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Abstract

Today’s DBMS are still too inflexible to adapt
fast enough to the query processing needs of new
applications [CW00]. Instead of using the cum-
bersome functionality of a monolithic DBMS; it
is not uncommon that users implement their own
functionality on top of the system. For such a sce-
nario, the implementation would be substantially
facilitated through a powerful library.

This paper introduces XXL (eXtensible and fleX-
ible Library), a high-level, easy-to-use, platform
independent Java library supporting the imple-
mentation of new query functionality. XXL pro-
vides framework implementations as well as tool-
boxes whose applications are independent from
the underlying data types and data structures.
We introduce the most important concepts of
XXL and discuss different application scenarios
where XXL has been used recently. In particular,
we show how an implementation of an efficient
algorithm for processing spatial joins can easily
be integrated into a commercial database system
(Cloudscape).

1 Introduction

Since the last decade object-relational DBMS have
been emerged in order to support new application ar-
eas where complex data has to be managed in a user-
suitable way. Today’s DBMS provide different mech-
anisms to incorporate new functionality into the sys-
tems. In general, DBMS vendors offer specific lan-
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guages which allow the implementation of user-defined
functionality. Recently, they also support user-defined
functionality being implemented directly in Java. This
code can be reasonably fast since Java Virtual Ma-
chines (JVM) are part of the kernel of most DBMS.
It seems that this approach is very appealing to users
of DBMS and therefore, we expect an increase of its
practical relevance in the near future.

In this paper, we address the problem of design-
ing a Java library that facilitates the implementation
of user-defined functionality. As our approach to this
problem we present XXL (eXtensible and fleXible Li-
brary). XXL is freely available under the terms of the
GNU Lesser General Public License [Dat01]. The li-
brary consists of the following components:

1. The cursor package provides an algebra of the
most important query operators whose implemen-
tations are demand-driven whenever it is effective.
The operators of the algebra require that the in-
put as well as the output satisfy an iterator inter-
face. In order to support the import of external
database sources, XXL also contains an enriched
algebra based on Java’s interface ResultSet. More-
over, some database vendors [Inf01] have extended
SQL in such a way that a ResultSet can be used
within a SQL statement. This allows a seamless
and easy integration of application code into SQL.

2. XXL offers a rich infrastructure of external data
structures which are helpful for the implementa-
tion of new database functionality. In addition,
XXL provides a very flexible buffer mechanism.
In contrast to system-based approaches, specific
data structures of XXL like the buffer can be used
without knowledge of the other parts of XXL.

3. A broad class of index structures has been imple-
mented as a framework in XXL, where many de-
fault implementations (R-tree, M-tree, X-tree) al-
ready exist and the implementations of new struc-
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tures are largely facilitated. For example, dif-
ferent types of bulk operations on indexes are
already efficiently implemented as part of the
generic code. Moreover, the framework of index
structures in XXL is not an isolated component,
but is fully embedded into the library.

There is another purpose of XXL that is of great im-
portance at least from a research point of view. We
propose XXL as a library for conducting experiments.
Results obtained from experiments are important in-
dicators for evaluating the performance of new query
processing techniques. We however feel that the qual-
ity of the experimental work has to be considerably
improved. Due to the large gap between a high-level
algorithmic description and a low-level implementa-
tion, we argue that in addition to the publication of
the results, the code should be made publicly available,
too. However, we assume that the quality of the code
is generally poor. Therefore, a well documented and
open library like XXL would be an ideal infrastructure
for experiments. The library could provide reference
implementations as well as building blocks (e.g. exter-
nal algorithms and data structures) that are used in an
experimental comparison of competitive approaches.

Research in the database area is largely driven by
the idea of building a system, whereas the develop-
ment of a library is exceptional. Volcano [Gra94] is
probably the work closest to ours. It provides a data
model independent query processing functionality sim-
ilar to XXL, but also addresses the problem of query
optimization and parallelism. Volcano can be viewed
as a hybrid between a system and a library. Iterator-
based processing is also addressed in object-oriented
query languages like OFL [GMP95] and functional
ones [BF79]. According to indexing, there has been
only a few approaches. The grid-file system [Hin85] is
an exceptional example of an elegant implementation
of an index structure, but it is limited to one specific
structure. GIST [HNP95] is basically an extensible
system for indexing which supports the implementa-
tion of R-trees and related structures. The develop-
ment of libraries is more popular in the algorithmic
area. There is also an increasing interest on external
problems where the data cannot be kept in main mem-
ory. TPIE [VV96] and Leda-SM [AC99] are among the
most well known libraries with a rich source of exter-
nal algorithms. However, both libraries do not support
demand-driven query processing as it is required in a
DBMS. Moreover, index structures are not supported
in the libraries.

