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Abstract

We present an optimization method and al-
gorithm designed for three objectives: physi-
cal data independence, semantic optimization,
and generalized tableau minimization. The
method relies on generalized forms of chase
and \backchase" with constraints (dependen-
cies). By using dictionaries (�nite functions)
in physical schemas we can capture with con-
straints useful access structures such as indexes,
materialized views, source capabilities, access
support relations, gmaps, etc.

The search space for query plans is de�ned and
enumerated in a novel manner: the chase phase
rewrites the original query into a \universal"
plan that integrates all the access structures and
alternative pathways that are allowed by appli-
cable constraints. Then, the backchase phase
produces optimal plans by eliminating various
combinations of redundancies, again according
to constraints.

This method is applicable (sound) to a large
class of queries, physical access structures, and
semantic constraints. We prove that it is in
fact complete for \path-conjunctive" queries and
views with complex objects, classes and dictio-
naries, going beyond previous theoretical work
on processing queries using materialized views.

1 Introduction

Physical data independence strives to free the
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query formulation process from needing to know the
complex techniques that make the implementation
e�cient. This is a very desirable property for tra-
ditional DBMS and an essential one for information
integration systems where the implementations are
distributed and hidden. However, traditional DBMS
still need techniques for a more radical decoupling
of the logical schema from the physical implementa-
tion, while in information integration systems most
di�culties come from heterogeneity.

There have been several research e�orts investigat-
ing physical data independence as the central is-
sue [45, 20] or investigating closely related prob-
lems [48, 16, 27, 15, 30, 39, 38]. All of them recognize
physical data independence as an optimization prob-
lem: rewrite a query Q(�) written against a logical
schema � into an equivalent query plan Q0(�) writ-
ten against a physical schema �, given a semantic
relationship between � and �. The question is how
to de�ne, broadly but precisely, this relationship and
what meaning to give to \equivalent". There are two
main approaches to this (see �gure 1). The �rst one
is to assume an abstraction mapping A that expresses
the instances of the logical schema � in terms of those
of the physical schema � and then

de�ne Q0 def= Q � A

and the second one is to assume an implementation
mapping from � to �, then

solve X�I =
�

Q for X then de�ne Q0 def= X

(Here =
�
means equality in the presence of the con-

straints of the logical schema �). The abstraction
mapping approach is the one taken in [20], while the
implementation mapping approach is the one taken
in [45] and \solving for X" above is related to what
is often called \answering queries using views" [30].
The second approach is mathematically and compu-
tationally harder but it has a clear advantage from
the optimization perspective: the equation X�I =

�

Q typically has more than one solution, even more
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Figure 1: Logical and Physical Schema: two ap-
proaches towards rewriting

so because it takes into consideration the constraints
of the logical schema �. In this paper we also take
the second approach, but in a richer data model.

The physical data model Both [45] and [20] have
some special constructs and types for representing
physical structures but the operations on them that
can be used in a query plan (e.g., joins or compre-
hensions) do not explicitly distinguish them from
relations/complex values. It is assumed implicitly
that the query engine will evaluate the joins and
comprehensions over these special constructs in way
that takes advantage of their physical e�ciency. In
constrast, we represent such structures explicitely,
mainly using dictionary data structures (functions
with a �nite domain expressible in the language).
This is a construct that re
ects directly the e�ciency
of its representation through a fast lookup opera-
tion that appears in query plans. It turns out that
dictionaries represent in a natural fashion physical
structures such as primary and secondary indexes,
extent-based representations of OO classes, join in-
dexes [46], path indexes [34], access support rela-
tions [28], gmaps [45], etc. The physical level is repre-
sented just like the logical level is, with a typed data
de�nition language and with constraints.

Constraints In a previous paper [37] we have gen-
eralized the classical relational tableau chase proce-
dure [9] to work for the object-oriented model and
dictionaries and for dependencies that capture a large
class of semantic constraints including referential in-
tegrity constraints, inverse relationships, nested func-
tional dependencies, etc. Moreover, we have shown
that classical tableau minimization [14, 5] can be
generalized correspondingly, as chasing with \triv-
ial" (always true) constraints 1 In this paper we
show that the elements of the implementation map-
ping (physical access structures, materialized views,
etc.) are uniformly captured by the same kind of
constraints and that we can use the chase (forwards
and backwards) to �nd the solutions of the equation
X � I =

�
Q mentioned above.

Universal plans The constraints that capture the

1In fact, [37] applies the chase to deciding query contain-
ment and equivalence under constraints, to constraint deriva-
tion and to constraints holding in views.

implementation mapping are of two kinds. The �rst
kind apply the chase to the original query introduc-
ing explicitly the physical schema structures. Some
semantic constraints work in the same way introduc-
ing structures that are alternatives to the ones men-
tioned in the original query. Chasing with these con-
straints 2 results in a query plan that we call univer-
sal because it is an amalgam of all the query plans
allowed by the constraints. In a second phase we
chase backwards from the universal plan trying to
simplify the plan by removing structures, in partic-
ular some or all of the structures mentioned in the
original query. The soundness of each such backchase
step relies again on a constraint and we must test if
this constraint is implied by the existing ones. This
is where the second kind of constraints capturing the
implementation mapping are used. This is also where
we perform minimization, by testing for trivial con-
straints.

