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Abstract

Queries on XML documents typically combine
selections on element contents, and, via path
expressions, the structural relationships be-
tween tagged elements. Structural joins are
used to find all pairs of elements satisfying the
primitive structural relationships specified in
the query, namely, parent—child and ancestor—
descendant relationships. Efficient support for
structural joins is thus the key to efficient
implementations of XML queries. Recently
proposed node numbering schemes enable the
capturing of the XML document structure us-
ing traditional indices (such as B-+-trees or
R-trees). This paper proposes efficient struc-
tural join algorithms in the presence of tag
indices. We first concentrate on using B+-
trees and show how to expedite a structural
join by avoiding collections of elements that
do not participate in the join. We then intro-
duce an enhancement (based on sibling point-
ers) that further improves performance. Such
sibling pointers are easily implemented and
dynamically maintainable. We also present a
structural join algorithm that utilizes R-trees.
An extensive experimental comparison shows
that the B+-tree structural joins are more ro-
bust. Furthermore, they provide drastic im-
provement gains over the current state of the
art.
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1 Introduction

The problem of managing and querying XML doc-
uments efficiently poses interesting challenges for
database researchers. XML documents can have a
rather complex internal structure; in fact, an XML
document can be viewed as an ordered tree. Tree
nodes correspond to document elements (or attributes)
while edges represent direct element-subelement rela-
tionships. This tree-centric representation is appar-
ent in XML languages like Quilt [8], XQuery [39] and
XPath [38], which qualify documents for retrieval both
by their structure and the values in their elements.
For instance, a value-based selection for a document
can be specified by conditions on its elements’ names
(tags), their attributes, and the text strings (i.e., PC-
DATA) contained in such elements. A structure-based
selection instead relies on the structural relationships,
namely: parent-child and ancestor-descendant rela-
tionships. For example, the query:

section[title=“Overview”]//figure[caption=“R-tree”]

finds all figures with caption ‘R-tree’ under sections
whose title is “Overview”. This complex query con-
sists of three conditions:

e the conditions section[title=“Overview”] and
figure[caption=“R-tree”] are value-based since
they select document elements using their values
or contents, while

e the double slash in section//figure corre-
sponds to a structural condition, in particular, an
ancestor-descendant relationship. It is a short-
hand for a path expression specifying that there
must be a path leading from the first element to
the second one (i.e., the second element must be
a descendant of the first in the document tree).

Using path expressions, users are allowed to navigate
through arbitrary long paths in the tree. A single slash
in the query (section/figure), would find only those
figures that are children of section elements (i.e., a
parent-child relationship).



Traditional indexing schemes, such as B+-trees, can
be easily extended to support value based queries on
XML documents. Path expression queries pose a much
harder problem, requiring the computation of struc-
tural joins [1, 24]. Previously proposed structural join
algorithms assume that the ancestor and the descen-
dant elements are provided before the join in two or-
dered lists [1, 24]. However, that implies that all ances-
tor and descendant elements are accessed either from
indices or even from physical data pages before the
join. That may cause unnecessary I/O and slow down
the join process. Instead we assume that an index
exists in each of the joined lists. Typically, list ele-
ments belong to the same document tag (sections, fig-
ures, chapters, etc.) and tag indices are easily main-
tained [11]. Moreover, such indices can resolve ele-
ment relationships by utilizing recently proposed num-
bering schemes that capture the document structure
[24, 1, 11].

This paper proposes efficient structural join algo-
rithms in the presence of tag indices. First we concen-
trate on using B+-trees (with numbering schemes) and
show how to take advantage of the available structural
information before joining, to filter out and minimize
unnecessary data reads. We then introduce a simple
enhancement that further improves performance by
adding sibling pointers based on the notion of “con-
tainment”. Such pointers are easily implemented and
can be maintained dynamically. We also present a
structural join algorithm that utilizes R-trees. An ex-
tensive experimental comparison shows that the B+-
tree structural join enhanced with few sibling pointers
provides the most robust solution. Furthermore, this
approach can provide drastic improvement gains over
the current state of the art.

The main contributions of this paper are summa-
rized below:

e An efficient B+-tree based structural join algo-
rithm is presented;

e The utilization of sibling pointers is introduced
for further performance gains;

e An extensive experimental section is provided,
comparing the above algorithms with R-tree
based structural joins as well as non-index based
joins.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 proposes the
B+-tree based structural join algorithms, while section
4 discusses the R-tree based structural join. Problem
variations are examined in Section 5 while Section 6
presents performance results and Section 7 concludes
the paper.

2 Background and Previous Work

To efficiently address complex XML queries, it is im-
portant to: (i) quickly determine the structural rela-
tionship among any pair of tree nodes, (ii) efficiently
find all occurrences of a structural relationship. We
first provide background information on the impor-
tance of numbering schemes in determining structural
relationships. We then discuss previous work on struc-
tural joins and indexing for XML documents.

