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Abstract 

Many applications compute aggregate func- 
tions over an attribute (or set of attributes) 
to find aggregate values above some spec- 
ified threshold. We call such queries ice- 
berg queries, because the number of above- 
threshold results is often very small (the tip 
of an iceberg), relative to the large amount of 
input data (the iceberg). Such iceberg queries 
are common in many applications, including 
data warehousing, information-retrieval, mar- 
ket basket analysis in data mining, clustering 
and copy detection. We propose efficient algo- 
rithms to evaluate iceberg queries using very 
little memory and significantly fewer passes 
over data, when compared to current tech- 
niques that use sorting or hashing. We present 
an experimental case study using over three 
gigabytes of Web data to illustrate the sav- 
ings obtained by our algorithms. 

1 Introduction 

In this paper we develop efficient execution strategies 
for an important class of queries that we call iceberg 
queries. An iceberg query performs an aggregate func- 
tion over an attribute (or set of attributes) and then 
eliminates aggregate values that are below some speci- 
fied threshold. The prototypical iceberg query we con- 
sider in this paper is as follows, based on a relation 
R(target1, target2,. . . , targetk, rest) and a threshold 
T. 

SELECT targetl, target2, . . . , targetk, count(rest) 
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D target1 ] target2 ) rest 

Table 1: Example relation R. 
FROH R 
GROUPBY targetl, target2, . . . , targetk 
HAVING count (rest 1 >= T 

If we apply the following iceberg query on relation R 
in Table 1, with T = 3 (and Ic = 2), the result would 
be the tuple (a,e, 3). We call these iceberg queries 
because relation R and the number of unique target 
values are typically huge (the iceberg), and the answer, 
i.e., the number of frequently occurring targets, is very 
small (the tip of the iceberg). 

Many data mining queries are fundamentally ice- 
berg queries. For instance, market analysts execute 
market basket queries on large data warehouses that 
store customer sales transactions. These queries iden- 
tify user buying patterns, by finding item pairs that are 
bought together by many customers [AS94, BMUT97]. 
Target sets are item-pairs, and T is the minimum num- 
ber of transactions required to support the item pair. 
Since these queries operate on very large datasets, 
solving such iceberg queries efficiently is an important 
problem. In fact, Park et al. claim that the time to ex- 
ecute the above query dominates the cost of producing 
interesting association rules [PCY95]. In this paper, 
we concentrate on executing such iceberg queries effi- 
ciently using compact in-memory data structures. We 
discuss more examples of iceberg queries in Section 2. 

The simplest way to answer an iceberg query is to 
maintain an array of counters in main memory, one 
counter for each unique target set, so we can answer 
the query in a single pass over the data. However as we 
have already indicated, answering the query in a sin- 
gle pass is not possible in our applications, since rela- 
tion R is usually several times larger than the available 
memory (even if irrelevant attributes are projected out 
as early as possible). Another approach to answer an 
iceberg query is to sort R on disk, then do a pass 
over it, aggregating and selecting the targets above 
the threshold. If the available memory is small rela- 
tive to the size of R, the sorting can take many passes 
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over the data on disk. For instance, if we use merge- 
sorting, we produce JRI/M sorted runs, where M is the 
number of tuples that fit in memory. Then we need 
1ogM IRI/M merge passes to produce the final sorted 
run. For each of these passes we need to read and 
write the entire relation R (or at least all the values 
for the target attribute). We encounter similar prob- 
lems if we use other popular techniques such as early 
aggregation [BD83], or hashing based aggregation. 

Until now, we have assumed R is materialized. 
However, in many cases R may be too large to be ma- 
terialized, even on disk. For instance, in the market 
basket application, the input data is often not R itself, 
but a set of transaction records. Each such record de- 
scribes a collection of items bought by a customer, 
and corresponds to multiple R records. For example, 
suppose we are interested in pairs of items that are 
frequently bought together in a store, and say a cus- 
tomer bought items {a, b, c}. Then R would contain 
Wes b,bl, b,cl, 14 1 c , re P resenting each association 
between pairs of items. In general, if the average num- 
ber of items a customer buys is n, then each customer 
record generates C(n, 2) fi: $ tuples in R. We can 
see that even if the initial data with customer transac- 
tions is small’, materializing R may not be feasible due 
to the quadratic increase in size over the initial input. 
The situation may get worse when the analyst wants to 
find popular item triples and quadruples. Thus, when 
R is very large, it will be useful to execute the ice- 
berg query over the virtual relation R without explic- 
itly materializing R, as traditional techniques based 
on sorting or hashing would require. 

The primary contributions of this paper are three- 
fold: 

1. We identify iceberg queries as fundamental data 
mining queries, and discuss applications where 
icebergs appear either directly, or as sub-queries 
in more complex queries. Iceberg queries are to- 
day being processed with techniques that do not 
scale well to large data sets, so it is crucial to 
develop better techniques. 

2. We propose a variety of novel algorithms for ice- 
berg query processing. Our algorithms use as 
building blocks well-known techniques such as 
sampling and multiple hash functions, but com- 
bine them and extend them to improve perfor- 
mance and reduce memory requirements. Our 
techniques avoid sorting or hashing R, by keeping 
compact, in-memory structures that allow them 
to identify the above threshold targets. In cases 
where R is not materialized, we show how to per- 
form the iceberg computation without materializ- 
ing R. 

3. We evaluate our algorithms using a “csse-study” 
approach for three different applications (with 
real data) and queries. Our results show that the 

‘In many cases, input data for WalMart-like stores runs into 
hundreds of gigabytes. 

new algorithms can efficiently handle much larger 
iceberg problems than current techniques. The 
case study also serves to illustrate the tradeoffs 
involved in choosing one strategy over another, 
depending on available system resources (such as 
size of disk and main memory). 

The rest of the paper is structured as follows. In 
Section 2 we discuss a few examples of iceberg queries. 
In Section 3 we present two simple algorithms that 
can be used to execute iceberg queries. In Section 4 
we propose three hybrid algorithms that combine the 
advantages of the two simple algorithms, in different 
ways. In Section 5 we propose several orthogonal tech- 
niques to optimize the hybrid strategies. In Section 6 
we propose some extensions to our algorithms. In Sec- 
tion 7 we evaluate our techniques on three case studies, 
using over three gigabytes of data - the size of R for 
some of these scenarios, if materialized, will require 50 
to 100 gigabytes of storage. We conclude in Section 9 
with some directions for future research. 

