1

Many environments that replicate information at multiple
sites permistale replicationrather than enforcing exact

consistency over multiple copies of data. Exact (transac-
tional) consistency is infeasible from a performance per-

Offering a Precision-Performance Tradeoff for Aggregation
Queries over Replicated Data

Chris Olston, Jennifer Widom
Stanford University
{olston, widon} @db.stanford.edu

Abstract

Strict consistency of replicated data is infeasible or
not required by many distributed applications, so cur-
rent systems often pernstale replication in which
cached copies of data values are allowed to become
out of date. Queries over cached data return an an-
swer quickly, but the stale answer may be unbound-
edly imprecise. Alternatively, queries over remote
master data return a precise answer, but with poten-
tially poor performance. To bridge the gap between
these two extremes, we propose a new class of repli-
cation systems called TRAPHradeoff in Replica-
tion Precision and Performanye TRAPP systems
give each user fine-grained control over the trade-
off between precision and performance: Caches store
ranges that are guaranteed to bound the current data
values, instead of storing stale exact values. Users
supply a quantitativrecision constrainalong with
each query. To answer a query, TRAPP systems au-
tomatically select a combination of locally cached
bounds and exact master data stored remotely to de-
liver a bounded answetonsisting of a range that is
no wider than the specified precision constraint, that
is guaranteed to contain the precise answer, and that
is computed as quickly as possible. This paper de-
fines the architecture of TRAPP replication systems
and covers some mechanics of caching data ranges. It
then focuses on queries with aggregation, presenting
optimization algorithms for answering queries with
precision constraints, and reporting on performance
experiments that demonstrate the fine-grained con-
trol of the precision-performance tradeoff offered by
TRAPP systems.

Introduction

as outlined in [12], and for many distributed applications
exact consistency simply is not a requirement.

The World-Wide Web is a very general example of a
stale replication system, where master copies of pages
are maintained on Web servers and stale copies are
cached by Web browsers. In the Web architecture, read-
ing the stale cached data kept by a browser has sig-
nificantly better performance than retrieving the master
copy from the Web server (accomplished by pressing the
browser’s “refresh” button), but the cached copy may be
arbitrarily out of date. Another example of a stale repli-
cation system is a data warehouse, where we can view the
data objects at operational databases as master copies,
and data at the warehouse (or at multiple “data marts”) as
stale cached copies. Querying the cached data in a ware-
house is typically much faster than querying the master
copies at the operational sites.

1.1 Running Example

As a scenario for motivation and examples throughout
the paper, we will consider a simple replication system
used for monitoring a wide-area network linking thou-
sands of computers. We assume that each node (com-
puter) in the network tracks the average latency, band-
width, and traffic level for each incoming network link
from another node. Administrators at monitoring sta-
tions analyze the status of the network by collecting
data periodically from the network nodes. For each link
N; — Nj; in the network, each monitoring station will
cache the latest latency, bandwidth, and traffic level fig-
ures obtained from nod¥;. Administrators want to ask
queries such as:

Q1 What is the bottleneck (minimum bandwidth link)
along a pathV; — Ny — -+ — N,?
Q2 What is the total latency along a path — Ny —
c— Nk’)
Q3 What is the average traffic level in the network?

spective in many large systems, for a variety of reasonsQ4 Whatis the minimum traffic level for fast links¢.,

*This work was supported by the National Science Foundation un-
der grant 11S-9811947, by NASA Ames under grant NCC2-5278, and

by a National Science Foundation graduate research fellowship.

links with high bandwidth and low latency)?

Q5 How many links have high latency?

Q6 What is the average latency for links with high traf-
fic?

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commer- . - . .
cial advantage, the VLDB copyright notice and the title of the publica- While administrators would like to obtain current and

tion and its date appear, and notice is given that copying is by permis-Pre€cise answers to these kinds of queries, C0_||9Ctin9 new
sion of the Very Large Data Base Endowment. To copy otherwise, odata values from each relevant node every time a query
to republish, requires a fee and/or special permission from the Endow-is posed would take too long and might adversely affect

ment. the system. Requiring that all nodes constantly send their

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

updated values to the monitors is also expensive and gen-
erally unnecessary. This paper develops a new approach

144

Using cached (stale) data sion and sacrificing performance.

% % . o To address this overall problem, we propose a new
Using a combination of . - . .
£ £ cached andsourcedata~ KiNd of replication system, which we call TRAPP
2 g (Tradeoff in Replication Precision and Performaice
2 Using source (fresh) deta = TRAPP supports a continuous, monotonically decreas-
. ing tradeoff between precision and performance, as char-
precision precision acterized in Figure 1(b). Each query can be accompanied

by a custom precision constraint, and the system answers
(@) Incurrent systems (b) In TRAPP systems the query by combining cached and source data so as
to optimize performance while guaranteeing to meet the
precision constraint. The extreme points of our system

to replication and query processing that allows the useEorrespond to the precise and imprecise query modes de-

to control the tradeoff between precise answers and highn€d above.

performance. In our example, the latency, bandwidth,

and traffic level figures at each monitor are cached a4.3 Overview of Approach
ranges rather than exact values, and nodes send updates
only when an exact value moves outside of a cache
range. Queries such &31-Q6 above can be executed

Figure 1: Precision-performance tradeoff.

addition to introducing the overall TRAPP architec-
ture, in this paper we focus on a specific TRAPP replica-
Hign system called TRAPP/AG, for queries with aggre-

is guaranteed to contain the current exact answer. Whe#ation over numeric (real) data. The conventional precise

an administrator poses a query, he can provigeeai- answer to a query with an outermost aggregation opera-

sion constrainindicating how wide a range is tolerable [OF iS @ single real value. In TRAPP/AG, we define a
in the answer. bounded imprecise answgrereafter callethounded an-
For example, suppose the administrator wishes tgWe) 0 be a pair of real values 4 and [, that de-

sample the peak latency periodically in some criticaliN® @ rangelL ., Ha] in which the precise answer is
area, in order to decide how much money should be inguaranteed to lie. Precision is quantified as the width

vested in upgrading the network. To make this decision®f the range(f1y — L), with 0 corresponding to ex-
t precision andwo representing unbounded impreci-

the administrator does not need to know the precise pea"?(C .S o= .
latency at each query, but may wish to obtain an answe?'°"- A precision constraint is a user-specified constant
to within 5 milliseconds of precision. Our system auto- 20 0<d§_not|ng th<e]r__?ammum acceptable range width,
matically combines cached ranges with precise values rd:8- V= Ha—La s [

trieved from the nodes in order to answer queries within 10 be able to give guaranteed bourids,, Ha] as

the specified precision as quickly as possible. query answers, TRAPP/AG requires cooperation be-
tween data sources and caches. Specifically, let us sup-

pose that when a source refreshes a cache’s value for a

data objecD, along with the current exact value for

In general, stale replication systems potentially offer thethe source sends a range H] called theboundof O.

user two modes of querying. In the first mode, which (We actually cover a more general case where the bound

we call theprecise modequeries are sent to the sourcesis a function of time.) The source guarantees that the ac-

to get a precise (up-to-date) answer but with potentiallytual value forO will stay in this bound, or if the value

poor performance. Alternatively, in what we call ine- does exceed the bound then the source will immediately

precise modgequeries are executed over cached data te¢end a new refresh. Thus, the cache stores the bound

get an imprecise (possibly stale) answer very quickly. In[L, H] for each data objea instead of an exact value,

imprecise mode, usually no guarantees are given as tand the cache can be assured that the current master value

exactly how imprecise the answer is, so the user is left t®f O is within the bound. When the cache answers a

guess the degree of imprecision based on knowledge dfuery, it can use the bound values it stores to compute an

data stability and/or how recently caches were updatecanswer, also expressed in terms of a bound.