Applications An important contribution of this
work is the systematic procedure for considering all
alternate plans enabled by indexes and other physical
access structures. Conventional relational optimiza-
tion methods have long relied on ad-hoc heuristics
for introducing indexes into a plan. Gmaps [45] have
been proposed as an alternative but this work goes
beyond gmaps, while for object-oriented data inde-
pendence it goes beyond the approach of [28]. In
fact, we have originally been motivated by our in-
terest in distributed, mediator-based systems [47] for
information integration, where it turns out that the
techniques presented in [15, 30, 39, 38] are neither
general enough nor 
exible enough to be adapted to
the problems we wish to solve. Moreover, we present
our technique in a form that is easy to integrate in
the rule-based paradigm [17], and easy to combine
with conventional optimization techniques [41] such
as selection pushing and join reordering.

Theoretical aspects We prove that our method is
complete, i.e., �nds the query plans that are minimal
in a precise sense, for path-conjunctive(PC ) queries
and physical access structures (implementation map-
pings). An important restriction is that no con-
straints beyond those describing the implementation
mappings are allowed. Still, PC queries and PC phys-
ical structures are more general and expressive than
those considered in previous work. The main result
of [30] is a particular case of ours.

About the language Our understanding of these
results started with a di�erent formalism 3 than the
one used in this paper and in fact an e�cient internal
representation of the queries would be di�erent yet
(see [6]). However, to facilitate the presentation, we

2See [6] for termination of this process
3One in which it was easier to see the interaction between

queries and constraints and the equivalence laws that govern
it [37]
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use throughout this paper the well-known syntax of
ODMG/ODL and ODMG/OQL [12] (extended with
a few constructs) for both logical and physical schema
and queries. ODL already has a type of dictionaries
DicthT1; T2i, with keys of type T1 and T2 of type T2,
and OQL already has M [ k ], the lookup operation
that returns the entry corresponding to the key k
in the dictionary M , provided that M is de�ned 4

for k. In practice, for dictionaries with set-valued
entries, one often assumes the existence of a non-
failing lookup operation that returns the empty set
rather than failing when k is not de�ned for M . We
denote this physical operation by M [[k]]. To this we
add the operation domM that returns the domain
of the dictionary M , i.e., the set of keys for which M
is de�ned and a dictionary construction operation in
section 2.

Proj: Set<Struct{ class Dept
string PName; (extent depts key DName){
string CustName; attribute string DName;
string PDept; relationship Set<string> DProjs
string Budg;}> inverse Proj(PDept);
primary key PName; attribute string MgrName;}
foreign key PDept foreign key DProjs
references Dept::DName; references Proj(PName);
relationship PDept
inverse Dept::DProjs;

Figure 2: The Proj-Dept schema in extended ODMG

An example; logical schema and query Consider
the logical schema in �gure 2. It is written following
mostly the syntax of ODL, the data de�nition lan-
guage of ODMG, extended with referential integrity
(foreign key) constraints in the style of data de�ni-
tion in SQL. It consists of a class Dept and a relation
Proj. The schema has referential integrity (RIC), in-
verse relationship, and key constraints whose mean-
ing can be speci�ed by the following assertions.

(RIC1) 8(d 2 depts) 8(s 2 d:DProjs)
9(p 2 Proj) s = p:PName

(RIC2) 8(p 2 Proj) 9(d 2 depts) p:PDept = d:DName

(INV1) 8(d 2 depts) 8(s 2 d:DProjs) 8(p 2 Proj)
( s = p:PName ) p:PDept = d:DName )

(INV2) 8(p 2 Proj) 8(d 2 depts)
( p:PDept = d:DName )

9(s 2 d:DProjs) p:PName = s )

(KEY1) 8(d 2 depts) 8(d0 2 depts)
( d:DName = d0:DName ) d = d0 )

(KEY2) 8(p 2 Proj) 8(p0 2 Proj)

4Otherwise, lookup will fail. We will be careful to avoid
this in the case of path-conjunctive queries, see section 5.

( p:PName = p0:PName ) p = p0 )

Consider also the following OQL query Q that asks
for all project names, with their budgets and depart-
ment names, that have a customer called "CitiBank":

select distinct struct(PN : s; PB : p:Budg; DN : d:DName)
from depts d; d:DProjs s; Proj p
where s = p:PName and p:CustName = "CitiBank"

We deal only with set semantics in this paper, thus
we omit writing the keyword distinct from now on.

Example continued; physical schema In our ap-
proach an OO class must have an extent and is repre-
sented as a dictionary whose keys are the oids, whose
domain is the extent and whose entries are records
of the components of the objects. To maintain the
abstract properties of oids we do not make any as-
sumptions about their nature and we invent fresh
new base types for them (see Doid for Dept in �g-
ure 3; we abused the notation a little by choosing for
the dictionary the same name as the class). This rep-
resentation actually corresponds to the usual seman-
tics of OODB constructs [1]. The syntax of queries
and that of query plans are very close: for exam-
ple, if d is an oid in depts the implicit dereferencing
in d:DName corresponds to the dictionary lookup in
Dept [ d ]:DName. The relation Proj, stored as a table
(a set of records), is also part of the physical schema,
who therefore is not disjoint from the logical; this is
a common situation. In addition, we assume that the
following indexes are maintained: a primary index I

on the key PName of relation Proj and a secondary
index SI on CustName of relation Proj(we could have
also added an index between the key DName and the
extent of Dept but we don't need it for the exam-
ple). Both indexes are represented by dictionaries
(see �gure 3). For example, I [ s ] returns the record
r in Proj such that r:PName = s. Similarly, SI [ c ]
gives back the set of records5 r in Proj such that
r:CustName = c. Finally, the physical schema mate-
rializes the physical access structure de�ned by:

(JI) select struct(DOID : d; PN : p:PName)
from depts d; d:DProjs s; Proj p
where s = p:PName

Note that JI is both a generalized access support
relation [28] and a generalized join index [46] since it
involves a relation and a class.