2 Why are iceberg queries important? 

We now illustrate using a few examples why executing 
iceberg queries efficiently is important, and why tradi- 
tional techniques such as sorting and hashing can lead 
to very high query times and inordinately large disk 
requirements. 

EXAMPLE 2.1 PopularItem Query 
Consider a TPC-D benchmark [TPC] style relation 

LineItem with attributes partKey, the key for parts 
being sold, price, the price of the corresponding item, 
and numsales, the number of units sold in a trans- 
action, in region, the area where the part is being 
sold. The following query computes the keys of popu- 
lar items and regions, where the item’s revenues in the 
region exceed one million dollars. 

CREATE VIEW PopularItems as 
SELECT partKey, region, SUMbwmSales * price) 
FROM LineItem 
GROUP BY partKey, region 
HAVING SUM(numSales * price) >= $ l,OOO,OOO 

It is easy to see that if we apply current techniques 
such as sorting, to sort the LineItem relation to per- 
form the aggregation, the response time for the above 
query is large - even if most of the items in LineItem 
are not very popular, and have very small revenues. Of 
course, if the criterion for selecting an item were lO$ 
of revenue rather than one million dollars, the sorting 
approach may be best since many items will satisfy the 
query. We intuitively see that traditional techniques 
such as sorting and hashing are “over kill” solutions 
and are not output sensitive, in that they perform the 
same amount of work independent of how small the 
query’s output is. They do not use the given threshold 
to execute the query faster. Rather, they first perform 
the aggregation and later apply the thresholding. 0 
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EXAMPLE 2.2 DocumentOverlap Query 
Web-searching engines such as AltaVista cluster 

web documents based on “syntactic similarity” of doc- 
uments [Bro97, BGM97], The goal of clustering is 
to develop better web crawlers by identifying doc- 
uments that are replicated or are near-replicas of 
other documents (such as JAVA 1.1.3 manuals and 
FAQs (SGM981). 

The engines break up each web document into a 
set of signatures, such as hashed 8-byte integers of se- 
quences of words, or sentences. Then they maintain 
a relation DocSign with tuples (di, ci) if document di 
contains signature ci. Then they identify a document 
pair to be a copy if they share more than T2 signatures 
in common using the following query. 

CREATE VIEW DocumentOverlaps 
SELECT Dl.doc, DZ.doc, COUNT(Dl.chunk) 
FROM Dl as DocSign, D2 as DocSign 
WHERE Dl. chunk = D2. chunk AND 

Dl.doc NOT = Dl.doc 
GROUP BY Dl. dot, D2. dot 
HAVING COUNT(Dl.chnnk) >= T2 

Currently, the DEC prototype [Bro97, BGM97] uses 
sorting to execute the above self-join, as follows. They 
first sort DocSign on the signatures so that for a given 
signature Sk, all tuples (di, Sk) such that document di 
contains Sk will be contiguous. Then for each pair of 
the form (di, Sk) and (dj, Sk) they explicitly materialize 
relation SignSign of the form (di, dj), indicating that 
di and dj share a signature in common. Then they 
sort SignSign, so that all tuples for a given document 
pair are contiguous. Finally, they sequentially scan 
SignSign and count the number of document pairs 
that occur more than T2 times in SignSign - these 
document pairs have more than T2 signatures in com- 
mon. 

The above process explicitly materializes SignSign 
(termed R in our discussions), before it sorts SignSign 
and thresholds on T2. As we shall see in one of 
our case-studies, this materialized relation has very 
large storage requirements. In fact, for a small input 
DocSign of size 500 megabytes, this relation grew to 
about 40 gigabytes, even though the final answer to 
the query was only one megabyte worth of document 
pairs! 0 

Iceberg queries also arise in many information re- 
trieval (IR) problems. For instance, IR systems of- 
ten compute stop words, the set of frequently occuring 
words in a given corpus, to optimize query process- 
ing and to build inverted indices. Such a query also 
has the “iceberg” property. IR systems also sometimes 
compute sets of frequently co-occurring words, and use 
these to help users construct queries. For instance, 
the pairs “stock market,” “stock price,” and “chicken 
stock” may occur often in a collection of documents. If 
the user enters the word “stock” in a query, the system 
may suggest “market, “price,” and “chicken” as useful 
words to add to the query to distinguish the way in 
which “stock” is used. Computing co-occurring words 

again involves an iceberg query, where target-sets are 
pairs of words. We will study this application again in 
more detail in our experimental case-study. 

From the above illustrative examples, we see that 
iceberg queries occur commonly in practice, and need 
to be executed carefully so that query times and tem- 
porary storage requirements are output sensitive. 

3 Techniques for t hresholding 

For simplicity, we present our algorithms in the next 
few sections in the context of a materialized relation 
R, with (target, rest) pairs. We assume for now we 
are executing a simple iceberg query that groups on 
the single target in R, as opposed to a set of targets. 
As we will discuss later, our algorithms can be easily 
extended for unmaterialized R as well as to multiple 
target sets. 

We start by establishing some terminology. Let V 
be an ordered list of targets in R, such that V[r] is 
the pth most frequent target in R (rth highest rank). 
Let n be JVJ. Let Freq(r) be the frequency of V[T] in 
R. Let Area(r) be Cizl[Freq(i)], the total number 
of tuples in R with the T most frequent targets. 

Our prototypical iceberg query (Section 1) selects 
the target values with frequencies higher than a thresh- 
old T. That is, if we define rt to be max{r]Freq(r) 2 
T}, then the answer to our query is the set H = 
WI, VDI, . . * > V[rt]}. We call the values in H the 
heavy targets, and we define L to be the remaining 
light targets. 

The algorithms we describe next answer the pro- 
totypical iceberg query, although they can be easily 
adapted to other iceberg queries. In general, these al- 
gorithms compute a set F of potentially heavy targets 
or “candidate set”, that contains as many members of 
H as possible. In the cases when F - H is non-empty 
the algorithm reports false positives (light values are 
reported as heavy). If H - F is non-empty the al- 
gorithm generates false negatives (heavy targets are 
missed). An algorithm can have none, one, or both 
form of errors: 

1 Eliminating False Positives: After F is com- 
puted, we can scan R and explicitly count the 
frequency of targets in F. Only targets that oc- 
cur T or more times are output in the final an- 
swer. We call this procedure Count(F). This 
post-processing is efficient if the targets in F can 
be held in main-memory along with say 2 - 4 
bytes per target for counting. If F is too large, 
the efficiency of counting deteriorates. In fact, as 
IFI + n, the post-processing will take about the 
same time as running the original iceberg query. 

