
Computing Iceberg Queries Efficiently*

Min Fang! Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, Jeffrey D. Ullman
Department of Computer Science, Stanford, CA 94305.

(fangmin, shiva, hector, motwani, ullman} @db.stanford. edu

Abstract

Many applications compute aggregate func-
tions over an attribute (or set of attributes)
to find aggregate values above some spec-
ified threshold. We call such queries ice-
berg queries, because the number of above-
threshold results is often very small (the tip
of an iceberg), relative to the large amount of
input data (the iceberg). Such iceberg queries
are common in many applications, including
data warehousing, information-retrieval, mar-
ket basket analysis in data mining, clustering
and copy detection. We propose efficient algo-
rithms to evaluate iceberg queries using very
little memory and significantly fewer passes
over data, when compared to current tech-
niques that use sorting or hashing. We present
an experimental case study using over three
gigabytes of Web data to illustrate the sav-
ings obtained by our algorithms.

1 Introduction

In this paper we develop efficient execution strategies
for an important class of queries that we call iceberg
queries. An iceberg query performs an aggregate func-
tion over an attribute (or set of attributes) and then
eliminates aggregate values that are below some speci-
fied threshold. The prototypical iceberg query we con-
sider in this paper is as follows, based on a relation
R(target1, target2,. . . , targetk, rest) and a threshold
T.

SELECT targetl, target2, . . . , targetk, count(rest)

*This work was partially supported by the Community
Management Staff’s Massive Digital Data Systems Program,
NSF grant IRI-96-31952, an IBM Faculty Partnership Award,
NSF Young Investigator Award CCR-93-57849, and grants
of IBM, Hitachi Corp., Mitsubishi, Schlumberger Foundation,
Shell Foundation, and Xerox Corporation.

t Currently affiliated with Oracle Systems, Redwood Shores,
CA.

Permission to copy without fee all 0~ part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

D target1] target2) rest

Table 1: Example relation R.
FROH R
GROUPBY targetl, target2, . . . , targetk
HAVING count (rest 1 >= T

If we apply the following iceberg query on relation R
in Table 1, with T = 3 (and Ic = 2), the result would
be the tuple (a,e, 3). We call these iceberg queries
because relation R and the number of unique target
values are typically huge (the iceberg), and the answer,
i.e., the number of frequently occurring targets, is very
small (the tip of the iceberg).

Many data mining queries are fundamentally ice-
berg queries. For instance, market analysts execute
market basket queries on large data warehouses that
store customer sales transactions. These queries iden-
tify user buying patterns, by finding item pairs that are
bought together by many customers [AS94, BMUT97].
Target sets are item-pairs, and T is the minimum num-
ber of transactions required to support the item pair.
Since these queries operate on very large datasets,
solving such iceberg queries efficiently is an important
problem. In fact, Park et al. claim that the time to ex-
ecute the above query dominates the cost of producing
interesting association rules [PCY95]. In this paper,
we concentrate on executing such iceberg queries effi-
ciently using compact in-memory data structures. We
discuss more examples of iceberg queries in Section 2.

The simplest way to answer an iceberg query is to
maintain an array of counters in main memory, one
counter for each unique target set, so we can answer
the query in a single pass over the data. However as we
have already indicated, answering the query in a sin-
gle pass is not possible in our applications, since rela-
tion R is usually several times larger than the available
memory (even if irrelevant attributes are projected out
as early as possible). Another approach to answer an
iceberg query is to sort R on disk, then do a pass
over it, aggregating and selecting the targets above
the threshold. If the available memory is small rela-
tive to the size of R, the sorting can take many passes

299

over the data on disk. For instance, if we use merge-
sorting, we produce JRI/M sorted runs, where M is the
number of tuples that fit in memory. Then we need
1ogM IRI/M merge passes to produce the final sorted
run. For each of these passes we need to read and
write the entire relation R (or at least all the values
for the target attribute). We encounter similar prob-
lems if we use other popular techniques such as early
aggregation [BD83], or hashing based aggregation.

Until now, we have assumed R is materialized.
However, in many cases R may be too large to be ma-
terialized, even on disk. For instance, in the market
basket application, the input data is often not R itself,
but a set of transaction records. Each such record de-
scribes a collection of items bought by a customer,
and corresponds to multiple R records. For example,
suppose we are interested in pairs of items that are
frequently bought together in a store, and say a cus-
tomer bought items {a, b, c}. Then R would contain
Wes b,bl, b,cl, 14 1 c , re P resenting each association
between pairs of items. In general, if the average num-
ber of items a customer buys is n, then each customer
record generates C(n, 2) fi: $ tuples in R. We can
see that even if the initial data with customer transac-
tions is small’, materializing R may not be feasible due
to the quadratic increase in size over the initial input.
The situation may get worse when the analyst wants to
find popular item triples and quadruples. Thus, when
R is very large, it will be useful to execute the ice-
berg query over the virtual relation R without explic-
itly materializing R, as traditional techniques based
on sorting or hashing would require.

The primary contributions of this paper are three-
fold:

1. We identify iceberg queries as fundamental data
mining queries, and discuss applications where
icebergs appear either directly, or as sub-queries
in more complex queries. Iceberg queries are to-
day being processed with techniques that do not
scale well to large data sets, so it is crucial to
develop better techniques.

2. We propose a variety of novel algorithms for ice-
berg query processing. Our algorithms use as
building blocks well-known techniques such as
sampling and multiple hash functions, but com-
bine them and extend them to improve perfor-
mance and reduce memory requirements. Our
techniques avoid sorting or hashing R, by keeping
compact, in-memory structures that allow them
to identify the above threshold targets. In cases
where R is not materialized, we show how to per-
form the iceberg computation without materializ-
ing R.

3. We evaluate our algorithms using a “csse-study”
approach for three different applications (with
real data) and queries. Our results show that the

‘In many cases, input data for WalMart-like stores runs into
hundreds of gigabytes.

new algorithms can efficiently handle much larger
iceberg problems than current techniques. The
case study also serves to illustrate the tradeoffs
involved in choosing one strategy over another,
depending on available system resources (such as
size of disk and main memory).

The rest of the paper is structured as follows. In
Section 2 we discuss a few examples of iceberg queries.
In Section 3 we present two simple algorithms that
can be used to execute iceberg queries. In Section 4
we propose three hybrid algorithms that combine the
advantages of the two simple algorithms, in different
ways. In Section 5 we propose several orthogonal tech-
niques to optimize the hybrid strategies. In Section 6
we propose some extensions to our algorithms. In Sec-
tion 7 we evaluate our techniques on three case studies,
using over three gigabytes of data - the size of R for
some of these scenarios, if materialized, will require 50
to 100 gigabytes of storage. We conclude in Section 9
with some directions for future research.