Example continued; query plansWith this phys-
ical schema, with the implementation mapping un-
derstood from the partly informal discussion above,

5In an implementation this may be a set of record ids rather
than a set of records (if SI is not a clustered index), and simi-
larly for the case of the primary index. This would introduce
an additional level of indirection that we chose not show here
for simplicity of presentation.
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Dept : DicthDoid; Structfstring DName;

Sethstringi DProjs;

string MgrNamegi

Proj : SethStructfstring PName; string CustName;

string PDept; string Budggi

I : Dicthstring; Structfstring PName; string CustName;

string PDept; string Budggi

SI : Dicthstring; SethStructfstring PName; string CustName;

string PDept; string Budggii

JI : SethStructfDoid DOID; string PNgi

Figure 3: The physical schema

and especially with the constraints speci�ed in the
logical schema, we give four examples of query plans
for the query Q we saw earlier.

(P0) select struct(PN : s; PB : p:Budg;
DN : Dept [ d ]:DName)

from domDept d; Dept [ d ]:DProjs s; Proj p
where s = p:PName and

p:CustName = "CitiBank"

(P1) select struct(PN : p:PName; PB : p:Budg;
DN : p:PDept)

from Proj p
where p:CustName = "CitiBank"

(P2) select struct(PN : p:PName; PB : p:Budg;
DN : p:PDept)

from SI [["CitiBank"]] p

(P3) select struct(PN : j:PN; PB : I [ j:PN ]:Budg;
DN : Dept [ j:DOID ]:DName)

from JI j
where I [ j:PN ]:CustName = "CitiBank"

P0 just introduces the representation of the class as a
dictionary and its cost is essentially that of Q, but the
other three are potentially signi�cantly better. De-
pending on the cost model (especially in a distributed
heterogeneous system), either one of P1, P2, and P3
may be cheaper than the other two. As we shall see,
although they are quite di�erent in nature, our opti-
mization algorithm generates all three.

Overview of the remainder of the paper. In
section 2 we describe how we model with constraints
physical structures such as primary and secondary
indexes, materialized views, access support relations,
join indexes, and gmaps. Section 3 presents our op-
timization algorithm. In section 4 we give two exam-
ples of relational scenarios, one on index access paths
and one on using materialized views. The complete-
ness results are in section 5. Related work is discussed
in section 6.

2 Physical Structures as Constraints

We show here how typical physical access structures
captured by constraints. For illustration, we also
wish to be able to write down implementation map-
pings involving dictionaries. OQL does not have an
operation that constructs a dictionary so we extend
it with the following syntax dict x in Q ) Q0(x)
denotes the dictionary with domain Q and that as-
sociates to an arbitrary key x the entry Q0(x). The
notation Q0(x) re
ects the fact that Q0 is an expres-
sion in which the variable x may occur free.

Indexes and classes The operation we just intro-
duced allows us to de�ne explicitly primary and sec-
ondary indexes such as I and SI:

I
def
= dict k in �PName(Proj) )
element(select p from Proj p where p:PName = k)

SI
def
= dict k in �CustName(Proj) )
(select p from Proj p where p:CustName = k)

Here �A(R) is a shorthand for the query that projects
relation R on A and element(C) is the OQL operation
that extracts the unique element of the singleton col-
lection C and fails if C is not a singleton. Luckily, the
use of constraints allows us to avoid using this messy
operation. Both primary and secondary indexes are
completely characterized by constraints, eg., for I
we use (PI1, PI2) and for SI we use (SI1, SI2, SI3)
where

(PI1) 8(p 2 Proj) 9(i 2 domI)
i = p:PName and I [ i ] = p

(PI2) 8(i 2 dom I) 9(p 2 Proj)
i = p:PName and I [ i ] = p

(SI1) 8(p 2 Proj) 9(k 2 dom SI) 9(t 2 SI [ k ])
k = p:CustName and p = t

(SI2) 8(k 2 domSI) 8(t 2 SI [ k ]) 9(p 2 Proj)
k = p:CustName and p = t

(SI3) 8(k 2 domSI) 9(t 2 SI [ k ]) true

Notice that each of (PI1, PI2, SI1, SI2) is an inclusion
constraint while (SI3) is a non-emptyness constraint.
In fact, taken together, the pairs of inclusion con-
straints also state inverse relationships between the
dictionaries and Proj. Similarly, we can represent
the relationship between the class Dept and the dic-
tionary implementing it, Dept, with two constraints.
We show one of them (the other is \inverse"):

(�Dept) 8(d 2 depts) 8(s 2 d:DProjs)

9(d0 2 domDept) 9(s0 2 Dept [ d0 ]:DProjs)
d = d0 and s = s0

Hash tablesAn interesting extension to this idea are
hash tables. A hash table for a relation can be viewed
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as a dictionary in which keys are the results of apply-
ing the hash function to tuples in the relation, while
the entries are the buckets (sets of tuples). Thus, a
hash table can be represented similarly to secondary
indexes. A hash table di�ers from an index because
it is not usually materialized, however a hash-join al-
gorithm would have to compute it on the 
y. In our
framework, we can rewrite join queries into queries
that correspond to hash-join plans, provided that the
hash-table exists, in the same way we rewrite queries
into plans that use indexes. We leave the details out
due to lack of space.