2. Eliminating False Negatives: In general, post- 
processing to “regain” false negatives is very inef- 
ficient, and may in fact be as bad as the original 
problem. However, we can regain false negatives 
efficiently in some high skew cases where most R 
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tuples have target values from a very small set.2 
In particular, suppose that we have obtained a 
partial set of heavy targets H’ = F n H, such 
that most tuples in R have target values in H’. 
Then we can scan R, eliminating tuples with val- 
ues in H’. The iceberg query can then be run on 
the remaining small set of tuples (either by sort- 
ing or counting) to obtain any heavy values that 
were missed in H’. 

We now present two simple algorithms to compute 
F, that we use as building blocks for our subsequent, 
more sophisticated algorithms. Each algorithm uses 
some simple data structures such as lists, counters, 
and bitmaps for efficient counting. For ease of presen- 
tation, we assume that the number of elements in each 
structure is much smaller than [VI, and that all struc- 
tures fit in main memory. In Section 7 we evaluate the 
memory requirements more carefully. 

3.1 A Sampling-Based Algorithm (SCALED- 
SAMPLING) 

Sampling procedures are widely adopted in databases 
[HNSSSG]. (See [Olk93] for a good discussion of 
sampling techniques to obtain unbiased samples effi- 
ciently.) We now consider a simple sampling-based 
algorithm for iceberg queries. The basic idea is as 
follows: Take a random sample of size s from R. If 
the count of each distinct target in the sample, scaled 
by N/s, exceeds the specified threshold, the target is 
part of the candidate set, F. This sampling-based al- 
gorithm is simple to implement and efficient to run. 
However, this algorithm has both false-positives and 
false-negatives, and removing these errors efficiently is 
non trivial, as we discussed above. We will show how 
to remove these errors using our HYBRID algorithms 
in the next section. 

3.2 Coarse counting by bucketizing elements 
(COARSE-COUNT) 

“Coarse counting” or “probabilistic counting” is a 
technique often used for query size estimation, for 
computing the number of distinct targets in a re- 
lation [FM85, WVZTSO], for mining association 
rules [PCY95], and for other applications. The sim- 
plest form of coarse counting uses an array A[l..m] of 
m counters and a hash function hl , which maps target 
values from log, n bits to log, m bits, m << n. The 
CoarseCount algorithm works as follows: Initialize all 
m entries of A to zero. Then perform a linear scan of 
R. For each tuple in R with target v, increment the 
counter A[hl(v)] by one. After completing this hashing 
scan of R, compute a bitmap array BITMAPl[l..m] by 
scanning through array A, and setting BZTMAPl[i] 
if bucket i is heavy, i.e. if A[i] 2 T. We compute 

2The 80 - 20 rule is an instance of high skew. When the 
rule applies, a very small fraction of targets account for 80% 
of tuples in R, while the other targets together account for the 
other 20% [Zip49]. 

BITMAP1 since it is much smaller than A, and main- 
tains all the information required in the next phase. 
After BITMAP1 is computed, we reclaim the memory 
allocated to A. We then compute F by performing a 
candidate-selection scan of R, where we scan R, and for 
each target v whose BZTMAP1[h1(v)] is one, we add v 
to F. Finally we remove the false-positives by execut- 
ing Count(F). Note that there are no false-negatives 
in our coarse-counting approach. 

The candidate-selection scan in this simple coarse- 
counting algorithm may compute a large F (that may 
be many times as large as the given memory), since 
light targets may be hashed into heavy buckets. A 
bucket may be heavy if it has (1) one or more heavy 
elements, or (2) many light elements whose combined 
counts are above the specified threshold. 

4 HYBRID techniques 

We now present three different approaches to combine 
the sampling and counting approaches we presented 
earlier. Each approach first samples the data to iden- 
tify candidates for heavy targets; then it uses coarse- 
counting principles to remove false-negatives and false- 
positives. By this two-stage approach, we manage to 
reduce the number of targets that fall into heavy buck- 
ets - this leads to fewer light targets becoming false 
positives. We refer to the three approaches as the HY- 
BRID class of algorithms. 

4.1 DEFER-COUNT Algorithm 

First, compute a small sample (size s << n) of 
the data using sampling techniques discussed in Sec- 
tion 3.1. Then select the f, f < s, most frequent tar- 
gets in the sample and add them to F. (These targets 
are likely to be heavy, although we do not know for 
sure yet.) Now execute the hashing scan of COARSE- 
COUNT, but do not increment the counters in A for 
the targets already in F. Next perform the candidate- 
selection scan as before, adding targets to F. Finally, 
remove false positives from F by executing Count(F). 

We see an example of this approach in Figure 1 (a). 
Consider the case when p and q are heavy targets, and 
targets a and b are light targets. In this case, p and 
q were identified in the sampling phase to be poten- 
tially heavy, and are maintained explicitly in memory 
(denote by ‘p’ and ‘q’) so they are not counted in the 
buckets (as are a and b). 

The intuition behind the DEFER-COUNT algo- 
rithm is as follows. Sampling is very good for iden- 
tifying some of the heaviest targets, even though it 
is not good for finding all the heavy targets. Thus, 
we select f so that we only place in F targets that 
have a very high probability of being heavy. Then, for 
each of these targets v that is identified in advance of 
the hashing scan, we avoid pushing A[hl(v)] over the 
threshold, at least on account of v. This leads to fewer 
heavy buckets, and therefore fewer false positives. 

The disadvantage of DEFER-COUNT is that it 
splits up valuable main memory between the sample 
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[ 

(a) DEFEX-COUNT (b) MULTI-LEVEL (c) MULTI-STAGE 

Figure 1: Alternative HYBRID techniques to combine 
sampling and coarse-counting. 
set, and the buckets for counting. Even if f is small, 
we maintain the explicit target. For instance, if we 
use DEFER-COUNT to count heavy-item pairs (two- 
field target set), we need eight bytes to store the item 
pair. The storage requirement gets progressively worse 
if we start counting heavy-item triples, or heavy-item 
quadruples, and so on. Another problem with imple- 
menting DEFER-COUNT is that it is hard to choose 
good values for s and f that are useful for a vari- 
ety of data sets, Yet another problem with DEFER- 
COUNT is that for each target, we incur the overhead 
of checking if the target exists in f during the hashing 
scan. 