2 Why are iceberg queries important?

We now illustrate using a few examples why executing
iceberg queries efficiently is important, and why tradi-
tional techniques such as sorting and hashing can lead
to very high query times and inordinately large disk
requirements.

EXAMPLE 2.1 PopularItem Query
Consider a TPC-D benchmark [TPC] style relation

LineItem with attributes partKey, the key for parts
being sold, price, the price of the corresponding item,
and numsales, the number of units sold in a trans-
action, in region, the area where the part is being
sold. The following query computes the keys of popu-
lar items and regions, where the item’s revenues in the
region exceed one million dollars.

CREATE VIEW PopularItems as
SELECT partKey, region, SUMbwmSales * price)
FROM LineItem
GROUP BY partKey, region
HAVING SUM(numSales * price) >= $ l,OOO,OOO

It is easy to see that if we apply current techniques
such as sorting, to sort the LineItem relation to per-
form the aggregation, the response time for the above
query is large - even if most of the items in LineItem
are not very popular, and have very small revenues. Of
course, if the criterion for selecting an item were lO$
of revenue rather than one million dollars, the sorting
approach may be best since many items will satisfy the
query. We intuitively see that traditional techniques
such as sorting and hashing are “over kill” solutions
and are not output sensitive, in that they perform the
same amount of work independent of how small the
query’s output is. They do not use the given threshold
to execute the query faster. Rather, they first perform
the aggregation and later apply the thresholding. 0

300

EXAMPLE 2.2 DocumentOverlap Query
Web-searching engines such as AltaVista cluster

web documents based on “syntactic similarity” of doc-
uments [Bro97, BGM97], The goal of clustering is
to develop better web crawlers by identifying doc-
uments that are replicated or are near-replicas of
other documents (such as JAVA 1.1.3 manuals and
FAQs (SGM981).

The engines break up each web document into a
set of signatures, such as hashed 8-byte integers of se-
quences of words, or sentences. Then they maintain
a relation DocSign with tuples (di, ci) if document di
contains signature ci. Then they identify a document
pair to be a copy if they share more than T2 signatures
in common using the following query.

CREATE VIEW DocumentOverlaps
SELECT Dl.doc, DZ.doc, COUNT(Dl.chunk)
FROM Dl as DocSign, D2 as DocSign
WHERE Dl. chunk = D2. chunk AND

Dl.doc NOT = Dl.doc
GROUP BY Dl. dot, D2. dot
HAVING COUNT(Dl.chnnk) >= T2

Currently, the DEC prototype [Bro97, BGM97] uses
sorting to execute the above self-join, as follows. They
first sort DocSign on the signatures so that for a given
signature Sk, all tuples (di, Sk) such that document di
contains Sk will be contiguous. Then for each pair of
the form (di, Sk) and (dj, Sk) they explicitly materialize
relation SignSign of the form (di, dj), indicating that
di and dj share a signature in common. Then they
sort SignSign, so that all tuples for a given document
pair are contiguous. Finally, they sequentially scan
SignSign and count the number of document pairs
that occur more than T2 times in SignSign - these
document pairs have more than T2 signatures in com-
mon.

The above process explicitly materializes SignSign
(termed R in our discussions), before it sorts SignSign
and thresholds on T2. As we shall see in one of
our case-studies, this materialized relation has very
large storage requirements. In fact, for a small input
DocSign of size 500 megabytes, this relation grew to
about 40 gigabytes, even though the final answer to
the query was only one megabyte worth of document
pairs! 0

Iceberg queries also arise in many information re-
trieval (IR) problems. For instance, IR systems of-
ten compute stop words, the set of frequently occuring
words in a given corpus, to optimize query process-
ing and to build inverted indices. Such a query also
has the “iceberg” property. IR systems also sometimes
compute sets of frequently co-occurring words, and use
these to help users construct queries. For instance,
the pairs “stock market,” “stock price,” and “chicken
stock” may occur often in a collection of documents. If
the user enters the word “stock” in a query, the system
may suggest “market, “price,” and “chicken” as useful
words to add to the query to distinguish the way in
which “stock” is used. Computing co-occurring words

again involves an iceberg query, where target-sets are
pairs of words. We will study this application again in
more detail in our experimental case-study.

From the above illustrative examples, we see that
iceberg queries occur commonly in practice, and need
to be executed carefully so that query times and tem-
porary storage requirements are output sensitive.

3 Techniques for t hresholding

For simplicity, we present our algorithms in the next
few sections in the context of a materialized relation
R, with (target, rest) pairs. We assume for now we
are executing a simple iceberg query that groups on
the single target in R, as opposed to a set of targets.
As we will discuss later, our algorithms can be easily
extended for unmaterialized R as well as to multiple
target sets.

We start by establishing some terminology. Let V
be an ordered list of targets in R, such that V[r] is
the pth most frequent target in R (rth highest rank).
Let n be JVJ. Let Freq(r) be the frequency of V[T] in
R. Let Area(r) be Cizl[Freq(i)], the total number
of tuples in R with the T most frequent targets.

Our prototypical iceberg query (Section 1) selects
the target values with frequencies higher than a thresh-
old T. That is, if we define rt to be max{r]Freq(r) 2
T}, then the answer to our query is the set H =
WI, VDI, . . * > V[rt]}. We call the values in H the
heavy targets, and we define L to be the remaining
light targets.

The algorithms we describe next answer the pro-
totypical iceberg query, although they can be easily
adapted to other iceberg queries. In general, these al-
gorithms compute a set F of potentially heavy targets
or “candidate set”, that contains as many members of
H as possible. In the cases when F - H is non-empty
the algorithm reports false positives (light values are
reported as heavy). If H - F is non-empty the al-
gorithm generates false negatives (heavy targets are
missed). An algorithm can have none, one, or both
form of errors:

1 Eliminating False Positives: After F is com-
puted, we can scan R and explicitly count the
frequency of targets in F. Only targets that oc-
cur T or more times are output in the final an-
swer. We call this procedure Count(F). This
post-processing is efficient if the targets in F can
be held in main-memory along with say 2 - 4
bytes per target for counting. If F is too large,
the efficiency of counting deteriorates. In fact, as
IFI + n, the post-processing will take about the
same time as running the original iceberg query.

2. Eliminating False Negatives: In general, post-
processing to “regain” false negatives is very inef-
ficient, and may in fact be as bad as the original
problem. However, we can regain false negatives
efficiently in some high skew cases where most R

301

tuples have target values from a very small set.2
In particular, suppose that we have obtained a
partial set of heavy targets H’ = F n H, such
that most tuples in R have target values in H’.
Then we can scan R, eliminating tuples with val-
ues in H’. The iceberg query can then be run on
the remaining small set of tuples (either by sort-
ing or counting) to obtain any heavy values that
were missed in H’.