Materialized views/Source capabilities Materi-
alized conjunctive or PSJ (project-select-join) views,
or cached results of conjunctive/PSJ queries over a
relational schema R have been used in answering other
conjunctive/PSJ queries over R [48, 16, 15, 30, 38].
We consider the more general form

V
def
= select O(~x) from ~P ~x where B(~x)

Here we denote by ~P ~x an arbitrary sequence of
bindings P1 x1; : : : ; Pn xn, by O(~x) we denote the
fact that variables x1; : : : ; xn can appear in the out-
put record O (and similar for B(~x)). Like indexes,
such structures can be characterized by constraints,
namely:

�V
def
= 8(~x 2 ~P ) [ B(~x) ) 9(v 2 V ) O(~x) = v ]

�0V
def
= 8(v 2 V ) 9(~x 2 ~P ) [ B(~x) and O(~x) = v ]

Note that �V corresponds to the in-

clusion select O(~x) from ~P ~x where B(~x) � V

while �0V corresponds to the inverse inclusion. The
two are, in general, constraints between the physical
and the logical schema.

In our example, JI is expressed as such a view and
�JI is (we don't show here �0JI):

(�JI) 8(d 2 depts) 8(s 2 d:DProjs) 8(p 2 Proj)
( s = p:PName ) 9(j 2 JI) j:DOID = d

and j:PN = p:PName )

Source capabilities often used in information integra-
tion systems can be described by either such materi-
alized views or by dictionaries modeling the binding
patterns of [39].

Join indexes [46] were introduced as a technique for
join navigation and shown to outperform even hybrid-
hash join in most cases with high join selectivity. The
technique assumes that tuples have unique, system-
generated identi�ers called surrogates (if the relations
have keys, these can be used instead), and that the
relations are indexed on surrogates. A join index for
the join of relations R and S, denoted JRS , is a pre-
computed binary relation associating the surrogates
of R-tuples to surrogates of S-tuples whenever these
tuples agree on the join condition. The join is com-

puted by scanning JRS and using the surrogates to
index into the relations. We can therefore fully de-
scribe a join index by a triple consisting of a materi-
alized binary relation view and two indexes. In our
example, the join index for joining Dept with Proj is
(Dept, I, JI).

Access support relations [28, 29] generalize path
indexes [34, 10, 11] and translate the join index idea
from the relational to the object model, generalizing
it from binary to n-ary relations. An access support
relation (ASR) for a given path is a separate pre-
computed relation that explicitly stores the oids of
objects related to each other via the attributes of the
path. As with join indexes, ASRs are used to rewrite
navigation style path queries to queries which scan
the access support relation, project out the oids of
the source and target objects for the path and deref-
erence these oids to access the objects. The oid deref-
erencing operation is performed implicitly in OQL,
which therefore can express this algorithm, but fails
to express its join index based relational counterpart
because of the lack of explicit dictionary lookup oper-
ations. In our approach, access support relations and
join indexes are uni�ed using dictionaries both for
representing classes with extents and indexes. Anal-
ogous to join indexes, we model access support re-
lations for a given path as the materialized relation
storing the oids along the path, together with the
dictionaries modeling the classes of the source and
target objects of the path.

Gmaps [45] specify physical access structures as ma-
terialized PSJ views over logical schema. [45] gives
a sound (not complete) algorithm for rewriting PSJ
queries against the logical schema in terms of materi-
alized gmaps. Our framework subsumes gmaps: PSJ
queries alone (in the absence of dictionaries) only ap-
proximate index structures with their graph relations
(binary relations associating keys to values, which are
called input respectively output nodes in gmap termi-
nology). In contrast, we capture the intended mean-
ing of a general gmap de�nition using dictionaries:

dict ~z in (select O1(~x) from ~P ~x where B(~x)) )

select O2(~x; ~z) from ~P ~x where B(~x)

Here O1; O2 have 
at record type (as outputs of PSJ
queries in the original de�nition). Notice the corre-
lation between the domain and range of the dictio-
nary: they are given by queries which di�er only in
the projection of the select clause, a limitation re-
sulting from the gmap de�nition language. We can
generalize gmaps by overcoming this limitation and
supplying di�erent queries for the domain and range
of our dictionaries. Similarly to the case of secondary
indexes, we can model this generalized form of gmaps
with dependencies.

In the PSJ modeling of gmaps, queries rewritten in
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terms of gmaps perform relational joins and don't ex-
plicitly express index lookups. Just by looking at the
rewritten query, the optimizer cannot decide whether
a join should be implemented as such or in an index-
based fashion. In other words, PSJ queries used in
the gmap approach are not as close to query plans as
queries in our language.

3 Optimization

The optimization algorithm starts with a query Q
against a logical schema � and produces a query plan
Q0 against the physical schema �. Q0 will be equiv-
alent to Q under all the constraints and it will be
selected according to a cost model. In addition to
optimization for physical data independence, the al-
gorithm performs semantic optimizations allowed by
the constraints of the logical schema and eliminates
super
uous computations (as in tableau minimiza-
tion [2]).

The algorithm has two main phases: the �rst one,
called the chase, introduces all physical structures
in the implementation that are relevant for Q and
rewritesQ to a universal plan U that explicitly uses
them. The second phase, that we call the backchase
searches for a minimal plan for Q among the \sub-
queries" of U . We believe that this is a novel ap-
proach. It was in fact inspired by our use of con-
straints as rewrite rules [37] and it is motivated by
the completeness result we prove in section 5. For
the following let us denote by D the dependencies on
the logical schema and by D0 the dependencies be-
tween the logical and physical schemas that model
the implementation mapping (as we have shown in
section 2).

