
Similarity Search for Adaptive Ellipsoid Queries Using
Spatial Transformation

Yasushi Sakurai† Masatoshi Yoshikawa§ Ryoji Kataoka† Shunsuke Uemura§

† NTT Cyber Space Laboratories
{ysakurai, kataoka}@dq.isl.ntt.co.jp

§ Nara Institute of Science and Technology
{yosikawa, uemura}@is.aist-nara.ac.jp

Abstract

Similarity retrieval mechanisms should utilize
generalized quadratic form distance functions
as well as the Euclidean distance function
since ellipsoid queries parameters may vary
with the user and situation. In this paper, we
present the spatial transformation technique
that yields a new search method for adap-
tive ellipsoid queries with quadratic form dis-
tance functions. The basic idea is to transform
the bounding rectangles in the original space,
wherein distance from a query point is mea-
sured by quadratic form distance functions,
into spatial objects in a new space wherein
distance is measured by Euclidean distance
functions. Our method significantly reduces
CPU cost due to the distance approximation
by the spatial transformation; exact distance
evaluations are avoided for most of the ac-
cessed bounding rectangles in the index struc-
tures. We also present the multiple spatial
transformation technique as an extension of
the spatial transformation technique. The
multiple spatial transformation technique ad-
justs the tree structures to suit typical ellip-
soid queries; the search algorithm utilizes the
adjusted structure. This technique reduces
both page accesses and CPU time for ellip-
soid queries. Experiments using various ma-
trices and index structures demonstrate the
superiority of the proposed methods.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

1 Introduction

Multimedia content-based retrieval systems use fea-
ture values extracted from multimedia data; they find
data objects whose feature values are most similar
to those of the query object. These systems in-
clude various pattern recognition mechanisms, and the
databases on which they operate continue to grow in
size. This means that, multimedia systems and spa-
tial databases require (1) information retrieval meth-
ods with more general distance functions, and (2) im-
proved search performance.
Since the Euclidean distance space makes all dimen-

sions independent of each other, it fails to adequately
represent the user’s intention. Therefore, multime-
dia systems require the use of generalized quadratic
form distance functions as well as the Euclidean dis-
tance function. Since quadratic form distance func-
tions can represent correlations between dimensions,
retrieval mechanisms using them have high search
quality [HSE+95]. The quadratic form distance func-
tion d2M (p, q) = (p − q) · M · (p − q)t is calculated
from a query matrix M which is positive definite (i.e.
d2M (p, q) > 0), where q is a query point and p is a
data object in a data set. In d-dimensional spaces,
the Euclidean distance function has circles for isosur-
faces, and weighted Euclidean distance functions cor-
respond to iso-oriented ellipsoids, whose major axis
is aligned to the coordinate axis. Quadratic form dis-
tance functions have arbitrarily oriented ellipsoids that
are not necessarily aligned to the coordinate axis (see
Figure 1). Quadratic form distance functions are re-
garded as a generalization of the Euclidean distance
function and weighted Euclidean distance functions.
MindReader [ISF98] is an example of the application of
quadratic form distance functions; based on relevance
feedback, it guesses the correlations between dimen-
sions, which reflect the user’s preference. Unlike the
Euclidean distance function, quadratic form distance
functions more faithfully reflect the user’s intention.
Given that the size of multimedia databases will

continue to grow and that the dimensionality of fea-
ture data will continue to increase, high-performance
data retrieval methods are essential. Many index
methods have been proposed so far [GG98]. They

(a) Euclidean (b) weighted Euclidean (c) quadratic form

Figure 1: Isosurfaces for various distance functions.

include data-partitioning index trees (e.g. the R*-
tree [BKSS90], the X-tree [BKK96] and the A-tree
[SYUK00]). Nearest neighbor search methods using
such indices have also been proposed [RKV95] [HS95].
In particular, the A-tree is reported to offer good per-
formance for high-dimensional data [SYUK00]. Unfor-
tunately, most spatial access methods were designed
for searches based on the Euclidean distance function,
so new spatial access methods that are suited to el-
lipsoid queries based on quadratic form distance func-
tions are needed. In addition, image retrieval mecha-
nisms using various user-adaptable distance functions
[FSA+95] [HSE+95] and relevance feedback mecha-
nisms that guess the user’s desires, such as MARS
[RHM97] and MindReader [ISF98], deal with queries
whose parameters can vary with the user and situa-
tion. These mechanisms require search methods that
can support adaptive queries.
The goal of our work is to create a search method

for adaptive ellipsoid queries that can find similar ob-
jects efficiently. Various metric indices (e.g. the M-
tree [CPZ97] and the mvp-tree [BO97]) have been
proposed as indexing methods for arbitrary distance
functions. However, these indices cannot be applied
to systems that handle changeable distance functions
and, thus, they are not functionally adequate to sup-
port adaptive ellipsoid queries. In [SK97], Seidl et
al. presented a search algorithm for adaptive ellip-
soid queries on index structures that calculates exact
distances between query points and MBRs (Minimum
Bounding Rectangles). In [ABKS98], Ankerst et al.
presented a search method that reduces the number of
exact quadratic form distance calculations needed and
so reduces the CPU time by using MBB (Minimum
Bounding Box) distance functions and MBS (Mini-
mum Bounding Sphere) distance functions, which we
call the MBB-MBS approximation technique in this
paper. However, this technique’s search cost increases
as dimensionality grows or as the query ellipsoid be-
comes flatter.
To overcome the disadvantages of the MBB-MBS

approximation technique for ellipsoid queries, we have
developed an approximation technique, the Spatial
Transformation Technique (STT). The basic idea of
STT is to transform the MBRs, whose distance from
a query point is measured by the quadratic form dis-
tance functions, into rectangles, whose distance is mea-
sured by the Euclidean distance functions. Its ap-
proximation quality is high even when the flatness
of query ellipsoids and dimensionality are high, and
yet STT has a low CPU cost. We also developed the
Multiple Spatial Transformation Technique (MSTT).