Figure 1(a) illustrates the precision-performance tradeoff The small table in Figure 2 shows sample data cached

between these two extreme query modes. at a network monitoring station (recall Section 1.1),
The discrepancy between the extreme points in Figur@long with the current precise values at the network

1(a) leads to a dilemma: answers obtained in imprecis@odes. Thaveightsmay be ignored for now. Each row

mode without any precision guarantees may be unaccepta Figure 2 corresponds to a network link between the

able, but the only way to obtain a guarantee is to usdink from node and thdink to node. Recall that precise

precise mode, which can place heavy load on the systemmaster values folatency bandwidth andtraffic for in-

and lead to unacceptable delays. Many applications actisoming links are measured and stored atithieto node.

ally require a level of precision somewhere between thdn addition, for each link, the monitoring station stores a

extreme points. In our running example (Section 1.1),bounded value fotatency bandwidth andtraffic. The

an administrator posing a query withgaantitative pre- cache can use these bounded values to compute bounded

cision constraintike “within 5 milliseconds” should be answers to queries.

able to find a middle ground between sacrificing preci- Suppose a bounded answer to a query with aggrega-

1.2 Precision-Performance Tradeoff

145

link latency bandwidth traffic refresh weights

from | to | cached| precise| cached| precise| cached | precise| cost | W | W' | W”
1| N | Ny 2,4 3 60,70 61 [95,105] 98 3 2 | 10 | 29.5
2| Na | Ny 5,7 7 45,60 53 [110,120] 116 6 2 | 10 2
3] N3 | Ny | [12,16] 13 55,70 62 [95,110] 105 6 15 | 41.5
41 Ny | N3 | 9,11 9 65,70 68 [120, 145] 127 8 25 2
5| Ny | N5 | [§,11 11 40,55 50 90,110 95 4 3 | 20 | 36.5
6| N5 | Ns [4, 6] 5 45,60 45 90, 105 103 2 2 | 15 | 31.5

Figure 2: Sample data for network monitoring example.

tion is computed from cached values, but the answer doesampling €.9, [15]), or both €.g, [11]) to give an an-

not satisfy the user’s precision constrairg, the answer swer with statistically estimated bounds, without scan-
bound is too wide. In this case, some data must be rening all of the input data. By contrast, TRAPP systems
freshed from sources to improve precision. We assumenay scan all of the data (some of which may be bounds
that there is a known quantitativast associated with rather than exact values), to provide guaranteed rather
refreshing data objects from their sources, and this coghan statistical results.

may vary for each data itene.@, in our example it might The previous work perhaps most similar to the
be based on the node distance or network path latencyFRAPP idea isQuasi-copieg2] and Moving Objects

We show sample refresh costs for our example in FiguréDatabaseg29]. Like TRAPP systems, these two sys-
2. Our system uses optimization algorithms that attemptems are replication schemes in which cached values are
to find the best combination of cached bounds and maspermitted to deviate from master values by a bounded
ter values to use in answering a query, in order to min-amount. However, unlike in TRAPP systems, these sys-
imize the cost of refreshing while still guaranteeing thetems cannot answer queries by combining cached and
precision constraint. In this way, TRAPP/AG offers a master data, and thus there is no way for users to control
continuous precision-performance tradeoff: Relaxing thethe precision-performance tradeoff. Instead, the bound
precision constraint of a query enables the system to relfor each data object is set independently of any query-
more on cached data, which improves the performanceased precision constraints. In Quasi-copies, bounds are
of the query. Conversely, tightening the constraint causeset statically by a system administrator. In Moving Ob-
the system to rely more on master data, which degradggcts Databases, bounds are set to maximize a single met-

performance but yields a more precise answer. ric that combines precision and performance, eliminat-
ing user control of this tradeoff. Furthermore, neither of
1.4 Contributions these systems support aggregation queries.

i . L The Demarcation Protocol [3] is a technique

* We define the architecture of TRAPP replication 5 maintaining arithmetic constraints in distributed
systems, which offer each user fine-grained con-yaapase systems. TRAPP systems are somewhat re-
trol over the tradeoff between precision and per-|ateq to this work since the bound of a data value forms
formance, and propose a method for determining,, arithmetic constraint on that value. However, the
bounds. Demarcation Protocol is not designed for modifying

e We specify how to compute the five standard rela-arithmetic constraints the way TRAPP systems update
tional aggregation functions over bounded data valhounds as needed. Furthermore, the Demarcation Proto-
ues, considering queries with and without selectioncol does not deal with queries over bounded data.
predicates, and with joins. Both [19] and [28] consider aggregation queries with

e We present algorithms for finding the minimum- selections. The APPROXIMATE approach [19] pro-
cost set of tuples to refresh in order to answer arduces bounded answers when time does not permit the
aggregation query with a precision constraint, with selection predicate to be evaluated on all tuples. How-
and without selection predicates. (Joins are disever, APPROXIMATE does not deal with queries over
cussed but optimal algorithms are not provided.)bounded data. The work in [28] deals with queries over
We analyze the complexity of these algorithms, andfuzzy sets. While bounded values can be considered
in the cases where they are exponential we suggesis infinite fuzzy sets, this representation is not practi-

approximations. cal. Furthermore, the approach in [28] does not consider
¢ We have implemented all of our algorithms and we fuzzy sets as approximations of exact values available for
present some initial performance results. a cost.
In the multi-resolution relational data modgR7],
2 Related Work data objects undergo various degrees of lossy compres-

sion to reduce the size of their representation. By reading
There is a large body of work dedicated to systems thathe compressed versions of data objects instead of the
improve query performance by giving approximate an-full versions, the system can quickly produce approxi-
swers. Early work in this area is reported in [22]. Most mate answers to queries. By contrast, in TRAPP sys-
of these systems use either precomputatmg,([26]), tems performance is improved by reducing the number

146

of data objects read from remote sources, rather than by

; : ;) query +
reducing the size of the data representation Diver precision | bounded
gence Cachingfl6], a bound is placed on the number of constraint| | answer

updates permitted to the master copy of a data object be- S A
fore the cache must be refreshed, but there are no bounds -
on data values themselves. ¥ aches

Another body of work that deals with imprecision ;! ‘ ‘
in information systems ignformation Quality(IQ) re- G o query- | r
searche.g, [23]. 1Q systems quantify the accuracy of V.—3 | initiated: —
data at the granularity of an entire data server. Since no ! : gg{ﬁces V,=5 | refresh. L, H,1=12 6
bounds are placed on individual data values, queries have*: =~ """ | request, i
no concrete knowledge about the precision of individ-
ual data values from which to form a bounded answer.))
Therefore, IQ systems cannot give a guaranteed bound Figure 3: TRAPP system architecture.
on the answer to a particular query.