The paper is organized as follows. In Section 2,
the implementation of the functional paradigm is out-
lined. In Section 3, the cursor algebra of XXL is in-
troduced. A selection of the most important opera-
tors is presented and, it is shown how the function-
ality of a cursor can be extended to satisfy the in-
terface java.sql. ResultSet. In Section 4, the different

collections currently available in XXL are presented.
The I/0O infrastructure including buffering and dif-
ferent types of containers is discussed in Section 5.
XXL’s framework of index structures is presented in
Section 6. Section 7 discusses the most important fea-
tures of the spatial package. In Section 8, we present
two use-cases of XXL where the one shows the connec-
tivity of XXL and a commercial database system and
the other presents approaches to spatial databases. Fi-
nally, Section 9 concludes the paper.

2 Functions

Functions are an extremely important concept to en-
capsulate abstractions. This generally holds, but we
found that the functional paradigm is of utmost im-
portance when designing and implementing a query
processing library like XXL. So far, the functional
paradigm received little attention in the database com-
munity, at least with respect to implementation issues
of query processing algorithms. Therefore, we first give
a brief review on the implementation of the functional
concept in XXL.

Since Java does not support a function as a first-
class citizen nor higher-order functions [Hug89], XXL
contains an abstract class Function where these con-
cepts are provided in an elegant way. A new function
can be implemented by defining a subclass of Func-
tion. The desired functionality is brought in by re-
defining one of its abstract invoke methods. In order
to reduce the number of explicit classes, subclasses of
Function are frequently implemented as anonymous
classes. This is a specific concept in Java where the
implementation of a subclass occurs at the same posi-
tion in the code where an object of the class is created.
A call of the invoke method of the object eventually
causes the evaluation of the target function.

Moreover, the class Function also supports higher-
order functions in a similar way as it is known
from Smalltalk’s blocks. Within the class Function
the method compose allows to create new functions
through compositions of other functions at runtime.
This is easy to support in Java because of its feature
of anonymous classes. For example, consider that the
mathematical functions sin, cos and div are imple-
mented as objects of the class Function. Then,

Function tan = div.compose(sin, cos);

defines a new function whose evaluation is simply ini-
tiated by calling invoke. Moreover, our approach al-
lows that a function object may have a state (similar
to C where the static variables of a procedure survive
a call). This powerful feature is used in XXL, for ex-
ample, when aggregate functions are implemented in
an incremental manner where the partial results are
delivered through an iterator.

Since predicates are functions with a high relevance
to query processing, we decided to introduce special



classes for creating predicate objects. An arbitrary
WHERE clause of an SQL statement can be expressed
in XXL as an object of the class Predicate. There are
no limitations on the complexity of a predicate which
also can cope with subqueries.

3 Cursors

A cursor is an abstract concept for manipulating ob-
jects within a stream. The cursors provided in XXL
are independent from the specific structure of the ob-
jects as well as from the kind of storage representation
of the underlying stream. This property is closely re-
lated to the notion of physical independence which is
one of the key concepts of database systems. XXL
offers an algebra of cursors which is suitable for defin-
ing complex queries in a declarative fashion similar to
SQL. In addition, our cursor algebra is also beneficial
for a very compact implementation of low-level core
functionality (e.g. index structures).

In the following, we start with a brief review of the
concept of iterators which is already available in the
Java APIL. Thereafter, we present the interface Cur-
sor of XXL that corresponds to a specialized kind of
iterators.

3.1 Iterators

Cursors are closely related to iterators which are well
known from different areas in computer science. Vol-
cano [Gra94] is probably the most well known project
within the database community where iterators have
extensively been used for processing queries. Although
iterators have been used within Volcano the semantics
of the different iterators have been not published to the
best of the authors’ knowledge. Iterators also occur in
large libraries like STL and the Java API. Iterators are
also used in the algorithmic community [Wei01].

In the following section, we present how cursors and
iterators are used for processing queries in the XXL
library. In order to be compatible to the Java API,
XXL adapts the iterator functionality from the Java
API. The Iterator interface of the Java API consists
of the following three methods:

interface Iterator {
boolean hasNext();
Object next();
void remove();

}

The method hasNext asks whether the underlying
stream contains another object, whereas next retrieves
the next object from the stream. These two methods
have to be implemented by a class that satisfies the
Iterator interface. The third method is a so-called op-
tional method which is actually not required to be
implemented. This design-principle is frequently used
within the Java API. If remove is implemented, a call
simply removes the last object returned by an iterator.