4.2 MULTI-LEVEL Algorithm 

We now propose an algorithm that does not ex- 
plicitly maintain the list of potentially heavy tar- 
gets in main memory like DEFER-COUNT. Instead 
MULTI-LEVEL uses the sampling phase to identify 
potentially heavy buckets as follows. 

First, perform a sampling scan of the data: For each 
target TV chosen during this sampling scan, increment 
A[h(v)], for hash function h. After sampling s targets, 
consider each of the A buckets. If A[i] > T I s/n, 
we mark the ith bucket to be potentially heavy. For 
each such bucket allocate rn2 auxiliary buckets in main 
memory. (We will sometimes refer to the A buckets as 
primary buckets, to maintain the distinction.) 

Next, reset all counters in the A array to zero. Then 
perform a hashing scan of all the data. For each target 
u in the data, increment A[h(v)] if the bucket corre- 
sponding to h(v) is not marked as potentially heavy. 
If the bucket is so marked, apply a second hash func- 
tion hz(21) and increment the corresponding auxiliary 
bucket. 

We show an example of this procedure in Figure 1 
(b). In the sampling phase, two buckets (marked with 
dotted X’s) are identified to be potentially heavy, and 
are each allocated m2 = 2 auxiliary buckets. During 
the subsequent scan, when targets {a, b, p, q} fall into 
the heavy buckets, they are rehashed using h2 to their 
corresponding auxiliary buckets. Note that we do not 
explicitly store the targets in the auxiliary buckets as 
indicated in the figure; we continue to maintain only 

counters in the buckets. 
The idea behind the MULTI-LEVEL algorithm is 

very similar to the concept of extensible indices com- 
monly used in databases [U1188] - these indices grow 
over populated buckets by adding auxiliary buckets 
dynamically. However, the difference is that in the 
case of extensible indices the entire key that is be- 
ing indexed, is stored. Hence when buckets are over- 
populated, we can dynamically add auxiliary buckets 
efficiently. Recall that we cannot afford to store the 
targets explicitly in main memory, and can only main- 
tain counters. Hence we perform the prescan to pre- 
allocate auxiliary buckets for potentially heavy buck- 
ets. Also notice that MULTI-LEVEL does not store 
the sample set explicitly like DEFER-COUNT does 
- this is useful especially when the size of targets is 
very large. 

One problem with MULTI-LEVEL is that it splits 
a given amount of main memory between the primary 
and auxiliary buckets. Deciding how to split memory 
across these two structures is not a simple problem 
- we can only empirically determine good splits for 
datasets. Also, the cost of rehashing into the auxiliary 
buckets could be expensive, if a second hash function 
is employed. In practice, however, we can avoid this 
by using one hash function: we can use fewer bits for 
the first hashing, and use the residual bits to “hash” 
the target into the auxiliary buckets. 

We now discuss one important detail for implement- 
ing the above scheme. In Figure 1, we maintain point- 
ers to auxiliary buckets. In some cases, maintaining 
eight bytes per pointer may be expensive especially 
if the number of potentially heavy buckets is high. 
In such cases, we can allocate all the auxiliary buck- 
ets for all potentially-heavy buckets contiguously in 
main memory starting at base address B. For the ith 
potentially-heavy bucket, we can store in A the offset 
into the auxiliary buckets. We can then compute the 
auxiliary buckets for potentially heavy bucket A[i], to 
be in locations [B + (A[i] - 1) x m2, B + A[i] x mz). 

4.3 MULTI-STAGE Algorithm 

We now propose a new technique that uses available 
memory more efficiently than the MULTI-LEVEL al- 
gorithm. MULTI-STAGE has the same prescan sam- 
pling phase as MULTI-LEVEL, where it identifies 
potentially heavy buckets. However, MULTI-STAGE 
does not allocate auxiliary buckets for each potentially 
heavy bucket. Rather it allocates a common pool of 
auxiliary buckets B[l, 2, . . . , ms]. Then it performs a 
hashing scan of the data as follows. For each target u 
in the data, it increments A[h(v)] if the bucket corre- 
sponding to h(v) is not marked as potentially heavy. If 
the bucket is so marked, apply a second hash function 
h2 and increment B[hz(v)]. 

We present an example of this procedure in Figure 1 
(c). We mark the common pool of B arrays arrays 
using dotted lines. Note that the targets {u, b, p, q} are 
remapped into the auxiliary buckets, using a second 
hash function that uniformly distributes the targets 
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across the common pool of auxiliary buckets. It is 
easy to see that in this example there is a 50% chance 
that both the heavy targets p and q will fall into the 
same bucket. In such cases, targets a and b are no 
longer false-positives due to p and q. Indeed in the 
figure, we present the case when p and q do fall into 
the same bucket. We have analysed MULTI-LEVEL 
based on the above intuition, in the full version of the 
paper [FSGM+97]. 

The main intuition behind sharing a common pool 
of auxiliary buckets across potentially heavy buckets 
is that several heavy targets when rehashed into B 
could fall into the same bucket as other heavy targets 
(as illustrated in the example). MULTI-LEVEL does 
not have this characteristic, since the heavy targets are 
rehashed into their local auxiliary structures. Hence 
we can expect MULTI-STAGE to have fewer false- 
positives that MULTI-LEVEL, for a given amount 
of memory. 

MULTI-STAGE shares a disadvantage with 
MULTI-LEVEL in that determining how to split the 
memory across the primary buckets and the auxiliary 
buckets can only be determined empirically. 

5 Optimizing HYBRID using MULTI- 
BUCKET algorithms 

The HYBRID algorithms discussed in the last section 
may still suffer from many false-positives if many light 
values fall into buckets with (1) one or more heavy tar- 
gets, or (2) many light targets. The sampling strate- 
gies we outlined in the last section alleviate the first 
problem to a certain extent. However the heavy tar- 
gets not identified by sampling could still lead to sev- 
eral light values falling into heavy buckets. Also, HY- 
BRID cannot avoid the second problem. We now pro- 
pose how to improve the HYBRID techniques of the 
last section, using multiple sets of primary and auxil- 
iary buckets, to reduce the number of false positives 
significantly. We analyze the same idea in two differ- 
ent contexts, in the following subsections based on the 
number of passes required over the data. 