. . r

Finally, data objects whose values are ranges caﬁ1

be considered a special case of constrained values in

Constraint Databasef0, 6, 7, 21, 4], or as null vari- makes some simplifying assumptions. First, although

ables with local conditions incomplete Information e ; .
Databaseg[1]. However, no work in these areas thatgbject insertions or deletions do not occur on a regular

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ata

refresh§ 8

der to meet the precision constraint of a query at mini-
um cost.
The TRAPP architecture as presented in this paper

; . asis in our example application, insertions and deletions
we know of considers constrained values as bounded arz_ire handled but they must be propagated immediately

proximations Of. exact values stored el_sewhere. Furthe to all caches. (Section 8.3 discusses how this limitation
more, aggregation queries over a set with uncertain mem-_. -
bership 6.9, due to selection conditions over boundedm'ght be relaxed.) Second, the level of precision offered

; by our system does not account for elapses of time while
values) are not considered. sending refresh messages or while processing a single
query. We assume that the time to refresh a bound is
3 TRAPP System Architecture small enough that the imprecision introduced is insignif-
icant. Furthermore, we assume that value-initiated re-
freshes do not occur during the time an individual query
is being processed. Addressing these issues is a topic for

The overall architecture of a TRAPP system is illus-
trated in Figure 3. Data Sourcesmaintain the exact
valueV; of each data objed®;, while Data Cachestore future work as discussed in Section 8.4.

bounds[L;, I7;] that are guaranteed to contain the ex- Nyt in Section 3.1 we discuss in more detail the

ith blv diff bound q h '§Rechanics of bounded values and refreshing. Then in
(with possibly different bounds), and caches may contairgection 3.2 we generalize bound functions to be time-

bounded valrl:es fromFr)nuItipIe sourcles. lAduser SuEmitsvarying functions. In Section 4 we discuss the execution
alquery_trc]) theQuery Processoat aT ocal data rc]:ac €. of aggregation queries in the TRAPP/AG system, be-
along with a precision constraint. To answer the query, o resenting our specific optimization algorithms for

while guaranteeing the constraint, the query processogjnge_tahle aggregation queries in Sections 5 and 6. In

may need to senquery-initiated refresh requests the gection 7 we present some preliminary results for aggre-
Refresh Monitoat one or more sources, which responds ation queries with joins

with new bounds. The Refresh Monitor at each sourceg

also keeps track of the bounds for each of its data objec .

in each relevant cache. (Note that in the network monit-ﬁ'1 Refreshing Cached Bounds

toring application we consider in this paper, each sourc&he master copy of each data objéitresides at a sin-

must only keep track of a small number of bounds. Ingle source, and for TRAPP/AG we assume it is a single

other applications a source may provide a large numbereal value, which we denofé. Caches store a range of

of objects to multiple caches, in which case a scalablgossible values (thbound for each data object, which

trigger system would be of great benefit [13].) The Re-we denotdL;, H;]. When a source sends a copy of data

fresh Monitor is responsible for detecting whenever theobjectO; to a cache (aefreshevent at time7,.), in ad-

value of a data object exceeds the bound in some cachdition to sendingD;’s current precise value, which we

and sending a new bound to the cachedie-initiated denoteV;(7,.), it sends a bounf.;, H;].

refresh. As discussed earlier, refreshes occur for one of two
When the cached bound of a data object is refreshedeasons. First, if the master value of a data object ex-

by its source, some costis incurred. We consider the gerceeds its bound stored in some cadbe, @t current time

eral case where each object has its own cost to refresi,., V;(7.) < L, or V;(7.) > H,), then the source is ob-

although in practice it is likely that the cost of refreshing ligated to refresh the cache with the current precise value

an object depends only on which source it comes fromV;(7.) and a new boundl;, H;]—a value-initiated re-

(It also may be possible to amortize refresh costs for dresh. Second, a query-initiated refresh occurs if a query

set of values, as discussed in Section 8.) These costs apeing executed at a cache requires the current exact value

used by our algorithms that choose tuples to refresh irof a data object in order to meet its precision constraint.

147

value-
initiated
refresh

query-
initiated
refresh

value

Figure 4: Bound[L;(T), H;(7)] over time, overlaid
with precise valué/; (7).

In this case, the source will sefgl(7.) along with a new
bound to the cache, and the precise valu@.) can be
used in the query.

3.2 Bounds as Functions of Time

data objects to refresh when answering queries. For the
remainder of this paper we assume the relational model,
although TRAPP/AG can be implemented with any data
model that supports aggregation of numerical values.

For now we consider single-table TRAPP/AG
queries of the following form. Joins are addressed in
Section 7.

SELECT AGGREGATE(T.a) WITHIN R
FROM T
WHERE PREDICATE

AGGREGATIS one of the standard relational aggrega-
tion functions: COUNT, MIN, MAX, SUM, or AVG.
PREDICATESs any predicate involving columns of table
T and possibly constants? is a nonnegative real con-
stant specifying the precision constraint, which requires
that the bounded answél 4, H 4] to the query satisfies

0 < Hy — Ly < R. If Ris omitted thenR = oo
implicitly.

Section 3.1 presented a simple approach where the bound 1o compute a bounded answer to a query of this form,

of each data objea; is a pair of endpoint§L;, H;]. A

TRAPP/AG executes several steps:

more general and accurate approach is to parameterize

the bound by time[L,(7), H;(7T)]. In other words, the
endpoints of the bound are functions of tirfie These
functions have the property thd;(7,) = H;(7,) =
Vi(7.), whereT,. is the refresh time. That is, the bound

at the time of refresh has zero width and both endpoints 2.

equal the current value. As time advances pastthe
endpoints of the bound diverge frovf)(7;.) such that the
bound contains the precise value at all tinfigs> 7,
L;(7.) < Vi(7.) < H;(7.). Eventually, when another

refresh occurs, the source sends a new pair of bound ™"
functions to the cache that replaces the old pair. Figure 4

illustrates the bounfL,(7"), H;(7)] of a data objecO;
over time, overlaid with its precise valt&(7).

All of the subsequent algorithms and results in this

paper are independent of how bounds are selected al

specified. In fact, in the body of the paper we assume

that any time-varying bound functions have been evalu
ated at the currenttini&., and we writd L;, H;] to mean
[L:(7.), H;(7T.)]. Also, we writeV; to mean the exact
value at the current timeV;(7.). We have done some
preliminary work investigating appropriate bound func-
tions, and have deduced that in the absence of addition

information about update behavior, appropriate functions

1. Compute an initial bounded answer based on the
current cached bounds and determine if the preci-
sion constraint is met. If not:

An algorithm CHOOSEREFRESH examines the
cache’s copy of tabl& and chooses a subsetBk
tuplesTk to refresh. The source for each tuple in
Tr is asked to refresh the cache’s copy of that tuple.

3. Once the refreshes are complete, recompute the
bounded answer based on the cache’s now partially
refreshed copy df.

Our CHOOSEREFRESH algorithm ensures that the
answer after step 3 is guaranteed to satisfy the precision
nstraint.