We now present two simple algorithms to compute
F, that we use as building blocks for our subsequent,
more sophisticated algorithms. Each algorithm uses
some simple data structures such as lists, counters,
and bitmaps for efficient counting. For ease of presen-
tation, we assume that the number of elements in each
structure is much smaller than [VI, and that all struc-
tures fit in main memory. In Section 7 we evaluate the
memory requirements more carefully.

3.1 A Sampling-Based Algorithm (SCALED-
SAMPLING)

Sampling procedures are widely adopted in databases
[HNSSSG]. (See [Olk93] for a good discussion of
sampling techniques to obtain unbiased samples effi-
ciently.) We now consider a simple sampling-based
algorithm for iceberg queries. The basic idea is as
follows: Take a random sample of size s from R. If
the count of each distinct target in the sample, scaled
by N/s, exceeds the specified threshold, the target is
part of the candidate set, F. This sampling-based al-
gorithm is simple to implement and efficient to run.
However, this algorithm has both false-positives and
false-negatives, and removing these errors efficiently is
non trivial, as we discussed above. We will show how
to remove these errors using our HYBRID algorithms
in the next section.

3.2 Coarse counting by bucketizing elements
(COARSE-COUNT)

“Coarse counting” or “probabilistic counting” is a
technique often used for query size estimation, for
computing the number of distinct targets in a re-
lation [FM85, WVZTSO], for mining association
rules [PCY95], and for other applications. The sim-
plest form of coarse counting uses an array A[l..m] of
m counters and a hash function hl , which maps target
values from log, n bits to log, m bits, m << n. The
CoarseCount algorithm works as follows: Initialize all
m entries of A to zero. Then perform a linear scan of
R. For each tuple in R with target v, increment the
counter A[hl(v)] by one. After completing this hashing
scan of R, compute a bitmap array BITMAPl[l..m] by
scanning through array A, and setting BZTMAPl[i]
if bucket i is heavy, i.e. if A[i] 2 T. We compute

2The 80 - 20 rule is an instance of high skew. When the
rule applies, a very small fraction of targets account for 80%
of tuples in R, while the other targets together account for the
other 20% [Zip49].

BITMAP1 since it is much smaller than A, and main-
tains all the information required in the next phase.
After BITMAP1 is computed, we reclaim the memory
allocated to A. We then compute F by performing a
candidate-selection scan of R, where we scan R, and for
each target v whose BZTMAP1[h1(v)] is one, we add v
to F. Finally we remove the false-positives by execut-
ing Count(F). Note that there are no false-negatives
in our coarse-counting approach.

The candidate-selection scan in this simple coarse-
counting algorithm may compute a large F (that may
be many times as large as the given memory), since
light targets may be hashed into heavy buckets. A
bucket may be heavy if it has (1) one or more heavy
elements, or (2) many light elements whose combined
counts are above the specified threshold.

4 HYBRID techniques

We now present three different approaches to combine
the sampling and counting approaches we presented
earlier. Each approach first samples the data to iden-
tify candidates for heavy targets; then it uses coarse-
counting principles to remove false-negatives and false-
positives. By this two-stage approach, we manage to
reduce the number of targets that fall into heavy buck-
ets - this leads to fewer light targets becoming false
positives. We refer to the three approaches as the HY-
BRID class of algorithms.

4.1 DEFER-COUNT Algorithm

First, compute a small sample (size s << n) of
the data using sampling techniques discussed in Sec-
tion 3.1. Then select the f, f < s, most frequent tar-
gets in the sample and add them to F. (These targets
are likely to be heavy, although we do not know for
sure yet.) Now execute the hashing scan of COARSE-
COUNT, but do not increment the counters in A for
the targets already in F. Next perform the candidate-
selection scan as before, adding targets to F. Finally,
remove false positives from F by executing Count(F).

We see an example of this approach in Figure 1 (a).
Consider the case when p and q are heavy targets, and
targets a and b are light targets. In this case, p and
q were identified in the sampling phase to be poten-
tially heavy, and are maintained explicitly in memory
(denote by ‘p’ and ‘q’) so they are not counted in the
buckets (as are a and b).

The intuition behind the DEFER-COUNT algo-
rithm is as follows. Sampling is very good for iden-
tifying some of the heaviest targets, even though it
is not good for finding all the heavy targets. Thus,
we select f so that we only place in F targets that
have a very high probability of being heavy. Then, for
each of these targets v that is identified in advance of
the hashing scan, we avoid pushing A[hl(v)] over the
threshold, at least on account of v. This leads to fewer
heavy buckets, and therefore fewer false positives.

The disadvantage of DEFER-COUNT is that it
splits up valuable main memory between the sample

302

[

(a) DEFEX-COUNT (b) MULTI-LEVEL (c) MULTI-STAGE

Figure 1: Alternative HYBRID techniques to combine
sampling and coarse-counting.
set, and the buckets for counting. Even if f is small,
we maintain the explicit target. For instance, if we
use DEFER-COUNT to count heavy-item pairs (two-
field target set), we need eight bytes to store the item
pair. The storage requirement gets progressively worse
if we start counting heavy-item triples, or heavy-item
quadruples, and so on. Another problem with imple-
menting DEFER-COUNT is that it is hard to choose
good values for s and f that are useful for a vari-
ety of data sets, Yet another problem with DEFER-
COUNT is that for each target, we incur the overhead
of checking if the target exists in f during the hashing
scan.

4.2 MULTI-LEVEL Algorithm

We now propose an algorithm that does not ex-
plicitly maintain the list of potentially heavy tar-
gets in main memory like DEFER-COUNT. Instead
MULTI-LEVEL uses the sampling phase to identify
potentially heavy buckets as follows.

First, perform a sampling scan of the data: For each
target TV chosen during this sampling scan, increment
A[h(v)], for hash function h. After sampling s targets,
consider each of the A buckets. If A[i] > T I s/n,
we mark the ith bucket to be potentially heavy. For
each such bucket allocate rn2 auxiliary buckets in main
memory. (We will sometimes refer to the A buckets as
primary buckets, to maintain the distinction.)

Next, reset all counters in the A array to zero. Then
perform a hashing scan of all the data. For each target
u in the data, increment A[h(v)] if the bucket corre-
sponding to h(v) is not marked as potentially heavy.
If the bucket is so marked, apply a second hash func-
tion hz(21) and increment the corresponding auxiliary
bucket.