For clarity, we describe the techniques of this sec- 
tion, in the context of the simple DEFER-COUNT 
algorithm, even though the techniques are also applica- 
ble to the MULTI-LEVEL, and MULTI-STAGE al- 
gorithms. Furthermore, for the techniques we present 
below we continue to perform the sampling scan to 
identify potentially heavy targets, and store them in 
F. We do not count these targets during the hash- 
ing scans, but count them explicitly in the candidate- 
selection phase. After the candidate-selection phase, 
we continue to execute Count(F) to remove false- 
positives. Since these steps are common to all the 
following techniques, we do not repeat these steps in 
the following discussion. 

5.1 Single scan DEFER-COUNT with multiple 
hash functions (UNISCAN) 

We illustrate UNISCAN using two hash functions hl 
and hz that map target values from log, n bits to 
logz(m/2) bits, m << n. The memory allocated is first 
divided into two parts for the two counting and bitmap 
arrays. That is, we now have Al[l..m/2], Ag[l..m/2], 
BITMAP~[l..m/2] and BITMAP2[l..m/2]. We then 
execute the prescan sampling phase in DEFER- 
COUNT, identify f potentially heavy candidates, and 
store them in F. Next, we do one pass over the 
input data, and for each tuple in R with value u, 
v 6 F, we increment both Al[hl(v)] and Az[hz(v)] 
by one. Finally we set BITMAPl[i] to 1 if Al[i] 2 T, 
1 5 i 2 m/2. We handle BITMAP2 similarly, and 
then deallocate Al and AZ. 

In the candidate-selection phase, we do one pass of 
the data and for each tuple with value w, we add u to F 
only if both BITMAPl[hl(v)] and BITMAPz[h:!(v)] 
are set to one. We can easily generalize the above 
procedure for k different hash functions hl , hz, . . , hk. 
As mentioned earlier, for now we assume that A, the 
k bitmaps, and F all fit in main memory. We will 
discuss our model for memory usage in Section 7. 

Choosing the right value of k is an interesting prob- 
lem, for a given amount of main memory. As we choose 
a larger value of k, we have many hash tables, but 
each hash table is smaller. While the former helps in 
reducing the number of false positives, the latter in- 
creases the number of false positives. Hence there is 
a natural trade-off point for choosing k. We discuss 
in [FSGM+97] h ow to choose a good value of k for 
UNISCAN. 

5.2 Multiple scan DEFER-COUNT with mul- 
tiple hash functions (MULTISCAN) 

Rather than use multiple hash functions within one 
hashing scan and suffer an increased number of false 
positives due to smaller hash tables, we can use 
the same idea across multiple hashing scans as fol- 
lows. After the sampling prescan, execut.e one hashing 
scan with hash function hl. Store the corresponding 
BITMAP1 array on disk. Now perform another hash- 
ing scan with a different hash function ha. Store the 
corresponding BITMAP2 array on disk. After per- 
forming k hashing scans, leave the last BITMAP in 
memory and retrieve the k - 1 BITMAP arrays from 
disk. Then execute the candidate-select,ion scan and 
add value v to F if BITMAPi[hi(v)] = I, Vi, 1 < i 5 
k. 

5.3 Improving MULTISCAN with shared 
bitmaps (MULTISCAN-SHARED) 

In MULTISCAN we performed each hashing scan 
independent of the previous scans, even though the 
BITMAP information from previous scans was avail- 
able. In MULTISCAN-SHARED we assume that in 
the (i + l)st hashing scan, bitmaps from all i previous 
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Figure 3: Hashing in MULTISCAN-SHARED. 
hashing scans are retained in memory. This optimiza- 
tion works as follows: During the (i + l)8t hashing 
scan, for target V, increment A[hi+l(v)] by one, only 
if BITMAPj[hj(v)] = 1, for all j, 1 5 j 5 i. 

The following example illustrates how 
MULTISCAN-SHARED reduces the number of 
false-positives over MULTISCAN. Consider the case 
when we have the following (target : frequency) pairs 
in R: (u : lo), (b : 20), (c : 40), (d : ZO), (e : 20), 
i.e., target a occurs in ten tuples in R, b occurs in 20 
tuples in R, and so on. Let T = 30 and m = 4. Let 
hr map the targets to the following buckets, set of tar- 
gets pairs: [0 : {a}, 1 : {b, d}, 2 : {c}, 3 : {e}] as shown 
in Figure 2, i.e., hi(a) = 0, hi(b) = hi(d) = 1, etc. 
Similarly hz maps the targets to the following buck- 
ets [0 : {e,d}, 1 : {a, b},2 : {},3 : {c}]. In Figure 2 
we show the counts in array A and the correspond- 
ing BITMAP after the first hashing scan when we 
execute MULTISCAN. Similarly we compute A and 
BITMAP2 after the second hashing scan. Now in the 
candidate selection scan of MULTISCAN, we would 
choose {b, c, d} to be part of F, since targets b, c, d fall 
into heavy buckets under both hash functions. 

Now consider the execution of MULTISCAN- 
SHARED in Figure 3. The first hashing scan re- 

mains the same as before. The second scan however 
computes a different bitmap, since the second hashing 
scan uses the information in BITMAP1 before incre- 
menting A. To illustrate, consider how e is counted 
by each algorithm in the second hashing scan. In 
MULTISCAN, A[ha(e)] is incremented for each of 
the 20 occurrences of e. However in MULTISCAN- 
SHARED, A[hz(e)] is not incremented for the 20 oc- 
curences of e, since we already know that e is light (be- 
cause BITMAP1 [3] = 0). Since e does not increment 
A[O] in the second hashing scan, d is no longer a part 
of the candidate set. In fact in the candidate-selection 
scan, the only target chosen by the MULTISCAN- 
SHARED will be {c}, as opposed to the {b, c, d} cho- 
sen by MULTISCAN. 