MSTT adjusts the tree structures to suit typical ellip-
soid queries; this technique reduces the number of page
accesses as well as the CPU cost because the search al-
gorithm utilizes the adjusted structure.
The remainder of this paper is organized as follows.

Section 2 is a summary of the analysis of the MBB-
MBS approximation technique. Section 3 describes the
motivation, definitions and algorithms of STT. Sec-
tion 4 describes MSTT. Section 5 gives the results of
a performance evaluation of STT and MSTT. Finally,
Section 6 concludes the paper.

2 Problems of Search Methods for
Adaptive Ellipsoid Queries

This section summarizes the properties and problems
of the MBB-MBS approximation technique.

2.1 Search Methods for Adaptive Ellipsoid
Queries

The search algorithm of [SK97] for ellipsoid queries
on index structures calculates exact distances between
query points and MBRs (Minimum Bounding Rect-
angles). This search method supports adaptive ellip-
soid queries with variable distance functions by using
index structures. However, the calculations of dis-
tance between query points and MBRs incurs CPU
costs as high as O(ω · d2) time, where d is dimension-
ality and ω denotes the number of iterations. The
CPU time represents a high percentage of the overall
search time. Ankerst et al. [ABKS98] developed the
MBB-MBS approximation technique that reduces the
number of exact quadratic form distance calculations
needed (and, in so doing, reduces the CPU time for
ellipsoid queries) by using MBB (Minimum Bounding
Box) distance functions and MBS (Minimum Bound-
ing Sphere) distance functions. The following defini-
tions formalize the MBB distance function and the
MBS distance function for d-dimensional spaces:

d2MBB(M)(p, q) =
d
max
i=1

(
(pi − qi)2
(M−1)ii

)
, (1)

d2MBS(M)(p, q) = λ2
Mmin

· (p− q)2, (2)

where λMi (i = 1, · · · , d) are the eigenvalues of M ,
and λMmin is the lowest eigenvalue of M . The MBB
distance functions approximate an ellipsoid query area
by a bounding box that totally encloses the query area.
The MBS distance functions use a bounding sphere for
the approximation. Both approximation techniques
require O(d) time for their calculations.

2.2 Summary of Experimental Evaluation and
Analysis

We have performed extensive experiments to analyze
the MBB-MBS approximation technique. In the eval-
uation, we varied matrix flatness and dimensionality.

The flatness of a query matrix M (det(M) = 1) is
evaluated as follows:

σ2
M =

d∑
i=1

(λMi − λM)2, λM =
d∑

j=0

λMj

d
,

where λMi is the i-th dimensional eigenvalue and λM

is the average of the eigenvalues of M . In this paper,
the variance σ2

M is called the flatness of M . Before
calculating σ2

M , all matrices were normalized
1 with

det(M) = 1. Here, the flatness of the unit matrix that
represents searching in the Euclidean space, is 0.
The details of the experiments are described in

[SYKU01]. Our experiments revealed that the MBB-
MBS approximation technique has the following prob-
lems:

(P1) CPU time
For both MBB and MBS approximation func-
tions, approximation quality decreases as either
dimensionality or matrix flatness grows. As a re-
sult, the number of exact quadratic form distance
calculations increases, thus leading to a high CPU
time.

(P2) Node accesses
Index structures are constructed to find target ob-
jects in the Euclidean space efficiently, and the
search algorithms utilize the resulting index struc-
tures. Therefore, as matrix flatness grows, the
number of node accesses increases. This leads to
increases in both CPU time and number of page
accesses.

The problems revealed serve as the basis for devel-
oping our proposed methods. To cope with (P1), we
developed the spatial transform technique; this tech-
nique achieves high quality approximations and supe-
rior performance. To overcome (P2), we developed
an extension of the spatial transformation technique,
called the multiple spatial transformation technique.
This technique reduces both CPU time and the num-
ber of page accesses.

3 Spatial Transformation Technique

In this section, we describe the Spatial Transformation
Technique (STT), which approximates the quadratic
form distance between a query point and a bounding
rectangle. Like the MBB-MBS approximation tech-
nique, STT guarantees no false drops and so returns
exact answers to any query.

3.1 Basic Ideas

In computing the exact distance for quadratic form
distance functions, calculating the distance between a
query point and MBRs in the index structures incurs a
high CPU cost, and moreover, the calculations need to
be iterated. That is, the complexity is O(ω ·d2), where

1 Normalization of matrices is described in Section 4.4.

ω denotes the number of iterations. The basic idea of
STT is to transform the MBRs, whose distance from a
query point is measured by the quadratic form distance
functions, into rectangles whose distance is measured
by the Euclidean distance functions. STT requires no
iteration. The transformation contributes to reducing
CPU time. As shown in the problem (P1), the MBB-
MBS approximation technique is not effective when ei-
ther the dimensionality or flatness of query matrices is
high. STT requires less CPU time and offers great ef-
ficiency even when dimensionality and matrix flatness
are high, because of its high approximation quality. In
this section, we first define the spatial transformation
and then describe a spatial transformation technique
for bounding rectangles in index structures.

