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tantly, if enough memory is available, a sort or join 
can be done entirely in memory. 

Abstract 

Sorting is a memory intensive operation whose 
performance is greatly affected by the amount 
of memory available as work space. When 
the input size is unknown or available memory 
space varies, static memory allocation either 
wastes memory space or fails to make full use 
of memory to speed up sorting. This paper 
presents a method for run-time adjustment of 
in-memory work space for external mergesort 
and a policy for allocating memory among 
concurrent, competing sorts. Experimental 
results confirm that the new method enables 
sorts to adapt their memory usage gracefully 
to the actual input size and available memory 
space, When multiple sorts compete for mem- 
ory resources, we found that sort throughput 
and response time are improved significantly 
by our policy for memory allocation combined 
with limiting the number of sorts processed 
concurrently. 

Many systems rely on static allocation, that is, work 
space is allocated when an operation starts and re- 
mains unchanged until it finishes. This approach is 
likely to result in some operations wasting memory 
while others are starved for memory. There are two 
reasons why this may happen. First, the input size 
may be unknown or poorly estimated. Second, in a 
multiuser environment the workload varies, resulting 
in varying demands on the available memory. Overall 
performance can be improved by algorithms that en- 
able operations to adjust their memory usage at run 
time in response to the actual size of their inputs and 
fluctuations in total memory demand. 

Sorting is a frequent operation in database systems. 
It is used not only to produce sorted output, but also 
in many sort-based algorithms, such as grouping with 
aggregation, duplicate removal, sort-merge join and set 
operations [Gra93]. Sorting can also improve the ef- 
ficiency of algorithms like nested-loop joins and row 
retrieval via an index. This paper concentrates on dy- 
namic memory adjustment for sorting but the same 
approach can be applied to other memory intensive 
operations. 

1 Introduction 

Sorts and joins are memory intensive operations whose 
performance is greatly affected by the amount of main 
memory work space available. Increasing the work 
space reduces the amount of intermediate data trans- 
ferred between main memory and disk. More impor- 
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Pang, Carey and Livny [PCL93a] first studied dy- 
namic memory adjustment for sorting and proposed 
memory adjustment strategies for external mergesort. 
For the run formation phase, they considered quick- 
sort and replacement selection. When using quicksort, 
adjustments can only be done when a run has been 
finished and output. When using replacement selec- 
tion, memory adjustments can be done by expanding 
orshrinking the selection heap. For the merge phase, 
they studied memory adjustment policies that change 
merge patterns between merge passes. Their work con- 
centrated on sorts with multiple merge passes and did 
not consider the effects of several sorts running con- 
currently. 

We believe that the greatest performance improve- 
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ment can be achieved by completing as many sorts 
as possible in main memory. We propose adjustment 
mechanisms and a policy that attempt to achieve this. 
Our policy dynamically adjusts work space size not 
only in response to the actual input size but also in re- 
sponse to changes in available memory and competing 
demands from other sort jobs running concurrently. 

The rest of this paper is organized as follows. Sec- 
tion 2 describes our memory-adaptive external merge- 
sort. Experimental results are presented in Section 3, 
comparing the performance of our memory-adaptive 
sort and a sort with static memory allocation. Section 
4 summarizes our findings and offers some conclusions. 

2 Dynamic Memory Adjustment for 
Mergesort 

We first outline a memory adaptive version of (exter- 
nal) mergesort, followed by a more detailed discussion 
of when and how memory usage can be adjusted in 
the various sort phases. We then discuss adjustment 
policies and describe the policy we adopted. 

2.1 A Memory Adaptive Mergesort 

External mergesort consists of two phases: a run for- 
mation phase and a merge phase. The standard al- 
gorithms for run formation are quicksort and replace- 
ment selection [Knu73]. Processor speeds continue to 
increase faster than memory speeds causing an algo 
rithm’s cache behavior to become increasingly impor- 
tant. Following [NBC+941 we therefore opted for a 
two-phase algorithm for run formation which first sorts 
data within buffers, followed by an in-memory merge. 
When a sort cannot be completed entirely in mem- 
ory, the in-memory merge produces runs and external 
merging is required. Note that runs may be of variable 
length because work space size may change between 
runs. 