5.4 Variant of MULTISCAN-SHARED 
(MULTISCAN-SHARED2) 

We now propose a variant of MULTISCAN- 
SHARED that uses less memory for BITMAPS. In 
this variant, we maintain the BITMAP’s only from 
the last q hashing scans while performing the (i + l)St 
(q 5 ;) hashing scan, rather than maintaining all i 
prior BITMAPS. The conjecture is that the q lat- 
est BITMAPS from hashing scans i - q + 1 through 
i have fewer and fewer bits set to one. Therefore 
these BITMAPS have more pruning power than ear- 
lier, while using the same storage space. We use 
MULTISCAN-SHARED2 to denote this algorithm. 

6 Extending HYBRID and MULTI- 
BUCKET algorithms 

In this section we briefly describe some variations to 
the schemes we presented earlier. 

1. Collapsing candidate-selection scan with fi- 
nal counting-scan: The MULTISCAN algo- 
rithm (and its extensions that were proposed 
in Sections 5.3 and 5.4) performs k hashing 
scans, one candidate-selection scan, and finally 
one counting scan where false positives were elim- 
inated. In cases where the size of F is expected to 
be small, we can collapse the last two scans into 
one as follows. When executing the candidate- 
selection scan, we add an in-memory counter for 
each element of F. In that scan, as we add each 
target to F (because it appeared in heavy buck- 
ets for all k-hash functions), we check if the target 
was already in F. If so, we increment its counter; 
if not, we add it to F with its counter initialized to 
1. We can dispense with the final counting-scan 
because we already have a count of how many 
times each F target appears in R. Targets whose 
count exceed the threshold are in the final answer. 

2. Parallelizing hashing scans for MULTI- 
SCAN: We can parallelize the hashing scans of 
MULTISCAN across multiple processes. In such 
a case, the time for the hashing scans drops from 
the time for k sequential scans, to the time for 
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a single scan. Of course, we cannot use the 
same optimization for MULTISCAN-SHARED 
and MULTISCAN-SHARED2 since they use 
bitmaps from previous iterations. 

3. SUM queries: As we mentioned in Section 1, we 
can extend our techniques to iceberg queries con- 
taining HAVING SUH(attrib). To illustrate, con- 
sider query Popular-Item from Section 2. We can 
perform this query by performing a hashing scan 
on the Line&em relation. In this pass, we com- 
pute hl(partKey, region), and increment the cor- 
responding counter in A by nvmSales *price. At 
the end of the hashing scan, compress the A array 
into BITMAPI, with the definition that bucket 
i is heavy if A[i] is greater than or equal to the 
given threshold value of one million. Then per- 
form subsequent hashing scans if necessary and 
finally produce partKeys’s whose total revenues 
exceed the specified threshold. 

7 Case studies 

Given the relatively large number of techniques we 
present in this paper, each of which is parameterized 
in different ways (such as how much of data we should 
sample, s, how many values to retain to be poten- 
tially heavy, f, and memory allocations), it is difficult 
to draw concrete conclusions without looking at par- 
ticular application scenarios. We chose three distinct 
application scenarios and designed our experiments to 
answer the following questions: (1) How does each 
scheme perform as we vary the amount of memory 
allocated? We report the performance both in terms 
of the size of the candidate set (IFI) produced, and 
the total time each scheme takes to produce F, as well 
as to remove the false positives using Count(F). (2) 
How does each scheme perform as we vary the thresh- 
old? As above, we report both IFI and the total time. 
(3) How do schemes perform for different data distri- 
butions? That is, if the input data follows a skewed 
distribution as opposed to less skewed distributions, 
how are the schemes affected by sampling? 

Before we present our results, we discuss how we al- 
locate memory in our experiments. We experimented 
with a variety of ways to split the available memory 
between the sample set of size f (in case of DEFER- 
COUNT based algorithms), the primary and the aux- 
iliary buckets. We found the following approach to 
work best for our data. 

1. Allocate f: For algorithms based on DEFER- 
COUNT, choose a small f for the sampling scan 
and allocate memory for that set. We discuss later 
what should be the value of f, for each applica- 
tion. 

2. Allocate auxiliary buckets: Allocate p,,, per- 
cent of the remaining memory after the first step 
to auxiliary buckets. As the algorithm executes 
we may discover that this amount of allocated 
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Figure 4: IFI as memory varies (T = 500). 
memory was insufficient for the auxiliary buck- 
ets. If that happens, we greedily select the buckets 
with highest A counter values, and assign as many 
of these as possible to the auxiliary area. The 
remaining potentially heavy buckets, that could 
not be assigned to the limited auxiliary area, are 
treated as any other primary bucket during the 
hashing scan. 

Allocate primary buckets and bitmaps: Al- 
locate the balance of the memory to the primary 
buckets and their bitmaps. In case of UNISCAN 
we need to this memory among the k primary 
buckets and their bitmaps (based on the value of 
k chosen by the analysis in the Appendix). 

In our experiments, we found p,,, between 15 - 20% 
to be good values for splitting up our memory. Before 
the candidate-selection scan, we reclaim the memory 
allocated to the primary buckets and allocate that to 
store F. 

In the following experiments, if the final F (input to 
Count(F)) does not fit in main memory, we stream the 
tuples in F onto disk, and we execute Count(F) using 
a disk-baaed sorting algorithm. Our implementation 
is enhanced with early aggregation [BD83] so that it 
integrates counting into the sorting and merging pro- 
cesses, for efficient execution. As we discussed earlier, 
this is merely one way to execute Count(F). Hence 
the reader should not interpret the results of this sec- 
tion as absolute predictions, but rather as illustrations 
of performance trends. For the following experiments, 
we used a SUN ULTRA/II running SunOS 5.6, with 
256 MBs of RAM and 18 GBs of local disk space. 

Case 1: Market basket query 

We use the market basket query to find commonly oc- 
curing word pairs. For this we use 100,000 web doc- 
uments crawled and stored by the Stanford Google 
webcrawler [BP]. The average length of each doc- 
ument is 118 words. From this data we computed 
the Dot Word relation to be (docID, wordID), if doc- 
ument with identifier docID had a word with identifier 
wordID. This relation was about 80 MBs, when we 
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Figure 5: Total time as memory varies (T = 500). 

used 4-byte integers for docIDs and wordIDs. Note 
that we removed entries corresponding to 500 pre- 
defined stop words from this relation [SB88]. Recall 
that the R over which the iceberg query is to be ex- 
ecuted has all pairs of words that occur in the same 
document. If R were to be materialized on disk, it 
would require about 29.4 GBs to store R; in addition, 
we may require temporary storage while performing 
the aggregation. Since the storage requirements may 
be impractical, we do not discuss this technique any 
more in this section. 