3.2 Definition of Spatial Transformation

Given a query matrix M and a query point q, the
quadratic form distance between q and a point p in a
d-dimensional space S is defined as follows:

d2M (p, q) = (p− q) ·M · (p− q)t. (3)

Since M is positive definite, the spectral decomposi-
tion of M can be calculated as:

M = EM · ΛM ·Et
M , (4)

where EM is the set of the eigenvectors of M , and the
diagonal matrix
ΛM = diag(λM1 , λM2 , . . . , λMd

) consists of the eigen-
values λM1 , λM2 , . . . , λMd

of M . From Equations (3)
(4), we obtain:

d2M (p, q) = (p− q) · EM · ΛM · Et
M · (p− q)t. (5)

When considering point p′ = (p − q) · EM · Λ 1
2
M in

the Euclidean space S′, Equation (5) denotes that the
Euclidean distance between the origin O and p′ in S′
is equal to the quadratic form distance d2M (p, q) (i.e.
d2M (p, q) = p

′ · p′t). Here, the transformation matrix
of M is defined as:

AM = EM · Λ 1
2
M . (6)

AM transforms the quadratic form distances within S
into the Euclidean distances within S′. It yields the
so called spatial transformation of p into p′.

3.3 Spatial Transformation of Rectangles for
Distance Calculation

STT gives the spatial transformation of rectangles in
index structures. Figure 2 illustrates the spatial trans-
formation of a rectangle. In this figure, the bounding
rectangle P in S is transformed into the d-dimensional
parallelogram P ′ in S′. Since the calculation of dis-
tance between the origin O and polygons in high-
dimensional spaces incurs a high CPU cost, STT ap-
proximates P ′ by rectangle R as shown in Figure 2(b).

q(2,2) P

S

p (4,1)a

p (6,2)b

p (6,1)c

p (4,2)d

(a) A rectangle in the original space

P’

S’

p’(-4,2)b

p’(-5,1.5)c

r (-5,0.5)a

r (-2,2)bR

O
p’(-3,0.5)a

p’(-2,1)d

(b) A rectangle calculated by STT

Figure 2: An example of spatial transformation.

This approximation reduces the calculation cost of el-
lipsoid queries.
We assume a rectangle P within S and a query point

q. Let pa and pb be endpoints of the major diagonal
of P and li be the i-th dimensional edge length of P .
It follows that point p′a in S′ can be calculated by the
spatial transformation of pa:

p′a = (pa − q) · AM . (7)

We extract the following components from the compo-
nents aij of AM :

φij =
{
aij (aij < 0)
0 (otherwise),

ψij =
{
aij (aij > 0)
0 (otherwise).

(8)

From Equations (7) (8), the rectangle R that totally
encloses the d-dimensional parallelogram with respect
to the spatial transformation of P can be calculated
as 2 :

R = (ra, rb), (9)

raj = p′aj
+

d∑
i=1

li · φij , rbj = p
′
aj
+

d∑
i=1

li · ψij

(1 ≤ j ≤ d),
where ra and rb are endpoints of the major diagonal
of R. Since R totally encloses P ′ in S′, the search al-

2 The proof of Equation (9) is described in [SYKU01].

gorithm can use the Euclidean distance d2(R,O) in-
stead of the quadratic form distance d2M (P, q) (i.e.
d2(R,O) ≤ d2M (P, q)).
For example, as shown in Figure 2, the query point

q = (2, 2) and matrix:

M =
(

1.25 −0.75
−0.75 1.25

)

are given. When using M , the vertices pa, pb, pc and
pd of the bounding rectangle P in S are transformed
into the vertices p′a, p′b, p

′
c and p′d of the parallelogram

P ′ in S′, respectively. Also, R = (ra, rb) encloses P ′.
d2M (q, P) is approximated by d

2(R,O), and we can uti-
lize d2(R,O) instead of d2M (q, P).

3.4 Search Algorithm

Range queries and k-nearest neighbor queries are use-
ful for multi-dimensional databases. An algorithm
based on spatial transformation can efficiently support
both types of queries. Since k-nearest neighbor queries
are more complex and require higher cost than range
queries, we will focus on the k-nearest neighbor search
in this paper and describe one such algorithm for STT.
Note that the idea of STT can be applied to any range
query.
The search algorithm implements Equations (6) (7)

(8) (9) for spatial transformation. However, its CPU
cost would become excessive if it required these for-
mulas to be used in the spatial transformation of all
accessed rectangles. Therefore, we use the following
two ideas to reduce the CPU cost.
First, the result of Equations (6) (8) does not de-

pend on the position of the bounding rectangles ac-
cessed. Thus, the search algorithm solves these formu-
las before accessing the rectangles. The result can be
applied to the spatial transformation of all rectangles
visited.
Second, we reduce the calculation time relative to

Equation (9). Note that, on average, half of the com-
ponents φij and ψij are 0. Therefore, in the imple-
mentation, the algorithm searches for all pairs of row
number i and column number j whose components are
φij 	= 0, ψij 	= 0 before accessing nodes in index struc-
tures. This preprocessing halves the CPU cost when
calculating R (i.e. raj and rbj) with Equation (9).
Let caj be the number of components in the j-th

column where φij 	= 0, and ujk be caj row numbers of
the components in the j-th column (k = 1, . . . , caj).
Similarly, for ψij , let cbj be the number of components
in the j-th column where ψij 	= 0, and vjk be cbj row
numbers of the components in the j-that column (k =
1, . . . , cbj). Functions for calculating the position of R
with less computation time can be obtained by using
ujk and vjk:

R = (ra, rb), (10)

raj = p′aj
+

caj∑
k=1

lk · φ(ujk)j ,

Procedure search(point query, matrix M,
integer k)

1. ΦM := analyzeMatrix(M);
2. enqueue(a pointer to the root, 0);
3. while emptyQueue() = false do
4. N := dequeue();
5. if N is a data node then
6. for each entry ∈ N do
7. if dMBB-MBS(M)(query, entry.vector)

≤ nnlist[k].dist then
8. if dM(query, entry.vector)

≤ nnlist[k].dist then
9. nnlist[k].id := entry.id;
10. nnlist[k].dist := dM(query,

entry.vector);
11. sort nnlist by distance;
12. pruneQueue(nnlist[k].dist);
13. endif
14. else
15. for each entry ∈ N do
16. if dMBB-MBS(M)(query, entry.rectangle)

≤ nnlist[k].dist then
17. R := spatialTransformation(query,

entry.rectangle, ΦM);
18. if d(R, O) ≤ nnlist[k].dist then
19. if dM(query, entry.rectangle)

≤ nnlist[k].dist then
20. enqueue(entry.ptr, dM (query,

entry.rectangle));
21. endif
22. endif
23. enddo
24. output(nnlist);

Figure 3: k-nearest neighbor search algorithm for el-
lipsoid queries.

rbj = p′aj
+

cbj∑
k=1

lk · ψ(vjk)j ,

where each caj and cbj averages d/2.
Figure 3 shows the search algorithm for ellipsoid

queries using tree structures of the R-tree family. The
search algorithm utilizes the spatial transformation of
rectangles to evaluate the distance of a query point
to the rectangles. STT and MBB-MBS approxima-
tion techniques incur lower CPU costs compared with
the exact quadratic form distance function for distance
calculations. Therefore, the search algorithm first cal-
culates the approximation distance between a query
point and a bounding rectangle when evaluating the
distance to the bounding rectangle. If the calculated
approximation distance is less than or equal to the
distance of the query point to the actual k-th nearest
neighbor, the exact distance to the rectangle is evalu-
ated using the exact quadratic form distance function.
In the search procedure (see Figure 3), for initial-

ization, the transformation matrix is calculated and
its components are checked (step 1), and then the pair
of a pointer to the root and 0 is stored in the prior-
ity queue (step 2). In step 4, the function dequeue()

dequeues the pair from the top of the priority queue,
and extracts a node N . If N is a data node, the MBB-
MBS approximation distance of every data object in
the node is evaluated. If the approximation distance
is less than or equal to the actual k-th nearest neigh-
bor distance, the exact distance is evaluated (steps 5
to 8), and the data object together with its distance
is stored in the nearest neighbor list (steps 9 to 12).
If N is not a data node, the MBB-MBS approxima-
tion distance of every bounding rectangle is evaluated
(step 16). If the MBB-MBS approximation distance
of a rectangle is less than or equal to the actual k-th
nearest neighbor distance, the spatial transformation
of the rectangle is calculated from ΦM (step 17). In
step 18, the Euclidean distance between O and R ob-
tained by the spatial transformation is evaluated. If
the distance calculated by the spatial transformation
is less than or equal to the actual k-that nearest neigh-
bor distance, the exact distance is evaluated (step 19).
Our experiments used not only the A-tree but also

the R*-tree. The A-tree is useful for ellipsoid queries as
well as queries based on the Euclidean distance func-
tion. The A-tree search algorithm differs somewhat
from the other methods in the R-tree family. The de-
tails of the A-tree search algorithm are described in
[SYUK00].

3.5 Dimensionality Reduction

When the flatness of a query matrix is high, there are
eigenvectors whose eigenvalue is small. In the space
created by the spatial transformation, the dimensions
corresponding to the eigenvalues contribute less to ap-
proximation quality although the dimensions require
the same CPU cost as the others. The STT with
dimensionality reduction eliminates dimensions whose
eigenvalues are small in order to save on CPU costs.
Let r = (r1, r2, . . . , rd) be the closest vertex of R to

O in S′ created by the spatial transformation. When
using dimensionality reduction, the distance of R to O
can be determined as:

d̃2(R,O) =
n∑

i=1

(ri)2, (11)

n = COUNT

(
λj ≥ η

d
·

d∑
i=1

λi

)

(j = 1, . . . , d),

where η is a threshold for dimensionality reduction,
and λi is arranged in ascending order (i.e. λ1 ≥ λ2 ≥
. . . ≥ λd > 0). The function COUNT (Γ) gives the
number of elements that satisfy requirement Γ. This
formula shows that the dimensionality for distance cal-
culation in S′ is limited to n (n ≤ d). Thus, the dimen-
sionality reduction reduces the calculation time rela-
tive to Equations (7) (8) (10) as well as Equation (11)
to n/d. As query matrix flatness increases, n decreases
and higher efficiency is achieved for the distance cal-
culations.

X1 Xsimilar

query

Xε

Figure 4: The multiple spatial transformation tech-
nique.