We show an example of this procedure in Figure 1
(b). In the sampling phase, two buckets (marked with
dotted X’s) are identified to be potentially heavy, and
are each allocated m2 = 2 auxiliary buckets. During
the subsequent scan, when targets {a, b, p, q} fall into
the heavy buckets, they are rehashed using h2 to their
corresponding auxiliary buckets. Note that we do not
explicitly store the targets in the auxiliary buckets as
indicated in the figure; we continue to maintain only

counters in the buckets.
The idea behind the MULTI-LEVEL algorithm is

very similar to the concept of extensible indices com-
monly used in databases [U1188] - these indices grow
over populated buckets by adding auxiliary buckets
dynamically. However, the difference is that in the
case of extensible indices the entire key that is be-
ing indexed, is stored. Hence when buckets are over-
populated, we can dynamically add auxiliary buckets
efficiently. Recall that we cannot afford to store the
targets explicitly in main memory, and can only main-
tain counters. Hence we perform the prescan to pre-
allocate auxiliary buckets for potentially heavy buck-
ets. Also notice that MULTI-LEVEL does not store
the sample set explicitly like DEFER-COUNT does
- this is useful especially when the size of targets is
very large.

One problem with MULTI-LEVEL is that it splits
a given amount of main memory between the primary
and auxiliary buckets. Deciding how to split memory
across these two structures is not a simple problem
- we can only empirically determine good splits for
datasets. Also, the cost of rehashing into the auxiliary
buckets could be expensive, if a second hash function
is employed. In practice, however, we can avoid this
by using one hash function: we can use fewer bits for
the first hashing, and use the residual bits to “hash”
the target into the auxiliary buckets.

We now discuss one important detail for implement-
ing the above scheme. In Figure 1, we maintain point-
ers to auxiliary buckets. In some cases, maintaining
eight bytes per pointer may be expensive especially
if the number of potentially heavy buckets is high.
In such cases, we can allocate all the auxiliary buck-
ets for all potentially-heavy buckets contiguously in
main memory starting at base address B. For the ith
potentially-heavy bucket, we can store in A the offset
into the auxiliary buckets. We can then compute the
auxiliary buckets for potentially heavy bucket A[i], to
be in locations [B + (A[i] - 1) x m2, B + A[i] x mz).

4.3 MULTI-STAGE Algorithm

We now propose a new technique that uses available
memory more efficiently than the MULTI-LEVEL al-
gorithm. MULTI-STAGE has the same prescan sam-
pling phase as MULTI-LEVEL, where it identifies
potentially heavy buckets. However, MULTI-STAGE
does not allocate auxiliary buckets for each potentially
heavy bucket. Rather it allocates a common pool of
auxiliary buckets B[l, 2, . . . , ms]. Then it performs a
hashing scan of the data as follows. For each target u
in the data, it increments A[h(v)] if the bucket corre-
sponding to h(v) is not marked as potentially heavy. If
the bucket is so marked, apply a second hash function
h2 and increment B[hz(v)].

We present an example of this procedure in Figure 1
(c). We mark the common pool of B arrays arrays
using dotted lines. Note that the targets {u, b, p, q} are
remapped into the auxiliary buckets, using a second
hash function that uniformly distributes the targets

303

across the common pool of auxiliary buckets. It is
easy to see that in this example there is a 50% chance
that both the heavy targets p and q will fall into the
same bucket. In such cases, targets a and b are no
longer false-positives due to p and q. Indeed in the
figure, we present the case when p and q do fall into
the same bucket. We have analysed MULTI-LEVEL
based on the above intuition, in the full version of the
paper [FSGM+97].

The main intuition behind sharing a common pool
of auxiliary buckets across potentially heavy buckets
is that several heavy targets when rehashed into B
could fall into the same bucket as other heavy targets
(as illustrated in the example). MULTI-LEVEL does
not have this characteristic, since the heavy targets are
rehashed into their local auxiliary structures. Hence
we can expect MULTI-STAGE to have fewer false-
positives that MULTI-LEVEL, for a given amount
of memory.

MULTI-STAGE shares a disadvantage with
MULTI-LEVEL in that determining how to split the
memory across the primary buckets and the auxiliary
buckets can only be determined empirically.

5 Optimizing HYBRID using MULTI-
BUCKET algorithms

The HYBRID algorithms discussed in the last section
may still suffer from many false-positives if many light
values fall into buckets with (1) one or more heavy tar-
gets, or (2) many light targets. The sampling strate-
gies we outlined in the last section alleviate the first
problem to a certain extent. However the heavy tar-
gets not identified by sampling could still lead to sev-
eral light values falling into heavy buckets. Also, HY-
BRID cannot avoid the second problem. We now pro-
pose how to improve the HYBRID techniques of the
last section, using multiple sets of primary and auxil-
iary buckets, to reduce the number of false positives
significantly. We analyze the same idea in two differ-
ent contexts, in the following subsections based on the
number of passes required over the data.

For clarity, we describe the techniques of this sec-
tion, in the context of the simple DEFER-COUNT
algorithm, even though the techniques are also applica-
ble to the MULTI-LEVEL, and MULTI-STAGE al-
gorithms. Furthermore, for the techniques we present
below we continue to perform the sampling scan to
identify potentially heavy targets, and store them in
F. We do not count these targets during the hash-
ing scans, but count them explicitly in the candidate-
selection phase. After the candidate-selection phase,
we continue to execute Count(F) to remove false-
positives. Since these steps are common to all the
following techniques, we do not repeat these steps in
the following discussion.

5.1 Single scan DEFER-COUNT with multiple
hash functions (UNISCAN)

We illustrate UNISCAN using two hash functions hl
and hz that map target values from log, n bits to
logz(m/2) bits, m << n. The memory allocated is first
divided into two parts for the two counting and bitmap
arrays. That is, we now have Al[l..m/2], Ag[l..m/2],
BITMAP~[l..m/2] and BITMAP2[l..m/2]. We then
execute the prescan sampling phase in DEFER-
COUNT, identify f potentially heavy candidates, and
store them in F. Next, we do one pass over the
input data, and for each tuple in R with value u,
v 6 F, we increment both Al[hl(v)] and Az[hz(v)]
by one. Finally we set BITMAPl[i] to 1 if Al[i] 2 T,
1 5 i 2 m/2. We handle BITMAP2 similarly, and
then deallocate Al and AZ.

In the candidate-selection phase, we do one pass of
the data and for each tuple with value w, we add u to F
only if both BITMAPl[hl(v)] and BITMAPz[h:!(v)]
are set to one. We can easily generalize the above
procedure for k different hash functions hl , hz, . . , hk.
As mentioned earlier, for now we assume that A, the
k bitmaps, and F all fit in main memory. We will
discuss our model for memory usage in Section 7.

Choosing the right value of k is an interesting prob-
lem, for a given amount of main memory. As we choose
a larger value of k, we have many hash tables, but
each hash table is smaller. While the former helps in
reducing the number of false positives, the latter in-
creases the number of false positives. Hence there is
a natural trade-off point for choosing k. We discuss
in [FSGM+97] h ow to choose a good value of k for
UNISCAN.