Numbering Schemes. To locate all figures un-
der a given section, the obvious but inefficient way is
to traverse the whole subtree of the section (i.e., a
top-down approach). Structural relationships can de-
termined faster if a numbering scheme is embedded on
the document’s tree. One approach is to assign to each
tree node three numbers, namely: the node’s preorder
and postorder ranks as well as its level in the XML tree
[13, 40, 24, 1, 19]. In a preorder (postorder) traversal,
a tree node is visited and assigned its preorder (pos-
torder) rank before (after) its children are recursively
traversed from left to right. The preorder traversal of
a document’s tree representation is equivalent to its
textual order. If the document’s textual representa-
tion is read sequentially, elements will be accessed in
their preorder rank. Conversely, the document text
can be recreated following a preorder traversal on its
tree representation.

A node v is an ancestor of a node u iff preorder(v) <
preorder(u) and postorder(v) > postorder(u). If the
(preorder, postorder) ranks are seen as an interval
(clearly: preorder(v) < postorder(v)), then the an-
cestor contains the interval of the descendant. In the
textual representation, the opening tag (v) is before
(u) while the closing tag (/v) is after (/u). Further-
more, node v is a parent of node u if in addition
level(v) + 1 = level (u).

While easily computed, the above numbering
scheme is affected by document updates; node ranks
change when inserting or deleting a node. A durable
numbering scheme was recently proposed in [24]. In
this scheme, each node is assigned a (start, end) inter-
val (where end > start) such that: (i) for any node u
and its parent node v, the interval (start(u),end(u))
is contained in interval (start(v),end(v)); (ii) for two
sibling nodes u, v, if u is the predecessor of v in pre-
order traversal, then end(u) < start(v). The start
numbers follow the pre-order traversal, but ranges of
unused numbers are left between subsequent nodes to
make room for future insertions. Node v is an ancestor
of a node u iff start(v) < start(u) < end(v).

Figure 1 shows a sample XML document with its
durable intervals (for simplicity, the tree level num-
bers are not shown). The root node is assigned in-
terval [1,2100], while its three children nodes have in-
tervals [10,600], [710,1200], and [1400,2000]. Ranges
[2,9], [601, 709], [1201,1399], and [2001,2099] remain
unused to handle future insertions.
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Figure 1: A sample XML document.

The proposed indexed join algorithms work with
either numbering scheme. Note that under both
(durable and non-durable) schemes, for any two dis-
tinct nodes wu, v, the following hold: (i) the interval of
u is completely before or completely after the interval
of v, or, (ii) the interval of u contains or is contained by
the interval of v. Hence intervals can never intersect
partly.

Structural Joins. Structural join algorithms can
take advantage of the numbering schemes previously
discussed to expedite execution. Consider again our
previous path query and assume that all sections with
title Overview have been identified and stored in list
A, while list D contains all figures with caption R-
tree. To answer the query, we must find all occur-
rences of section/figure pairs that satisfy the ancestor-
descendant relationship. This corresponds to com-
puting a structural join [1] between the ancestor list
A and the descendant list B. (Structural joins are
termed “containment queries” in [40] while [24] uses
the terms EE-Join and EA-Join.) More formally,
given two lists of elements A and D, where each ele-
ment is of the format: (DocID, start, end, level) the
(ancestor-descendant) structural join reports all pairs
(@i, d;) such that (i) a;.DocID = d;.DocID, and (ii)
a;.start < dj.start and a;.end > dj.end. A parent-
child structural join also requires that a;.level + 1 =
dj.level.

Structural joins are considered core operations in
optimizing XML queries [16, 26, 40, 24, 1]. Various
techniques have been proposed using traditional rela-
tional DBMS [16, 31, 40] or native XML query en-
gines [26]. For example, [40] proposes a variation of
the merge join algorithm using multi-predicates. Nev-
ertheless, this algorithm can perform a lot of unneces-
sary steps especially when computing parent-child re-
lationships [1]. Similarly, the sort-merge join proposed
in [24] may scan an element set many times during the
join computation.

The Stack-Tree-Desc algorithm proposed by [1] rep-
resents the state-of-the-art in structural joins; it as-
sumes that each element list is stored ordered on start
and a stack mechanism is introduced to maintain el-
ements that will be used later in the join. This leads
to optimal join performance: only one sequential scan
is performed on each list. Nevertheless, as it will be
demonstrated in the next section, if an index is avail-
able on each ordered list, various elements that do not
participate in the join will not be scanned. This can
offer drastic improvement in the structural join per-
formance.

More recent work in [5] extends the above algorithm
to efficiently match more general selection patterns on
elements that present specified tree structure relation-
ships. Our solutions can be easily extended to incor-
porate the techniques in [5] as long as the element lists
are appropriately indexed.

XML Indexing. Various techniques have been
recently proposed for indexing XML data. We first
discuss proposals that do not facilitate a numbering
scheme [18, 17, 22, 27, 28, 12]. These works create
a structural summary of the XML document, in the
form of a labelled directed graph, similar to the one
used to model the XML document. The idea is to pre-
serve all paths, while having fewer nodes and edges.
Structural summaries extract structural information
directly from the data. However, unlike a schema,
they are not static, and thus may change with any up-
date. They are approximate and they need to encode
information about long, seldom-queried paths, leading
to increased complexity. An index typically consists
of a structural summary along with a stored mapping
from summary nodes to data nodes. It can be used
to evaluate path expressions directly (in a top-down
approach) by pruning the search space. Nevertheless,
since a structural summary does not contain all data
nodes, many paths need to still be examined.