To avoid explicitly materializing R we use the fol- 
lowing technique that we can use in general to execute 
iceberg queries, when R is not materialized. Typically, 
tuples that refer to the same document are contiguous 
in Dot Word. (This is because Dot Word is produced 
by reading and parsing documents one at a time. If 
entries are not contiguous, we can sort the relation.) 
Because of this property, we can simply scan Dot Word 
and produce (wi, wj) for each wi, wj pair that occurs 
in the same document. Rather than explicitly storing 
such tuples, stream the tuples directly to the algorithm 
we use to execute the iceberg query. For instance, if 
we use DEFER-COUNT to execute the iceberg query 
(assume s = 0) , increment A[h( wi, wj)] as soon as tu- 
ple (wi, wj) is produced. Notice that we cannot apply 
a similar optimization for sorting or hybrid hashing 
based schemes, since the tuples are materialized ex- 
plicitly (for sorting), or will need to be stored in the 
hash table (for hybrid hashing). We can in general use 
our technique to execute a query over any join of sorted 
relations. In fact, R can be any expression of sorted 
relations, as long as we can generate R in one-pass. 

We now discuss a few representative schemes for 
specific values of K to illustrate some of the trade- 
offs involved. (We study the performance of all 
schemes in greater detail, in the full version of this 
paper [FSGM+97] .) Specifically, we present results 
for MULTISCAN/D, MULTISCAN-SHARED/D 
and UNISCAN/D, the corresponding multi-bucket 
optimization of DEFER-COUNT. We also evaluate 
MULTI-STAGE for I( = 1. We found a 1% sample 
of n (s = 1%) and f = 1000 to work well in practice 
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Figure 6: IF] as threshold varies (A4 = 20 MB). 

for this data. 
In Figure 4 we show how IFI, the number of candi- 

date pairs, varies as the amount of memory allocated 
increases. We see that (F] drops as more memory 
is allocated, as expected. Also we see that MULTI- 
SCAN/D [K = 21 and MULTISCAN-SHARED/D 
[K = 21 perform best, in terms of choosing the small- 
est IF]. This is because when the amount of mem- 
ory is small, doing multiple passes over the data us- 
ing most of the available memory for the A array, 
helps prune the number of false positives significantly. 
UNISCAN/D [K = 21 p er orms f poorly initially since 
the amount of main memory is very small, but the 
difference between UNISCAN/D [K = l] and UNIS- 
CAN/D [K = 21 d ro p s with larger memory. For mem- 
ory more than about 34 MBs, we see that UNIS- 
CAN/D [K = 21 p er orms better than its K = 1 coun- f 
terpart . 

In Figure 5 we see the total time to answer 
the iceberg query as the amount of memory varies. 
We see that MULTISCAN/D and MULTISCAN- 
SHARED/D perform steadily across the different 
memory sizes, since they do not produce too many 
false positives. On the other hand, MULTI-STAGE 
[K = l] performs badly when memory is limited; be- 
yond about 14 MBs it performs best. This is because 
(1) the number of false positives is relatively small 
and hence counting can be done in main memory, (2) 
MULTI-STAGE scans the data one less time, and 
uses less CPU time in computing fewer hash functions 
than the other multi-bucket algorithms (such as MUL- 
TISCAN/D). 

In Figure 6 we study how 18’1, the number of can- 
didates, varies as the threshold is varied. We see 
that MULTISCAN/D [K = 21 and MULTISCAN- 
SHARED/D [K = 2] tend to have the smallest IF]. 
Again, we see that performing multiple passes over 
the data using multiple hashing functions helps prune 
away many false-positives. In Figure 7 we see the cor- 
responding total time to answer the iceberg query. We 
see that MULTI-STAGE performs the best in this in- 
terval, again because (1) F is relatively small, and (2) 
it performs one fewer scan over the data, and needs to 
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Figure 8: Frequency-rank curves for different chunk- 
ings. 
compute fewer hash functions than MULTISCAN/D 
and MULTISCAN-SHARED/D. 

In summary, we see that MULTI-STAGE works 
best since this application had very little data. 

Case 2: Computing StopChunks 

We now consider how sensitive our schemes are to 
skews in data distribution, using an IR example. We 
discussed in Section 2 how IR systems compute a 
set of stop words for efficiency. In general, IR sys- 
tems also compute “stop chunks,” which are syntac- 
tic units of text that occur frequently. By identifying 
these popular chunks, we can improve phrase searching 
and indexing. For instance, chunks such as “Netscape 
Mozilla/l.O” occur frequently in web documents and 
may not even be indexed in certain implementations 
of IR systems (such as in [SGM96]), to reduce storage 
requirements. 

For this set of experiments, we used 300,000 docu- 
ments we obtained from the Stanford Google crawler 
(as above). We defined chunks based on sliding win- 
dows of words as in [SGM96]. We say we use “C = ?’ 

‘th chunking, if the j chunk of a given document is the 
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Figure 9: Result sizes for different thresholds. 

sequence of words from j through j+i- 1. For a corpus 
of documents, we can compute the DocSign (C = i) 
relation which contains (dh, sj), if document dh con- 
tains sj, the B-byte hashed version of the jth chunk. 
For our experiments we computed four different Doc- 
Sign tables for C = 1,2,5,10. (Note that the DocSign 
relation for C = 1 is the relation used to compute stop 
words in IR systems.) 

Our first two graphs illustrate the nature of the 
data, and not a specific algorithm. In Figure 8 we 
show, on a log-log plot, the frequency-rank curves of 
the four different chunkings. As expected, the smaller 
the C used to construct a chunk, the fewer the num- 
ber of distinct target values, and the larger the data 
skew. For instance, with C = 1, the number of dis- 
tinct chunks, 12, is over 1.5 million, and the heaviest 
target occurs about 4.5 million times in DocChunk. 
For C = 10, n = 27.7 million, while the heaviest tar- 
get occurs only 0.21 million times. The size of each 
DocSign relation was about 4.2 gigabytes (Note that 
we did not remove precomputed stop words from these 
relations as we did in the market-basket query.) 

