 
Several reuse strategies achieve optimal or close to opti-
mal Overall values in the smaller match tasks but are lim-
ited to an Overall value of 0.7 for the larger problems. 
Intuitively, a match task of the same size becomes 
“harder”, if the schema similarity drops. For example, 
quality of automatic matching degrades substantially from 
task 3↔5 to 4↔5, and from 2↔4 to 3↔4 due to, on the 
on side, increase of schema size, and on the other side, 
decrease of schema similarity. 
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Figure 13. Impact of schema characteristics on match quality  

To analyze the stability of the matchers across the 
match tasks, we identify for each match task the hybrid 
matcher(s) / combination(s) producing the match result 
with those maximal Overall values. This is done for reuse 
and no-reuse strategies, respectively. We observe that All 
and All+Schema outperform all hybrid matchers and other 
combinations and yield the best Overall for 5 and 6, re-
spectively, out of 10 match tasks, while showing some 
minor degradation of at most 10% in the remaining tasks. 



Compared to other matchers, All and All+Schema show 
thus the highest stability across our match tasks. 
7.5 Evaluation conclusions 
We have systematically investigated and compared the 
effectiveness of different matchers and combination 
strategies. We were able to determine a very effective 
default combination strategy for aggregating matcher-
specific results and selecting match candidates. Average 
proved to be the aggregation method of choice as it could 
best compensate shortcomings of individual matchers. 
Our undirectional match approach Both supports very 
good precision and thus produced usually better match 
results than directional approaches. Most accurate match 
predictions can be achieved by selecting match candidates 
showing the (approximately) highest similarity exceeding 
a minimal threshold.  

We observe that the composite approaches are very ef-
fective. Although single matchers may be imprecise, their 
combination can effectively improve the match quality. In 
contrast to single matchers, matcher combinations simul-
taneously analyze schema elements under different as-
pects, resulting in more stable and accurate similarity for 
heterogeneous schemas. The stable behavior of the default 
combination strategy indicates that it can be used for 
many match tasks thereby limiting the tuning effort.  

Despite its simplicity the reuse approach proved to be 
very successful. The Schema approaches achieve the best 
quality among the single matchers, showing that the map-
pings between schemas from the same application domain 
can provide good candidates for reuse. Furthermore, the 
reuse-oriented matcher combinations are the best strate-
gies in our entire evaluation and improved the match qual-
ity by more than 10% over the best no-reuse approaches.  

The best matchers achieve average Precision of 95%, 
Recall of 80%, and Overall of 70% or better, representing 
a substantial saving in manual matching effort. For small 
match tasks, Overall values of close to 1.0 are achieved 
but for larger match problems, Overall was limited to 
about 0.6 – 0.7. While this was influenced by a moderate 
degree of schema similarity, we see potential for im-
provement by adding further matchers, e.g. those exploit-
ing instance-level data and reusing large-scale dictionaries 
and standard ontologies. We also want to experiment with 
more comprehensive strategies for match candidate selec-
tion, such as the stable marriage approach [ 13].  

8 Summary and future work 
In this paper, we presented the generic schema match sys-
tem COMA, which provides an extensible library of sim-
ple and hybrid match algorithms and supports a powerful 
framework for combining match results. The user can 
tailor match strategies by selecting the matchers and their 
combination for a given match problem. Hybrid matchers 
can also be configured easily by combining existing 
matchers using the provided combination strategies. We 
have developed a novel matcher based on a special com-
pose operation for reusing previous match results. For a 

flexible combination of independent matchers we store all 
similarity values determined by matchers within similarity 
cubes of a DBMS-based repository. COMA can be used 
in automatic mode or interactively in order to provide user 
feedback and to continuously improve the match result.  

We used COMA to systematically evaluate different 
aspects of match processing, i.e. aggregation of matcher-
specific results, match direction, match candidate selec-
tion, and computation of combined similarity, and differ-
ent matcher usages, i.e. single matchers vs. matcher com-
binations, no-reuse vs. reuse approaches. We believe that 
our evaluation insights can be of valuable help for the 
development and evaluation of further match algorithms. 

In future work, we plan to add other match and com-
bination algorithms in order to improve match quality. 
Furthermore, we will apply COMA to additional schema 
types and applications, such as in the bioinformatics do-
main. 
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