The solution proposed in [12] uses prefix-encoding.
Paths are encoded as strings and inserted into a special
index called Index Fabric which is based on Patricia
tries. The index structure is tailored for path-queries
that originate in the document root. Other paths
require multiple index lookups or a post-processing
phase. To remedy this drawback, the notion of re-
fined path was proposed. However, the refined paths
needs to be preselected before index loading time.

Durable node numbers provide an important advan-
tage since they can serve as stable references for ex-
ternal indices [24, 11, 19]. In [24] B+-trees are used to
index the document elements and attributes; parent-
child relationships are supported by the structure in-
dex. In [19] node intervals are represented as points
in a higher dimensional space and an R-tree is used
to store these points. In [11] we presented an index-
ing scheme based on multiversion indices (B+-trees
and R-trees) and durable numbers to efficiently an-



swer queries in multiversion documents. The scheme
includes one index for the full document and a sepa-
rate index for the elements of each tag (e.g. sections,
chapters, figures). All indices are built on the element
start numbers.

3 Structural Joins using B-+-trees

Existing structural join algorithms [1, 24] do not uti-
lize index structures but sequentially scan the input
lists. I/O’s can be wasted for scanning elements that
do not participate in the join. Recent durable num-
bering schemes have enabled indexing of XML files
with mainstream indices, like B+-trees and R-trees.
Maintaining such indices in the presence of document
updates is trivial due to the reference permanence pro-
vided by the durable numbering. In this section we
propose structural join algorithms using B+-trees; R-
tree based structural joins are examined in section 4.

[rmffrd]  [fomlfosd]
A A A
A A A
A A C

Figure 2: The B+-tree corresponding to the XML doc-
ument of figure 1.

C D D
|(1500,1eoo)| (20,100) |(160.200)‘

D D D
l (210,240) |(1000,1100)|(1030,1060)‘

D D Root
|(1540,1550)|(1730.1760)| (1,2100) ‘

For simplicity we consider a single, typically large,
document. Extension to multi-document databases
is trivial. Similarly, we concentrate on the ancestor-
descendant join; the parent-child join its a simple ex-
tension using the level numbers. (Hence in the rest,
the DoclID, level attributes are not shown but are im-
plicitly assumed.) We assume that a separate index
is used to cluster elements from the same tag (chap-
ters, sections, figures, etc.) This index organization
has been shown to be very efficient for simple path
queries (i.e., when the subtree of an element does not
contain elements from the same tag) [11]. In practice
these multiple indices can be combined into a single
index, simply by adding the tag name in the search
key. An example appears in Figure 2; the index is
built on the (tag, start) combination. (In a multi-
document database, the search key would be: (DocID,
tag, start)).

To motivate the use of indexing in structural joins,
consider the examples illustrated in Figure 3. Thin
line segments represent the (start,end) intervals of el-
ements in the A (ancestor) list, while thick line seg-
ments correspond to element intervals in the D (de-
scendant) list.

a'2 a14
e a

IR ¥
d1 d2

—_ - O

(b) Skip descendant elements

Figure 3: Motivation for using the B+-tree index.

Figure 3a depicts a scenario where ancestor ele-
ments should be skipped. For this example, the se-
quential scan Stack-Tree-Desc algorithm from [1] will
proceed as follows: (1) push ai, a2 and a3z into the
stack and join them with d; (2) pop a3 and as from
the stack; (3) examine (push into and pop from the
stack) elements a4 through a3 from the A list; (4)
push a4 into the stack and then join a14 and a; with
ds. Clearly, the third step is wasteful. We can utilize
the B+-tree index to omit the examination of elements
a4 through aq3 as follows: after as is popped from the
stack, directly go to ai4. Here aj4 is the A element
having the smallest start which is larger than as.end.

Figure 3b illustrates the case where descendant el-
ements should be avoided. Here, after a; is joined
with dy, the Stack-Tree-Desc algorithm will sequen-
tially scan the descendant elements ds through d;s.
Instead, the B+-tree index can be used to jump di-
rectly to di4, which is the element from list D having
the smallest start that is larger than as.start.

The complete B+-tree based structural-join algo-
rithm (Anc_Des_B+) follows. Since the leaf pages in
each B+-tree are linked together, we can view the leaf
elements in that tree as a sorted list. Initially, vari-
ables a and d denote the first elements (having the
smallest start) of the two sorted lists. Then the algo-
rithm systematically moves a and d forward (to be the
next element in their lists, etc.) and performs the join
until one of the lists becomes empty. During the execu-
tion, a stack of elements from the A list is maintained.
That is, if all elements ay, as, . .., a; where a; is before
a;y1, are ancestors of d, we push a; through a; into
the stack before we join d with them. This is similar
to the Stack_Anc_Des algorithm processing. However,
in algorithm Anc_Des B+, steps 11 and 15 utilize the
B+-trees to skip elements from the A and D lists, re-
spectively. In practice, to avoid unnecessary B+-tree
accesses, we first check whether the next ancestor el-
ement is in the same page p as the previous ancestor



element (by checking the last ancestor element in p).