Sections 5 and 6 present details based on each specific
‘aggregation function, considering queries with and with-
out selection predicates. For each type of aggregation
query we address the following two problems:

e How to compute a bounded answer based on the
current cached bounds. This problem corresponds
to steps 1 and 3 above.

al

are those that expand according to the square-root of

elapsed time. That isH,(7) — L,(7) x VT —7,,
where 7, is the time of the most recent refresh. The

proportionality parameter, which determines the width of

the bound, is chosen at run-time. The interested reader
referred to [24] for detalils.
4 Query Execution for Bounded Answers

Executing a TRAPP/AG query with a precision con-
straint may involve combining precise data stored on re-

e How to choose the set of tuples to refresh.
This problem corresponds to step 2 above. A
CHOOSEREFRESH algorithm isoptimal if it
finds the cheapest subggt of T"s tuples to refresh
(i.e., the subset with the least total cost) that guar-
antees the final answer to the query will satisfy the
precision constraint for any precise values of the re-
freshed tuples within the current bounds.

is

We are assuming that the cost to refresh a set of tuples

mote sources with bounded data stored in a local cachés the sum of the costs of refreshing each member of the
In this section we describe in general how bounded agset, in order to keep the optimization problem manage-
gregation queries are executed, and we present a cosble. This simplification ignores possible amortization

model to be used by our algorithms that choose cachedue to batching multiple requests to the same source.

148

Also recall that we assume a separate refresh cost mayin,, 7 (Hy) — R, whereR is the precision constraint,
be assigned to each tuple, although in practice all tupleBidependent of refresh cost. That1s; contains all tu-
from the same source may incur the same cost. ples whose lower bound is less than the minimum upper
Note that the entire séffr of tuples to refresh is se- bound minus the precision constraint. If B-tree indexes
lected before the refreshes actually occur, so the preciexist on both the upper and lower boufdthe setTr
sion constraint must be guaranteed for any possible presan be found in time less than(|T'|) by first using the
cise values for the tuples ifiz. A different approachis index on upper bounds to fingin;, 7 (Hy), and then
to refresh tuples one at a time (or one source at a time)ysing the index on lower bounds to find tuples that sat-
computing a bounded answer after each refresh and stopsfy L; < min, ¢7(Hj)— R. Without these two indexes,
ping when the answer is precise enough. See Section 8t2e running time for TOOSEREFRESHo_sgr /MmN
for further discussion. is O(|T)).
Consider again our example que®l, which finds
5 Aggregation without Selection Predi- the minimum bandwidth along paff, — Ny — Ny —
cates N5 — Ng. CHOOSEREFRESHo_sgr,/vin With
R = 10 would choose to refresh tuple 5, since it is the
This section specifies how to compute a bounded answesnly tuple among{1, 2, 5, 8 whose low value is less
from bounded data values for each type of aggregatiomanmintke{m 5.61(Hp) — R = 55 — 10 = 45. After
function, and describes algorithms for selecting refreshefreshing, tu’pie’ 5's bandwidth value turns out tosbe
sets for each aggregation function. For now, we assumeg the new bounded answefi$, 50].
that any selection predicate inthe TRAPP/AG query in- The MAX aggregation function is Symmetric to
volves only columns that contain exact values. Thus, inVIIN. See [24] for details.
this section we assume that the selection predicate has al-
ready been applied and the aggregation is to be computegi2 Computing SUM with No Selection Predicate
over the tuples that satisfy the predicate. TRAPP/AG
queries with selection predicates involving columns that0 compute the bounded SUM aggregate, we take the
contain bounded values are covered in Section 6, angum of the values at each extreme:
J7oms involving bounded values are discussed in Section (La, Hal = [Z Li. Z H)]

Suppose we want to compute an aggregate over col- u€r ueT

umnT.a of a cached tablé'. The value off".a for each 1he gmallest possible sum occurs when all values are
tuplet; is stored in the cache as a bouiid, H;]. While 55 |\ a5 possible, and the largest possible sum occurs
computing the aggregate, the query processor has the Ogmen gl values are as high as possible. In our running
tion for each tuple; of either reading the cached bound example, the bounded SUM ¢dtencyalong the path

[L;, H;] or refreshingt; to obtain the master valug;. N, — N'2 — Ny — N5 — Ng (queryQ2) using the
The cost to refresh; is C;. The final answer to the ag- Gyt from Figure 2 i§19, 28).

gregate is a bound. , H4]. The problem of selecting an optimal $&t of tuples
) . . . to refresh for SUM queries with precision constraints is
5.1 Computing MIN with No Selection Predicate better attacked as the equivalent problem of selecting the

Computing the bounded MIN &F.q is straightforward: ~ tuples notto refrestil’y = T'—T}p. We first observe that
Ha—La=3erHi=>er Li =2 er(Hi—Li).
[La, Ha] = [min(L;), min(H;)]* After refreshing all tuples; € Tr, we haveH; — L; =
€T €T 0, so these values contribute nothing to the bound. Thus,
The lowest possible value for the minimuih () occurs after refreSh:ZtieT(Hi._ Li).: ZtiEﬁ.(Hi — L. :
ifforall t; € T, V, = L;, i.e, each value is at the These equalltles combined Wlth.the precision constraint
bottom of its bound. Conversely, the highest possiblet4a—La < Rgive usthe constraint, 7 (Hi—L:) <
value for the minimum & 4) occurs ifV; = H; for all R. The optimization objective is to satisfy this constraint
tuples. Returning to our example of Section 1.1, suppos¥hile minimizing the total cost of the tuples ;. Ob-
we want to find the minimum bandwidth link along the Se€rve that minimizing the total cost of the tuples/in is
pathN; — N, — Ny — N5 — Ng, i.e, queryQl ~ €quivalent to maximizing the total cost of the tuples not
Applying the bounded MIN obandwidthto tuplesT = in Tr. Therefore, the optimization problem can be for-
{1, 2,5, 8 in Figure 2 yieldg40, 55]. mulated as choosingr so as to maximiz@tieﬁ C;
Choosing an optimal set of tuples to refresh forunder the constrai@tjeﬁ(Hi —L;) <R.
a MIN query with a precision constraint is also Itturns outthat this problem is isomorphic to the well-
straightforward, although the algorithm’s justification known 0/1 Knapsack Problerf8], which can be stated
and proof of optimality is nontrivial (see [24]). The as follows: We are given a sétof items that each have
CHOOSEREFRESH;o_sgr/min algorithm chooses weightW; and profitP;, along with a knapsack with ca-
Tr to be all tuplest; € T such thatL; < pacity M (i.e, it can hold any set of items as long as

Lin this and all subsequent formulas, we definin () = +oco and 2Section 8.3 briefly discusses indexing time-varying range end-
max () = —oo. points, a problem on which we are actively working.

149

their total weight is at most/). The goal of the Knap- 120
sack Problem is to choose a subSgt of the items inS ok 1
to place in the knapsack that maximizes total profit with-
out exceeding the knapsack’s capacity. In other words,® 40 X\CHOOSEREFRESHtime -~
chooseSk so as to maximizé P; under the con-

seconds

i€SK

straint) ;. g Wi < M. To state the problem of se- 0=

lecting refresh tuples for bounded SUM queries as the, 360 .. total refresh cost

0/1 Knapsack Problem, we assigh= T, Sk = Tk, 3

P, =C;,W; = (H; — L;),andM = R. ° 345+] .
Unfortunately, the 0/1 Knapsack Problem is knowng

to be NP-Complete [10]. Hence all known approaches 330 E——+ ' ' ' =

to solving the problem optimally, such as dynamic pro- 0 002 004 006 0.08 01

gramming, have a worst-case exponential running time. approximation parameter

Fortunately, an approximation algorithm exists that, in_. . .

polynomial time, finds a solution having total profit Fl?urehs. C'}'OOSE.REFRESHJO—SEL/SUM time and
that is within a fractione of optimal for any0 < refresh cost for varying.
e < 1[17]. The running time of the algorithm is
O(n -logn) + O((2)? - n). We use this algorithm for SUI(\)/I with different values fo? (e = 0.1)

