
Offering a Precision-Performance Tradeoff for Aggregation
Queries over Replicated Data∗

Chris Olston, Jennifer Widom
Stanford University

{olston, widom}@db.stanford.edu

Abstract
Strict consistency of replicated data is infeasible or
not required by many distributed applications, so cur-
rent systems often permitstale replication, in which
cached copies of data values are allowed to become
out of date. Queries over cached data return an an-
swer quickly, but the stale answer may be unbound-
edly imprecise. Alternatively, queries over remote
master data return a precise answer, but with poten-
tially poor performance. To bridge the gap between
these two extremes, we propose a new class of repli-
cation systems called TRAPP (Tradeoff in Replica-
tion Precision and Performance). TRAPP systems
give each user fine-grained control over the trade-
off between precision and performance: Caches store
ranges that are guaranteed to bound the current data
values, instead of storing stale exact values. Users
supply a quantitativeprecision constraintalong with
each query. To answer a query, TRAPP systems au-
tomatically select a combination of locally cached
bounds and exact master data stored remotely to de-
liver a bounded answerconsisting of a range that is
no wider than the specified precision constraint, that
is guaranteed to contain the precise answer, and that
is computed as quickly as possible. This paper de-
fines the architecture of TRAPP replication systems
and covers some mechanics of caching data ranges. It
then focuses on queries with aggregation, presenting
optimization algorithms for answering queries with
precision constraints, and reporting on performance
experiments that demonstrate the fine-grained con-
trol of the precision-performance tradeoff offered by
TRAPP systems.

1 Introduction
Many environments that replicate information at multiple
sites permitstale replication, rather than enforcing exact
consistency over multiple copies of data. Exact (transac-
tional) consistency is infeasible from a performance per-
spective in many large systems, for a variety of reasons

∗This work was supported by the National Science Foundation un-
der grant IIS-9811947, by NASA Ames under grant NCC2-5278, and
by a National Science Foundation graduate research fellowship.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from the Endow-
ment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

as outlined in [12], and for many distributed applications
exact consistency simply is not a requirement.

The World-Wide Web is a very general example of a
stale replication system, where master copies of pages
are maintained on Web servers and stale copies are
cached by Web browsers. In the Web architecture, read-
ing the stale cached data kept by a browser has sig-
nificantly better performance than retrieving the master
copy from the Web server (accomplished by pressing the
browser’s “refresh” button), but the cached copy may be
arbitrarily out of date. Another example of a stale repli-
cation system is a data warehouse, where we can view the
data objects at operational databases as master copies,
and data at the warehouse (or at multiple “data marts”) as
stale cached copies. Querying the cached data in a ware-
house is typically much faster than querying the master
copies at the operational sites.

1.1 Running Example

As a scenario for motivation and examples throughout
the paper, we will consider a simple replication system
used for monitoring a wide-area network linking thou-
sands of computers. We assume that each node (com-
puter) in the network tracks the average latency, band-
width, and traffic level for each incoming network link
from another node. Administrators at monitoring sta-
tions analyze the status of the network by collecting
data periodically from the network nodes. For each link
Ni → Nj in the network, each monitoring station will
cache the latest latency, bandwidth, and traffic level fig-
ures obtained from nodeNj . Administrators want to ask
queries such as:

Q1 What is the bottleneck (minimum bandwidth link)
along a pathN1 → N2 → · · · → Nk?

Q2 What is the total latency along a pathN1 → N2 →
· · · → Nk?

Q3 What is the average traffic level in the network?
Q4 What is the minimum traffic level for fast links (i.e.,

links with high bandwidth and low latency)?
Q5 How many links have high latency?
Q6 What is the average latency for links with high traf-

fic?

While administrators would like to obtain current and
precise answers to these kinds of queries, collecting new
data values from each relevant node every time a query
is posed would take too long and might adversely affect
the system. Requiring that all nodes constantly send their
updated values to the monitors is also expensive and gen-
erally unnecessary. This paper develops a new approach

144144144144



precision

pe
rf

or
m

an
ce

Using cached (stale) data

Using source (fresh) data

(a) In current systems
precision

pe
rf

or
m

an
ce

Using a combination of
cached and source data

(b) In TRAPP systems

Figure 1: Precision-performance tradeoff.

to replication and query processing that allows the user
to control the tradeoff between precise answers and high
performance. In our example, the latency, bandwidth,
and traffic level figures at each monitor are cached as
ranges, rather than exact values, and nodes send updates
only when an exact value moves outside of a cached
range. Queries such asQ1–Q6 above can be executed
over the cached ranges and themselves return a range that
is guaranteed to contain the current exact answer. When
an administrator poses a query, he can provide apreci-
sion constraintindicating how wide a range is tolerable
in the answer.

For example, suppose the administrator wishes to
sample the peak latency periodically in some critical
area, in order to decide how much money should be in-
vested in upgrading the network. To make this decision,
the administrator does not need to know the precise peak
latency at each query, but may wish to obtain an answer
to within 5 milliseconds of precision. Our system auto-
matically combines cached ranges with precise values re-
trieved from the nodes in order to answer queries within
the specified precision as quickly as possible.

1.2 Precision-Performance Tradeoff

In general, stale replication systems potentially offer the
user two modes of querying. In the first mode, which
we call theprecise mode, queries are sent to the sources
to get a precise (up-to-date) answer but with potentially
poor performance. Alternatively, in what we call theim-
precise mode, queries are executed over cached data to
get an imprecise (possibly stale) answer very quickly. In
imprecise mode, usually no guarantees are given as to
exactly how imprecise the answer is, so the user is left to
guess the degree of imprecision based on knowledge of
data stability and/or how recently caches were updated.
Figure 1(a) illustrates the precision-performance tradeoff
between these two extreme query modes.

The discrepancy between the extreme points in Figure
1(a) leads to a dilemma: answers obtained in imprecise
mode without any precision guarantees may be unaccept-
able, but the only way to obtain a guarantee is to use
precise mode, which can place heavy load on the system
and lead to unacceptable delays. Many applications actu-
ally require a level of precision somewhere between the
extreme points. In our running example (Section 1.1),
an administrator posing a query with aquantitative pre-
cision constraintlike “within 5 milliseconds” should be
able to find a middle ground between sacrificing preci-

sion and sacrificing performance.
To address this overall problem, we propose a new

kind of replication system, which we call TRAPP
(Tradeoff in Replication Precision and Performance).
TRAPP supports a continuous, monotonically decreas-
ing tradeoff between precision and performance, as char-
acterized in Figure 1(b). Each query can be accompanied
by a custom precision constraint, and the system answers
the query by combining cached and source data so as
to optimize performance while guaranteeing to meet the
precision constraint. The extreme points of our system
correspond to the precise and imprecise query modes de-
fined above.

1.3 Overview of Approach

In addition to introducing the overall TRAPP architec-
ture, in this paper we focus on a specific TRAPP replica-
tion system called TRAPP/AG, for queries with aggre-
gation over numeric (real) data. The conventional precise
answer to a query with an outermost aggregation opera-
tor is a single real value. In TRAPP/AG, we define a
bounded imprecise answer(hereafter calledbounded an-
swer) to be a pair of real valuesLA and HA that de-
fine a range[LA, HA] in which the precise answer is
guaranteed to lie. Precision is quantified as the width
of the range(HA − LA), with 0 corresponding to ex-
act precision and∞ representing unbounded impreci-
sion. A precision constraint is a user-specified constant
R ≥ 0 denoting the maximum acceptable range width,
i.e., 0 ≤ HA − LA ≤ R.