5.2 Multiple scan DEFER-COUNT with mul-
tiple hash functions (MULTISCAN)

Rather than use multiple hash functions within one
hashing scan and suffer an increased number of false
positives due to smaller hash tables, we can use
the same idea across multiple hashing scans as fol-
lows. After the sampling prescan, execut.e one hashing
scan with hash function hl. Store the corresponding
BITMAP1 array on disk. Now perform another hash-
ing scan with a different hash function ha. Store the
corresponding BITMAP2 array on disk. After per-
forming k hashing scans, leave the last BITMAP in
memory and retrieve the k - 1 BITMAP arrays from
disk. Then execute the candidate-select,ion scan and
add value v to F if BITMAPi[hi(v)] = I, Vi, 1 < i 5
k.

5.3 Improving MULTISCAN with shared
bitmaps (MULTISCAN-SHARED)

In MULTISCAN we performed each hashing scan
independent of the previous scans, even though the
BITMAP information from previous scans was avail-
able. In MULTISCAN-SHARED we assume that in
the (i + l)st hashing scan, bitmaps from all i previous

304

a bd c e
Hashing A: scan 1 1 1 (1 (10 40 40 20

BITMAPl: lm

ed ab C

Hashing
Scan 2 A: 40 30 0 40

BT-l-MAP2: (il

Figure 2: Hashing in MULTISCAN.

Hashing
A: Scan 1

BITMAP 1: V[

BITMAP2:

Figure 3: Hashing in MULTISCAN-SHARED.
hashing scans are retained in memory. This optimiza-
tion works as follows: During the (i + l)8t hashing
scan, for target V, increment A[hi+l(v)] by one, only
if BITMAPj[hj(v)] = 1, for all j, 1 5 j 5 i.

The following example illustrates how
MULTISCAN-SHARED reduces the number of
false-positives over MULTISCAN. Consider the case
when we have the following (target : frequency) pairs
in R: (u : lo), (b : 20), (c : 40), (d : ZO), (e : 20),
i.e., target a occurs in ten tuples in R, b occurs in 20
tuples in R, and so on. Let T = 30 and m = 4. Let
hr map the targets to the following buckets, set of tar-
gets pairs: [0 : {a}, 1 : {b, d}, 2 : {c}, 3 : {e}] as shown
in Figure 2, i.e., hi(a) = 0, hi(b) = hi(d) = 1, etc.
Similarly hz maps the targets to the following buck-
ets [0 : {e,d}, 1 : {a, b},2 : {},3 : {c}]. In Figure 2
we show the counts in array A and the correspond-
ing BITMAP after the first hashing scan when we
execute MULTISCAN. Similarly we compute A and
BITMAP2 after the second hashing scan. Now in the
candidate selection scan of MULTISCAN, we would
choose {b, c, d} to be part of F, since targets b, c, d fall
into heavy buckets under both hash functions.

Now consider the execution of MULTISCAN-
SHARED in Figure 3. The first hashing scan re-

mains the same as before. The second scan however
computes a different bitmap, since the second hashing
scan uses the information in BITMAP1 before incre-
menting A. To illustrate, consider how e is counted
by each algorithm in the second hashing scan. In
MULTISCAN, A[ha(e)] is incremented for each of
the 20 occurrences of e. However in MULTISCAN-
SHARED, A[hz(e)] is not incremented for the 20 oc-
curences of e, since we already know that e is light (be-
cause BITMAP1 [3] = 0). Since e does not increment
A[O] in the second hashing scan, d is no longer a part
of the candidate set. In fact in the candidate-selection
scan, the only target chosen by the MULTISCAN-
SHARED will be {c}, as opposed to the {b, c, d} cho-
sen by MULTISCAN.

5.4 Variant of MULTISCAN-SHARED
(MULTISCAN-SHARED2)

We now propose a variant of MULTISCAN-
SHARED that uses less memory for BITMAPS. In
this variant, we maintain the BITMAP’s only from
the last q hashing scans while performing the (i + l)St
(q 5 ;) hashing scan, rather than maintaining all i
prior BITMAPS. The conjecture is that the q lat-
est BITMAPS from hashing scans i - q + 1 through
i have fewer and fewer bits set to one. Therefore
these BITMAPS have more pruning power than ear-
lier, while using the same storage space. We use
MULTISCAN-SHARED2 to denote this algorithm.

6 Extending HYBRID and MULTI-
BUCKET algorithms

In this section we briefly describe some variations to
the schemes we presented earlier.

1. Collapsing candidate-selection scan with fi-
nal counting-scan: The MULTISCAN algo-
rithm (and its extensions that were proposed
in Sections 5.3 and 5.4) performs k hashing
scans, one candidate-selection scan, and finally
one counting scan where false positives were elim-
inated. In cases where the size of F is expected to
be small, we can collapse the last two scans into
one as follows. When executing the candidate-
selection scan, we add an in-memory counter for
each element of F. In that scan, as we add each
target to F (because it appeared in heavy buck-
ets for all k-hash functions), we check if the target
was already in F. If so, we increment its counter;
if not, we add it to F with its counter initialized to
1. We can dispense with the final counting-scan
because we already have a count of how many
times each F target appears in R. Targets whose
count exceed the threshold are in the final answer.

2. Parallelizing hashing scans for MULTI-
SCAN: We can parallelize the hashing scans of
MULTISCAN across multiple processes. In such
a case, the time for the hashing scans drops from
the time for k sequential scans, to the time for

305

a single scan. Of course, we cannot use the
same optimization for MULTISCAN-SHARED
and MULTISCAN-SHARED2 since they use
bitmaps from previous iterations.

3. SUM queries: As we mentioned in Section 1, we
can extend our techniques to iceberg queries con-
taining HAVING SUH(attrib). To illustrate, con-
sider query Popular-Item from Section 2. We can
perform this query by performing a hashing scan
on the Line&em relation. In this pass, we com-
pute hl(partKey, region), and increment the cor-
responding counter in A by nvmSales *price. At
the end of the hashing scan, compress the A array
into BITMAPI, with the definition that bucket
i is heavy if A[i] is greater than or equal to the
given threshold value of one million. Then per-
form subsequent hashing scans if necessary and
finally produce partKeys’s whose total revenues
exceed the specified threshold.