4 Multiple Spatial Transformation
Technique

In this section, we present the Multiple Spatial Trans-
formation Technique (MSTT), which is an extension
of STT. STT’s approximation quality is high, however,
the number of node accesses increases as query matrix
flatness grows. This is because STT, as well as con-
ventional search methods, utilizes a structure that is
constructed by the Euclidean distance function. To
overcome this problem, MSTT constructs tree struc-
tures based on various quadratic form distance func-
tions and then chooses a structure that gives sufficient
search performance; the search algorithm described in
Section 3.4 utilizes such a chosen structure.

4.1 Basic Ideas

We have revealed the node access problem (P2) in Sec-
tion 2.2. The search methods for adaptive ellipsoid
queries presented in [SK97] and [ABKS98] use index
structures based on the Euclidean distance function.
Accordingly, the number of node accesses increases as
query matrix flatness grows, which leads to an increase
in CPU cost and number of page accesses. MSTT over-
comes this problem by selecting an arbitrary quadratic
form distance function before constructing the index
structures; the search algorithm utilizes the resulting
structure. MSTT reduces both page accesses and CPU
cost for ellipsoid queries.
MSTT can handle more than one index structure.

For multimedia systems that attach importance to re-
trieval performance and can well afford the disk space,
the use of more than one structure is effective in im-
proving search performance. Figure 4 illustrates a re-
trieval mechanism based on MSTT. The mechanism
first determines a typical ellipsoid query matrix Xi

(i = 1, . . . , ε) from the user’s query logs, and then con-
structs index structures based onXi. In query process-
ing, the matrix Xsimilar closest to the query matrixM
is chosen, and target objects are found using the struc-
ture constructed by Xsimilar. In particular, the query
shown in Figure 4 requires search processing based on
the Euclidean distance function ifM = Xsimilar. This
retrieval mechanism that adopts multiple indexing can
accelerate search performance.
Disk prices continue to fall and disk unit capacity

is increasing rapidly. [GG97] shows that disk unit ca-
pacity and storage cost have increased /decreased a
hundred times and ten thousand times, respectively;
whereas disk access speeds have increased only ten-fold
in the last twenty years. The resulting trend is to em-
phasize disk access speed counts over storage cost. In
addition, reducing the search cost has a higher priority
than reducing the insertion cost in many multimedia
databases. It follows that there is a strong rationale
for using more than one index to improve search per-
formance.

4.2 Indexing and Retrieval Mechanisms

Structure Construction:

Let C be a matrix for constructing an index structure.
The transformation matrix AC of C is:

AC = EC · Λ 1
2
C .

All data points included in the data set for construct-
ing an index are transformed by AC . For instance,
AC transforms a data point p in the data set into
p′ = p · AC . MSTT constructs an index structure
IC based on the transformed data points. IC can ef-
ficiently support queries whose matrix is C.

Query Processing by MSTT:

For a query point q and a query matrix M , we first
transform q into q′ = q ·AC to perform this query using
IC . Given a new matrix M ′ for the query processing
of M using IC :

M ′ = A−1
C ·M · (A−1

C)t, (12)

the quadratic form distance ofM between p and q can
be expanded as follows:

d2M (p, q) = (p− q) ·M · (p− q)t
= (p′ − q′) · A−1

C ·M · (A−1
C)t · (p′ − q′)t

= (p′ − q′) ·M ′ · (p′ − q′)t.

Thus, the query whose matrix isM ′ and point is q′ us-
ing IC leads to the search result of the ellipsoid query
of M . In particular, if M = C, IC can efficiently
support the query whose matrix is M , since M ′ is a
unit matrix, which means the search is based on the
Euclidean distance function.

4.3 Similarity of Matrices

When more than one index structure is constructed,
the search process must choose one of them for ac-
cess. To do so, we define the dissimilarity between a
query matrix M and an index IC by using the matrix
flatness.
Queries of M using IC utilize M ′, calculated by

Equation (12), as the query matrix. Let λM ′
i
be the

Table 1: Variance of eigenvalues.
wr 1 10 100 1000
d = 8 0.0307 76.489 7998.6 800214σ2

M d = 27 64.777 93372 9.29e8 9.29e12

Table 2: Dimensions used for ellipsoid queries.
wr 1 10 100 1000
d = 8 8 8 4 4n
d = 27 27 18 9 9

i-th dimensional eigenvalue of M ′ and λM ′ be the av-
erage of the eigenvalues of M ′. The variance σ2

M ′ of
the eigenvalues of M ′ is determined as follows:

σ2
M ′ =

d∑
i=1

(λM ′
i
− λM ′)2, λM ′ =

d∑
j=0

λM ′
j

d
(13)

We employ σ2
M ′ as the measure of dissimilarity be-

tweenM and IC . For a similarity search using MSTT,
the effectiveness of IC relative to M improves as σ2

M ′
decreases.

4.4 Normalization of Matrices

To calculate the dissimilarity of queries and indices, all
matrices must be normalized, i.e., det(C) = det(M) =
1 for matrices C and M . The normalized matrix N of
M is obtained by:

N = EM · ΛN · Et
M , λNi = λMi ·

(
d∏

i=1

λMi

)− 1
d

where the diagonal matrix ΛN consists of the eigenval-
ues λNi (i = 1, . . . , d) of N . C can also normalized in
the same way.