Algorithm Anc_Des_B+(List A, List D)

1. Let a, d be the first elements of A and D;
2. while ( not at the end of A or D ) do
3. if (ais an ancestor of d ) then
4. Locate all elements in A that are ancestors
of d and push them into stack;
Let a be the last element pushed;
6. Output d as a descendant of all elements in
stack;
7. Let d be the next element in D;
8. elseif ( a.end < d.start ) then
9. Pop all stack elements which are before d;
10. Let [ be the last element popped;
11 Let a be the element in A (locate using B+-

tree) having the smallest start that is larger
than [.end;

12.  else /* a is after d, or a is a descendant of d*/

13. Output d as a descendant of all elements in
stack;

14. if ( ancestor stack is empty ) then

15 Let d be the element in D (locate using

B-+-tree) having the smallest start that is
larger than a.start;

16. else

17. Let d be the next element in D;
18. endif

19.  endif

20. endwhile

dl d2
d3 4

12

Figure 4: Skipping descendants when the stack is not
empty leads to error.

Moreover, step 14 shows that in order for the algo-
rithm to correctly skip elements in the descendant list
D, the stack must be currently empty. Otherwise, we
may skip erroneously some D elements that need to be
joined with the in-stack ancestor elements. Figure 4
shows an example of this situation. Here we assume
the algorithm is currently checking ancestor as against
descendant ds, while element a; is in stack. Since ag
is after ds, the algorithm goes to step 13. Without
step 14, we would then have continued to step 15 and
skip descendants ds and d4. However, this would fail
to join dz and d4 with a;.

3.1 Embedding the Containment Forest

We present an easily maintainable enhancement that
can further improve join performance. We first intro-
duce the concept of the containment forest (C-forest).
A C-forest is a structure linking the elements from the
same tag. Each element corresponds to a node in the
structure and is linked to other elements from the same
tag via parent, first-child and right-sibling pointers. In
the rest, the terms parent, child and sibling refer to the
C-forest structure.

Next, we discuss how these three pointers are de-
termined for each node. Given nodes n and n, from
the same tag, node n, is called the parent of node n
ifl: (a) n, is n’s ancestor in the document tree (i.e.
nyp.start < n.start < n.end < np.end); and (b) there
is no other ancestor node n, of n from the same tag,
such that n, is an ancestor of n,. Symmetrically, we
call n a child of n,. Given same-tag nodes n and n,
node n, is called the first-child of n iff: (a) n. is a
child of n; and (b) there does not exist another same-
tag node that is a child of n which is before n. (node
ny is before ny iff ny.end < no.start). Finally, given
same-tag nodes n and ng, n is the right-sibling of n iff:
(a) n and n have the same parent; and (b) there is no
same-tag node between them which has the same par-
ent (ngy is between ny and ng iff ny.end < nay.start and
na.end < ng.start). Figure 5 depicts two C-forests,
for the elements with tag A and D respectively, taken
from the sample document in Figure 1.

next-sibling
(10 600) (800 900) 1400, 2000)

first-child parent
@ (530 860) 17003 1800)

Figure 5: C-forests on tags A and D for the XML
document of Figure 1.

A C-forest has the following properties:

e The (start,end) interval of each node contains all
intervals in its subtree (hence the name contain-
ment forest).

e The start numbers in the forest follow a preorder
traversal.

e The start (end) numbers of sibling nodes are in
increasing order.

A C-forest for a given tag can be easily embedded
within the B+-tree that indexes the tag’s elements.
This is accomplished by adding C-forest parent and



next-sibling pointers among the leaf records of the B+-
tree. First-child pointers are implicit because an ele-
ment and its first child are always stored subsequently
in the B4+-tree. Details are discussed in the next sub-
section.

The Anc_Des_B+ join algorithm also applies when
the B+-tree is enhanced with the C-forest pointers.
One difference appears in step 11 that finds the ele-
ment ane, which has the smallest start larger than
a.end. Consider the embedded C-forest. The rela-
tionship between a,e, and a is as follows: if a has
a right-sibling then ane = a.sibling. If a does not
have a right-sibling, but a’s parent has a sibling, then
Qnew = a.parent.sibling, and so on. If neither a nor
any of a’s ancestors have a right-sibling, then the join
algorithm completes since no other A elements need
to be examined.

Interestingly, at step 11, all of a’s ancestors are in
the running stack. Since each element has now a right-
sibling pointer, the address of e, is identified di-
rectly, without any extra I/O. This improves algorithm
Anc_Des_B+, since the B+-tree traversal is avoided in
this case. Moreover, CPU time is gained as well. In the
plain B+-tree, even if all related pages are in memory,
we still need to search (e.g. binary search) for the new
ancestor element in these pages. This is avoided with
the sibling pointers, since the readily available pointer
to the new ancestor has both page ID and position
within the page. In the rest we refer to the enhanced
index and the improved join algorithm as B+sp-tree
and Anc_Des_B+sp, respectively.

3.2 Dynamic Index Maintenance

Maintaining the plain B+-tree in the presence of doc-
ument, updates is straightforward: each element up-
date translates to updating the element’s durable start
number. However, when the C-forest structure is em-
bedded, the (C-forest) parent and right-sibling point-
ers need be maintained effectively at each element in-
sertion/deletion. We first present the B+sp-tree inser-
tion algorithm; deletion is examined afterwards.

Algorithm Insert_B+sp(int start, Attribute
attr)

1. Use the B+-tree insertion algorithm to insert a
new element (start,attr);

if (tdeaf pgee auarbom; o)t hew page )
Adjust pointers pointing to i;
endfor
endif

Find the parent, left sibling, right sibling, and first
child of the new element and adjust the corre-
sponding C-forest pointers.