CHOOSEREFRESI‘]lqo_SEL/SUM. Adjustlng param- -
etere in the algorithm allows us to trade off the running 3G 1000k |
time of the algorithm against the quality of the solution. S 3

In the special case of uniform costs;(= C; for ES 2000+ g
all tuplest; andt;), all knapsack objects have the same Qo @
profit P;, and the 0/1 Knapsack Problem has a polyno- ¢'© 3000r T
mial algorithm [8]. The optimal answer then can be — 40001
found by “placing objects in the knapsack” in order of 140 ! !

increasing weightV; until the knapsack cannot hold any precﬁg?on consSt(r)ainR

more objects. That is, we add tuplesTtg starting with

the smallest; — L; bounds until the next tuple would Figure 6: Precision-performance tradeoff for
causeZtiET—R(Hi — L;) > R. If anindex exists on the CHOOSEREFRESH;o_skL/suM-

bound widthH, — L; (see Section 8.3), this algorithm
can run in sublinear time. Without an index on bound

width, the running time of this algorithm i9(n - log n),

and varye in the knapsack approximation in order to
plot CHOOSEREFRESH time and total refresh cost
of the selected tuples. Smaller values foincrease

wheren = |T|. :
. . the CHOOSEREFRESH time but decrease the refresh
Consider again quei@2that asks for the total latency cost. However, since the CHOOSEEFRESH time

3':;”% gr?g\:v]\sflth: c](;TrQres_p) o%er; . Jt\)f"étv\; e]nv Géung;)bl e"%u}creases quadratically while the refresh cost only de-

P eases by a small fraction, it is not in general advan-
and the Knapsack Problem by specifying the knapsac .
“weight’ W — H — L for the latencycolumn of each ageous to set below 0.1 (which comes very close to

tuple in {1, 2, 5, §. Using the exponential (optimal) optima_l) unless refreshing is extreme_ly expensive.
knapsack algorithm to find the total latency along path !N Figure 6 we fix the approximation parameter

N, — Ny — Ny — N5 — Ng with R = 5, tuples 2 0.1 gnd varyR in order to plot precision (precision con-
and 5 are “placed in the knapsack” (whose capaciy,is Straint R) versus performance (total refresh cost) for

leavingTx = {1, 6}. The bounded SUM dftencyafter ~ OUr CHOOSEREFRESH o _sgr/sywm algorithm. This
refreshing tuples 1 and 6 |81, 26]. graph, a concrete instantiation of Figure 1(b), clearly

shows the continuous, monotonically decreasing trade-
5.2.1 Performance Experiments off between precision and performance that characterizes
TRAPP systems.
CHOOSEREFRESH;o_sgr/sum uses the approxi-
mation algorithm from [17] to quickly find a cheap set
of tuplesT’r to refresh such that the precision constraint5.3 Computing COUNT with No Selection Predi-
is guaranteed to hold. We implemented the algorithm cate
and ran experiments usir@) actual stock prices that
varied highly in one day. The high and low values When no selection predicate is present, computing
for the day were used as the bounds, H;], the clos- COUNT anounts to computing the cardinality of the ta-
ing value was used as the precise valigeand the re- ble. Since we currently require all insertions and dele-
fresh costC; for each data object was set to a randomtions to be propagated immediately to the data caches
number between and 10. Running times were mea- (Section 3), the cardinality of the cached copy of a table
sured on a Sun Ultra-1 Model 140 running SunOS 5.6.s always equal to the cardinality of the master copy, so
In Figure 5 we fix the precision constrai@ = 100 there is no need for refreshes.

150

5.4 Computing AVG with No Selection Predicate classification can be expressed as SQL queries and opti-
mized by the system, possibly incorporating specialized

When no selection predicate is present, the procedurﬁwlexes as discussed in Section 8.3.

for computing the AVG aggregate is as follows. First, = ; : . -
; - . ; or examples in the remainder of this section we refer
compute COUNT, which as discussed in Section 5.3 to Figure 7, which shows the classification for three dif-

is simply the cardinality of the cachéd. Then, com- ! .
pute the bounded SUM as described in Section 5.2 Wiﬂganrgr:ﬂpéf g:gaéi:&\lveglLli%&;tearfé?rg]sﬁggre 2, both before

R = R- COUNT to produceLsyn, Hsyn]. Finally,

let: Lsum Hsuum 6.1 Computing MIN with a Selection Predicate
La,Hpl = . . .
(L, Hal [CO UNT’ CO UNT] When a selection predicate is present, the bounded MIN
Since the bound widthif, — L, = ZHsu—Ls answer s
by computing SUM such thaHsyy — Lsoy < . . , . ,
R - COUNT, we are guaranteeing th&f, — L4 < [La, Ha] = [tie%li%TﬂL%)vtfgl%i(Hm)]

R, and the precision constraint is satisfied. The run-

ning time is dominated by the running time of the |n the “worst case” forl 4, all tuples inT” satisfy the
CHOOSEREFRESH0_seL/sum algorithm, whichis predicatei(e., they turn out to be i), so the smallest
given in Section 5.2. lower bound of any tuple that might satisfy the predi-

Consider queryQ3 from Section 1.1 to compute the cate forms the lower bound for the answer. In the “worst
average traffic level in the entire network, and let preci-case” for H 4, tuples inT” do not satisfy the predicate
sion constrainfz = 10. We first computeCOUNT = 6, (i.e,, they turn out to be ifl’~), so the smallest upper
and then compute SUM witlk = R - COUNT = bound of the tuples guaranteed to satisfy the predicate
10 - 6 = 60. The column labeled” in Figure 2 shows forms the only guaranteed upper bound for the answer. In
the knapsack weight assigned to each tuple based on thgir running example, consider queg: find the mini-
cached bounds fdraffic. Using the optimal Knapsack mumtraffic where(bandwidth > 50) A (latency < 10).
algorithm, the SUM computation will cause tuples 5 The result using the data from Figure 2 and classifica-
and 6 to be refreshed, resulting in a bounded SUM ofions from Figure 7 i$90, 105).

[618,678]. Dividing by COUNT = 6 gives a bounded CHOOSEREFRESHn choosesTr to be ex-
AVG of [103,113]. actly the tuplest, € T+ U T’ such thatL; <
ming, 7+ (Hy) — R. This algorithm is essentially the
6 Modifications to Incorporate Selection sameas CHOOSREFRESHo sgr/vin, and is cor-
Predicates rect and _o_ptlmal for the same reason (see [24]_). The
only additional case to consider is that refreshing tu-
When a selection predicate involving bounded values igles inT” may move them intd~. However, such tu-
present in the query, both computing bounded aggreples do not contribute to the actual MIN, and thus do
gate results and choosing refresh tuples to meet the preérot affect the bound of the answék 4, Ha]. Hence,
cision constraint become more complicated. This secthe precision constraint is still guaranteed to hold. As
tion presents modifications to the algorithms in Section Swvith CHOOSEREFRESHo_sgr,/miv the running
to handle single-table aggregation queries with selectiotime for CHOOSEREFRESHx can be sublinear if
predicates. We begin by introducing techniques commorB-tree indexes are available on both the upper and lower
to all TRAPP/AG queries with predicates, regardless ofbounds. Otherwise, the worst-case running time for
which aggregation function is present. CHOOSEREFRESH/x isO(n).