3.2 Cursor Interface

The interface Cursor extends the functionality of an
iterator by the following methods:

interface Cursor extends Iterator {
Object peek();
void update(Object o);
void reset();
void close();

}

The peek method shows the next object of the itera-
tion without changing its state. By calling reset the
iteration is started again from the beginning. Impor-
tant to cursors is the method close which allows to
release resources (e.g. net-connections) associated with
a cursor.

Our intention was to define a cursor algebra where
the different operators of the algebra take a cursor as
an input and deliver a cursor as an output. In addi-
tion, our algebra also contains a set of input operators
where the input type does not fulfill the Cursor in-
terface. A complex query is then represented as an
operator tree where the nodes correspond to specific
operators. The leaves of the nodes are input operators,
whereas the internal nodes are processing operators.
Processing operators can easily be customized by pass-
ing functional arguments. This idea is closely related
to support functions [Gra94] and algorithmic genera-
tors [Wei01]. From a functional point of view [Hug89],
a complex query is simply a higher-order function that
can be defined dynamically during runtime.

3.3 Input Operators

There are different types of input operators which are
briefly described in the following. Due to space limita-
tions we only discuss a few examples in this paper and
refer the interested reader to the online documentation
of XXL [Dat01].

XXL provides a large set of input operators that are
wrappers of specific sources. We just want to mention
two of the most important ones:

e TteratorCursor: java.util.Iterator — Cursor
e ResultSetCursor: java.sql.ResultSet — Cursor

The first operator transforms an iterator into a cursor.
This is important for processing sources which only
satisfy the Iterator interface of the Java API. The sec-
ond operator is used for processing sources that satisfy
the ResultSet interface. This operator can particularly
be useful for importing tables of relational databases.

XXL also provides virtual sources, e.g. the class
RandomlIntegers returns randomly created Integer ob-
jects on demand. Hence, the output of such an oper-
ator is not limited in size. In general, XXL supports
query processing on infinite sources.



3.4 Processing Operators

Processing operators require at least one cursor as an
input. We distinguish operators whose processing is
demand-driven, strict and hybrid.

In case of demand-driven processing, an operator
can deliver objects to its output without having pro-
cessed its entire input, whereas in case of strict oper-
ators the entire input has to be consumed.

We introduce another group of so-called hybrid op-
erators which are processed in (at least) two phases
where the first phase is strict, but the second phase
is demand-driven. One of the design goals of the li-
brary was to strive for demand-driven implementations
whenever it is effective. Therefore, almost all opera-
tors are demand-driven and only a few of them are
strict and hybrid.

3.4.1 Demand-driven Operators

In the following we present the most important
demand-driven operations of XXL. We put our focus
on those operators that are of particular interest for
processing database queries.

Let us first consider those demand-driven operators
whose input consists of an iterator and a function and
whose output is again a cursor. Among these opera-
tors are Filter, Mapper and Aggregator. A filter simply
delivers the objects from the input iterator which sat-
isfy a user-defined predicate. In order to illustrate the
declaration of a filter let us consider a simple exam-
ple where employeeList is a list of objects of the class
Employee. The following code deletes all persons older
than 30 from the list:

removeAll( new Filter( employeeList.iterator(),
new Predicate () {
public boolean invoke(Object employee) {
return ((Employee)employee).getAge() > 30;
}
}
)

The static method removeAll requires as its input an
object of type iterator. In our example, the iterator
corresponds to a filter. The constructor of the filter
requires two input parameters where the first one is
again an iterator and the second one is a function that
implements a simple predicate. Note, that the seman-
tics of the expression is equivalent to the following SQL
command:

DELETE
FROM Employee
WHERE Age > 30

An object of the class Mapper maps each object of
the input iterator to a new output object. The sec-
ond parameter of a mapper is again a function which
implements the mapping. The relational projection is
obviously a special case of a mapper.

Another interesting operator of XXL is the Aggre-
gator. An aggregator computes for an input iterator

an aggregate (e.g. sum or average), but it also delivers
the partial results after having consumed an object of
the input iterator. This is interesting for computing
approximations of aggregates as it has been proposed
in [HHW97].

A second class of demand-driven operators provides
powerful mechanisms to change the structure of an it-
erator. The class Grouper provides objects that trans-
form an iterator into a cursor where each result of
the operator is again a cursor. The constructor of a
grouper requires a predicate comparing two consecu-
tive objects of the input iterator. If the predicate is
satisfied, the objects are in the same group. Other-
wise, the second object belongs to a new group. Con-
sequently, a grouper partitions the input iterator into
disjoint groups. The class Grouper of XXL is again
implemented in a demand-driven fashion. Note, that
a grouper is more powerful than the GROUP BY op-
erator known from relational DBMS (which is only
applicable in combination with an aggregation). It is
semantically equivalent to the nest operation known
from object-oriented DBMS [AB95]. In addition, the
class Sequentializer of XXL provides the inverse oper-
ator (unnest) of a grouper.