Phase 1: chase. Given a constraint of the form

8(r1 2 R1) � � � 8(rm 2 Rm)
[ B1 ) 9(s1 2 S1) � � � 9(sn 2 Sn) B2 ]

the corresponding chase step (in a simpli�ed form) is
the rewrite

select O(~r)
from : : : ; R1 r1; : : : ; Rm rm; : : :
where � � � and B1 and � � �

+

select O(~r)
from : : : ; R1 r1; : : : ; Rm rm; S1 s1; : : : ; Sn sn; : : :
where � � � and B1 and B2 and � � �

Example. On our Proj-Dept schema, the logical
query Q chases in one step using �JI to the following.
Note how new loops and conditions are being added
to the ones already existing in Q.

select struct(PN : s; PB : p:Budg; DN : d:DName)
from depts d; d:DProjs s; Proj p; JI j
where s = p:PName and p:CustName = \CitiBank"

and j:DOID = d and j:PN = p:PName

The chase phase consists of applying repeatedly chase
steps w.r.t. any applicable constraint from the logical
schema and from the characterization of the physical
structures (see section 2), i.e. D [D0. \Applicable"
must be de�ned carefully to avoid trivial loops and to
allow for chasing even when the query and the con-
straint do not match syntactically as easily as we have
seen in the simpli�ed form above. We can stop this
rewriting anytime and it will still be sound (under the
constraints) for a large class of queries, views, indexes
and constraints. We show in [37] that the classical re-
lational chase [9] is indeed a particular case of this.
We also show that while the chase does not always
terminate, it does so for certain classes of constraints
and queries, yielding an essentially unique result U
whose size is polynomial 6 in that of Q. Sometimes
we denote U by chase(Q).

Example. We illustrate the �rst phase of the algo-
rithm on our example. By chasing with �JI , then
with �Dept, INV1, SI1 and PI1, U is obtained as fol-

lows. None of the other dependencies are applicable.

select struct(PN : s; PB : p:Budg; DN : Dept [ d ]:DName)
from depts d; d:DProjs s; Proj p; JI j

domDept d0; Dept [ d0 ]:DProjs s0;
domSI k; SI [ k ] t; domI i

where s = p:PName and p:CustName = \CitiBank"
and j:DOID = d and j:PN = p:PName
and d = d0 and s = s0 and p = t
and p:CustName = k and i = p:PName
and p = I [ i ] and d:DName = p:PDept

For the optimization algorithm, the role of the chase
phase is to bring, in a systematic way, all the rele-
vant physical structures into the logical query. For
example, chasing with (PI1) and (SI1) adds to the
query the accessing of the corresponding primary and
secondary index. The result of the chase, U , is the
universal plan that holds in one place essentially all
possible physical plans expressible in our language.
However, U still references elements of the logical
schema, and the role of the next phase is to uncover
the physical plans.

Phase 2: backchase. The backchase step is the
rewrite

select O(~x; y)
from R1 x1; : : : ; Rm xm; R y
where C(~x; y)

+

6This bound could be used a heuristic for stopping the chase
when termination is not guaranteed.
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select O0(~x)
from R1 x1; : : : ; Rm xm
where C 0(~x)

provided that: (1) the conditions C 0 are implied by
C, (2) the equality of O and O0 is implied by C, and
(3) the following constraint is implied by D [D0:

(�) 8(x1 2 R1) : : :8(xm 2 Rm)
[ C 0(~x) ) 9(y 2 R) C(~x; y) ]

Thus, the purpose of a backchase step is to eliminate
(if possible) a binding R y from the from clause of
the query. 7 For any two queries Q and Q' as above
such that conditions (1) and (2) are satis�ed, we say
that Q0 is a subquery of Q. For computing O0 and
C 0 we have a procedure de�ned for a large class of
queries that is sound when it succeeds and that al-
ways succeeds for the queries for which the algorithm
is complete. The idea is to build a database instance
out of the syntax of Q grouping terms in congru-
ence classes according to the equalities that appear
in C. Then, we can take C 0 to be a maximal set of
equalities implied by C (maximality is needed here for
completeness). We can check then by looking at the
canonical database whether we can replace O with
an equivalent (i.e. in the same congruence class) O0

that doesn't depend on y. If we reduce the setting
to that of conjunctive relational tableaux, our notion
of subquery coincides with the notion of sub-tableau.
The only di�erence is that in our language variables
range over tuples rather than over individuals and
the equalities (implicit in tableaux!) are explicit.

While the �rst two conditions ensure that the
backchase reduces a query to a subquery of it, condi-
tion (3) guarantees that it reduces it to an equivalent
subquery. This is true because its reverse is just the
chase step with constraint (�) followed by a simpli�-
cation given by (1) and a replacement of equals given
by (2). Sometimes the backchase can apply just by
virtue of constraints (�) that hold in all instances (so-
called trivial constraints). Relational tableau mini-
mization [2] is precisely such a backchase. To illus-
trate, if R(A; B) is a relation then query

select struct(A : p:A; B : r:B)
from R p; R q; R r
where p:B = q:A and q:B = r:B

rewrites, by backchase, to

select struct(A : p:A; B : q:B)
from R p; R q
where p:B = q:A

7We show here a simpli�ed form of backchase. In the case
when there are bindings Ri xi depending on the variable y, we
need to modify the rule so that either these dependent bindings
are eliminated together with R y or they can be replaced with
bindings that do not depend on y.

It is obvious to see that conditions (1) and (2) are
satis�ed, while condition (3) is true because the fol-
lowing constraint is trivial:

(�) 8(p 2 R) 8(q 2 R) [ p:B = q:A )
9(r 2 R) p:B = q:A and q:B = r:B ]

Minimal queries We call a subquery Q1 of Q2 a
strict subquery if Q1 has strictly fewer bindings than
Q2. We say that a query Q is minimal if there does
not exist a strict subquery Q0 of Q such that Q0 is
equivalent to Q. In other words, we cannot remove
any bindings from Q without losing equivalence. (It
turns out that this is a generalization of the mini-
mality notion of [30].) In general, we can think of
the backchase as minimization for a larger (than just
relational tableaux) class of queries, and under con-
straints. Trying to see whether (�) of condition (3)
is implied by the existing constraints can actually be
done with the chase presented above when constraints
are viewed as boolean-valued queries [37]. Again, this
is a decidable problem in the case for which the algo-
rithm is complete.