Consider a selection predicate involving at least one For our queryQ4 with precision constraink = 10,
column of T that contains bounded values. The systemCHOOSEREFRESH,n chooses'r = {5, 6}, since
can partitiorll” into three disjoint setsT'—, 77, and7". tuples 5 and 6 may pass the selection predicate and their
T~ contains those tuples that cannot possibly satisfy théow values are less thamin,, .7+ (Hy) — R = 105 —
predicate given currentbounded dafd. contains tuples 10 = 95. After refreshing, tuples 5 and 6 turn out not
that are guaranteed to satisfy the predicate given currend pass the selection predicate, so the bounded MIN is
bounded data. All other tuples areTif, meaning that [95,105].
there exist some precise values within the currentbounds The MAX aggregation function is symmetric to
that will cause the predicate to be satisfied, and other valMIN. See [24] for details.
ues that will cause the predicate not to be satisfied. The
process of classifying tuples info—, 77, andT* when 62 Computing SUM with a Selection Predicate
the selection predicate involves at least one column with ,) ,
bounded values is detailed in [24]. The most interesting’® compute SUM in the presence of a selection predi-
aspect is that filters ovéF that find the tuples i+ and ~ cate:

T can always be expressed as simple predicates ove

bounded value endpoints, and all of our algorithms for [rLAvHA] =[> Li + > Li Y Hi + Y H
computing bounded answers and choosing tuples to re- teT+ LeT? teT+ teT?
fresh examine only tuples (™ andT”. Therefore, the AL <0 AH;>0

151

(bandwidth > 50) A (latency < 10) latency > 10 traffic > 100
before refresh| after refresh before refresh| after refresh|| before refresh| after refresh
1 T+ T+ T~ T~ T’ T~
2 T’ T+ T T T+ T+
3 T T T T T’ T
4 T’ T+ T’ T~ T+ T+
5 T" T T’ T+ T’ T
6 T’ T T T T’ T

Figure 7: Classification of tuples inf—, 77, andT'* for three selection predicates.

The “worst case” forL 4 occurs when all and only those 6.4 Computing AVG with a Selection Predicate
tuples in7” with negative values fok,; satisfy the selec-
tion predicate and thus contribute to the result. Similarly,
the “worst case” forff 4 occurs when only tuples ifi” Computing the bounded AVG when a predicate is
with positive values fold; satisfy the predicate. present is somewhat more complicated than computing

The CHOOSEREFRESHyy algorithm is similar the other aggregates. With a predicate, COUNT is a

to CHOOSEREFRESHo_sgr/sun, Which maps the bounded value as well as SUM, so it is no longer a sim-

: le matter of dividing the endpoints of the SUM bound
problem to the 0/1 Knapsack Problem (Section 5.2). Th . ,
following two modifications are required. First, we ig- Ggy the exact COUNT value (as in Section 5.4). To com-

i : te the lower bound on AVG, we start by computing
nore all tupleg; € T—. Second, for tuples, € 77, we pu .
setV; to gne of three possible valueps. I > 0, let the average of the low endpoints of ti¢" bounds, and

W.=H, —0=H, If H; <0, letW; =0— L, = —Ld. then average in the low endpoints of thié bounds one

Otherwise, letV; = (H, — L;) as before. The idea is that at a time in increasing order until the point at which the
’ 1) .

we want to effectively extend the bounds for all tuples in 2/€'age increases. Computing the upper bound on AVG

T7 to includeo, since it is possible that these tuples are'S (€ reverse. For example, consider qu@éjrom Sec-
actually in7~ and thus do not contribute to the SUM tion 1.1 that asks for the average latency for links having
(i.e., contribute value). In the knapsack formulation, to ¢7@/fic > 100. To compute the lower bound, we start

extend the bounds towe need to adjust the weights as PY @veraging the low endpoints df* tuples 2 and 4,
specified above. and then average in the low endpointgoftuples 1 and

then 6 to obtain a lower bound on average latency. of
We stop at this point since averaging in furtfr tu-
ples would increase the lower bound. This computation
is formalized in [24], and has a worst-case running time
6.3 Computing COUNT with a Selection Predicate ~ of O(n - logn).

A looser bound for AVG can be computed in linear

The bounded answer to the OLNT aggregation tme by first computing SUM aslsua, Hsua| and
function in the presence of a selection predicate isCOUNT as|Loount, Hoount] using the algorithms

6.4.1 Computing the Bounded Answer

(La, Hal = [|T*],|T*| + |T?|]. For example, consider from Sections 6.2 and 6.3, then setting:
query Q5 from Section 1.1 that asks for the number of I I
links that havelatency > 10. Figure 7 shows the classi- [La, Hal = [min(—22 _ZSUM
fication of tuples intdl'~, 77, andT*. Since|T*| =1 Hcount™ Leount
and|T?| = 2, the bounded OUNT is|[1, 3]. max(Hsyny Hsuu

The CHOOSEREFRESHount algorithm is Lecount’ Heount

?

based on the fact thatly — La = |T"|, and that |n our example, [Lsyn, Hsun] = [14,55] and
refreshing a tuple in7" is guaranteed to remove [Looynr, Hoounr] = [2,6]. Thus, the linear algo-

it from T7. Given these two facts, the optimal rithm yields [2.3,27.5]. Notice that this bound is in-
CHOOSEREFRESH:ounT algorithm is to let7r deed looser than thés, 11.3] bound achieved by the
be the [|T?| — R] cheapest tuples if””. Using a O(n - logn) algorithm above.

B-tree index on cost, this algorithm runs in sublinear

time. Otherwise, the worst-case running time forg 4.2 Choosing Tuples to Refresh

CHOOSEREFRESHounT requires a sort and is . .
O(n -logn). CHOOSEREFRESH,y(is our most complicated sce-

i]) nario. Details are provided in [24]. Here we give a very
Consider again quer@5 and supposéz = 1. Since pyrief description.
IT*| = 2, CHOOSEREFRESHounT selectsTy = Our CHOOSEREFRESH\y¢ algorithm uses the
{5}, which is the[|T?| — R] = [2 — 1] = 1 cheapest fact that a loose bound on AVG can be achieved as
tuple inT”. After updating this tuple (which turns outto a function of the bounds for SUM andGBJNT, as
be inT"), the bounded OUNT is 2, 3]. in the linear algorithm in Section 6.4.1 above. We

152

choose refresh tuples that provide bounds for SUM andinderway. In addition to testing our algorithms in a re-
COUNT such that thé@ound for AVG as a function of alistic environment, we plan to study how the choice of
the bounds for SUM and GUNT meets the precision bound width (Section 3.2) affects the refresh frequency,
constraint. This interaction is accomplished by using aand we plan to investigate alternative methods of choos-
modified version of the CHOOSREFRESHy\ al- ing bound functions.
gorithm that understands how the choice of refresh tu- This paper represents our initial work in TRAPP
ples for SUM affects the bound for@UNT. This al- replication systems, so there are numerous avenues for
gorithm sets a precision constraint for SUM that takesfuture work. We divide the future directions into four cat-
into account the changing bound folOTNT to guar- egories: additional functionality (Section 8.1), choosing
antee that the overall precision constraint on AVG istuples to refresh (Section 8.2), improving performance
met. CHOOSEREFRESHy¢ preserves the Knap- (Section 8.3), and real-time and availability issues (Sec-
sack Problem structure. Therefore, choosing refresh tution 8.4).
ples for AVG can be accomplished by solving the 0/1
Knapsack Problem, and it has the same complexity ag.1 Additional Functionality
CHOOSEREFRESHo_skr/sum (See Section 5.2).)))