NS o W

Basically, we first insert a new element into the
B+-tree using start as key, and then we adjust the
right-sibling and parent pointers among leaf elements.

The core step is step 7, which locates among the ex-
isting elements which will be the parent, left sibling,
right sibling, and first child of the newly inserted el-
ement. Once the related elements are found, linking
the new element into the C-forest is easy. (Identify-
ing the possibly many children under the new element
is performed starting from its first child and following
right-sibling pointers. The right sibling pointer of the
last child is set to NULL.)

We now focus on how to locate all related elements.
To locate the left sibling of the new element a, we first
use the B+-tree to locate the element e with the largest
start which is smaller than a.start. Clearly, either e is
the parent of a, or e is before a. If e is a’s parent, then a
does not have any left sibling. Otherwise, consider the
parent of e. Again, either e.parent is a’s parent, or it
is before a. In the first case, e is the left sibling of a. In
the second case, we recursively consider the parent of
e.parent, and so on. Eventually, if the highest ancestor
of e in the C-forest is before a, then this becomes the
left sibling of a.

The procedure of finding the left sibling also iden-
tifies a’s parent. To locate the right sibling of a, we
use the B+-tree to find the element e with the smallest
start that is greater than a.end. If e.parent is the same
as the parent of a, e is the right-sibling of a; otherwise
a does not have any right-sibling.

To locate the first child of a is simpler. Since the leaf
elements in the B+-tree are sorted by start number,
we simply examine the element stored right after a.
This element is either the first child of a, or after a.
We can decide whether it is a first child simply by
checking whether the end of the element is larger than
a.end.

Finally, if a page overflow takes place after we insert
the new element (steps 2-6), the B+-tree insertion al-
gorithm will move some leaf records into another page.
The pointers pointing to these moved records need to
be adjusted, but this procedure is similar to the above.

The following algorithm discusses how to delete an
element from the B+sp-tree:

Algorithm Delete_B+sp( Pointer a )
1. Locate the left sibling and the first child of a;

2. Adjust the C-forest pointers of the related ele-
ments;

3. Use the B+-tree deletion algorithm to delete ele-
ment a;

if ( a leaf page underflow occurs ) then
for ( each element i moved to a new page)
Adjust pointers pointing to i;
endfor
endif

® N o o

We first need to unlink the element a from the C-
forest. Again, the core step is to locate the related
elements (parent, first child, left sibling, right sibling).



Different from the insertion algorithm, there is no need
to locate the parent and right sibling elements of a,
since the pointers to these elements are already stored
along with a. Once the related elements are identified,
it is straightforward to adjust the C-forest pointers:
for the children of a, we should set the parent pointers
of them to point to a.parent; for the left sibling of a,
we should set its right sibling pointer to point to the
first child of a; for the last child of a, we should set
its right sibling pointer to point to a.right. Next, we
use the normal B+-tree deletion algorithm to delete
element a. If a page underflow occurs, records will be
redistributed to a sibling page. In this case, we need
to adjust the pointers which point to the elements that
are redistributed.

To analyze the efficiency of the insertion/deletion
algorithms of the B+sp-tree, we first define some
terms. Given a C-forest, the depth of a node is the
number of ancestors the node has. Then max-depth
denotes the maximum depth of any node in the forest,
while max-span corresponds to the maximum num-
ber of children under any node. These parameters de-
pend on the document characteristics. Elements with
longer intervals tend to attain many children elements
and create deeper subtrees (and thus increase the max-
span and max-depth). The efficiency of the B+sp-tree
insertion/deletion algorithm is given below. Due to
space limitations the proof of the theorem is omitted.

Theorem 1 The amortized insertion/deletion cost of
a B+sp-tree is O(h + s + d), where h is the height of
the B+-tree and s,d are the maz-span and maz-depth
of the embedded C-forest.

4 Structural Join using R-trees

end end
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Figure 6: The ancestor-descendant relationship in the
transformed space.

Multidimensional indices (like the R-tree [20, 6]) of-
fer an alternative in indexing XML documents [11, 19].
Consider the (start,end) interval of element e. This
interval is mapped to a point (e.start, e.end) in the 2-
dimensional space which is then indexed by an R-tree.
Figure 6a depicts two points corresponding to elements
a: (5,25) and d : (10,20). Since end > start for any
element, all points in this representation lie above the
diagonal. Moreover, the following properties hold:

e An element a is an ancestor of element d iff the
corresponding point of a is located on the upper
left side of point d (Figure 6a).

e Let A,D be two R-tree pages that store points
from the ancestor and descendant lists, respec-
tively. Let MBR4 and M BRp be the minimum
bounding rectangles of these pages. Page A may
contain an ancestor of some point in page D iff
the upper left corner of M BR 4 (the black dot in
figure 6b) is located on the upper left side of the
lower right corner of M BRp (the black square in
figure 6b).