7 Case studies

Given the relatively large number of techniques we
present in this paper, each of which is parameterized
in different ways (such as how much of data we should
sample, s, how many values to retain to be poten-
tially heavy, f, and memory allocations), it is difficult
to draw concrete conclusions without looking at par-
ticular application scenarios. We chose three distinct
application scenarios and designed our experiments to
answer the following questions: (1) How does each
scheme perform as we vary the amount of memory
allocated? We report the performance both in terms
of the size of the candidate set (IFI) produced, and
the total time each scheme takes to produce F, as well
as to remove the false positives using Count(F). (2)
How does each scheme perform as we vary the thresh-
old? As above, we report both IFI and the total time.
(3) How do schemes perform for different data distri-
butions? That is, if the input data follows a skewed
distribution as opposed to less skewed distributions,
how are the schemes affected by sampling?

Before we present our results, we discuss how we al-
locate memory in our experiments. We experimented
with a variety of ways to split the available memory
between the sample set of size f (in case of DEFER-
COUNT based algorithms), the primary and the aux-
iliary buckets. We found the following approach to
work best for our data.

1. Allocate f: For algorithms based on DEFER-
COUNT, choose a small f for the sampling scan
and allocate memory for that set. We discuss later
what should be the value of f, for each applica-
tion.

2. Allocate auxiliary buckets: Allocate p,,, per-
cent of the remaining memory after the first step
to auxiliary buckets. As the algorithm executes
we may discover that this amount of allocated

3.

0’ I
8 12 16 20 24 28 32 36 40

Memory allocated (M&z)

Figure 4: IFI as memory varies (T = 500).
memory was insufficient for the auxiliary buck-
ets. If that happens, we greedily select the buckets
with highest A counter values, and assign as many
of these as possible to the auxiliary area. The
remaining potentially heavy buckets, that could
not be assigned to the limited auxiliary area, are
treated as any other primary bucket during the
hashing scan.

Allocate primary buckets and bitmaps: Al-
locate the balance of the memory to the primary
buckets and their bitmaps. In case of UNISCAN
we need to this memory among the k primary
buckets and their bitmaps (based on the value of
k chosen by the analysis in the Appendix).

In our experiments, we found p,,, between 15 - 20%
to be good values for splitting up our memory. Before
the candidate-selection scan, we reclaim the memory
allocated to the primary buckets and allocate that to
store F.

In the following experiments, if the final F (input to
Count(F)) does not fit in main memory, we stream the
tuples in F onto disk, and we execute Count(F) using
a disk-baaed sorting algorithm. Our implementation
is enhanced with early aggregation [BD83] so that it
integrates counting into the sorting and merging pro-
cesses, for efficient execution. As we discussed earlier,
this is merely one way to execute Count(F). Hence
the reader should not interpret the results of this sec-
tion as absolute predictions, but rather as illustrations
of performance trends. For the following experiments,
we used a SUN ULTRA/II running SunOS 5.6, with
256 MBs of RAM and 18 GBs of local disk space.

Case 1: Market basket query

We use the market basket query to find commonly oc-
curing word pairs. For this we use 100,000 web doc-
uments crawled and stored by the Stanford Google
webcrawler [BP]. The average length of each doc-
ument is 118 words. From this data we computed
the Dot Word relation to be (docID, wordID), if doc-
ument with identifier docID had a word with identifier
wordID. This relation was about 80 MBs, when we

306

24000 t..

.cJl

.c 16000
s
2 14000

3 12000
I-0

10000

6000

6000’ I
8 12 16 20 24 28 32 36 40

Memory allocated (MB@

Figure 5: Total time as memory varies (T = 500).

used 4-byte integers for docIDs and wordIDs. Note
that we removed entries corresponding to 500 pre-
defined stop words from this relation [SB88]. Recall
that the R over which the iceberg query is to be ex-
ecuted has all pairs of words that occur in the same
document. If R were to be materialized on disk, it
would require about 29.4 GBs to store R; in addition,
we may require temporary storage while performing
the aggregation. Since the storage requirements may
be impractical, we do not discuss this technique any
more in this section.

To avoid explicitly materializing R we use the fol-
lowing technique that we can use in general to execute
iceberg queries, when R is not materialized. Typically,
tuples that refer to the same document are contiguous
in Dot Word. (This is because Dot Word is produced
by reading and parsing documents one at a time. If
entries are not contiguous, we can sort the relation.)
Because of this property, we can simply scan Dot Word
and produce (wi, wj) for each wi, wj pair that occurs
in the same document. Rather than explicitly storing
such tuples, stream the tuples directly to the algorithm
we use to execute the iceberg query. For instance, if
we use DEFER-COUNT to execute the iceberg query
(assume s = 0) , increment A[h(wi, wj)] as soon as tu-
ple (wi, wj) is produced. Notice that we cannot apply
a similar optimization for sorting or hybrid hashing
based schemes, since the tuples are materialized ex-
plicitly (for sorting), or will need to be stored in the
hash table (for hybrid hashing). We can in general use
our technique to execute a query over any join of sorted
relations. In fact, R can be any expression of sorted
relations, as long as we can generate R in one-pass.

We now discuss a few representative schemes for
specific values of K to illustrate some of the trade-
offs involved. (We study the performance of all
schemes in greater detail, in the full version of this
paper [FSGM+97] .) Specifically, we present results
for MULTISCAN/D, MULTISCAN-SHARED/D
and UNISCAN/D, the corresponding multi-bucket
optimization of DEFER-COUNT. We also evaluate
MULTI-STAGE for I(= 1. We found a 1% sample
of n (s = 1%) and f = 1000 to work well in practice

6~06
UNISCANID ‘K = 1

5e+o6 li,,
MULTI-STAGE :K = 1 -+--- 1

-

.- :
MULTlSCANlD ‘K = 2 .-a----.

ii MULTISCAN-SHARED/D ‘K = 2 --*
\ \ UNlSCANlD .K = 8 4e+06 2 ----- _

24
300 400 500 600 700 800 900 1000

Threshold

Figure 6: IF] as threshold varies (A4 = 20 MB).

for this data.
In Figure 4 we show how IFI, the number of candi-

date pairs, varies as the amount of memory allocated
increases. We see that (F] drops as more memory
is allocated, as expected. Also we see that MULTI-
SCAN/D [K = 21 and MULTISCAN-SHARED/D
[K = 21 perform best, in terms of choosing the small-
est IF]. This is because when the amount of mem-
ory is small, doing multiple passes over the data us-
ing most of the available memory for the A array,
helps prune the number of false positives significantly.
UNISCAN/D [K = 21 p er orms f poorly initially since
the amount of main memory is very small, but the
difference between UNISCAN/D [K = l] and UNIS-
CAN/D [K = 21 d ro p s with larger memory. For mem-
ory more than about 34 MBs, we see that UNIS-
CAN/D [K = 21 p er orms better than its K = 1 coun- f
terpart .