The backchase phase consists of applying backchase
steps until this is not possible anymore. Clearly this
phase always terminates and the original query must
be among those it could produce (!), but the obvious
strategy for the optimizer is to attempt to remove
whatever is in the logical schema but not in the phys-
ical schema. For the case in which the algorithm is
complete, any query that results from the backchase
phase is minimal (as de�ned above), and, any mini-
mal subquery of a given query Q is guaranteed to be
produced by a backchase sequence from Q.

We can now put these together, and add conventional
optimization techniques such as \algebraic" rewrit-
ing (e.g., pushing selections towards the sources)
and cost-based dynamic programming for join re-
ordering [41]. Without elaborating, we mention that
by ignoring nesting it is possible to apply these tech-
niques to the queries we consider here.

Algorithm 3.1 (Optimization)
Input: Logical schema � with constraints D,

Constraints D0 characterizing physical schema �,
Cost function C,
Query Q(�)

Output: Cheapest plan Q0(�) equivalent to Q
under D [D0

1. for each U(�;�) chaseD;D0(Q)
2. for each p(�) backchaseD;D0(U)
3. do cost-based conventional optimization,

keep cheapest plan so far pm
4. Q0  pm

The �rst for loop (chase) enumerates all possible re-
sults of chasing (there may be more than one in
general). For each such result, the second for loop
(backchase) enumerates all possible backchase se-
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quences (again there may be more than one result),
each producing a plan p. In step (3) conventional op-
timization techniques, including mapping into phys-
ical operators di�erent than those index-based, are
applied to p. If the cost of p is smaller than the cur-
rent minimum cost plan pm then update pm to be p.
In step (4) the best query plan pm is the �nal result.

The reader can check by backchasing the universal
plan U shown previously that P0, P1, P2, and P3 are
obtained as minimal queries in this algorithm. Steps
(3) and (4) choose the cheapest plan among them.

Rule-based implementation In an implementa-
tion, the conceptual search of algorithm 3.1 can be
speci�ed implicitly by con�guring a rule-based opti-
mizer ([17, 23]) with the two rewrite rules chase and
backchase, and requesting that the application of the
chase rule always takes precedence over that of the
backchase rule. Depending on the search strategy
implemented by the optimizer, the search space may
not be explored exhaustively but rather pruned using
heuristics such as in [25, 44].

There is, however, a fundamental di�erence between
our optimization framework and a rule-based opti-
mizer as in Volcano [23]. While in Volcano's op-
timizer algebraic and physical transformations are
mixed and the search is guided by a cost model, steps
(1) and (2) of algorithm 3.1 are cost-independent and
performed before the phase of (cost-driven) mapping
into physical operator trees (other than index-based
plans). This is more in the spirit of Starburst opti-
mizer [33] which also had a clear separation between
the two kinds of transformations. However, the query
rewriting phase in Starburst did not include indexes
nor logical constraints, and was heuristics-based.

4 Relational Examples

Our approach extends beyond the relational model,
but it also proposes improvements over previous ap-
proaches to relational optimization. An important
contribution of this work is the systematic procedure
for considering all alternate plans enabled by indexes,
as opposed to the ad-hoc heuristics proposed previ-
ously. Consider for example a logical schema with
one relation R(A; B; C) and a physical schema contain-
ing secondary indexes SA and SB on attributes A and
B of R. Then our algorithm will discover for the log-
ical query

select r:C
from R r
where r:A > 5 and r:B = 20

the following index-only access path plan ([40]):

select r:C
from domSA x; SA [x ] r1; SB [[20]] r2

where x > 5 and r1 = r2

Notice how the scan of R is replaced by a scan of
index SA (which can be �ltered using condition x > 5)
interleaved with non-failing lookups in index SB.

Our algorithm considers exhaustively combinations
of materialized views, indexes, and semantic con-
straints, thus generating plans which are not cap-
tured in frameworks such as [30]. Assume a logical
schema with relations R(A; B) and S(B; C), and a phys-
ical schema that has R and S too (direct mapping!),
as well as materialized view V = �A(R 1 S) and sec-
ondary indexes IR and IS on attributes A and B of R
and S, respectively. We want to optimize the logical
query Q = R 1 S.

Q itself is a valid plan (modulo join-reordering and
various implementations for the join). However, the
view V can be used to produce the following equiva-
lent query (again we ignore here the join order):

(P ) select struct(A : r:A; B : s:B; C : s:C)
from V v; R r; S s
where v:A = r:A and r:B = s:B

This is obtained as a �rst step of the chase phase, by
rewriting Q with one of the two constraints charac-
terizing V (namely �V, see section 2). The techniques
used by [30] for answering/optimizing queries using
views can also be used to produce query P in a �rst
phase, similar to our chase. Now, if V is small, P can
be implemented, in a typical relational system, much
better than Q because of the two indexes. (V is the
only relation that is scanned while the relations R and
S are accessed via indexes.) However, in the approach
of [30], P is thrown away because Q is a subquery of
P , thus P is not minimal. Minimality, in their case
as well as in our case, is essential for bounding the
search space for optimal plans. The problem in [30] is
that Q and P are the only expressible plans using the
conjunctive relational language. There is no way of
expressing and taking advantage of the indexes at the
language level. The language used for gmaps in [45]
su�ers of the same limitation.