To be able to give guaranteed bounds[LA, HA] as
query answers, TRAPP/AG requires cooperation be-
tween data sources and caches. Specifically, let us sup-
pose that when a source refreshes a cache’s value for a
data objectO, along with the current exact value forO
the source sends a range[L, H ] called theboundof O.
(We actually cover a more general case where the bound
is a function of time.) The source guarantees that the ac-
tual value forO will stay in this bound, or if the value
does exceed the bound then the source will immediately
send a new refresh. Thus, the cache stores the bound
[L, H ] for each data objectO instead of an exact value,
and the cache can be assured that the current master value
of O is within the bound. When the cache answers a
query, it can use the bound values it stores to compute an
answer, also expressed in terms of a bound.

The small table in Figure 2 shows sample data cached
at a network monitoring station (recall Section 1.1),
along with the current precise values at the network
nodes. Theweightsmay be ignored for now. Each row
in Figure 2 corresponds to a network link between the
link from node and thelink to node. Recall that precise
master values forlatency, bandwidth, andtraffic for in-
coming links are measured and stored at thelink to node.
In addition, for each link, the monitoring station stores a
bounded value forlatency, bandwidth, andtraffic. The
cache can use these bounded values to compute bounded
answers to queries.

Suppose a bounded answer to a query with aggrega-

145145145145



link latency bandwidth traffic refresh weights
from to cached precise cached precise cached precise cost W W ′ W ′′

1 N1 N2 [2, 4] 3 [60, 70] 61 [95, 105] 98 3 2 10 29.5
2 N2 N4 [5, 7] 7 [45, 60] 53 [110, 120] 116 6 2 10 2
3 N3 N4 [12, 16] 13 [55, 70] 62 [95, 110] 105 6 15 41.5
4 N2 N3 [9, 11] 9 [65, 70] 68 [120, 145] 127 8 25 2
5 N4 N5 [8, 11] 11 [40, 55] 50 [90, 110] 95 4 3 20 36.5
6 N5 N6 [4, 6] 5 [45, 60] 45 [90, 105] 103 2 2 15 31.5

Figure 2: Sample data for network monitoring example.

tion is computed from cached values, but the answer does
not satisfy the user’s precision constraint,i.e., the answer
bound is too wide. In this case, some data must be re-
freshed from sources to improve precision. We assume
that there is a known quantitativecost associated with
refreshing data objects from their sources, and this cost
may vary for each data item (e.g., in our example it might
be based on the node distance or network path latency).
We show sample refresh costs for our example in Figure
2. Our system uses optimization algorithms that attempt
to find the best combination of cached bounds and mas-
ter values to use in answering a query, in order to min-
imize the cost of refreshing while still guaranteeing the
precision constraint. In this way, TRAPP/AG offers a
continuous precision-performance tradeoff: Relaxing the
precision constraint of a query enables the system to rely
more on cached data, which improves the performance
of the query. Conversely, tightening the constraint causes
the system to rely more on master data, which degrades
performance but yields a more precise answer.

1.4 Contributions

• We define the architecture of TRAPP replication
systems, which offer each user fine-grained con-
trol over the tradeoff between precision and per-
formance, and propose a method for determining
bounds.

• We specify how to compute the five standard rela-
tional aggregation functions over bounded data val-
ues, considering queries with and without selection
predicates, and with joins.

• We present algorithms for finding the minimum-
cost set of tuples to refresh in order to answer an
aggregation query with a precision constraint, with
and without selection predicates. (Joins are dis-
cussed but optimal algorithms are not provided.)
We analyze the complexity of these algorithms, and
in the cases where they are exponential we suggest
approximations.

• We have implemented all of our algorithms and we
present some initial performance results.

2 Related Work
There is a large body of work dedicated to systems that
improve query performance by giving approximate an-
swers. Early work in this area is reported in [22]. Most
of these systems use either precomputation (e.g., [26]),

sampling (e.g., [15]), or both (e.g., [11]) to give an an-
swer with statistically estimated bounds, without scan-
ning all of the input data. By contrast, TRAPP systems
may scan all of the data (some of which may be bounds
rather than exact values), to provide guaranteed rather
than statistical results.

The previous work perhaps most similar to the
TRAPP idea isQuasi-copies[2] and Moving Objects
Databases[29]. Like TRAPP systems, these two sys-
tems are replication schemes in which cached values are
permitted to deviate from master values by a bounded
amount. However, unlike in TRAPP systems, these sys-
tems cannot answer queries by combining cached and
master data, and thus there is no way for users to control
the precision-performance tradeoff. Instead, the bound
for each data object is set independently of any query-
based precision constraints. In Quasi-copies, bounds are
set statically by a system administrator. In Moving Ob-
jects Databases, bounds are set to maximize a single met-
ric that combines precision and performance, eliminat-
ing user control of this tradeoff. Furthermore, neither of
these systems support aggregation queries.

The Demarcation Protocol [3] is a technique
for maintaining arithmetic constraints in distributed
database systems. TRAPP systems are somewhat re-
lated to this work since the bound of a data value forms
an arithmetic constraint on that value. However, the
Demarcation Protocol is not designed for modifying
arithmetic constraints the way TRAPP systems update
bounds as needed. Furthermore, the Demarcation Proto-
col does not deal with queries over bounded data.

Both [19] and [28] consider aggregation queries with
selections. The APPROXIMATE approach [19] pro-
duces bounded answers when time does not permit the
selection predicate to be evaluated on all tuples. How-
ever, APPROXIMATE does not deal with queries over
bounded data. The work in [28] deals with queries over
fuzzy sets. While bounded values can be considered
as infinite fuzzy sets, this representation is not practi-
cal. Furthermore, the approach in [28] does not consider
fuzzy sets as approximations of exact values available for
a cost.

In the multi-resolution relational data model[27],
data objects undergo various degrees of lossy compres-
sion to reduce the size of their representation. By reading
the compressed versions of data objects instead of the
full versions, the system can quickly produce approxi-
mate answers to queries. By contrast, in TRAPP sys-
tems performance is improved by reducing the number

146146146146



of data objects read from remote sources, rather than by
reducing the size of the data representation. InDiver-
gence Caching[16], a bound is placed on the number of
updates permitted to the master copy of a data object be-
fore the cache must be refreshed, but there are no bounds
on data values themselves.

Another body of work that deals with imprecision
in information systems isInformation Quality(IQ) re-
search,e.g., [23]. IQ systems quantify the accuracy of
data at the granularity of an entire data server. Since no
bounds are placed on individual data values, queries have
no concrete knowledge about the precision of individ-
ual data values from which to form a bounded answer.
Therefore, IQ systems cannot give a guaranteed bound
on the answer to a particular query.

Finally, data objects whose values are ranges can
be considered a special case of constrained values in
Constraint Databases[20, 6, 7, 21, 4], or as null vari-
ables with local conditions inIncomplete Information
Databases[1]. However, no work in these areas that
we know of considers constrained values as bounded ap-
proximations of exact values stored elsewhere. Further-
more, aggregation queries over a set with uncertain mem-
bership (e.g., due to selection conditions over bounded
values) are not considered.