In Figure 5 we see the total time to answer
the iceberg query as the amount of memory varies.
We see that MULTISCAN/D and MULTISCAN-
SHARED/D perform steadily across the different
memory sizes, since they do not produce too many
false positives. On the other hand, MULTI-STAGE
[K = l] performs badly when memory is limited; be-
yond about 14 MBs it performs best. This is because
(1) the number of false positives is relatively small
and hence counting can be done in main memory, (2)
MULTI-STAGE scans the data one less time, and
uses less CPU time in computing fewer hash functions
than the other multi-bucket algorithms (such as MUL-
TISCAN/D).

In Figure 6 we study how 18’1, the number of can-
didates, varies as the threshold is varied. We see
that MULTISCAN/D [K = 21 and MULTISCAN-
SHARED/D [K = 2] tend to have the smallest IF].
Again, we see that performing multiple passes over
the data using multiple hashing functions helps prune
away many false-positives. In Figure 7 we see the cor-
responding total time to answer the iceberg query. We
see that MULTI-STAGE performs the best in this in-
terval, again because (1) F is relatively small, and (2)
it performs one fewer scan over the data, and needs to

307

4ooo-
300 400 500 600 700 600 900 1000

Threshold

Figure 7: Total time as threshold varies (A4 = 20 MB).

le+07 1 'I 'I 'I .a .., .., .., ..,

le+O6

100

10

1
'1 lo 100 1000 1OOOaOOOOUe+O61e+071e+O6

Frequency

Figure 8: Frequency-rank curves for different chunk-
ings.
compute fewer hash functions than MULTISCAN/D
and MULTISCAN-SHARED/D.

In summary, we see that MULTI-STAGE works
best since this application had very little data.

Case 2: Computing StopChunks

We now consider how sensitive our schemes are to
skews in data distribution, using an IR example. We
discussed in Section 2 how IR systems compute a
set of stop words for efficiency. In general, IR sys-
tems also compute “stop chunks,” which are syntac-
tic units of text that occur frequently. By identifying
these popular chunks, we can improve phrase searching
and indexing. For instance, chunks such as “Netscape
Mozilla/l.O” occur frequently in web documents and
may not even be indexed in certain implementations
of IR systems (such as in [SGM96]), to reduce storage
requirements.

For this set of experiments, we used 300,000 docu-
ments we obtained from the Stanford Google crawler
(as above). We defined chunks based on sliding win-
dows of words as in [SGM96]. We say we use “C = ?’

‘th chunking, if the j chunk of a given document is the

100
c
b 10

3 1
E
8 0.1
5
Q 0.01
"m
B 0.001

z 0.0001
7 t? 18-05

le-06
10 100 1000 10000 100000 le+06

Threshold T

Figure 9: Result sizes for different thresholds.

sequence of words from j through j+i- 1. For a corpus
of documents, we can compute the DocSign (C = i)
relation which contains (dh, sj), if document dh con-
tains sj, the B-byte hashed version of the jth chunk.
For our experiments we computed four different Doc-
Sign tables for C = 1,2,5,10. (Note that the DocSign
relation for C = 1 is the relation used to compute stop
words in IR systems.)

Our first two graphs illustrate the nature of the
data, and not a specific algorithm. In Figure 8 we
show, on a log-log plot, the frequency-rank curves of
the four different chunkings. As expected, the smaller
the C used to construct a chunk, the fewer the num-
ber of distinct target values, and the larger the data
skew. For instance, with C = 1, the number of dis-
tinct chunks, 12, is over 1.5 million, and the heaviest
target occurs about 4.5 million times in DocChunk.
For C = 10, n = 27.7 million, while the heaviest tar-
get occurs only 0.21 million times. The size of each
DocSign relation was about 4.2 gigabytes (Note that
we did not remove precomputed stop words from these
relations as we did in the market-basket query.)

In Figure 9 we show (again on a log-log plot) what
percentage of the n unique terms are actually heavy,
for different thresholds. We see in the figure that, as
expected, the number of heavy targets (the tip of the
iceberg) drops significantly as T increases.

In the following two graphs, Figure 10 and 11, we
study how the number of hashing scans Ii, and the
number of hash buckets m affect false-positive errors.
Due to lack of space, we present the results only in the
context of MULTISCAN-SHARED2/D, with q = 2
(the number of previous bitmaps cached in memory).
The vertical axis in both figures is the percentage of
false positives (100 * F, where FP is the number
of false positives). As we expected, the percentage
of false positives drops dramatically with increasing
k. For instance for C = 1, the percentage drops from
about 70% for k = 1 to less than 10% for k = 4. Also it
is interesting to note that the number of false positives
drops as the data is less skewed (from C = 1 through
C = lo), especially as the number of hashing scans
increases. We attribute this drop to three factors: (1)

308

n k=l

H k=2

k=3

0 k=4
10%

lOO*FP ,%

”

0.1%

Figure 10: Performance of MULTISCAN-
SHAREDS/D with Ic (T = 1000, m = 1% of n).

10%

lCO*FP,%
n

0.1%

C=l c=2 c=5 C=lO

Figure 11: Performance of MULTISCAN-
SHARED2/D with m (T = 1000, k = 2).

there are fewer heavy targets (Figure 9), (2) since data
is not very skewed, fewer light targets fall into buckets
that are heavy due to heavy targets, and (3) as more
hashing scans are performed, fewer light targets fall
into heavy buckets across each of the hashing scans.

In summary, these experiments quantify the im-
pact of skew, and provide guidelines for selecting the
number of hashing scans needed by MULTISCAN-
SHARED2/D, as the “tip of the iceberg” changes in
size. Analogous behavior can be observed for the other
schemes.

Case 3: DocumentOverlap Query

In Figure 12 we present the total time to execute the
DocumentOverlap query (discussed in Section 2) using
MULTISCAN and MULTISCAN-SHARED tech-
niques as the amount of memory (M) changes. We
executed the query on the DocSign relation from Case
2, when C = 1. Since the data was unskewed for this
query, we avoid the sampling scan, i.e., s = 0%.

In Figure 12 we see that MULTISCAN-
SHARED2 [q = l] performs best, when the amount
of memory is small, but progressively becomes infe-
rior to MULTISCAN and MULTISCAN-SHARED
as memory increases. MULTISCAN-SHARED [q
= 21 is in between MULTISCAN-SHARED [q =
l] and MULTISCAN-SHARED, for small values
of memory. The above behavior of MULTISCAN-

18000

8 16000

1 14000

E” 12000
I=

10000

MULTISCAN -

6000
10 20 30 40 50 60 70 80 90 100

Size of memory (MB)

Figure 12: Performance of algorithms with M for Doc-
umentoverlap query for C = 1.
SHARED2 compared to MULTISCAN-SHARED
is due to the following competing factors: (1)
MULTISCAN-SHARED2 uses fewer bitmaps than
MULTISCAN-SHARED, thereby allocating more
memory for primary buckets. (2) For a given
amount of memory, MULTISCAN-SHARED prunes
more light targets than MULTISCAN-SHARED2,
as we discussed earlier. For small values of mem-
ory, MULTISCAN-SHARED2 performs better than
MULTISCAN-SHARED, since the first factor domi-
nates. For larger values of memory, the extra space al-
located to the additional bitmaps for MULTISCAN-
SHARED still leaves enough memory for the primary
buckets. Hence the second factor dominates. We also
see that MULTISCAN does not perform too well for
small memory, since it does not use bitmaps to prune
away light targets, as we discussed earlier. Hence we
see that choosing q = 1 or 2 may be useful for small
sized memory while still leaving sufficient main mem-
ory for primary buckets.