In our example quer6 above, if we seRR = 2 then e Expanding the class of aggregation queries we
CHOOSEREFRESH,y chooses a knapsack capacity consider. We want to devise algorithms for
of M = 4 and assigns a weight to each tuple as shown other aggregation functions, such as MEDIAN (for

in the column labeledV” in Figure 2. The knapsack which we have preliminary results [9]) and TOP-
optimally “contains” tuples 2 and 4. After refreshing the n. In addition, we would like to extend our results
other tuples's = {1, 3, 5, §, the bounded AVG if, 9]. to handle grouping on bounded values, enabling
GROUP-BY and COUNT UNIQUE queries. We
7 Aggregation Queries with Joins would also like to handle nested aggregation func-

_) tions such as MAX(AVG), which requires under-
Computing the bounded answer to an aggregation query standing how the precision of the bounded results
with a join expressionife., with multiple tables in the of the inner aggregate affects the precision of the
FROMlause) is no different from doing so with a selec- outer aggregate.
tion predicate: in most SQL queries, a join is expressed Looking beyond aggregation queries. We be-
using a selection predicate that compares _cc_)Iumns of ieve that the TRAPP idea can be expanded to en-
more than one ta_ble+. Our method for determining mem- ¢ompass other types of relational and non-relational
bership of tuples if"™", T, andT"~ applies to join pred- queries having different precision constraints. In
icates as well as selection predicates. As before, the running example (Section 1.1), suppose we
classification can be expressed as SQL queries and op- igh to find the lowest latency path in the network
timized by the system to use standard join techniques, fom nodeN; to nodeN;. A precision constraint
possibly incorporating specialized indexes as discussed might require that the value corresponding to the an-

in Section 8.3. . . swer returned by TRAPR.€. the latency of the se-
_On the other hand, choosing tuples to refresh is sig- |acted path) is within some distance from the value
nificantly more difficult in the presence of joins. First, of the precise best answer.

since there are several “base” tuples contributing to each
“aggregation” (joined) tuple, we can choose to refresh
any subset of the base tuples. Each subset might shrink
the answer bound by a different amount, depending how
it affects theT+, T?, T~ classification combined with

its effect on the aggregation column. Second, since each
base tuple can potentially contribute to multiple aggre-
gation tuples, refreshing a base tuple for one aggregation
tuple can also affect other aggregation tuples. These in-
teractions make the problem quite complex. We have
S?enss't%eigﬂgsaﬁ'?gfjgﬁ] u(rqIszté(r:iggoggxesntlrftv\?g%?geir:l-J design our algorithms to perform better with relative
vestigating the exact complexity of the problem and bouan. . I -

hope to find an approximation algorithm with a tun- ® Considering probabilistic precision guarantees.
ablee parameter, as in the approximation algorithm for | RAPP systems as defined in this paper im-

¢ Allowing users to express relative instead of ab-
solute precision constraints. A relative precision
constraint might be expressed as a consfant
0 that denotes an absolute precision constraint of
2 - A- P, whereA is the actual answer. The dif-
ficulty is thatA is not known in advance. Based on
the bound ord derived in the first pass from cached
data alone, it is possible to find a conservative abso-
lute precision constraink < 2- A - P to use in
our algorithms. However, it might be possible to re-

CHOOSEREFRESH),. prove performance by providing bounded answers,
while offering absolute guarantees about precision.
8 Status and Future Work As discussed in Section 2, other approaches im-

prove performance by giving probabilistic guaran-
We have implemented all of the bounded aggregation tees about precision. An interesting direction is to
functions and CHOOSIREFRESH algorithms pre- combine the two for even better performance: pro-
sented in this paper, and implementation of the source- vide bounded answers with probabilistic precision
cache cooperation discussed in Sections 3.1 and 3.2 is guarantees.

153

e Considering applying our TRAPPideas tomulti-

8.2

8.3

levelreplication systems, where each data object
resides on one source and there is a hierarchy of
data caches.Refreshes would then occur between
a cache and the caches or sources one level below,
with a possible cascading effect. A current exam-
ple of such a scenario is Web caching systeeng,(
Inktomi Traffic Servef18]), which reside between
Web servers and end-user Web browsers.
Extending data visualization techniques to take
advantage of TRAPP. We are currently investigat-
ing ways to extend data visualization systemg(
[25]) to display images based on bounded data in-
stead of precise data, perhaps by drawing fuzzy re-
gions to indicate uncertainty. A visualization in a
TRAPP setting could be modeled as a continuous
qguery in which precision constraints are formulated
in the visual domain and upheld by TRAPP.

Choosing Tuples to Refresh

Adapting our CHOOSEREFRESHalgorithms

to take refresh batching into account. If mul-

tiple query-initiated refreshes are sent to the same
source, the overall cost may be less than the sum
of the individual costs. We would like to adapt
our CHOOSEREFRESH algorithms to take into
account such cases where refreshing one tuple re-
duces the cost of refreshing other tuples. In
fact, the same adaptation may help us develop
CHOOSEREFRESH algorithms for queries in-
volving join and group-by expressions. In both of
these cases, refreshing a tuple for one purpose (one
group or joined tuple) may reduce the subsequent
cost for another purpose (group or joined tuple).
Considering iterative CHOOSEREFRESHal-
gorithms. Rather than choosing a set of tuples in
advance that guarantees adequate precision regard-
less of actual exact values, we could refresh tuples
iteratively until the precision constraint is met. In
addition to developing the alternative suite of algo-
rithms, it will be interesting to investigate in which
contexts an iterative method is preferable to the
batch method presented in this paper. Also, we
could use an iterative method to give bounded ag-
gregation queries an “online” behavior [14], where
the user is presented with a bounded answer that
gradually refines to become more precise over time.
In this scenario, the goal is to shrink the answer
bound as fast as possible.

Improving Performance

Delaying the propagation of insertions and dele-
tions to data caches.We are currently investigat-
ing ways in which discrepancies in the number of
tuples can be bounded, and the computation of the
bounded answer to a query can take into account
these bounded discrepancies. Sources will then no
longer be forced to send a refresh every time an ob-
jectis inserted or deleted.

154

8.4

Investigating specialized bound functions suit-
able for update patterns with known properties.

The bound function shape we suggested in this pa-
per (Section 3.2) is based on the assumption that no
information about the update pattern is available.

Considering ways to amortize refresh costs bye-
fresh piggybackingand pre-refreshing When a
(value- or query-initiated) refresh occurs, the source
may wish to “piggyback” extra refreshes along with
the one requested. These extra refreshes would con-
sist of values that are likely to need refreshing in the
near futuree.g, if the precise value is very close to
the edge of its bound. The amount of refresh piggy-
backing to perform would depend on the benefit of
doing so versus the added overhead. Additionally,
it might be beneficial to performpre-refreshing by
sending unnecessary refreshes when system load is
low that may be useful in future processing.
Investigating storage, indexing, and query pro-
cessing issues over bounded value$Ve are cur-
rently designing and evaluating schemes for index-
ing bounds that are functions of time with a square-
root shape, as discussed in Section 3.2. Also, we
plan to weigh the advantages of using functions
for bounds versus potential indexing improvements
when bounds are constants. We also plan to study
ways in which cached data objects stored as pairs
of bound functions might be compressed. Without
compression, caches must store two values for each
data object, and sources must transmit these two
values for each tuple being refreshed. Furthermore,
the Refresh Monitor at each source must keep track
of the bound functions for each remotely cached
data object. Compression issues can be addressed
without affecting the techniques presented in this
paper: our CHOOSERREFRESH algorithms are
independent of which bound functions are used or
how they are represented, and we have not yet fo-
cused on query processing issues.