3 TRAPP System Architecture

The overall architecture of a TRAPP system is illus-
trated in Figure 3. Data Sourcesmaintain the exact
valueVi of each data objectOi, while Data Cachesstore
bounds[Li, Hi] that are guaranteed to contain the ex-
act values. Source values may appear in multiple caches
(with possibly different bounds), and caches may contain
bounded values from multiple sources. A user submits
a query to theQuery Processorat a local data cache,
along with a precision constraint. To answer the query
while guaranteeing the constraint, the query processor
may need to sendquery-initiated refresh requeststo the
Refresh Monitorat one or more sources, which responds
with new bounds. The Refresh Monitor at each source
also keeps track of the bounds for each of its data objects
in each relevant cache. (Note that in the network moni-
toring application we consider in this paper, each source
must only keep track of a small number of bounds. In
other applications a source may provide a large number
of objects to multiple caches, in which case a scalable
trigger system would be of great benefit [13].) The Re-
fresh Monitor is responsible for detecting whenever the
value of a data object exceeds the bound in some cache,
and sending a new bound to the cache (avalue-initiated
refresh).

When the cached bound of a data object is refreshed
by its source, some cost is incurred. We consider the gen-
eral case where each object has its own cost to refresh,
although in practice it is likely that the cost of refreshing
an object depends only on which source it comes from.
(It also may be possible to amortize refresh costs for a
set of values, as discussed in Section 8.) These costs are
used by our algorithms that choose tuples to refresh in

V  = 3
V  = 5

1

2

Refresh Monitor

User

constraint
precision
query +

Query Processor

Data
Caches

bounded

Sources
Data

query-
initiated

answer

refresh
request

refresh

[L   , H   ] = [2, 6]

2

1 1

[L   , H   ] = [5, 9]2

Figure 3: TRAPP system architecture.

order to meet the precision constraint of a query at mini-
mum cost.

The TRAPP architecture as presented in this paper
makes some simplifying assumptions. First, although
object insertions or deletions do not occur on a regular
basis in our example application, insertions and deletions
are handled but they must be propagated immediately
to all caches. (Section 8.3 discusses how this limitation
might be relaxed.) Second, the level of precision offered
by our system does not account for elapses of time while
sending refresh messages or while processing a single
query. We assume that the time to refresh a bound is
small enough that the imprecision introduced is insignif-
icant. Furthermore, we assume that value-initiated re-
freshes do not occur during the time an individual query
is being processed. Addressing these issues is a topic for
future work as discussed in Section 8.4.

Next, in Section 3.1 we discuss in more detail the
mechanics of bounded values and refreshing. Then in
Section 3.2 we generalize bound functions to be time-
varying functions. In Section 4 we discuss the execution
of aggregation queries in the TRAPP/AG system, be-
fore presenting our specific optimization algorithms for
single-table aggregation queries in Sections 5 and 6. In
Section 7 we present some preliminary results for aggre-
gation queries with joins.

3.1 Refreshing Cached Bounds

The master copy of each data objectOi resides at a sin-
gle source, and for TRAPP/AG we assume it is a single
real value, which we denoteVi. Caches store a range of
possible values (thebound) for each data object, which
we denote[Li, Hi]. When a source sends a copy of data
objectOi to a cache (arefreshevent at timeTr), in ad-
dition to sendingOi’s current precise value, which we
denoteVi(Tr), it sends a bound[Li, Hi].

As discussed earlier, refreshes occur for one of two
reasons. First, if the master value of a data object ex-
ceeds its bound stored in some cache (i.e., at current time
Tc, Vi(Tc) < Li or Vi(Tc) > Hi), then the source is ob-
ligated to refresh the cache with the current precise value
Vi(Tc) and a new bound[Li, Hi]—a value-initiated re-
fresh. Second, a query-initiated refresh occurs if a query
being executed at a cache requires the current exact value
of a data object in order to meet its precision constraint.

147147147147



refresh
initiated
query-

refresh
initiated
value-

(τ)Hi

(τ)iL

time τ

va
lu

e

(τ)Vi

Figure 4: Bound[Li(T ), Hi(T )] over time, overlaid
with precise valueVi(T ).

In this case, the source will sendVi(Tc) along with a new
bound to the cache, and the precise valueVi(Tc) can be
used in the query.

3.2 Bounds as Functions of Time

Section 3.1 presented a simple approach where the bound
of each data objectOi is a pair of endpoints[Li, Hi]. A
more general and accurate approach is to parameterize
the bound by time:[Li(T ), Hi(T )]. In other words, the
endpoints of the bound are functions of timeT . These
functions have the property thatLi(Tr) = Hi(Tr) =
Vi(Tr), whereTr is the refresh time. That is, the bound
at the time of refresh has zero width and both endpoints
equal the current value. As time advances pastTr, the
endpoints of the bound diverge fromVi(Tr) such that the
bound contains the precise value at all timesTc ≥ Tr:
Li(Tc) ≤ Vi(Tc) ≤ Hi(Tc). Eventually, when another
refresh occurs, the source sends a new pair of bound
functions to the cache that replaces the old pair. Figure 4
illustrates the bound[Li(T ), Hi(T )] of a data objectOi

over time, overlaid with its precise valueVi(T ).
All of the subsequent algorithms and results in this

paper are independent of how bounds are selected and
specified. In fact, in the body of the paper we assume
that any time-varying bound functions have been evalu-
ated at the current timeTc, and we write[Li, Hi] to mean
[Li(Tc), Hi(Tc)]. Also, we writeVi to mean the exact
value at the current time:Vi(Tc). We have done some
preliminary work investigating appropriate bound func-
tions, and have deduced that in the absence of additional
information about update behavior, appropriate functions
are those that expand according to the square-root of
elapsed time. That is:Hi(T ) − Li(T ) ∝

√
T − Tr,

whereTr is the time of the most recent refresh. The
proportionality parameter, which determines the width of
the bound, is chosen at run-time. The interested reader is
referred to [24] for details.

4 Query Execution for Bounded Answers
Executing a TRAPP/AG query with a precision con-
straint may involve combining precise data stored on re-
mote sources with bounded data stored in a local cache.
In this section we describe in general how bounded ag-
gregation queries are executed, and we present a cost
model to be used by our algorithms that choose cached

data objects to refresh when answering queries. For the
remainder of this paper we assume the relational model,
although TRAPP/AG can be implemented with any data
model that supports aggregation of numerical values.

For now we consider single-table TRAPP/AG
queries of the following form. Joins are addressed in
Section 7.

SELECT AGGREGATE(T.a) WITHIN R
FROM T
WHERE PREDICATE

AGGREGATEis one of the standard relational aggrega-
tion functions: COUNT, MIN, MAX, SUM, or AVG.
PREDICATEis any predicate involving columns of table
T and possibly constants.R is a nonnegative real con-
stant specifying the precision constraint, which requires
that the bounded answer[LA, HA] to the query satisfies
0 ≤ HA − LA ≤ R. If R is omitted thenR = ∞
implicitly.

To compute a bounded answer to a query of this form,
TRAPP/AG executes several steps:

1. Compute an initial bounded answer based on the
current cached bounds and determine if the preci-
sion constraint is met. If not:

2. An algorithm CHOOSEREFRESH examines the
cache’s copy of tableT and chooses a subset ofT ’s
tuplesTR to refresh. The source for each tuple in
TR is asked to refresh the cache’s copy of that tuple.

3. Once the refreshes are complete, recompute the
bounded answer based on the cache’s now partially
refreshed copy ofT .

Our CHOOSEREFRESH algorithm ensures that the
answer after step 3 is guaranteed to satisfy the precision
constraint.