In order to combine the object of two iterators, XXL
supports the computation of the Cartesian product.
Different types of join operators are also efficiently im-
plemented in XXL whose predicates can be relational,
spatial and similarity-based. A more detailed discus-
sion of the spatial functionality in XXL is given in
Section 7.

3.4.2 Strict and Hybrid Operators

Almost all of the operators in XXL are implemented
in a demand-driven manner, but there are a few ex-
ceptions where the processing is strict. The implemen-
tation of an operator is strict, when the total output
of an operator is computed during its initialization. In
general, this requires that the output is temporarily
stored on disk. During the next-phase of a strict oper-
ator a result is delivered to the caller without any addi-
tional processing cost. In contrast to a strict operator,
a hybrid operator shifts a substantial part of its com-
putation from its initialization phase to the demand-
driven phase.

The class HashGrouper can be viewed as a spe-
cial form of a grouper whose implementation is strict.
It partitions its input into hash buckets. A call of
next delivers an iterator of a hash bucket to the caller.
An example of a hybrid operator is the class Merge-
Sorter that offers external sorting of the input iterator
based on the sort-merge paradigm and Replacement-
Selection [Knu73]. As suggested in [Gra94], our merge
sorter delays the final merge to the next-phase.



3.5 ResultSet versus Cursor

Java’s interface ResultSet provides access to database
relations. A result set is usually generated by issueing
a query to the database via a Java Database Connec-
twity (JDBC) call. A result set maintains a reference
pointing to its current row of data. The next method
moves the reference to the next row. Since this method
returns false when there are no more rows in the re-
sult set, it can be used in a while loop to iterate over
the result set. Thus, a result set and a cursor share
both the same principle of demand-driven dataflow.
The difference however is that the ResultSet interface
provides a kind of type system. This mechanism is
based on meta data information for retrieving column
values from the current row. A JDBC driver attempts
to convert the underlying data to the Java type speci-
fied by the meta data and returns a suitable Java value.
XXL’s Cursor interface does not contain such meth-
ods due to the lack of meta data information. In the
future, a new cursor will be developed that wraps an
arbitrary cursor by adding meta data information con-
cerning the contained objects using the Java reflection
mechanism. Thus, the integration of arbitrary data
sources into database tables becomes seamless due to
the possibility to use our cursors as result sets. A prac-
tical example of this integration is demonstrated in
Section 8.1. Note, that XXL already contains a pack-
age providing a cursor-based implementation of the re-
lational algebra’s physical operators (zzl.relational).

4 Collections

xxl.collections is a package that contains interfaces and
classes for storing objects. The Java API already con-
tains the interface Collection. However, the Collection
interface is a fat interface, i.e., it specifies many op-
tional methods. This is not desirable because users
are forced to implement methods that are not required.
Another drawback of Java’s Collection interface is the
lack of a close method. This functionality however is
needed to release resources when a collection is based
on an external resource, e.g. a file or a JDBC connec-
tion. Furthermore, many important collections like
Queues are not part of the Java API.

For these reasons, we provide a new, redesigned set
of collection interfaces. The interface is broken up into
several small interfaces containing only a few essential
methods. This allows a fast implementation of these
interfaces.

The package zzl.collections depends on three fun-
damental interfaces: Bag, Queue and Container.

4.1 Bags

A bag is an implementation of a mathematical multi-
set, i.e., it represents a set of objects that might con-
tain duplicate objects. No order is specified on the
objects of a bag. Objects can be added to the bag,

but there is no efficient way to check whether a bag
contains an object or not. The only way to access ob-
jects of the bag is to inspect its entire content using
an iterator. The bag supports the insertion of single
objects as well as bulk insertion.

For those cases when a bag is able to guarantee an
order on its objects, it should implement a marker in-
terface. The marker interface contains an additional
method returning a cursor which iterates over the ob-
jects of the bag in the specified order (e.g. FIFO, LIFO,
Priority). The order determines the relationship be-
tween insertion and iteration over the bag’s objects.
The package zxl. collections contains several implemen-
tations of the Bag interface, e.g. ArrayBag, Dynami-
cArrayBag and ListBag.