5 Performance Evaluation

To verify the effectiveness of STT, we implemented
the algorithm and compared it with the MBB-MBS
approximation technique. We then measured the per-
formance of MSTT.
We evaluated its performance using real data sets

with size of 100,000. For the data sets, 8-D and 27-
D feature vectors of color histograms were extracted
from images. In assessing search performance, the
page access number and CPU time were measured by
the average of 100 queries. In our evaluation, we used
20-nearest neighbor queries; query data were different
from the point data included in the indices, that is,
query points were generated randomly and indepen-
dently of data points. Page size was 8 KB. CPU time
was measured on a SUN UltraSPARC-II 450 MHz.
We used the A-tree [SYUK00], which provides supe-
rior performance for high-dimensional data, and chose
the code with size of 6 bits per dimension for approx-
imating the bounding rectangles and data objects in

the A-tree structure. To obtain the similarity matrices
M , we calculated the components mij of M using the
following formula [HSE+95] [ABKS98]:

mij = exp(−α(dw(ci, cj)/dmax)2),

where α is a positive constant, and dw(ci, cj) denotes
the weighted Euclidean distance between the color ci
and cj . The factors w = (wr, wg, wb) represent the
weighting of the red, green and blue components in
RGB color space. In our evaluation, α was 10, and
both wg and wb were fixed to 1. wr was varied from 1
to 1,000. We calculated the eigenvalues of every matrix
for 8-D and 27-D data. Table 1 shows the result of this
calculation for various values of wr . As shown in the
table, matrix flatness increases as wr grows when α,
wg and wb are fixed.
For the dimensionality reduction technique, the

best threshold (η = 0.01) from among three alter-
natives, η = 0.1, η = 0.01, η = 0.001, was chosen.
Table 2 shows the dimensions n used for STT with
respect to the matrices created in our experiments.

5.1 Search Performance

Figure 5 compares STT and the MBB-MBS approxi-
mation technique in terms of CPU cost. The A-tree
was used as the index structure. The symbol STT(DR)
means the CPU cost for the STT with dimensional-
ity reduction. The number of page accesses is shown
in Figure 6. Since STT and the MBB-MBS approxi-
mation technique utilize exact quadratic form distance
functions, both require the same number of page ac-
cesses to perform ellipsoid queries. Thus, the differ-
ence in search time between STT and the MBB-MBS
approximation technique depends on calculation com-
plexity. As described in Section 1, ellipsoid queries
incur high costs in calculating the distance between
bounding rectangles and query points. Figure 5 shows
that STT reduces CPU cost for all data sets. The ef-
fectiveness of STT increases as either dimensionality
or matrix flatness grows. In particular, STT achieves
a 74 % reduction in CPU cost over that of the MBB-
MBS approximation technique for high dimensionality
and matrix flatness.
We evaluated the STT performance using the R*-

tree as well as the A-tree. STT using either the R*-
tree or the A-tree was superior to the MBB-MBS ap-
proximation technique. The details of the experiments
using the R*-tree are described in [SYKU01].

5.2 Analysis of Approximation Techniques for
Elliptical Queries

STT does not utilize the exact quadratic form distance
functions to access bounding rectangles whose approx-
imation distance from the query point exceeds the ac-
tual k-nearest neighbor distance, similar to the MBB-
MBS approximation technique. Figure 7 shows the
percentage of filtered exact quadratic form distance

 0

200

400

600

800

1000

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

STT (DR)
STT

MBB-MBS

 0

 10

 20

 30

 40

 50

 60

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

1 10 100 1000

R
at

e
of

 fi
lte

re
d

ex
ac

t c
al

cu
la

tio
ns

 (
%

)

Weight

STT (DR)
STT

MBB-MBS

(a) d = 8 (a) d = 8 (a) d = 8

 0

2000

4000

6000

8000

10000

12000

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

STT (DR)
STT

MBB-MBS

 0

 20

 40

 60

 80

100

120

140

1 10 100 1000
P

ag
e

ac
ce

ss
es

Weight

 0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

R
at

e
of

 fi
lte

re
d

ex
ac

t c
al

cu
la

tio
ns

 (
%

)

Weight

STT (DR)
STT

MBB-MBS

(b) d = 27 (b) d = 27 (b) d = 27

Figure 5: Comparison of STT
with the MBB-MBS approxima-
tion technique in terms of CPU
cost.

Figure 6: The number of page ac-
cesses for the MBB-MBS approxi-
mation technique.

Figure 7: Rate of filtered exact dis-
tance calculations for STT.

calculations versus the number of bounding rectan-
gles accessed in search processing, that is, this fig-
ure illustrates the effectiveness of the approximation
techniques. Although the efficiency of the MBB-MBS
approximation technique decreases as the flatness of
query matrix grows, the STT approximations effi-
ciently filter exact quadratic form distance calculations
for all queries. STT proves to be highly effective with
high-dimensional data and queries whose matrix flat-
ness is high as well as those with lower dimensionality
and flatness. The effectiveness of STT yields a low
CPU cost as shown in Figure 5.
The dimensionality reduction provided by STT

eliminates dimensions that make only a slight contri-
bution to the approximation of distance between query
points and bounding rectangles. This technique be-
comes more effective in ellipsoid searches as the flat-
ness of the query matrix increases. Since the flatness
of query wr = 1 is relatively low, the query uses all
dimensions in the search as shown in Table 2. On
the other hand, for queries wr = 100 and wr = 1000,
both of which have flat ellipsoids, distance calcula-
tions are based on lower dimensionality. As Figure 7
shows, STT has high approximation efficiency with
and without dimensionality reduction; as a result, the
STT with dimensionality reduction has superior per-
formance and a lower CPU cost.