Typically, spatial join algorithms join two sets of
rectangular objects and report pairs of objects that in-
tersect. If each set is indexed by an R-tree, a synchro-
nized tree traversal (STT) is followed [4, 21]. Initially,
the two root pages are joined. To join a pair of index
pages, every element in the first page is joined with
every element in the second page, if they intersect.
Eventually, at the leaf level, two objects are joined if
they intersect. The R-tree based structural join algo-
rithm that we propose also uses STT. The difference
is that instead of using the intersection condition, the
condition to join two pages A and D is that A’s up-
per left corner is located to the upper left of D’s lower
right corner; and the condition to join two objects a
and d is that a is located to the upper left of d.

Similarly, we can use an R-tree to index the element
(start,end) ranges as 1-dimensional intervals. To per-
form a structural join on two interval based R-trees,
we utilize existing join algorithms with slight modifi-
cation: two objects with intervals 1 and ro are joined
as long as r; contains r5. In our experiments we im-
plemented both R-tree approaches.

5 Problem Variations
5.1 Parent-Child Join

All the three ancestor-descendant structural join al-
gorithms can be directly used to answer parent-child
joins. An additional condition is performed on the lev-
els of each (ancestor,descendant) pair found.

5.2 Self Joins

If both ancestor and descendant elements have the
same tag (self join), a simpler algorithm applies. For
example, in the self join case, if we maintain two
pointers a and d as the previous algorithms do, the
two pointers may point to the same element, a case
which (for simplicity) is omitted from the previous
algorithms. Moreover, the B+-tree index algorithms
were used to skip sub-trees when possible. In the self-
join case, however, as long as a sub-tree has more than
one element, every element of the sub-tree will appear
in the join result (e.g. every element is a descendant
of the sub-tree’s root). We could use the R-tree join



algorithm. However, there is no guarantee that each
disk page will be examined at most once.

We hereby propose an non-indexed self join algo-
rithm, assuming that the elements are sorted in as-
cending order of start:

Algorithm Self Anc_Des( List A)

1. Let a be the first element in A;
2. while ( not at the end of A4 )
3.  Pop all stack elements which are before a;

4.  Output a as a descendant of the remaining el-
ements in stack;

5. Push a into stack;
6. Let a be the next element in A.
7. endwhile

The algorithm traverses the list exactly once, while
maintaining a stack in which any adjacent pair of ele-
ments has parent-child relationship. For each element
a being examined, we first pop from the stack those
elements that are before a since they will not join with
any later elements. We then join a with the in-stack
elements and finally push a into the stack.

a, 4, as ae a;

Figure 7: The next-useful-tree pointer helps to
speedup self join.

Discussion: If there are many elements which do
not have any ancestor or descendant at all (e.g. ele-
ments a4, as, ag in Figure 7), algorithm Self_Anc_Des
is not efficient since it has to go through the whole
list. One possible optimization is to link useful trees
(i.e. trees having at least two elements): in figure 7
a link connects a1 to ay. Algorithm Self_Anc_Des will
then skip elements which do not participate in the join.

5.3 Structural Join in a Pipelining Environ-
ment

Producer Module 1

‘ Producer Module 2

A 7
sections \ . feedback /figures

Structural Join

Module

join result
L =

Figure 8: Structural join engine.

We consider the structural join problem in a differ-
ent scenario: the input lists are not known beforehand,

but are generated by previous-stage execution modules
in a pipelined environment. For example, in figure §,
the inputs to the join arrive from producer modules
1 and 2. In this scenario, the structural join module
can not benefit from pre-built indices. Thus, if the
structural join module cannot send any feedback to
the producer modules, the best approach is to use the
non-indexed sequential algorithm proposed in [1].

However, if feedbacks are allowed (i.e., the join
module is “active”), we can still use the Anc_Des B+
algorithm to improve the performance, even though
the B+-tree indices are not available to the structural
join module. The idea is as follows. In steps 11 of algo-
rithm Anc_Des_B+, we skip ancestors by locating (us-
ing the B+-tree) the element which the smallest start
larger than a.end, where a is the ancestor being ex-
amined currently. In the pipelining environment, the
join module should send a feedback asking producer
module 1 to skip ancestors accordingly. Similarly, in
step 15, the join module should ask producer module
2 to skip descendants. Simply not sending the skipped
data across execution modules would reduce the size
of intermediate results. Moreover, a clever producer
module might be able to use this feedback to further
optimize its data generation plan.

6 Performance Analysis

We compare the performance of the non-indexed struc-
tural join algorithm (Stack-Tree-Desc [1]), the B+-tree
join algorithm (Anc_Des_B+), the B+-tree join with
sibling pointers (Anc_Des_B+sp), as well as two R-
tree based algorithms (using 1-dimensional intervals
and 2-dimensional points respectively). We used the
R*-tree [6] as the R-tree implementation. For each
R-tree approach, we checked both breadth-first join
and depth-first join. The results were very close so for
simplicity we report only the depth-first joins. More-
over, as will be explained later in this section, we also
implemented an optimization of Anc_Des_B+sp, using
a partial list (i.e., the most important) of the sibling
pointers. The notations used in the performance fig-
ures are described in table 1.

6.1 Experimental Setup

For the purposes of our experiments we have imple-
mented a storage manager with an LRU replacement
policy as well as the B+ tree index structure, and its
enhancement using the C-forest. Both access methods
provide bulk-loading facilities. All the algorithms were
implemented in C++ and compiled using the GNU
C++ compiler, under Linux Mandrake 8.0. The ex-
periments were contacted on a Pentium IIT 1.2GHz
processor with 1G of main memory.