4.2 Queues

A queue represents a multiset that behaves like an or-
dered bag. In comparison to a bag the queues’ objects
are removed when they are accessed. The most im-
portant implementations of the Queue interface are
ArrayQueue, Heap, ListQueue, StackQueue and Ran-
domAccessFileQueue.

4.3 Containers

A container is an implementation of a map. A con-
tainer generates a unique ID for each object and stores
a tuple, namely (ID,object). If an object is inserted
into a container, a new ID is created and returned. An
object of a container can only be retrieved via the cor-
responding ID. A container supports the removal and
update of objects as well as the retrieval of its elements
through an iterator.

The main intent of the abstract class Container is to
provide buffered access to objects (typically stored in
secondary memory). Therefore, every access method
provides a flag that allows to fix and unfix the ac-
cessed object (to request the insertion of objects into
the buffer and the removal, respectively). Further-
more, buffered objects can be flushed, i.e., the buffer
is forced to write back any modified object to its un-
derlying container.

The package zzl. collections contains only a few im-
plementations of the Container interface, e.g. a Map-
Container. Most of the interesting containers are
designed for external data management. These im-
plementations (e.g. BlockFileContainer, BufferedCon-
tainer and BufferedRandomAccessFileContainer) are
in the package zzl.io.

5 1/0O

The package zxl.io is a set of interfaces and classes
dealing with external resources. It contains classes
for serializing objects in order to read or write them.
In addition, this package provides implementations of
collections that manage objects in external memory



and input operators that read objects from external
sources.

5.1 Converters

An important mechanism required for I/O opera-
tions is serialization, i.e., the conversion of objects to
streams of binary data. The Java API already provides
a serialization mechanism. However, this mechanism
has drawbacks with respect to the usage in databases.
When applying Java’s serialization mechanism, addi-
tional meta data is written to the output stream. Java
requires this meta data for deserialization. Note that
the size of the meta data is not predictable.

This behaviour is generally not intended in the con-
text of databases for the following reasons. First, stor-
ing meta data may cause a considerable storage over-
head. Second, the size of a serialized object depends on
the time of serialization. This is a particular problem
when the number of objects fitting in a block of fixed
size has to be computed. Third, objects can only be
serializable when all of the subobjects are also serial-
izable. For these reasons, XXL provides the interfaces
Convertable and Converter as an alternative to the
Java, APT’s serialization mechanism.

Convertable classes have to implement a read and
a write method. These methods offer complete con-
trol over the format and contents of the data being
serialized. If a class does not implement Convertable,
a converter object can still be used for serialization.
Hence, a converter separates a class from its convert-
ing mechanism. The package zzl.i0o contains a large
set of converters supporting primitive data types and
arrays. Note that Java’s serialization mechanism can
also be used in conjunction with XXL.

5.2 Buffers & Blocks

Buffering is an important technique for making I/0O
operations efficient. In general, buffering means keep-
ing some blocks of serialized data in main memory
in order to prevent additional I/0O if data is required
again. However, it is also desirable to buffer deserial-
ized objects in order to avoid expensive conversions.
XXL provides a buffer class which allows the creation
of multiple buffers. A buffer contains a certain num-
ber of slots. Every slot is able to store a reference to
an object that is kept in main memory. Because of
storing object references instead of serialized data, the
associated data of a slot does not have a fixed size.
There is an m:n-relationship between buffers and
containers where each instance corresponds to an ob-
ject of the class BufferedContainer. An object of the
class BufferedContainer satisfies a request by consult-
ing the buffer first. If this is unsuccessful, the request
is delegated to the underlying container. Therefore,
different implementations of buffers can be exchanged
for efficiency or debugging purposes. For using a tradi-
tional buffer that stores blocks of serialized data, XXL

provides the Block class. Blocks are objects that offer
to store a certain amount of binary data and to create
input and output streams of the data. Currently, XXL
supports the LRU buffer replacement strategy, but it
is not difficult to implement other ones.

5.3 External Collections & Input Iterators

Collections that use external resources for storing their
objects are very important for database applications.
For this reason, XXL contains external implementa-
tions for the most important collections. Currently,
there are external bags, queues and containers. Other
data structures like external lists are in process. For
debugging and testing purposes external collections
can easily be exchanged by their corresponding (main
memory) variants.

Another benefit of XXL is its rich reservoir of in-
put iterators that read data from external sources, e.g.
files or URLs. For example, XXL contains the class
Inputlterator that is able to wrap an arbitrary Java
input stream to an iterator. Special input iterators
are also the FileInputlterator and the URLInputltera-
tor. Moreover, iterators can be wrapped in Java input
streams using the class IteratorInputStream.