The size of R, if materialized, is 52 GBs. If we as-
sume disks can execute sequential scans at the rate of
10 MB/set, it would take 52 * 1024/10 e 5300 sec-
onds each to read and write R. However, notice that
MULTISCAN-SHARED2 [q = l] would finish exe-
cuting even before R is written once and read once! Of
course, since R has to be sorted to execute the iceberg
query, it is easy to see that sorting-based execution
would require too much disk space to materialize and
sort R, and will take much longer than our schemes.

7.1 Summary

Based on our case studies (and from experiments we
do not report here due to lack of space [FSGM+97]),
we propose the following informal “rules of thumb”
to combine schemes from the HYBRID and MULTI-
BUCKET algorithms:

1. HYBRID algorithms: MULTI-LEVEL rarely
performs well in our experiments, while DEFER-
COUNT and MULTI-STAGE tend to do very

309

well under different circumstances. If you expect
the data distribution to be very skewed where very
few targets are heavy, but constitute most of the
relation), use DEFER-COUNT with a small f
set. If you expect the data not to be too skewed,
use MULTI-STAGE since it does not incur the
overhead of looking up the values in f. If you
expect the data distribution to be flat, do not use
the sampling scan.

2. MULTIBUCKET algorithms: In general
we recommend using MULTISCAN-SHARED2
with q = 1 or q = 2. For relatively large values of
memory, we recommend UNISCAN with multi-
ple hash functions, since we can choose K > 1 and
apply multiple hash functions within one hashing
scan, as we discuss in the full version of this pa-
per [FSGM+97].

8 Related Work

Flajolet and Martin W851, and Whang et
al. [WVZTSO] proposed a simple form of coarse count-
ing for estimating the number of distinct elements in a
multiset. Park et al. [PCY95] proposed coarse count-
ing in the context of mining association rules. All the
above approaches use a single hash function for their
coarse counting, and hence tend to have many false
positives. We extend the above techniques using our
HYBRID and MULTIBUCKET algorithms, and per-
form a comprehensive study of these techniques using
a case study approach.

9 Conclusion

In this paper we studied efficient execution tech-
niques for iceberg queries, an important class of queries
with widespread application in data-warehousing, data
mining, information retrieval and copy detection. We
proposed algorithms that compute the result, the “tip
of the iceberg,” much more efficiently than conven-
tional schemes. We evaluated our algorithms using
a case study approach in three real applications, and
observed that the savings are indeed very significant.
Some algorithms in the suite we have provided are bet-
ter suited to some scenarios, depending on the data
skew, available memory, and other factors. We have
provided some empirical “rules of thumb” for select-
ing a scheme and for allocating memory to its data
structures.

References

[AS941

[RD83]

R. Agrawal and R. Srikant. Fast algo-
rithms for mining association rules in large
databases. In Proceedings of International
Conference on Very Large Databases (VLDB
‘94), pages 487 - 499, September 1994.

D. Bitton and D. J. Dewitt. Duplicate record
elimination in large data files. ACM Transac-
tions in Database Systems (TODS), 8(2):255
- 265. 1983.

[BGM97] A. Broder, S.C. Glassman, and M. S. Man-
asse. Syntactic Clustering of the Web. In
Sixth International World Wide Web Confer-
ence, April 1997.

[BMUT97] S. Brin, R. Motwani, J.D. Ullman, and
S. Tsur. Dynamic itemset counting and impli-
cation rules for masket basket data. In Pro-
ceedings of ACM SIGMOD Conference, pages
255 - 264, May 1997.

WI S. Brin and L. Page. Google search engine/
backrub web crawler.

[Bro97] A. Broder. On the resemblance and contain-
ment of documents. Technical report, DIGI-
TAL Systems Research Center Tech. Report,
1997.

[FM851 P. Flajolet and G.N. Martin. Probabilis-
tic counting algorithms for database applica-
tions. Journal of Computer System Sciences,
31:182 - 209, 1985.

[FSGM+97] M. Fang, N. Shivakumar, H. Garcia-Molina,
R. Motwani, and J.D. Ullman. Computing
iceberg queries effciently. Technical report,
Stanford DBGroup Technical Report, Febru-
ary 1998.

[HNSS96] P.J. Haas, J.F. Naughton, S. Seshadri, and
A.N. Swami. Selectivity and cost estimation
for joins based on random sampling. Journal
of Computer and System Sciences, 52(3):550
- 569, June 1996.

[OIk93] F. Olken. Random sampling from databases.
Ph.D. dissertation, UC Berkeley, April 1993.

[PCY95] J.S. Park, M.S. Chen, and P.S. Yu. An effec-
tive hash based algorithm for mining associa-
tion rules. In Proceedings of ACM SIGMOD
Conference, pages 175 - 186, May 1995.

[SBSS] G. Salton and C. Buckley. Term-weighting
approaches in automatic text retrieval. Infor-
mation Processing and Management, 24(5),
1988.

[SGM96] N. Shivakumar and H. Garcia-Molina. Build-
ing a scalable and accurate copy detection
mechanism. In Proceedings of 1st ACM
Conference on Digital Libraries (DL’96),
Bethesda, Maryland, March 1996.

[SGM98] N. Shivakumar and H. Garcia-Molina. Com-
puting replicas and near-replicas of docu-
ments on the web. In To appear in Work-
shop on WebDatabases (WebDB’98), Valen-
cia, Spain, March 1998.

F’CI TPC-Committee. Transaction processing
council (TPC). http: //www. tpc. org.

[U1188] J.D. Ullman. Principles of Database and
Knowledge-Base Systems (Volume 1). Com-
puter Science Press, 1988.

[WVZTSO] K. Whang, B.T. Vander-Zanden, and H.M.
Taylor. A linear-time probabilistic counting
algorithm for db applications. ACM Transac-
tions on Database Systems, 15(2):208 - 229,
1990.

[Zip491 G.K. Zipf. Human Behavior and the Prin-
ciple of Least &Fort. Addison-Wesley Press,
Cambridge, Massachusetts, 1949.

310