Real-time and Consistency Issues

Handling refresh delay. Since message-passing
over a network is not instantaneous, in a value-
initiated refresh there is some delay between the
time a master value exceeds a cached bound and the
time the cache is refreshed. Consequently, a cached
bound can be “stale” for a short period of time. One
way to avoid this problem is by pre-refreshing a
value when it is close to the edge of its bound.
Evaluating concurrency control solutions. If
value-initiated refreshes are permitted to occur
during the CHOOSEREFRESH computation or
while a query is being evaluated (or in between), the
answer could reflect inconsistent data or could fail
to satisfy the precision constraint. One solution is
to implement multiversion concurrency control [5],
which would permit refreshes to occur at any time,
while still allowing each in-progress query to read
data that was current when the query started.

Acknowledgments [16]

We thank Hector Garcia-Molina, Taher Haveliwala, Ra-
jeev Motwani, and Suresh Venkatasubramanian for use-
ful discussions. We also thank Joe Hellerstein and somga7)
anonymous referees for helpful comments on an initial
draft. Finally, we thank Sergio Marti for useful discus-
sions about network monitoring. (18]

References [19]

[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representa{20]
tion and querying of sets of possible worlds. Pmoceedings of
the ACM SIGMOD International Conference on Management of
Data, pages 34-48, San Francisco, California, May 1987.

[2] R. Alonso, D. Barbara, H. Garcia-Molina, and S. Abad. Quasi- [21]
copies: Efficient data sharing for information retrieval systems.
In Proceedings of the International Conference on Extending
Database Technologyages 443-468, Venice, Italy, March 1988.

[3] D. Barbara and H. Garcia-Molina. The Demarcation Protocol:
A technique for maintaining linear arithmetic constraints in dis-
tributed database systems. Pmoceedings of the International
Conference on Extending Database Technalggges 373-387, [23]
Vienna, Austria, March 1992.

[4] M. Benedikt and L. Libkin. Exact and approximate aggregation in
constraint query languages. Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Sys{24]
tems pages 102-113, Philadelphia, Pennsylvania, May 1999.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodmatoncurrency
Control and Recovery in Database System&ddison-Wesley,
1987. [25]

[6] A. Brodsky and Y. Kornatzky. The LyriC language: Querying
constraint objects. lProceedings of the ACM SIGMOD Inter-
national Conference on Management of Dgtages 3546, San
Jose, California, May 1995.

[7] A. Brodsky, V. E. Segal, J. Chen, and P. A. Exarkhopoulo. The
CCUBE constraint object-oriented database systenPrdceed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Data pages 577-579, Philadelphia, Pennsylvania, June[27]
1999.

[8] T.H.Cormen, C. E. Leiserson, and R. L. Rivebitroduction to
Algorithms MIT Press, Cambridge, Massachusetts, 1990.

[9] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. [28]
Computing the median with uncertainty. Rroceedings of the
32nd ACM Symposium on Theory of ComputiRgrtland, Ore-
gon, May 2000.

[10] M. R. Garey and D. S. JohnsorComputers and Intractability:
A Guide to the Theory of NP-Completene¥é H. Freeman and
Company, New York, New York, 1979.

[11] P. B. Gibbons and Y. Matias. New sampling-based summary
statistics for improving approximate query answersPtoceed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Datapages 331-342, Seattle, Washington, June 1998.

[12] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangers of
replication and a solution. IRroceedings of the ACM SIGMOD
International Conference on Management of Dapages 173—
182, Montreal, Canada, June 1996.

[13] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha,
S. Parthasarathy, J. B. Park, and A. Vernon. Scalable trigger
processing. IProceedings of the 15th International Conference
on Data Engineeringpages 266275, Sydney, Austrialia, March
1999.

[14] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Ra-
man, T. Roth, and P. Haas. Interactive data analysis with CON-
TROL. IEEE ComputerAugust 1999.

[15] J. M. Hellerstein and P. J. Haas. Online aggregatiorRrbteed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Datapages 171-182, Tucson, Arizona, May 1997.

(29]

155

Y. Huang, R. Sloan, and O. Wolfson. Divergence caching in
client-server architectures. Froceedings of the Third Interna-
tional Conference on Parallel and Distributed Information Sys-
tems pages 131-139, Austin, Texas, September 1994.

O. H. Ibarra and C. E. Kim. Fast approximation algorithms for
the knapsack and sum of subset probledmsurnal of the ACM
22(4):463-468, October 1975.

Inktomi. Inktomi traffic server, 1999. http://www.inktomi.com
/products/network/traffic/product.html.

N. Jukic and S. Vrbsky. Aggregates for approximate query pro-
cessing. IrProceedings of ACMSkpages 109-116, April 1996.

P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint
guery languages. IRroceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systpages
299-313, Nashville, Tennessee, April 1990.

G. M. Kuper. Aggregation in constraint databasesPtaceed-
ings of the First Workshop on Principles and Practice of Con-
straint ProgrammingNewport, Rhode Island, April 1993.

J. P. Morgenstein. Computer based management information sys-
tems embodying answer accuracy as a user parameter. Ph.D. the-
sis, U.C. Berkeley Computer Science Division, 1980.

F. Naumann, U. Leser, and J. Freytag. Quality-driven integra-
tion of heterogeneous information systemsPceedings of the
Twenty-Fifth International Conference on Very Large Data Bases
Edinburgh, U.K., September 1999.

C. Olston and J. Widom. Offering a precision-performance trade-
off for aggregation queries over replicated data. Technical re-
port, Stanford University Computer Science Department, 2000.
http://www-db.stanford.edu/pub/papers/trapp-ag.ps.

C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac, M. Lin,
M. Spalding, and M. Stonebraker. DataSplashPtaceedings of
the ACM SIGMOD International Conference on Management of
Data, pages 550-552, Seattle, Washington, June 1998.

26] V. Poosala and V. Ganti. Fast approximate query answering using

precomputed statistics. Proceedings of the IEEE International
Conference on Data Engineeringage 252, Sydney, Australia,
March 1999.

R.L.Read, D. S. Fussell, and A. Silberschatz. A multi-resolution
relational data model. I®Proceedings of the Eighteenth Inter-
national Conference on Very Large Data Baspages 139-150,
Vancouver, Canada, August 1992.

E. A. Rundensteiner and L. Bic. Aggregates in possibilistic
databases. IfProceedings of the Fifteenth International Con-
ference on Very Large Data Basgmges 287-295, Amsterdam,

The Netherlands, August 1989.

O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving ob-
jects databases: Issues and solution®rbteedings of the Tenth
International Conference on Scientific and Statistical Database
Managementpages 111-122, Capri, Italy, July 1998.

	Eur201.pdf
	Am125.pdf
	Eur153.pdf
	Am187.pdf