6 Index Structures

A framework of tree-based index structures as well
as many implementations are gathered in the pack-
age zzl.indexStructures. This framework provides a
skeleton implementation for so-called grow-and-post
trees [Lom91] which is a broad class of index struc-
tures including the popular B-trees, R-trees, X-trees
and hB-trees. In contrast to GIST [HNP95] where a
similar approach has been pursued, the framework is
more generic in the sense that a broader class of struc-
tures is supported. Furthermore, our framework of-
fers efficient implementations of generic query process-
ing algorithms and bulk operations [BSW97, BSW99,
BSS00] that is not available in GIST. It is also notable
that GIST is basically an isolated system that limits
its focus solely to indexing, but does not provide a
query processing infrastructure nor external connec-
tivity. However, the index structures of XXL deliver
the results of queries as cursors which allows further
processing using the operators of the cursor algebra.

6.1 The Lower Interface of Index Structures

Tree-based index structures keep their data in nodes
where each of them refers to a block that is generally
of a fixed size. These blocks are managed by an object
that satisfies the interface Container. Obviously, a
user may implement his/her own container classes.

A typical scenario for the usage of containers is il-
lustrated in Figure 1. The top container belongs to
the class BufferedContainer where presumably a large
number of nodes of the index structure are kept in the
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Figure 1: An example for using containers

buffer. If a desired node is not in the buffer, the node is
requested from a ConverterContainer. The only task
of a ConverterContainer is to convert a node into its
block and vice versa. Therefore, it forwards a request
to a FileContainer object that reads the desired block
from disk.

6.2 Implementation of new Index Structures

Although the tree framework seems to be very intri-
cate, new index structures can be implemented fast.
In general, it is sufficient to implement the interface
Descriptor for index entries and to complete the im-
plementation of the Node class whose objects refers to
the specific nodes used in the target index structure.

For sake of simplicity, let us consider an imple-
mentation of an R-tree. Then, the descriptor of an
index entry refers to a window region of the multi-
dimensional data space that covers all data objects
stored in the corresponding subtree. In general, the
interface Descriptor consists of the following methods:

interface Descriptor {
boolean overlaps (Descriptor descriptor);
boolean contains (Descriptor descriptor);
Descriptor union (Descriptor descriptor);
boolean equals (Object object);

}

The predicate overlaps, contains and equals are
used for the comparison of descriptors, whereas union
computes the minimum enclosing descriptor. The se-
mantics of theses methods seems to be selfexplainable
for a window region. Additionally to the implementa-
tion of a descriptor, the implementation of the abstract
class Node has to be completed. Most of its function-
ality is already implemented in the generic predeces-
sor classes within the class hierarchy. Therefore, only
the functionality has to be provided that cannot be
made available without specific knowledge about the
target index structure. This basically consists of the
methods chooseSubtree and split. chooseSubtree
determines the subtree where the descriptor should be

inserted in, using a given descriptor and a set of sub-
trees. The split method performs a node split and
returns information about the location of the split in
the tree.

Because our tree-based index structures generally
keep their nodes as blocks in containers, converters
are required for the descriptor and the nodes.

Our R*-tree implementation (without re-insertion)
[BKSS90] is a good example for a compact implemen-
tation of an index structure. It only consists of less
than 200 lines of code because the cursor algebra is
heavily used again.

6.3 Available Functionality

In the following, we briefly describe the available func-
tionality of an index structure that is based on our
framework. First of all, the index structure supports
insertions and deletions of objects. In addition, the in-
dex structure is automatically equipped with efficient
algorithms for bulk-loading and bulk-insertion.

At a first glance, it may sound surprising that the
programer of a new index structure has not to deal
with the implementation of queries. This is generally
true for standard queries, but we have to admit that
exotic queries still have to be implemented by hand.
The predicate of a standard query can be expressed
by using the descriptor of the underlying index struc-
ture. For an R-tree, a standard query is the popular
window query since the corresponding predicate refers
to a rectangle which is also the data type of the de-
scriptor. Moreover, our framework offers the efficient
implementation of nearest-neighbor queries [HS99] and
their combinations with standard queries.

7 Spatial

The package zzl.spatial provides support and build-
ing blocks for spatial, temporal and high-dimensional
join processing. The classes belong to three main cat-
egories: data types, building blocks and algorithms.

The most important data types are d-dimensional
points and rectangles. For these, we provide lp-metrics
and operations like overlap, perimeter, area, etc.