Sections 5 and 6 present details based on each specific
aggregation function, considering queries with and with-
out selection predicates. For each type of aggregation
query we address the following two problems:

• How to compute a bounded answer based on the
current cached bounds. This problem corresponds
to steps 1 and 3 above.

• How to choose the set of tuples to refresh.
This problem corresponds to step 2 above. A
CHOOSEREFRESH algorithm isoptimal if it
finds the cheapest subsetTR of T ’s tuples to refresh
(i.e., the subset with the least total cost) that guar-
antees the final answer to the query will satisfy the
precision constraint for any precise values of the re-
freshed tuples within the current bounds.

We are assuming that the cost to refresh a set of tuples
is the sum of the costs of refreshing each member of the
set, in order to keep the optimization problem manage-
able. This simplification ignores possible amortization
due to batching multiple requests to the same source.

148148148148



Also recall that we assume a separate refresh cost may
be assigned to each tuple, although in practice all tuples
from the same source may incur the same cost.

Note that the entire setTR of tuples to refresh is se-
lected before the refreshes actually occur, so the preci-
sion constraint must be guaranteed for any possible pre-
cise values for the tuples inTR. A different approach is
to refresh tuples one at a time (or one source at a time),
computing a bounded answer after each refresh and stop-
ping when the answer is precise enough. See Section 8.2
for further discussion.

5 Aggregation without Selection Predi-
cates

This section specifies how to compute a bounded answer
from bounded data values for each type of aggregation
function, and describes algorithms for selecting refresh
sets for each aggregation function. For now, we assume
that any selection predicate in the TRAPP/AG query in-
volves only columns that contain exact values. Thus, in
this section we assume that the selection predicate has al-
ready been applied and the aggregation is to be computed
over the tuples that satisfy the predicate. TRAPP/AG
queries with selection predicates involving columns that
contain bounded values are covered in Section 6, and
joins involving bounded values are discussed in Section
7.

Suppose we want to compute an aggregate over col-
umnT.a of a cached tableT . The value ofT.a for each
tupleti is stored in the cache as a bound[Li, Hi]. While
computing the aggregate, the query processor has the op-
tion for each tupleti of either reading the cached bound
[Li, Hi] or refreshingti to obtain the master valueVi.
The cost to refreshti is Ci. The final answer to the ag-
gregate is a bound[LA, HA].

5.1 Computing MIN with No Selection Predicate

Computing the bounded MIN ofT.a is straightforward:

[LA, HA] = [min
ti∈T

(Li), min
ti∈T

(Hi)]1

The lowest possible value for the minimum (LA) occurs
if for all ti ∈ T , Vi = Li, i.e., each value is at the
bottom of its bound. Conversely, the highest possible
value for the minimum (HA) occurs ifVi = Hi for all
tuples. Returning to our example of Section 1.1, suppose
we want to find the minimum bandwidth link along the
pathN1 → N2 → N4 → N5 → N6, i.e., queryQ1.
Applying the bounded MIN ofbandwidthto tuplesT =
{1, 2, 5, 6} in Figure 2 yields[40, 55].

Choosing an optimal set of tuples to refresh for
a MIN query with a precision constraint is also
straightforward, although the algorithm’s justification
and proof of optimality is nontrivial (see [24]). The
CHOOSEREFRESHNO SEL/MIN algorithm chooses
TR to be all tuples ti ∈ T such that Li <

1In this and all subsequent formulas, we definemin(∅) = +∞ and
max(∅) = −∞.

mintk∈T (Hk) − R, whereR is the precision constraint,
independent of refresh cost. That is,TR contains all tu-
ples whose lower bound is less than the minimum upper
bound minus the precision constraint. If B-tree indexes
exist on both the upper and lower bounds2, the setTR

can be found in time less thanO(|T |) by first using the
index on upper bounds to findmintk∈T (Hk), and then
using the index on lower bounds to find tuples that sat-
isfy Li < mintk∈T (Hk)−R. Without these two indexes,
the running time for CHOOSEREFRESHNO SEL/MIN

is O(|T |).
Consider again our example queryQ1, which finds

the minimum bandwidth along pathN1 → N2 → N4 →
N5 → N6. CHOOSEREFRESHNO SEL/MIN with
R = 10 would choose to refresh tuple 5, since it is the
only tuple among{1, 2, 5, 6} whose low value is less
thanmintk∈{1,2,5,6}(Hk) − R = 55 − 10 = 45. After
refreshing, tuple 5’s bandwidth value turns out to be50,
so the new bounded answer is[45, 50].

The MAX aggregation function is symmetric to
MIN. See [24] for details.

5.2 Computing SUM with No Selection Predicate

To compute the bounded SUM aggregate, we take the
sum of the values at each extreme:

[LA, HA] = [
∑

ti∈T

Li,
∑

ti∈T

Hi]

The smallest possible sum occurs when all values are
as low as possible, and the largest possible sum occurs
when all values are as high as possible. In our running
example, the bounded SUM oflatencyalong the path
N1 → N2 → N4 → N5 → N6 (queryQ2) using the
data from Figure 2 is[19, 28].

The problem of selecting an optimal setTR of tuples
to refresh for SUM queries with precision constraints is
better attacked as the equivalent problem of selecting the
tuples not to refresh:TR = T −TR. We first observe that
HA−LA =

∑
ti∈T Hi−

∑
ti∈T Li =

∑
ti∈T (Hi−Li).

After refreshing all tuplestj ∈ TR, we haveHj − Lj =
0, so these values contribute nothing to the bound. Thus,
after refresh,

∑
ti∈T (Hi − Li) =

∑
ti∈TR

(Hi − Li).
These equalities combined with the precision constraint
HA−LA ≤ R give us the constraint

∑
ti∈TR

(Hi−Li) ≤
R. The optimization objective is to satisfy this constraint
while minimizing the total cost of the tuples inTR. Ob-
serve that minimizing the total cost of the tuples inTR is
equivalent to maximizing the total cost of the tuples not
in TR. Therefore, the optimization problem can be for-
mulated as choosingTR so as to maximize

∑
ti∈TR

Ci

under the constraint
∑

ti∈TR
(Hi − Li) ≤ R.

It turns out that this problem is isomorphic to the well-
known 0/1 Knapsack Problem[8], which can be stated
as follows: We are given a setS of items that each have
weightWi and profitPi, along with a knapsack with ca-
pacity M (i.e., it can hold any set of items as long as

2Section 8.3 briefly discusses indexing time-varying range end-
points, a problem on which we are actively working.

149149149149



their total weight is at mostM ). The goal of the Knap-
sack Problem is to choose a subsetSK of the items inS
to place in the knapsack that maximizes total profit with-
out exceeding the knapsack’s capacity. In other words,
chooseSK so as to maximize

∑
i∈SK

Pi under the con-
straint

∑
i∈SK

Wi ≤ M . To state the problem of se-
lecting refresh tuples for bounded SUM queries as the
0/1 Knapsack Problem, we assignS = T , SK = TR,
Pi = Ci, Wi = (Hi − Li), andM = R.

Unfortunately, the 0/1 Knapsack Problem is known
to be NP-Complete [10]. Hence all known approaches
to solving the problem optimally, such as dynamic pro-
gramming, have a worst-case exponential running time.
Fortunately, an approximation algorithm exists that, in
polynomial time, finds a solution having total profit
that is within a fractionε of optimal for any 0 <
ε < 1 [17]. The running time of the algorithm is
O(n · log n) + O((3

ε )2 · n). We use this algorithm for
CHOOSEREFRESHNO SEL/SUM. Adjusting param-
eterε in the algorithm allows us to trade off the running
time of the algorithm against the quality of the solution.