Here is how we can overcome this problem and be
able to produce a plan that corresponds to the good
physical implementation hinted earlier. In our ap-
proach, P is still not a minimal plan, thus it will be
thrown away, too, in the backchase phase. But the
chase phase doesn't stop with P : we can still bring in
the two indexes by chasing with constraints relating
R and S with, respectively, IR and IS:

(U) select struct(A : r:A; B : s:B; C : s:C)
from V v; R r; S s; (dom IR) k; IR [ k ] r0;

(dom IS) p; IS [ p ] s0

where v:A = r:A and r:B = s:B and k = r:A
and r0 = r and p = s:B and s0 = s

Backchasing twice with the \inverse" constraints re-
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lating IR and IS with, respectively, R and S:

select struct(A : r0:A; B : s0:B; C : s0:C)
from V v; (dom IR) k; IR [ k ] r0;

(dom IS) p; IS [ p ] s0

where k = v:A and p = r0:B

Using the equality k = v:A and the inclusion con-
straint V[A] � R[A] that is inferred in our system as
a consequence of �V, we can backchase one �nal step
and eliminate the loop over dom IR:

select struct(A : r0:A; B : s0:B; C : s0:C)
from V v; IR [ v:A ] r0; (dom IS) p; IS [ p ] s0

where p = r0:B

The last transformation replaced a value-based join
with a navigation join and the resulting query re
ects
almost entirely the navigation join implementation
hinted earlier, except for the loop over domIS. This
loop together with the condition p = r0:B is only a
guard that ensures that the lookup of r0:B into IS
doesn't fail. It is not redundant, for without it we
would lose equivalence (recall that the original query
Q never fails). However, using the non-failing lookup,
the last query is equivalent to the plan:

select struct(A : r0:A; B : s0:B; C : s0:C)
from V v; IR [ v:A ] r0; IS [[r

0:B]] s0

5 Completeness

We describe �rst the path-conjunctive (PC) language
(mainly the one introduced in [37]), after which we
give our main theoretical results: the bounding chase
theorem and the completeness of backchase theorem.
Completeness of algorithm 3.1 follows immediately
from them. These results hold for PC queries when
the logical schema has arbitrary classes and (nested)
relations, but no constraints, while the physical
schema has materialized PC views, but no arbitrary
indexes (only dictionaries implementing classes). The
two results are a generalization to a richer model of
the results of [30].

The path-conjunctive fragment of the ODL /
OQL language that we have used so far is de�ned
below. It includes the relational conjunctive queries
of [14, 5] but is more general because it includes dic-
tionaries and nested relations.

Paths : P ::= x j c j R j P:A j domP j P [x ]

Path-Conjunctions :

B ::= P1 = P 0

1 and � � � and Pk = P 0

k

PC Queries : select struct(A1 : P
0

1; : : : ; An : P 0

n)
from P1 x1; : : : ; Pm xm
where B

Here x stands for variables, c denotes constants at
base types, and R stands for schema names (relation

or dictionary names). The following restrictions are
imposed on a PC query Q.

(1) Keys of dictionaries, equalities in the where clause,
and the expression in the select clause are not allowed
to be/contain expressions of set/dictionary type.

(2) A lookup operation can only be of the form P [x ]
with the additional condition that there must exist
a binding of the form domP x8 in the from clause.
The reason for not allowing an arbitrary lookup is
mainly technical: all our de�nitions including query
equivalence would need to be extended with explicit
null values, and tedious reasoning about partiality.
With this restriction a lookup operation never fails.

Restriction (2) implies that we cannot express in the
PC fragment navigation-style joins (involving chains
of lookup operations). However, these kind of joins
can be rewritten as value-based joins (as seen in sec-
tion 4) and vice-versa provided that certain integrity
constraints hold. In the value-based counterpart of
a navigation join a chain of lookups is replaced by
explicit joins involving equality of oids. Value-based
joins are guaranteed not to touch any dangling oids
and therefore are easier to reason with them.

Path-conjunctive constraints. Embedded path-
conjunctive dependencies (EPCDs) de�ned in [37] are
a generalization for the complex value and dictionary
model of the relational tgds and egds ([4, 9]). EPCDs
play a fundamental role in rewriting of PC queries by
chase and they have the logical form:

EPCD: 8(x1 2 P1) : : :8(xn 2 Pn) [ B1(~x) )
9(y1 2 P 0

1) : : : 9(yk 2 P 0

k) B2(~x; ~y) ]

Pi and P 0

i are paths, while B1 and B2 are path-
conjunctions (as de�ned before, with the same re-
strictions). Each Pi may refer to variables x1, . . . ,
xi�1, while P 0

j may refer to x1; : : : xn; y1; : : : yj�1,
thus an EPCD is not a �rst-order formula. A spe-
cial class of EPCDs are constraints in which there
are no existential quanti�ers, EGDs. Functional de-
pendencies, like (KEY1) and (KEY2), and the con-
straints typically involved in conditions (1) and (2)
of the backchase step are examples of EGDs.

Main theoremsOur assumptions for the rest of this
section are that the logical schema contains only re-
lations and classes (no dependencies) and the phys-
ical schema contains only (nested) relations (includ-
ing materialized PC views) and dictionaries imple-
menting class extents (no dictionaries implementing
indexes). These restrictions are needed for the com-
pleteness result of theorem 5.1 below. We conjecture
that the result holds even in the presence of indexes
and a certain class of full dependencies (introduced

8Or, more general, a binding domP y such that the equality
x = y is implied by the conditions in the where clause. This is
a PTIME-checkable condition (see [37]).
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in [37]).