This package also contains useful building blocks
like z-code computation, data-conversion tools and a
fixed-point double-arithmetic. The fixed-point arith-
metic considerably facilitates the implementation of al-
gorithms that deal with data that is normalized to the
unit-cube [0;1)¢, e.g. computing a z-code for a given
point is performed with a simple ‘bit-zipper’.

Currently, several d-dimensional join-algorithms
come ready-to-use. We provide implementations of
plane sweep [APR*98], the z-code join [Ore91], S3J
and MSJ [KS00] and hash-based algorithms [PD96]. In
addition, this package contains new developments like
the join techniques proposed in [DS00] and a new, pow-
erful similarity-join algorithm [DS01]. The implemen-
tations of all the above algorithms are very compact



and flexible, e.g. the d-dimensional z-code join [Ore91]
is implemented with only 20 lines of code. The high-
level coding of the algorithms makes the integration
of new functionality easy. Our experience has shown
that implementing a new algorithm is reduced to im-
plementing its delta to an existing approach. This does
not only sharply reduce the coding time but also helps
to classify new approaches.

8 Applications

The quality of a library is mainly determined by a
broad range of applications that are supported. In
order to illustrate XXL’s flexibility, we present two
use cases described in detail in the following sections.

8.1 Connectivity to Cloudscape

Cloudscape [Inf01], a commercial DBMS of Informix,
is a Java- and SQL-based object-relational database
management system, written in 100% pure Java. It
can directly be embedded in a Java application, or
used in a classical client-server or Web-server mode.
Data access is realized via SQL-92E calls by using the
standard Java Database Connectivity (JDBC) proto-
col. Cloudscape extends this functionality by the fea-
ture to store arbitrary serializable Java objects. In
that way, it is possible to define an attribute of a ta-
ble directly as a Java data type. Physically the Java
object is stored in its byte format. However, when the
Java object is read from and written into the database,
it is automatically deserialized and serialized, respec-
tively. Furthermore, Java is used for implementing
stored procedures and triggers.

XXL communicates with Cloudscape in two direc-
tions. The first and more obvious direction is accessing
the DBMS via JDBC calls and SQL statements. This
functionality guarantees that XXL is able to create,
drop and alter tables as well as to evaluate queries on
tables. Executed SELECT statements return a Re-
sultSet (see Section 3.5) whose rows are consumed by
XXL’s ResultSetCursor. FEach output object of this
cursor is created by calling a user-defined function on
each row. Therefore, XXL processes arbitrary objects
of the interface ResultSet in a demand-driven fashion
and provides a smooth integration of them into the
cursor algebra.

The second direction refers to the feature of Cloud-
scape that a ResultSet can directly be used in the
FROM clause of a SQL statement. This is also termed
the Virtual Table Interface (VTI). As far as the other
parts of the SQL statement are concerned, there is no
difference between an ordinary table and an object sat-
isfying VTI. This feature is beneficial for a seamless
integration of external functionality into the DBMS.
In particular, it is very appealing to XXL since an op-
erator tree is able to deliver its results wrapped as a
ResultSet. Currently, there is still the limitation that
the FROM clause only accepts a constructor call of a

ResultSet that makes it difficult to use a previously
created ResultSet. Moreover, VTI only accepts those
constructors with primitive parameter types. In order
to alleviate these deficiencies, XXL provides the class
VirtualTable which is a proxy for an object of the in-
terface ResultSet. An example of an SQL statement
employing the VTI is given by:

SELECT Emp.Name
FROM NEW VirtualTable() AS Emp
WHERE Emp.Salary > 100000

As shown in our example, attributes of a virtual table
are treated like attributes of an ordinary table. In com-
parison to the overhead of implementing data blades,
this is a very convenient way to integrate arbitrary
data sources and user-defined functionality.

Currently, XXL is limited to read-only virtual ta-
bles. In the future XXL will also allow read-write
access with the intention to support INSERT and
DELETE statements based on virtual tables. Fur-
thermore, a generic wrapper will be developed that
transforms a cursor into a ResultSet by adding meta
data information. Therefore, XXL will offer the possi-
bility to integrate data from a variety of sources into a
Cloudscape database as well as to handle these sources
in SQL statements.