In the special case of uniform costs (Ci = Cj for
all tuplesti andtj), all knapsack objects have the same
profit Pi, and the 0/1 Knapsack Problem has a polyno-
mial algorithm [8]. The optimal answer then can be
found by “placing objects in the knapsack” in order of
increasing weightWi until the knapsack cannot hold any
more objects. That is, we add tuples toTR starting with
the smallestHi − Li bounds until the next tuple would
cause

∑
ti∈TR

(Hi − Li) > R. If an index exists on the
bound widthHi − Li (see Section 8.3), this algorithm
can run in sublinear time. Without an index on bound
width, the running time of this algorithm isO(n · log n),
wheren = |T |.

Consider again queryQ2 that asks for the total latency
along pathN1 → N2 → N4 → N5 → N6. Fig-
ure 2 shows the correspondence between our problem
and the Knapsack Problem by specifying the knapsack
“weight” W = H − L for the latencycolumn of each
tuple in {1, 2, 5, 6}. Using the exponential (optimal)
knapsack algorithm to find the total latency along path
N1 → N2 → N4 → N5 → N6 with R = 5, tuples 2
and 5 are “placed in the knapsack” (whose capacity is5),
leavingTR = {1, 6}. The bounded SUM oflatencyafter
refreshing tuples 1 and 6 is[21, 26].

5.2.1 Performance Experiments

CHOOSEREFRESHNO SEL/SUM uses the approxi-
mation algorithm from [17] to quickly find a cheap set
of tuplesTR to refresh such that the precision constraint
is guaranteed to hold. We implemented the algorithm
and ran experiments using90 actual stock prices that
varied highly in one day. The high and low values
for the day were used as the bounds[Li, Hi], the clos-
ing value was used as the precise valueVi, and the re-
fresh costCi for each data object was set to a random
number between1 and 10. Running times were mea-
sured on a Sun Ultra-1 Model 140 running SunOS 5.6.
In Figure 5 we fix the precision constraintR = 100

CHOOSEREFRESH timese
co

n
d

s

120

80

40

0

total refresh cost

approximation parameterε

to
ta

lc
o

st

0.10.080.060.040.020

360

345

330

Figure 5: CHOOSEREFRESHNO SEL/SUM time and
refresh cost for varyingε.

SUM with different values forR (ε = 0.1)

precision constraintR

pe
rf

or
m

an
ce

(r
ef

re
sh

co
st

)

050100140
4000

3000

2000

1000

0

Figure 6: Precision-performance tradeoff for
CHOOSEREFRESHNO SEL/SUM.

and varyε in the knapsack approximation in order to
plot CHOOSEREFRESH time and total refresh cost
of the selected tuples. Smaller values forε increase
the CHOOSEREFRESH time but decrease the refresh
cost. However, since the CHOOSEREFRESH time
increases quadratically while the refresh cost only de-
creases by a small fraction, it is not in general advan-
tageous to setε below 0.1 (which comes very close to
optimal) unless refreshing is extremely expensive.

In Figure 6 we fix the approximation parameterε =
0.1 and varyR in order to plot precision (precision con-
straint R) versus performance (total refresh cost) for
our CHOOSEREFRESHNO SEL/SUM algorithm. This
graph, a concrete instantiation of Figure 1(b), clearly
shows the continuous, monotonically decreasing trade-
off between precision and performance that characterizes
TRAPP systems.

5.3 Computing COUNT with No Selection Predi-
cate

When no selection predicate is present, computing
COUNT amounts to computing the cardinality of the ta-
ble. Since we currently require all insertions and dele-
tions to be propagated immediately to the data caches
(Section 3), the cardinality of the cached copy of a table
is always equal to the cardinality of the master copy, so
there is no need for refreshes.

150150150150



5.4 Computing AVG with No Selection Predicate

When no selection predicate is present, the procedure
for computing the AVG aggregate is as follows. First,
computeCOUNT , which as discussed in Section 5.3
is simply the cardinality of the cachedT . Then, com-
pute the bounded SUM as described in Section 5.2 with
R = R · COUNT to produce[LSUM , HSUM ]. Finally,
let:

[LA, HA] = [
LSUM

COUNT
,

HSUM

COUNT
]

Since the bound widthHA − LA = HSUM−LSUM

COUNT ,
by computing SUM such thatHSUM − LSUM ≤
R · COUNT , we are guaranteeing thatHA − LA ≤
R, and the precision constraint is satisfied. The run-
ning time is dominated by the running time of the
CHOOSEREFRESHNO SEL/SUM algorithm, which is
given in Section 5.2.

Consider queryQ3 from Section 1.1 to compute the
average traffic level in the entire network, and let preci-
sion constraintR = 10. We first computeCOUNT = 6,
and then compute SUM withR = R · COUNT =
10 · 6 = 60. The column labeledW ′ in Figure 2 shows
the knapsack weight assigned to each tuple based on the
cached bounds fortraffic. Using the optimal Knapsack
algorithm, the SUM computation will cause tuples 5
and 6 to be refreshed, resulting in a bounded SUM of
[618, 678]. Dividing by COUNT = 6 gives a bounded
AVG of [103, 113].

6 Modifications to Incorporate Selection
Predicates

When a selection predicate involving bounded values is
present in the query, both computing bounded aggre-
gate results and choosing refresh tuples to meet the pre-
cision constraint become more complicated. This sec-
tion presents modifications to the algorithms in Section 5
to handle single-table aggregation queries with selection
predicates. We begin by introducing techniques common
to all TRAPP/AG queries with predicates, regardless of
which aggregation function is present.

Consider a selection predicate involving at least one
column ofT that contains bounded values. The system
can partitionT into three disjoint sets:T−, T ?, andT +.
T− contains those tuples that cannot possibly satisfy the
predicate given current bounded data.T+ contains tuples
that are guaranteed to satisfy the predicate given current
bounded data. All other tuples are inT ?, meaning that
there exist some precise values within the current bounds
that will cause the predicate to be satisfied, and other val-
ues that will cause the predicate not to be satisfied. The
process of classifying tuples intoT−, T ?, andT + when
the selection predicate involves at least one column with
bounded values is detailed in [24]. The most interesting
aspect is that filters overT that find the tuples inT + and
T ? can always be expressed as simple predicates over
bounded value endpoints, and all of our algorithms for
computing bounded answers and choosing tuples to re-
fresh examine only tuples inT+ andT ?. Therefore, the

classification can be expressed as SQL queries and opti-
mized by the system, possibly incorporating specialized
indexes as discussed in Section 8.3.

For examples in the remainder of this section we refer
to Figure 7, which shows the classification for three dif-
ferent predicates over the data from Figure 2, both before
and after the exact values are refreshed.

6.1 Computing MIN with a Selection Predicate

When a selection predicate is present, the bounded MIN
answer is:

[LA, HA] = [ min
ti∈T+∪T ?