Completeness follows from the �niteness of the space
of minimal plans. We provide two upper bounds for
this search space: In [6], we show how to generalize to
PC queries the upper bound result obtained in [30] for
conjunctive relational queries, thus justifying a pro-
cedure which enumerates equivalent plans bottom-up
by building subsets of at most as many views, rela-
tions and classes as the number of bindings in the
from clause of logical query Q, combining them by
setting appropriate conditions in the where clause,
then checking equivalence with Q.

In view of a rule-based implementation however,
a top-down enumeration procedure implemented as
step-by-step rewriting is better suited, and our algo-
rithm uses a di�erent, novel characterization of the
search space of query plans:

Theorem 5.1 (Bounding Chase) Any minimal
plan Q0(�) for logical query Q(�) is a subquery of
the universal plan chase(Q)(�;�).

Here chase(Q) means the result of chasing Q with the
set of all dependencies of the form �V (see section 2)
associated with the view de�nitions. Since these are
full dependencies(see [37] for de�nition and theorem),
chase(Q) exists and is unique.

Theorem 5.1 allows the enumeration of all mini-
mal plans of Q by enumerating those subqueries of
chase(Q) which mention only the physical schema �
(as seen in section 3. Conceptually, the enumera-
tion proceeds by �rst listing the largest subqueries of
chase(Q) which involve only the physical schema �,
pruning away those subqueries which are not equiva-
lent to chase(Q) and then applying itself recursively
to each non-pruned subquery. The equivalence check
can be done by unfolding the view de�nitions. It fol-
lows easily from the de�nition of subqueries that the
pruning step doesn't compromise completeness, since
whenever a subquery of chase(Q) is not equivalent to
the latter, neither are its subqueries.

The following theorem states that the desired enu-
meration and pruning of equivalent subqueries can
be implemented in a rule-based optimizer by rewrit-
ing with the backchase rule introduced in section 3:

Theorem 5.2 (Complete Backchase) The mini-
mal equivalent subqueries of a query Q(�;�) are ex-
actly the normal forms of backchasing Q(�;�).

The use of the chase as upper bound for the space
of minimal plans leads to an enumeration procedure
that remains sound even in the presence of constraints
on the logical schema and of indexes, which are not
dealt with in [30].

Corollary 5.3 (Completeness of algorithm 3.1)
If � contains no dependencies and � contains no in-
dexes, algorithm 3.1 is complete for PC queries.

Our algorithm takes exponential time: each chase
step is exponential, but in the case of chasing with
~dV, and more generally, as shown in [37], when chas-
ing with arbitrary full dependencies, the chase rule
applies only polynomially many times, resulting in
a query whose size is polynomial in the size of the
chased query. The second phase of algorithm 3.1 pre-
serves the exponential complexity: each backchase
step is exponential (is uses the chase to check the ap-
plicability of the rule) but it eliminates a binding, so
the backchase process always reaches a normal form
after at most as many steps as there are bindings
in the result of the chase. The NP-completeness re-
sults given in [30] for the particular case of answering
queries with conjunctive relational views tell us that
there is little hope to do better than exponential if
we want a complete enumeration.

6 Related work

Relevant work on integrating information systems in-
cludes [35, 31, 3, 36]. Arrays, as dealt with in [32]
can be formalized as dictionaries, given some arith-
metic and operations that produce integer intervals.
The maps of [7] and the treatment of object types
in [8] are related to our dictionaries. An important
di�erence is made by the operations on dictionaries
used here.

The framework that we use for optimization is quite
comprehensive as it is possible to represent almost
the entire variety of equivalences stated in various
papers, beginning with the standard relational \al-
gebraic" optimizations, continuing with OODB op-
timizations as in the work of Cluet, Zdonik, Maier,
Fegaras and others [42, 43, 19, 18], and in fact in-
cluding the very comprehensive work by Beeri and
Kornatzky [8].

Use of referential integrity constraints to eliminate
dependent joins is implicit in Orion optimizations [26]
and the type-based approach of [19]. This, and the
use of precomputed ASR's appear in [28, 29]. Pre-
computed join indexes are proposed in [46]. An ap-
proach to semantic query optimization using a trans-
lation into Datalog appears in [13, 24]. The idea of
using semantic constraints as rewrite rules is intro-
duced and exploited systematically in [21, 22].

When the physical schema contains only materialized
relations, �nding an execution plan is a generaliza-
tion of the problem of answering queries using views
([30], [38]). At the opposite extreme, if the phys-
ical schema materializes all relations and classes in
the logical schema, the original query is directly ex-
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ecutable but the optimizer has to look for (better)
execution plans. This is sometimes called the prob-
lem of optimizing queries using views [15].

The GMAP approach [45] solves the problem of phys-
ical data independence for a special case that is sub-
sumed by our work which applies to a more general
class of physical storage structures, queries against
the logical schema and dependencies. In contrast to
the query plans obtained by our rewriting process,
the output of the GMAP rewriting is a family of plans
represented by a PSJ query. The burden of choosing
a speci�c plan is shifted on the next phase of the
optimizer.

7 What we do not do, but we'd like to

� We do not address the problems resulting specif-
ically from the nesting of the queries.

� Our physical data model does not re
ect in-
formation related to storage organization issues
such as paging or clustering.

� By extending the physical data model to include
lists, it might be possible to capture in some sub-
stantial way algorithms using sorted values.

� We expect that the algorithm proposed here will
be used in conjunction with good cost models
and good heuristics for pruning the search space,
but we have not yet examined how these issues
relate to the nature of the algorithm itself. An
implementation is under way in order to help us
understand these relationships and the feasibility
of the whole approach.
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