5.3 Effectiveness of MSTT

For a given query matrix, MSTT constructs an index
structure based on the query matrix in order to sup-

port the query more efficiently. In these experiments,
we measured the performance of MSTT with the fol-
lowing structures:

(1) Unit: the index structures constructed from the
unit matrix.

(2) Wr = 10: the index structures constructed from
the matrix wr = 10.

(3) Wr = 1000: the index structures constructed
from the matrix wr = 1000.

Figure 8 depicts the search performance for ellipsoid
queries using these index structures 3 . Table 3 shows
the dissimilarities between the three index structures
and the four ellipsoid queries for 8-D and 27-D dimen-
sions. The dissimilarities of index structures to queries
were calculated using Equation (13). For any query,
choosing the index structure that is most similar to the
query minimizes search cost of the query. MSTT sig-
nificantly reduces CPU costs and the number of page
accesses for any query.
In addition, search cost is not proportional to dis-

similarity. For example, queries whose dissimilarity is
0 incur some search cost since similarity searches en-
tail some cost even in the Euclidean distance space.
Note that the function is not a cost model. Dissimi-
larity allows the search algorithm to choose the index
structure well suited to query matrices.
In practical situations, the dissimilarity of a given

query matrix must be calculated for each index when
3 Experiments for 8-D data are shown in [SYKU01].

 0

500

1000

1500

2000

2500

3000

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

Unit
Wr=10

Wr=1000

 0

100

200

300

400

500

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

dissimilarity
Unit
Best

 0

500

1000

1500

2000

2500

3000

3500

1 10 100 1000

C
P

U
 ti

m
e

(m
s)

Weight

Dissimilarity
Unit
Best

(a) CPU time, d = 27 (a) CPU time, d = 8 (c) CPU time, d = 27

 20

 30

 40

 50

 60

 70

 80

 90

100

110

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

Unit
Wr=10

Wr=1000

 0

 10

 20

 30

 40

 50

 60

1 10 100 1000
P

ag
e

ac
ce

ss
es

Weight

dissimilarity
Unit
Best

 0

 20

 40

 60

 80

100

120

140

1 10 100 1000

P
ag

e
ac

ce
ss

es

Weight

dissimilarity
Unit
Best

(b) Page accesses, d = 27 (b) Page accesses, d = 8 (d) Page accesses, d = 27

Figure 8: Search performance for MSTT. Figure 9: Behavior of the dissimilarity function.

trying to find the best index structure. The number
of dissimilarity calculations grows as the number of
created indices increases since the number of dissimi-
larity calculations equals the number of indices. How-
ever, each calculation incurs only a small CPU cost:
2 ms for 27-D data in our experiments. Since this
is negligible compared with the overall search time,
constructing various structures substantially improves
search performance.

5.4 Properties of the dissimilarity function

In this section, we analyze the properties of the dissim-
ilarity function defined in Section 4.3. We created 30
query matrices for 8 and 27 dimensions using weight
wr as follows:

wr = 10random,

where random is a randomly generated number be-
tween 0 and 3. Figure 9 shows how the dissimilar-
ity function chooses an index structure. Each search
cost for 30 queries was measured by the average of 100
queries. This experiment used three kinds of index,
Unit, Wr = 10 and Wr = 1000, such as the ex-
periment shown in Section 5.3. The figure shows the
following search costs:

(1) Dissimilarity: the cost of search using index
structures chosen by the dissimilarity function.

(2) Unit: the search cost on index structures con-
structed from the unit matrix.

(3) Best: the lowest search cost using the optimal
index structure for each query matrix.

In the experiment using 27-dimensional data, the dis-
similarity function chooses the index structure Unit
for the query matrices whose wr lies between 1 and 3,
Wr = 10 for wr between 3 and 100, and Wr = 1000
for wr between 100 and 1,000. The choice of indices
for 8-dimensional data is quite similar to that for 27-
dimensional data. Although search cost determined
by the function is not exactly equal to the search cost
achieved by the optimal index structures, the func-
tion chooses a good structure for most of the query
matrices. Moreover, compared with the index struc-
ture based on the Euclidean distance, index struc-
tures chosen by the dissimilarity function greatly re-
duce the search cost. Unlike the previous works [SK97]
[ABKS98] that use one index structure based on the
Euclidean distance, MSTT constructs various index
structures, which allows the dissimilarity function to
choose the structure well suited to the query matrices.
This analysis demonstrates the effectiveness of MSTT.

6 Conclusions

This paper described the Spatial Transformation Tech-
nique (STT), which offers excellent performance when
searching for adaptive ellipsoid queries. First, we an-
alyzed the MBB-MBS approximation technique and
discussed its problems. Then, based on this analysis,
we showed how STT can overcome these problems.
STT’s high level of performance is due to its use of

spatial transformation. Since the spatial transforma-
tion provides highly accurate approximations of the
distance between query points and bounding rectan-
gles, STT eliminates exact distance evaluations for
most of the bounding rectangles accessed in the in-
dex structures. The mechanism of STT is remarkably

Table 3: Dissimilarity of matrices.
(a) Unit

wr 1 10 100 1000
d = 8 0.031 76.490 7999 800214σ2

M ′
d = 27 64.777 93372 9.29e8 9.29e12

(b) Wr = 10
wr 1 10 100 1000
d = 8 71.296 0 194.99 19892σ2

M ′
d = 27 42467 0 127814 1.30e9

(c) Wr = 1000
wr 1 10 100 1000
d = 8 748634 19892 196.01 0σ2

M ′
d = 27 4.37e12 1.33e9 132022 0

efficient, especially for queries whose dimensionality or
matrix flatness is high. This technique guarantees no
false drops. In experiments using various matrices and
index structures, STT was found to be superior to the
conventional MBB-MBS approximation technique.
This paper also described the Multiple Spatial