(Li), min
ti∈T+

(Hi)]

In the “worst case” forLA, all tuples inT ? satisfy the
predicate (i.e., they turn out to be inT +), so the smallest
lower bound of any tuple that might satisfy the predi-
cate forms the lower bound for the answer. In the “worst
case” forHA, tuples inT ? do not satisfy the predicate
(i.e., they turn out to be inT−), so the smallest upper
bound of the tuples guaranteed to satisfy the predicate
forms the only guaranteed upper bound for the answer. In
our running example, consider queryQ4: find the mini-
mumtraffic where(bandwidth > 50)∧ (latency < 10).
The result using the data from Figure 2 and classifica-
tions from Figure 7 is[90, 105].

CHOOSEREFRESHMIN choosesTR to be ex-
actly the tuplesti ∈ T + ∪ T ? such thatLi <
mintk∈T+(Hk) − R. This algorithm is essentially the
same as CHOOSEREFRESHNO SEL/MIN, and is cor-
rect and optimal for the same reason (see [24]). The
only additional case to consider is that refreshing tu-
ples inT ? may move them intoT−. However, such tu-
ples do not contribute to the actual MIN, and thus do
not affect the bound of the answer[LA, HA]. Hence,
the precision constraint is still guaranteed to hold. As
with CHOOSEREFRESHNO SEL/MIN the running
time for CHOOSEREFRESHMIN can be sublinear if
B-tree indexes are available on both the upper and lower
bounds. Otherwise, the worst-case running time for
CHOOSEREFRESHMIN is O(n).

For our queryQ4 with precision constraintR = 10,
CHOOSEREFRESHMIN choosesTR = {5, 6}, since
tuples 5 and 6 may pass the selection predicate and their
low values are less thanmintk∈T+(Hk) − R = 105 −
10 = 95. After refreshing, tuples 5 and 6 turn out not
to pass the selection predicate, so the bounded MIN is
[95, 105].

The MAX aggregation function is symmetric to
MIN. See [24] for details.

6.2 Computing SUM with a Selection Predicate

To compute SUM in the presence of a selection predi-
cate:

[LA, HA] = [
∑

ti∈T+

Li +
∑

ti∈T ?

∧Li<0

Li,
∑

ti∈T+

Hi +
∑

ti∈T ?

∧Hi>0

Hi]

151151151151



(bandwidth > 50) ∧ (latency < 10) latency > 10 traffic > 100
before refresh after refresh before refresh after refresh before refresh after refresh

1 T + T + T− T− T ? T−

2 T ? T + T− T− T + T +

3 T− T− T + T + T ? T +

4 T ? T + T ? T− T + T +

5 T ? T− T ? T + T ? T−

6 T ? T− T− T− T ? T +

Figure 7: Classification of tuples intoT−, T ?, andT + for three selection predicates.

The “worst case” forLA occurs when all and only those
tuples inT ? with negative values forLi satisfy the selec-
tion predicate and thus contribute to the result. Similarly,
the “worst case” forHA occurs when only tuples inT ?

with positive values forHi satisfy the predicate.

The CHOOSEREFRESHSUM algorithm is similar
to CHOOSEREFRESHNO SEL/SUM, which maps the
problem to the 0/1 Knapsack Problem (Section 5.2). The
following two modifications are required. First, we ig-
nore all tuplesti ∈ T−. Second, for tuplesti ∈ T ?, we
setWi to one of three possible values. IfLi ≥ 0, let
Wi = Hi − 0 = Hi. If Hi ≤ 0, let Wi = 0 − Li = −Li.
Otherwise, letWi = (Hi−Li) as before. The idea is that
we want to effectively extend the bounds for all tuples in
T ? to include0, since it is possible that these tuples are
actually inT− and thus do not contribute to the SUM
(i.e., contribute value0). In the knapsack formulation, to
extend the bounds to0 we need to adjust the weights as
specified above.

6.3 Computing COUNT with a Selection Predicate

The bounded answer to the COUNT aggregation
function in the presence of a selection predicate is:
[LA, HA] = [|T +|, |T +| + |T ?|]. For example, consider
queryQ5 from Section 1.1 that asks for the number of
links that havelatency > 10. Figure 7 shows the classi-
fication of tuples intoT−, T ?, andT +. Since|T +| = 1
and|T ?| = 2, the bounded COUNT is [1, 3].

The CHOOSEREFRESHCOUNT algorithm is
based on the fact thatHA − LA = |T ?|, and that
refreshing a tuple inT ? is guaranteed to remove
it from T ?. Given these two facts, the optimal
CHOOSEREFRESHCOUNT algorithm is to letTR

be the d|T ?| − Re cheapest tuples inT ?. Using a
B-tree index on cost, this algorithm runs in sublinear
time. Otherwise, the worst-case running time for
CHOOSEREFRESHCOUNT requires a sort and is
O(n · log n).

Consider again queryQ5 and supposeR = 1. Since
|T ?| = 2, CHOOSEREFRESHCOUNT selectsTR =
{5}, which is thed|T ?| − Re = d2 − 1e = 1 cheapest
tuple inT ?. After updating this tuple (which turns out to
be inT +), the bounded COUNT is [2, 3].

6.4 Computing AVG with a Selection Predicate

6.4.1 Computing the Bounded Answer

Computing the bounded AVG when a predicate is
present is somewhat more complicated than computing
the other aggregates. With a predicate, COUNT is a
bounded value as well as SUM, so it is no longer a sim-
ple matter of dividing the endpoints of the SUM bound
by the exact COUNT value (as in Section 5.4). To com-
pute the lower bound on AVG, we start by computing
the average of the low endpoints of theT+ bounds, and
then average in the low endpoints of theT ? bounds one
at a time in increasing order until the point at which the
average increases. Computing the upper bound on AVG
is the reverse. For example, consider queryQ6 from Sec-
tion 1.1 that asks for the average latency for links having
traffic > 100. To compute the lower bound, we start
by averaging the low endpoints ofT + tuples 2 and 4,
and then average in the low endpoints ofT ? tuples 1 and
then 6 to obtain a lower bound on average latency of5.
We stop at this point since averaging in furtherT ? tu-
ples would increase the lower bound. This computation
is formalized in [24], and has a worst-case running time
of O(n · log n).

A looser bound for AVG can be computed in linear
time by first computing SUM as[LSUM , HSUM ] and
COUNT as[LCOUNT , HCOUNT ] using the algorithms
from Sections 6.2 and 6.3, then setting:

[LA, HA] = [min(
LSUM

HCOUNT
,

LSUM

LCOUNT
),

max(
HSUM

LCOUNT
,

HSUM

HCOUNT
)]

In our example, [LSUM , HSUM ] = [14, 55] and
[LCOUNT , HCOUNT ] = [2, 6]. Thus, the linear algo-
rithm yields [2.3, 27.5]. Notice that this bound is in-
deed looser than the[5, 11.3] bound achieved by the
O(n · log n) algorithm above.

6.4.2 Choosing Tuples to Refresh

CHOOSEREFRESHAVG is our most complicated sce-
nario. Details are provided in [24]. Here we give a very
brief description.

Our CHOOSEREFRESHAVG algorithm uses the
fact that a loose bound on AVG can be achieved as
a function of the bounds for SUM and COUNT, as
in the linear algorithm in Section 6.4.1 above. We

152152152152



choose refresh tuples that provide bounds for SUM and
COUNT such that thebound for AVG as a function of
the bounds for SUM and COUNT meets the precision
constraint. This interaction is accomplished by using a
modified version of the CHOOSEREFRESHSUM al-
gorithm that understands how the choice of refresh tu-
ples for SUM affects the bound for COUNT. This al-
gorithm sets a precision constraint for SUM that takes
into account the changing bound for COUNT to guar-
antee that the overall precision constraint on AVG is
met. CHOOSEREFRESHAVG preserves the Knap-
sack Problem structure. Therefore, choosing refresh tu-
ples for AVG can be accomplished by solving the 0/1
Knapsack Problem, and it has the same complexity as
CHOOSEREFRESHNO SEL/SUM (see Section 5.2).