8.2 Experiments on Spatial Data

When developing new query processing techniques re-
searchers strive for an experimental comparison of
their approach to already established ones. There are
at least two important requirements for an experi-
mental comparison [ZMR96]: the experiment should
be fair (i.e., the approaches should be based on the
same building blocks) and reproducible (i.e., other re-
searchers should be able to repeat the experiments eas-
ily). XXL is designed as a platform for experimental
comparisons where the above mentioned requirements
can be satisfied.

e Fair: XXL provides a rich infrastructure for the
implementation of new query processing tech-
niques. The developer will employ the infrastruc-
ture since it largely facilitates the burden of pro-
gramming. As a side effect, this leads to a better
comparability of different approaches and hence,
fair comparisons are easily possible.

e Reproducible: Applications implemented in
Java using XXL are running under different op-
erating systems and hardware platforms. More-
over, XXL is available for download [Dat01] and
includes a full documentation. Since XXL con-
tains many useful building blocks, applications
are likely be written in a high-level style that
makes it easy to understand the underlying se-
mantics. These are important properties for re-
producible code.



data set | description

LA_RR
LA ST

| #MBRs |
128,971
131,461

railways and rivers LA
streets LA

Table 1: Description of the data sets

| algorithms | flat file | Cloudscape |
SQL (nested loops) - > 2 days
plane-sweep (hybrid) | 11.0 174
plane-sweep (strict) 11.3 19.0
Orenstein (kd-trie) 52.5 58.2
Orenstein (quadtree) | 66.5 70.7

Table 2: Elapsed time of the algorithms in seconds

In the following, we present an experimental com-
parison where we examine the popular problem of pro-
cessing a spatial join. Our comparison shows results
that are unique with respect to the following issues.
First, we examine the overhead of reading the input
data from a database in comparison to reading from
flat files. Second, our results are reported as a function
of the elapsed time, i.e., the number of results that are
delivered since the start of the algorithms. These re-
sults are seldom found in the literature, though they
are important in a demand-driven query processor.

Each of the spatial tables corresponds to a set of
rectilinear minimum bounding rectangles (MBR) rep-
resented by columns for the x- and y-coordinate of
the lower left and the upper right corner. In our
experiments we used two different real data sets of
the TIGER database [Bur89] (see Table 1). The data
sets LA_RR and LA_ST contain the MBRs of different
types of line segments from the region of Los Angeles.
In the following, we present the experimental evalua-
tion of five different spatial join algorithms.

The first algorithm is an internal algorithm of
Cloudscape, i.e., we executed an SQL statement on
the two given tables specifying the overlapping condi-
tion directly in the WHERE clause. The other spa-
tial joins correspond to algorithms provided by XXL.
The second algorithm is a plane sweep algorithm by
Arge et.al. [APR198] where the input is sorted in a
strict manner using the sort-merge routine of XXL.
The third algorithm is an improved plane sweep ap-
proach based on a hybrid sort-merge operator, i.e.,
the sorted streams are created on demand by merg-
ing sorted runs [Gra94]. The fourth algorithm is the
z-code join-algorithm by Orenstein [Ore91] using kd-
trie splits. The fifth is a variant of this algorithm using
quadtree splits.

Our experiments were performed on a PC with an
AMD processor (Athlon 700 MHz, 1024 MB main
memory) under Windows 2000. Since main memory
was large enough, the entire join phase was performed
without any disk access. Figure 2 depicts the number
of computed results of the spatial joins as a function
of the elapsed time where the input was from a Cloud-
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Figure 2: Elapsed time of spatial join algorithms in
Cloudscape

scape database. Table 2 shows the total elapsed time
of the algorithms. Since Cloudscape makes use of a
simple nested-loops algorithm, the total elapsed time
was more than 2 days. After that we stopped the pro-
cess. The other algorithms performed the join in less
than 71 seconds, whereas the plane sweep algorithms
are more efficient than the ones that rely on multi-
dimensional data structures. Results show that the
use of hybrid sorting pays off.

Overall, the results of our experiments show the ne-
cessity of using efficient algorithms for advanced query
operators. DBMS like Cloudscape are not able (and
willing) to provide the right operators for specific ap-
plications. As a first solution, these operators can be
implemented on top of the DBMS using a library like
XXL which facilitates the coding. The overhead of
keeping the data in a DBMS is surprisingly low in com-
parison to using flat files (see Table 2). This generally
supports our library approach.

9 Conclusions

In this paper we outlined the design of XXL, a well
documented Java library, suitable for rapid implemen-
tation of advanced query processing techniques. The
software is freely available under the terms of the GNU
Lesser General Public License [Dat01].

Key components of XXL are a powerful cursor alge-
bra, a framework for a broad class of index structures
and a toolbox of I/O data structures. XXL is not in
competition to the popular Java API, but it provides
seamless enhancements.

The focus of our future work is directed to support-
ing additional data sources including XML. We will
also examine the connectivity to commercial database
systems. XXL will be extended by a rich source of
on-line aggregation functions as well as statistical es-
timators. Finally, we will proceed in providing further
reference implementations of advanced query process-
ing techniques.
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