Transformation Technique (MSTT). MSTT adjusts
tree structures to suit ellipsoid queries; the search al-
gorithm utilizes the adjusted structures. This tech-
nique reduces the number of page accesses as well as
the CPU cost for ellipsoid queries.
MSTT can support ellipsoid queries efficiently be-

cause one or more index structures can be used. In
the future, we plan to consider an algorithm that de-
termines matrices from a log of user’s queries to create
various indices. We will also create a matrix decision
algorithm whose parameters are a log of queries and
the number of indices that can be stored on disk.

References

[ABKS98] Mihael Ankerst, Bernhard Braunmüller, Hans-
Peter Kriegel, and Thomas Seidl: “Improving
Adaptable Similarity Query Processing by Us-
ing Approximations”, in Proc. of the 24th Inter-
national Conference on Very Large Data Bases
(VLDB), pp. 206–217, New York City, NY, Au-
gust 1998.

[BKK96] Stefan Berchtold, Daniel A. Keim, and Hans-
Peter Kriegel: “The X-tree: An Index Struc-
ture for High-Dimensional Data”, in Proc.
of the 22nd International Conference on Very
Large Data Bases (VLDB), pp. 28–39, Bombay,
September 1996.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf
Schneider, and Bernhard Seeger: “The R*-tree:
An Efficient and Robust Access Method for
Points and Rectangles”, in Proc. ACM SIG-
MOD Conf., pp. 322–331, Atlantic City, NJ,
May 1990.

[BO97] Tolga Bozkaya and Meral Ozoyoglu: “Distance-
Based Indexing for High-Dimensional Metric
Spaces”, in Proc. ACM SIGMOD International

Conference on Management of Data, pp. 357–
368, May 1997.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula:
“M-tree: An Efficient Access Method for Simi-
larity Search in Metric Spaces”, in Proc. of the
23rd International Conference on Very Large
Data Bases (VLDB), pp. 426—435, Athens,
August 1997.

[FSA+95] M. Flickner, H. S. Sawhney, J. Ashley,
Q. Huang, B. Dom, M. Gorkani, J. Hafner,
D. Lee, D. Petkovic, D. Steele, and P. Yanker:
“Query by image and video content: the QBIC
system”, IEEE Computer, Vol. 28, No. 9, pp.
23–32, September 1995.

[GG97] Jim Gray and Goetz Graefe: “The Five-Minute
Rule Ten Years Later and Other Computer
Storage Rules of Thumb”, SIGMOD Record,
Vol. 26, No. 4, pp. 63–68, December 1997.

[GG98] Volker Gaede and Oliver Günther: “Multidi-
mensional Access Methods”, ACM Computing
Surveys, Vol. 30, No. 2, pp. 170–231, June 1998.

[HS95] G. R. Hjaltason and H. Samet: “Ranking in
Spatial Databases”, in Proceedings of the 4th
Symposium on Spatial Databases, pp. 83–95,
Portland, Maine, August 1995.

[HSE+95] James L. Hafner, Harpreet S. Sawhney,
William Equitz, Myron Flickner, and Wayne
Niblack: “Efficient Color Histogram Indexing
for Quadratic Form Distance Functions”, IEEE
Trans. on Pattern Analysis and Machine Intel-
ligence, Vol. 17, No. 7, pp. 729–736, July 1995.

[ISF98] Yoshiharu Ishikawa, Ravishankar Subramanya,
and Christos Faloutsos: “MindReader: Query-
ing databases through multiple examples”, in
Proc. of the 24th International Conference on
Very Large Data Bases (VLDB), pp. 218–227,
New York City, NY, August 1998.

[RHM97] Y. Rui, T. S. Huang, and S. Mehrotra:
“Content-based Image Retrieval with Rele-
vance Feedback in MARS”, in Proc. of IEEE
International Conference on Image Processing,
pp. II–815–818, October 1997.

[RKV95] Nick Roussopoulos, Stephen Kelley, and
Frédéric Vincent: “Nearest Neighbor Queries”,
in Proc. ACM SIGMOD International Confer-
ence on Management of Data, pp. 71–79, May
1995.

[SK97] Thomas Seidl and Hans-Peter Kriegel: “Ef-
ficient User-Adaptable Similarity Search in
Large Multimedia Databases”, in Proc. of the
23rd International Conference on Very Large
Data Bases (VLDB), pp. 506—515, Athens,
August 1997.

[SYKU01] Yasushi Sakurai, Masatoshi Yoshikawa, Ry-
oji Kataoka, and Shunsuke Uemura: “Similar-
ity Search for Adaptive Ellipsoid Queries Us-
ing Spatial Transformation”, Technical report,
Nara Institute of Science and Technology, 2001.

[SYUK00] Yasushi Sakurai, Masatoshi Yoshikawa, Shun-
suke Uemura, and Haruhiko Kojima: “The A-
tree: An Index Structure for High-Dimensional
Spaces Using Relative Approximation”, in
Proc. of the 26th International Conference on
Very Large Data Bases (VLDB), pp. 516–526,
Cairo, Egypt, September 2000.