In our example queryQ6 above, if we setR = 2 then
CHOOSEREFRESHAVG chooses a knapsack capacity
of M = 4 and assigns a weight to each tuple as shown
in the column labeledW ′′ in Figure 2. The knapsack
optimally “contains” tuples 2 and 4. After refreshing the
other tuplesTR = {1, 3, 5, 6}, the bounded AVG is[8, 9].

7 Aggregation Queries with Joins
Computing the bounded answer to an aggregation query
with a join expression (i.e., with multiple tables in the
FROMclause) is no different from doing so with a selec-
tion predicate: in most SQL queries, a join is expressed
using a selection predicate that compares columns of
more than one table. Our method for determining mem-
bership of tuples inT+, T ?, andT− applies to join pred-
icates as well as selection predicates. As before, the
classification can be expressed as SQL queries and op-
timized by the system to use standard join techniques,
possibly incorporating specialized indexes as discussed
in Section 8.3.

On the other hand, choosing tuples to refresh is sig-
nificantly more difficult in the presence of joins. First,
since there are several “base” tuples contributing to each
“aggregation” (joined) tuple, we can choose to refresh
any subset of the base tuples. Each subset might shrink
the answer bound by a different amount, depending how
it affects theT +, T ?, T− classification combined with
its effect on the aggregation column. Second, since each
base tuple can potentially contribute to multiple aggre-
gation tuples, refreshing a base tuple for one aggregation
tuple can also affect other aggregation tuples. These in-
teractions make the problem quite complex. We have
considered various heuristic algorithms that choose tu-
ples to refresh for join queries. Currently, we are in-
vestigating the exact complexity of the problem and
hope to find an approximation algorithm with a tun-
ableε parameter, as in the approximation algorithm for
CHOOSEREFRESHSUM.

8 Status and Future Work
We have implemented all of the bounded aggregation
functions and CHOOSEREFRESH algorithms pre-
sented in this paper, and implementation of the source-
cache cooperation discussed in Sections 3.1 and 3.2 is

underway. In addition to testing our algorithms in a re-
alistic environment, we plan to study how the choice of
bound width (Section 3.2) affects the refresh frequency,
and we plan to investigate alternative methods of choos-
ing bound functions.

This paper represents our initial work in TRAPP
replication systems, so there are numerous avenues for
future work. We divide the future directions into four cat-
egories: additional functionality (Section 8.1), choosing
tuples to refresh (Section 8.2), improving performance
(Section 8.3), and real-time and availability issues (Sec-
tion 8.4).

8.1 Additional Functionality

• Expanding the class of aggregation queries we
consider. We want to devise algorithms for
other aggregation functions, such as MEDIAN (for
which we have preliminary results [9]) and TOP-
n. In addition, we would like to extend our results
to handle grouping on bounded values, enabling
GROUP-BY and COUNT UNIQUE queries. We
would also like to handle nested aggregation func-
tions such as MAX(AVG), which requires under-
standing how the precision of the bounded results
of the inner aggregate affects the precision of the
outer aggregate.

• Looking beyond aggregation queries. We be-
lieve that the TRAPP idea can be expanded to en-
compass other types of relational and non-relational
queries having different precision constraints. In
our running example (Section 1.1), suppose we
wish to find the lowest latency path in the network
from nodeNi to nodeNj . A precision constraint
might require that the value corresponding to the an-
swer returned by TRAPP (i.e., the latency of the se-
lected path) is within some distance from the value
of the precise best answer.

• Allowing users to express relative instead of ab-
solute precision constraints. A relative precision
constraint might be expressed as a constantP ≥
0 that denotes an absolute precision constraint of
2 · A · P , whereA is the actual answer. The dif-
ficulty is thatA is not known in advance. Based on
the bound onA derived in the first pass from cached
data alone, it is possible to find a conservative abso-
lute precision constraintR ≤ 2 · A · P to use in
our algorithms. However, it might be possible to re-
design our algorithms to perform better with relative
bounds.

• Considering probabilistic precision guarantees.
TRAPP systems as defined in this paper im-
prove performance by providing bounded answers,
while offering absolute guarantees about precision.
As discussed in Section 2, other approaches im-
prove performance by giving probabilistic guaran-
tees about precision. An interesting direction is to
combine the two for even better performance: pro-
vide bounded answers with probabilistic precision
guarantees.

153153153153



• Considering applying our TRAPPideas tomulti-
levelreplication systems, where each data object
resides on one source and there is a hierarchy of
data caches.Refreshes would then occur between
a cache and the caches or sources one level below,
with a possible cascading effect. A current exam-
ple of such a scenario is Web caching systems (e.g.,
Inktomi Traffic Server[18]), which reside between
Web servers and end-user Web browsers.

• Extending data visualization techniques to take
advantage ofTRAPP. We are currently investigat-
ing ways to extend data visualization systems (e.g.,
[25]) to display images based on bounded data in-
stead of precise data, perhaps by drawing fuzzy re-
gions to indicate uncertainty. A visualization in a
TRAPP setting could be modeled as a continuous
query in which precision constraints are formulated
in the visual domain and upheld by TRAPP.

8.2 Choosing Tuples to Refresh

• Adapting our CHOOSEREFRESHalgorithms
to take refresh batching into account. If mul-
tiple query-initiated refreshes are sent to the same
source, the overall cost may be less than the sum
of the individual costs. We would like to adapt
our CHOOSEREFRESH algorithms to take into
account such cases where refreshing one tuple re-
duces the cost of refreshing other tuples. In
fact, the same adaptation may help us develop
CHOOSEREFRESH algorithms for queries in-
volving join and group-by expressions. In both of
these cases, refreshing a tuple for one purpose (one
group or joined tuple) may reduce the subsequent
cost for another purpose (group or joined tuple).

• Considering iterative CHOOSEREFRESHal-
gorithms. Rather than choosing a set of tuples in
advance that guarantees adequate precision regard-
less of actual exact values, we could refresh tuples
iteratively until the precision constraint is met. In
addition to developing the alternative suite of algo-
rithms, it will be interesting to investigate in which
contexts an iterative method is preferable to the
batch method presented in this paper. Also, we
could use an iterative method to give bounded ag-
gregation queries an “online” behavior [14], where
the user is presented with a bounded answer that
gradually refines to become more precise over time.
In this scenario, the goal is to shrink the answer
bound as fast as possible.

8.3 Improving Performance

• Delaying the propagation of insertions and dele-
tions to data caches.We are currently investigat-
ing ways in which discrepancies in the number of
tuples can be bounded, and the computation of the
bounded answer to a query can take into account
these bounded discrepancies. Sources will then no
longer be forced to send a refresh every time an ob-
ject is inserted or deleted.

• Investigating specialized bound functions suit-
able for update patterns with known properties.
The bound function shape we suggested in this pa-
per (Section 3.2) is based on the assumption that no
information about the update pattern is available.