We used synthetic data for all our experiments in
order to control the structural and consequently join
characteristics of the XML documents. We generated
several XML files using the IBM XML data generator



Notation: Meaning: Section:
no_index structural join using sequential scan (Stack-Tree-Desc [1]) 2
B+ structural join using B+ tree indices (Anc_Des_B+) 3
B+sp structural join using B+ trees with sibling pointers (Anc_Des_B+sp) 3.1
B+psp structural join using B+ trees and partial list of sibling pointers 6.2
R* structural join using R*-trees with 1-dimensional intervals 4
R*2 structural join using R*-trees with 2-dimensional points 4

Table 1: Implemented Algorithms.

<!ELEMENT department (name, email?, employee+)>
<!ATTLIST department nodeID ID #REQUIRED startPos CDATA
#REQUIRED endPos CDATA #REQUIRED level CDATA #REQUIRED
docID CDATA #FIXED "1">

<!ELEMENT employee (employee*, name+, email?)>
<!'ATTLIST employee nodeID ID #REQUIRED startPos CDATA
#REQUIRED endPos CDATA #REQUIRED level CDATA #REQUIRED
docID CDATA #FIXED "1">

<!ELEMENT name (#PCDATA)>

<!ATTLIST name nodeID ID #REQUIRED startPos CDATA
#REQUIRED endPos CDATA #REQUIRED level CDATA #REQUIRED
docID CDATA #FIXED "1">

<!ELEMENT email (#PCDATA)>

<!ATTLIST email nodeID ID #REQUIRED startPos CDATA
#REQUIRED endPos CDATA #REQUIRED level CDATA #REQUIRED
docID CDATA #FIXED "1">

Figure 9: The DTD for the experimental data.

[37] providing it with the DTD presented in figure 9.
Most of the XML trees that we generated had depth
seven. The derived documents were further processed
to obtain the desired data workloads.

We parsed the generated XML files in order to add
the (start,end) numbers to each element node using
an event-based XML parser [36] that we implemented
in Java. The parser uses a stack that grows to the
maximum nesting-depth of the XML nodes and as-
signs the durable numbers in two passes over the XML
file. One pass allocates the durable numbers while the
second pass integrates them into the XML text file
as attributes to each node. Subsequently, we parsed
the generated file to create the XML node lists. The
elements of each list include the attributes of the as-
sociated node, as well as its (start,end) interval. All
lists are stored in binary format. The data are then
bulkloaded into the B+trees. For the experiments we
used a page size of 8K. The size of the lists varies from
20M to 100M. To measure the join performance we
count the CPU time of each algorithm as well as the
number of I/O’s. Note that because of the merge join
characteristics of the structural join, most I/O’s are
non-sequential. We actually tested all algorithms for
their I/O characteristics and found that between 75%
and 80% of their I/O activity was random. Each group
of experiments was performed using different data sets
(i.e. XML documents), so as to have a finer control on
the elements that were joined subsequently.

6.2 Join Performance Comparison

Determining the Buffer Pool Size: We started
the experiments by varying the buffer pool size. Pre-

cisely, we tried sizes of 20, 40, 80, 100, 150 and 200
pages. As far as the structural no_index join algo-
rithm is concerned, performance is not greatly affected
by the buffer size. We observed the same behavior for
the B+-tree algorithms, when the buffer pool contains
80 or more pages. The reasons are:

1. The no_index join algorithm scans the lists only
once. As a result, after a page is visited for the
first time and then flushed out, it will not be re-
quested again in the future.

2. The same holds for the B+-tree algorithms. The
difference in performance for smaller sized buffer
pools is attributed to the fact that some index
pages might be flushed out and then requested
again. However, with larger buffer pool sizes and
with LRU policy, chances are that the index pages
will remain in the buffer pool.

Hence in the following experiments the buffer pool
size is fixed to 80 pages.

Join Performance

We performed experiments varying the relative join
characteristics of the ancestor and descendant lists.
We also varied the result sizes. To identify the perfor-
mance characteristics of each algorithm, we first ex-
amined their behavior by varying the percentage of
elements from the ancestor list that join with descen-
dants. In this scenario, skipping (mainly) ancestors
becomes gradually more important. We then consid-
ered the alternative case of varying the percentage of
descendant elements that participate in the join re-
sult. Here, the ability to (mainly) skip descendants
will improve join performance. Finally, we examined
scenarios where skipping in both lists is possible.

Skipping Ancestors: In the first group of experi-
ments we kept the percentage of the descendants that
are joined with at least one ancestor high (90%), and
we varied the percentage of the joined ancestors. For
that purpose, we started with two lists where both an-
cestors and descendants are joined equally high (90%)
and gradually reduced the percentage of the joined an-
cestors. This reduction is performed by effectively re-
moving elements from the descendant file (while at the
same time maintaining the descendant join percentage
around 90%). The join performance is shown in table
2.



Join Ancestors | no_index | B+ | B+psp | B+sp | R¥ | R*2
90% 182 180 180 190 230 | 228
70% 150 149 150 155 198 196
55% 132 130 130 140 176 178
40% 109 108 108 114 160 156
25% 86 84 84 90 132 130
15% 74 67 67 70 122 119

Table 2: Effect of skipping only ancestors in join performance.