In Figure 9 we show (again on a log-log plot) what 
percentage of the n unique terms are actually heavy, 
for different thresholds. We see in the figure that, as 
expected, the number of heavy targets (the tip of the 
iceberg) drops significantly as T increases. 

In the following two graphs, Figure 10 and 11, we 
study how the number of hashing scans Ii, and the 
number of hash buckets m affect false-positive errors. 
Due to lack of space, we present the results only in the 
context of MULTISCAN-SHARED2/D, with q = 2 
(the number of previous bitmaps cached in memory). 
The vertical axis in both figures is the percentage of 
false positives (100 * F, where FP is the number 
of false positives). As we expected, the percentage 
of false positives drops dramatically with increasing 
k. For instance for C = 1, the percentage drops from 
about 70% for k = 1 to less than 10% for k = 4. Also it 
is interesting to note that the number of false positives 
drops as the data is less skewed (from C = 1 through 
C = lo), especially as the number of hashing scans 
increases. We attribute this drop to three factors: (1) 
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Figure 11: Performance of MULTISCAN- 
SHARED2/D with m (T = 1000, k = 2). 

there are fewer heavy targets (Figure 9), (2) since data 
is not very skewed, fewer light targets fall into buckets 
that are heavy due to heavy targets, and (3) as more 
hashing scans are performed, fewer light targets fall 
into heavy buckets across each of the hashing scans. 

In summary, these experiments quantify the im- 
pact of skew, and provide guidelines for selecting the 
number of hashing scans needed by MULTISCAN- 
SHARED2/D, as the “tip of the iceberg” changes in 
size. Analogous behavior can be observed for the other 
schemes. 

Case 3: DocumentOverlap Query 

In Figure 12 we present the total time to execute the 
DocumentOverlap query (discussed in Section 2) using 
MULTISCAN and MULTISCAN-SHARED tech- 
niques as the amount of memory (M) changes. We 
executed the query on the DocSign relation from Case 
2, when C = 1. Since the data was unskewed for this 
query, we avoid the sampling scan, i.e., s = 0%. 

In Figure 12 we see that MULTISCAN- 
SHARED2 [q = l] performs best, when the amount 
of memory is small, but progressively becomes infe- 
rior to MULTISCAN and MULTISCAN-SHARED 
as memory increases. MULTISCAN-SHARED [q 
= 21 is in between MULTISCAN-SHARED [q = 
l] and MULTISCAN-SHARED, for small values 
of memory. The above behavior of MULTISCAN- 
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Figure 12: Performance of algorithms with M for Doc- 
umentoverlap query for C = 1. 
SHARED2 compared to MULTISCAN-SHARED 
is due to the following competing factors: (1) 
MULTISCAN-SHARED2 uses fewer bitmaps than 
MULTISCAN-SHARED, thereby allocating more 
memory for primary buckets. (2) For a given 
amount of memory, MULTISCAN-SHARED prunes 
more light targets than MULTISCAN-SHARED2, 
as we discussed earlier. For small values of mem- 
ory, MULTISCAN-SHARED2 performs better than 
MULTISCAN-SHARED, since the first factor domi- 
nates. For larger values of memory, the extra space al- 
located to the additional bitmaps for MULTISCAN- 
SHARED still leaves enough memory for the primary 
buckets. Hence the second factor dominates. We also 
see that MULTISCAN does not perform too well for 
small memory, since it does not use bitmaps to prune 
away light targets, as we discussed earlier. Hence we 
see that choosing q = 1 or 2 may be useful for small 
sized memory while still leaving sufficient main mem- 
ory for primary buckets. 

The size of R, if materialized, is 52 GBs. If we as- 
sume disks can execute sequential scans at the rate of 
10 MB/set, it would take 52 * 1024/10 e 5300 sec- 
onds each to read and write R. However, notice that 
MULTISCAN-SHARED2 [q = l] would finish exe- 
cuting even before R is written once and read once! Of 
course, since R has to be sorted to execute the iceberg 
query, it is easy to see that sorting-based execution 
would require too much disk space to materialize and 
sort R, and will take much longer than our schemes. 

7.1 Summary 

Based on our case studies (and from experiments we 
do not report here due to lack of space [FSGM+97]), 
we propose the following informal “rules of thumb” 
to combine schemes from the HYBRID and MULTI- 
BUCKET algorithms: 

1. HYBRID algorithms: MULTI-LEVEL rarely 
performs well in our experiments, while DEFER- 
COUNT and MULTI-STAGE tend to do very 
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well under different circumstances. If you expect 
the data distribution to be very skewed where very 
few targets are heavy, but constitute most of the 
relation), use DEFER-COUNT with a small f 
set. If you expect the data not to be too skewed, 
use MULTI-STAGE since it does not incur the 
overhead of looking up the values in f. If you 
expect the data distribution to be flat, do not use 
the sampling scan. 

2. MULTIBUCKET algorithms: In general 
we recommend using MULTISCAN-SHARED2 
with q = 1 or q = 2. For relatively large values of 
memory, we recommend UNISCAN with multi- 
ple hash functions, since we can choose K > 1 and 
apply multiple hash functions within one hashing 
scan, as we discuss in the full version of this pa- 
per [FSGM+97]. 

8 Related Work 

Flajolet and Martin W851, and Whang et 
al. [WVZTSO] proposed a simple form of coarse count- 
ing for estimating the number of distinct elements in a 
multiset. Park et al. [PCY95] proposed coarse count- 
ing in the context of mining association rules. All the 
above approaches use a single hash function for their 
coarse counting, and hence tend to have many false 
positives. We extend the above techniques using our 
HYBRID and MULTIBUCKET algorithms, and per- 
form a comprehensive study of these techniques using 
a case study approach. 

9 Conclusion 

In this paper we studied efficient execution tech- 
niques for iceberg queries, an important class of queries 
with widespread application in data-warehousing, data 
mining, information retrieval and copy detection. We 
proposed algorithms that compute the result, the “tip 
of the iceberg,” much more efficiently than conven- 
tional schemes. We evaluated our algorithms using 
a case study approach in three real applications, and 
observed that the savings are indeed very significant. 
Some algorithms in the suite we have provided are bet- 
ter suited to some scenarios, depending on the data 
skew, available memory, and other factors. We have 
provided some empirical “rules of thumb” for select- 
ing a scheme and for allocating memory to its data 
structures. 
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