• Considering ways to amortize refresh costs byre-
fresh piggybackingand pre-refreshing. When a
(value- or query-initiated) refresh occurs, the source
may wish to “piggyback” extra refreshes along with
the one requested. These extra refreshes would con-
sist of values that are likely to need refreshing in the
near future,e.g., if the precise value is very close to
the edge of its bound. The amount of refresh piggy-
backing to perform would depend on the benefit of
doing so versus the added overhead. Additionally,
it might be beneficial to performpre-refreshing, by
sending unnecessary refreshes when system load is
low that may be useful in future processing.

• Investigating storage, indexing, and query pro-
cessing issues over bounded values.We are cur-
rently designing and evaluating schemes for index-
ing bounds that are functions of time with a square-
root shape, as discussed in Section 3.2. Also, we
plan to weigh the advantages of using functions
for bounds versus potential indexing improvements
when bounds are constants. We also plan to study
ways in which cached data objects stored as pairs
of bound functions might be compressed. Without
compression, caches must store two values for each
data object, and sources must transmit these two
values for each tuple being refreshed. Furthermore,
the Refresh Monitor at each source must keep track
of the bound functions for each remotely cached
data object. Compression issues can be addressed
without affecting the techniques presented in this
paper: our CHOOSEREFRESH algorithms are
independent of which bound functions are used or
how they are represented, and we have not yet fo-
cused on query processing issues.

8.4 Real-time and Consistency Issues

• Handling refresh delay. Since message-passing
over a network is not instantaneous, in a value-
initiated refresh there is some delay between the
time a master value exceeds a cached bound and the
time the cache is refreshed. Consequently, a cached
bound can be “stale” for a short period of time. One
way to avoid this problem is by pre-refreshing a
value when it is close to the edge of its bound.

• Evaluating concurrency control solutions. If
value-initiated refreshes are permitted to occur
during the CHOOSEREFRESH computation or
while a query is being evaluated (or in between), the
answer could reflect inconsistent data or could fail
to satisfy the precision constraint. One solution is
to implement multiversion concurrency control [5],
which would permit refreshes to occur at any time,
while still allowing each in-progress query to read
data that was current when the query started.

154154154154



Acknowledgments
We thank Hector Garcia-Molina, Taher Haveliwala, Ra-
jeev Motwani, and Suresh Venkatasubramanian for use-
ful discussions. We also thank Joe Hellerstein and some
anonymous referees for helpful comments on an initial
draft. Finally, we thank Sergio Marti for useful discus-
sions about network monitoring.

References
[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representa-

tion and querying of sets of possible worlds. InProceedings of
the ACM SIGMOD International Conference on Management of
Data, pages 34–48, San Francisco, California, May 1987.

[2] R. Alonso, D. Barbara, H. Garcia-Molina, and S. Abad. Quasi-
copies: Efficient data sharing for information retrieval systems.
In Proceedings of the International Conference on Extending
Database Technology, pages 443–468, Venice, Italy, March 1988.

[3] D. Barbara and H. Garcia-Molina. The Demarcation Protocol:
A technique for maintaining linear arithmetic constraints in dis-
tributed database systems. InProceedings of the International
Conference on Extending Database Technology, pages 373–387,
Vienna, Austria, March 1992.

[4] M. Benedikt and L. Libkin. Exact and approximate aggregation in
constraint query languages. InProceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, pages 102–113, Philadelphia, Pennsylvania, May 1999.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
1987.

[6] A. Brodsky and Y. Kornatzky. The LyriC language: Querying
constraint objects. InProceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 35–46, San
Jose, California, May 1995.

[7] A. Brodsky, V. E. Segal, J. Chen, and P. A. Exarkhopoulo. The
CCUBE constraint object-oriented database system. InProceed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 577–579, Philadelphia, Pennsylvania, June
1999.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to
Algorithms. MIT Press, Cambridge, Massachusetts, 1990.

[9] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom.
Computing the median with uncertainty. InProceedings of the
32nd ACM Symposium on Theory of Computing, Portland, Ore-
gon, May 2000.

[10] M. R. Garey and D. S. Johnson.Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, New York, New York, 1979.

[11] P. B. Gibbons and Y. Matias. New sampling-based summary
statistics for improving approximate query answers. InProceed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 331–342, Seattle, Washington, June 1998.

[12] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. InProceedings of the ACM SIGMOD
International Conference on Management of Data, pages 173–
182, Montreal, Canada, June 1996.

[13] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha,
S. Parthasarathy, J. B. Park, and A. Vernon. Scalable trigger
processing. InProceedings of the 15th International Conference
on Data Engineering, pages 266–275, Sydney, Austrialia, March
1999.

[14] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Ra-
man, T. Roth, and P. Haas. Interactive data analysis with CON-
TROL. IEEE Computer, August 1999.

[15] J. M. Hellerstein and P. J. Haas. Online aggregation. InProceed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 171–182, Tucson, Arizona, May 1997.

[16] Y. Huang, R. Sloan, and O. Wolfson. Divergence caching in
client-server architectures. InProceedings of the Third Interna-
tional Conference on Parallel and Distributed Information Sys-
tems, pages 131–139, Austin, Texas, September 1994.

[17] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for
the knapsack and sum of subset problems.Journal of the ACM,
22(4):463–468, October 1975.

[18] Inktomi. Inktomi traffic server, 1999. http://www.inktomi.com
/products/network/traffic/product.html.

[19] N. Jukic and S. Vrbsky. Aggregates for approximate query pro-
cessing. InProceedings of ACMSE, pages 109–116, April 1996.

[20] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint
query languages. InProceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages
299–313, Nashville, Tennessee, April 1990.

[21] G. M. Kuper. Aggregation in constraint databases. InProceed-
ings of the First Workshop on Principles and Practice of Con-
straint Programming, Newport, Rhode Island, April 1993.

[22] J. P. Morgenstein. Computer based management information sys-
tems embodying answer accuracy as a user parameter. Ph.D. the-
sis, U.C. Berkeley Computer Science Division, 1980.

[23] F. Naumann, U. Leser, and J. Freytag. Quality-driven integra-
tion of heterogeneous information systems. InProceedings of the
Twenty-Fifth International Conference on Very Large Data Bases,
Edinburgh, U.K., September 1999.

[24] C. Olston and J. Widom. Offering a precision-performance trade-
off for aggregation queries over replicated data. Technical re-
port, Stanford University Computer Science Department, 2000.
http://www-db.stanford.edu/pub/papers/trapp-ag.ps.

[25] C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac, M. Lin,
M. Spalding, and M. Stonebraker. DataSplash. InProceedings of
the ACM SIGMOD International Conference on Management of
Data, pages 550–552, Seattle, Washington, June 1998.

[26] V. Poosala and V. Ganti. Fast approximate query answering using
precomputed statistics. InProceedings of the IEEE International
Conference on Data Engineering, page 252, Sydney, Australia,
March 1999.

[27] R. L. Read, D. S. Fussell, and A. Silberschatz. A multi-resolution
relational data model. InProceedings of the Eighteenth Inter-
national Conference on Very Large Data Bases, pages 139–150,
Vancouver, Canada, August 1992.

[28] E. A. Rundensteiner and L. Bic. Aggregates in possibilistic
databases. InProceedings of the Fifteenth International Con-
ference on Very Large Data Bases, pages 287–295, Amsterdam,
The Netherlands, August 1989.

[29] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving ob-
jects databases: Issues and solutions. InProceedings of the Tenth
International Conference on Scientific and Statistical Database
Management, pages 111–122, Capri, Italy, July 1998.

155155155155


	Eur201.pdf
	Am125.pdf
	Eur153.pdf
	Am187.pdf