As can be seen from the table, all the algorithms,
except the R-tree based ones, perform similarly. The
performance loss that the B+sp algorithm faces in
comparison with the B+-tree and the no_index joins
is attributed to the increase of the file size due to the
addition of sibling pointers. For the B+-tree, the only
overhead that occurs is the initial loading of the in-
dex pages. However, this is quite small. The R-tree
algorithms very often need to examine a page multiple
times since their data pages are not completely clus-
tered by the element startnumbers.

B+psp Optimization: We thus offer an optimiza-
tion that can combine the advantages of the plain B+-
tree as well as the sibling pointers. Typically, the sib-
ling pointer for element e, is beneficial when it points
to an element that is in a different page than e. Hence
we can reduce the additional space overhead by main-
taining only the useful sibling pointers. Experimental
measurements that we contacted on our data, showed
that on average a very small number of sibling point-
ers (usually 1% to 2% of the total number of sibling
pointers) actually points to an element on a different
page. We experimented with two different policies on
how to decide which sibling pointers to maintain. One
policy keeps the sibling pointer of an element whose
subtree contains more than a fixed number, say 100,
elements in the C-forest. The other policy kept the
pointers that lead to a different page. The latter was
more efficient and was implemented in the rest of our
experiments (B+psp). In the results depicted in ta-
ble 2 the B+psp algorithm performs equally well as
the B+-tree join. However, as it will be shown later
it can get even better performance. In the following
experiments we discuss the optimized version of the
sibling-pointer join (B+psp)-

Skipping Descendants: Next, we kept the per-
centage of ancestors that are joined with at least one
descendant high (85%), and varied the percentage of
the joined descendants. In this case, it becomes ben-
eficial to be able to skip descendant nodes. The join
performance is shown in figure 10.

As the percentage of joined descendants de-
creases the B4+ and B+psp algorithms outperform the
no_index join. This is because the latter is constrained
to sequentially scan the two lists. The B+-tree algo-
rithms avoid descendants by skipping elements. The
R-tree algorithms performed much worse than the
no_index join (around 80% more time) and are not
depicted. The largest proportion (99%) of the join
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Figure 10: Effect of skipping only descendants.

time is consumed in page I0s. More, the no_index
consumes more CPU time than the B+ join which in
turn is more CPU consuming than the B+psp join.

Actually, the gain in performance when using the
indexed joins is greater in the case of excluding descen-
dants than in the case of excluding ancestors. This is
attributed to the fact that, when in need to exclude
ancestors, the algorithms cannot take full advantage
of the place of the current descendant to decide where
the next candidate ancestor resides. Instead they can
only jump past the current ancestor node. That may
lead to visiting ancestor nodes that turn out not to
join with any descendant nodes.

Skipping both Ancestors and Descendants:
In the next group of experiments we varied the per-
centage of both ancestors and descendants that can be
joined. Among all experiments we only show the re-
sults where 1% of ancestors elements participate in the
join, while varying the number of descendants. The re-
sults are shown in figure 11. Clearly, the B+-tree and
B+psp perform better than the no_index and R-tree
joins. Actually, here, the R-tree joins are similar to
the no_index case, since only few ancestors join and
the R-trees can locate them quickly. When the num-
ber of descendants decreases, the B+psp tree performs
better than the B+tree. This is because the algorithm
takes advantage of the sibling pointers at the ancestor
nodes when it needs to access pages where the plain
B+tree would need to traverse full index paths to find
them.
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Figure 11: Effect of skipping both ancestors and de-
scendants.

Comparison of B-+-tree and B+psp algo-
rithms: In the above experiments the performance
of the B+-tree and B-+psp algorithms were very close.
This is not surprising given that the two algorithms
utilize similar techniques and data structures to skip
nodes. However, there is a difference which, for cer-
tain XML documents, might prove substantial. When
in need to skip ancestor nodes, the B+tree algorithm
relies on the existent index structure, while the B+psp
algorithm utilizes the pointer sibling node. If the join
selectivity is very small the first algorithm will access
a lot of index pages (leaf ones for the most part). This
behavior is shown in figure 12 which shows substantial
improvement in join performance (up to 18%) of the
B+psp over the B+-tree approach. In this particular
experiment, the algorithms had to skip many ancestor
nodes. The B+tree algorithm had to access directory
nodes before finding the data page, while the B+psp
algorithm was using the existing sibling pointers to go
directly to the data pages that had joining nodes.
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Figure 12: Comparing B+ and B+psp.

7 Conclusions & Future Work

In this paper, we proposed various indexed structural
join algorithms over XML data. Performance results
prove that the indexed algorithms are more robust
than the state-of-art algorithms, which do not utilize
index structures. Among the indexed approaches, the
B+-tree with sibling pointer performs the best.

We have also shown that traditional indexing
schemes are easily enhanced to support our structural
join algorithm—Dbesides the more conventional value-
based searches. Finally, we have shown how these in-
dexing schemes can be made durable, and thus sup-
port updates on XML documents, or the preservation
of multiple versions of these documents [11]. These re-
sults are applicable to both the situation where native
storage managers are used to store and query XML
documents, and the situation where more traditional
database systems are used for that purpose.

As future work to this paper, we plan to examine
the indexed structural join over multi-versioned docu-
ments.
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