There are many valid merge patterns; the only re- 
quirement is that each merge step must reduce the 
number of runs so that we eventually end up with a 
single, completely sorted run. So given S initial runs, 
possibly of variable length, and a maximum merge fan- 
in of K, which merge pattern results in the minimum 
data transmission? Under the assumption that K re- 
mains fixed, this problem has a surprisingly simple 
solution (see [Knu73], pp 365-366): first add enough 
dummy runs of length zero to make the number of 
runs minus one divisible by K - 1 and then repeatedly 
merge together the K shortest remaining runs until 
only one run remains. 

Unfortunately, we cannot apply this solution di- 
rectly because we cannot guarantee that K remains 
fixed throughout the merge phase; each merge step 
may have a different fan-in. However, we retain part 

of the solution: once the fan-in for a merge step has 
been determined (depending on available memory) we 
always merge the smallest remaining runs. 

In summary, our variant of mergesort has three 
phases: an in-buffer sort phase which sorts data within 
a buffer, an in-memory merge phase which produces 
runs by merging sorted buffers, and an external merge 
phase which merges sorted runs. The algorithm is out- 
lined below. We have also indicated at which points in 
the algorithm we check and possibly adjust the work 
space size. 

/* In-Buffer Sort Phase */ 
while there is more input k memory space 

read data into a buffer 
sort the buffer 
[check/adjust memory1 

endloop 
/* In-Memory Herge Phase */ 
if no more input % this is the first run 

merge buffers to produce output and stop 
if no more memory or this is the last run 

merge buffers 
write the sorted data into a tmp table 
if there is more input 

[check/adjust memory] 
go to In-Buffer Sort Phase 

/* External Merge Phase */ 
[check/adjust memory] 
while max merge width < number of runs 

merge a number of shortest runs 
[check/adjust memory] 

merge runs to produce output 

2.2 Adjustment Mechanisms 

In-buffer sort phase 

During this phase, the sort process collects data into 
buffers and sorts each buffer using some in-memory 
sort algorithm. When it runs out of free buffers, it tries 
to allocate more memory. If the system can provide 
more space, the in-buffer sort phase continues. In this 
way, the work space increases gradually, one buffer at 
a time. When the sort reaches the end of input or 
cannot acquire more buffer space, it proceeds to the 
in-memory merge phase. 

If acute shortage of memory space occurs, a sort 
in this phase could “roll back” its input and release 
the last buffers acquired. This is a rather drastic step 
though so we have not considered it further. 

In-memory merge phase 

Duringanin-memorymerge,the sorted dataiswritten 
to a temporary file as a run. As buffers become empty, 
they can either be released (if the system is short of 
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memory) or used for loading data for the next run. 
Whether a buffer is to be released or kept is a policy 
decision. It is not necessary to increase memory space 
during this phase. 

External merge phase 

The exact number of runs and amount of data are 
known when a sort enters this phase. If the number of 
runs is small, we attempt to allocate enough memory 
to complete the sort with a single merge step. 

When the number of runs is large (relative to avail- 
able memory), multiple merge steps may be needed. 
In this case, memory usage can be changed between 
merge steps by increasing or decreasing the merge fan- 
in. Once the fan-in for a step has been determined, the 
shortest runs are selected for merging. 

Memory usage can also be adjusted by changing 
the size of input buffers. Larger buffers reduce disk 
overhead (total seek time and latency) because fewer 
I/O requests are needed to transfer the same amount 
of data. However, this option is not considered in our 
implementation; we always use a fixed buffer size. Nor- 
mally, we use 32Kb buffers because we experimentally 
found that increasing the buffer size further yields only 
marginal benefits. 

It is possible to reduce memory usage in the middle 
of a merge step, simply by terminating the input from 
one or more runs. The part of a run that was not pro- 
cessed can be treated as any other run during the next 
merge step. This seems like a rather radical option so 
we have not considered it further. 

Wait queues 

As part of the memory adjustment mechanism, we use 
multiple wait queues, each with an associated prior- 
ity. A sort may enter a wait queue because of lack of 
memory in the system or to yield to higher priority 
sorts. When memory becomes available, the sorts in 
the queue with the highest priority are woken up first. 
A sort may move from one queue to another during 
processing. When a sort should wait and on what 
queue are decided by the memory adjustment policy. 

2.3 Adjustment Policy 

A memory adjustment policy is a set of rules for de- 
ciding when and by how much to increase or decrease 
memory usage of a sort, when a sort should wait and 
at what priority, and when waiting sorts should be 
woken up. The policy is independent from the actual 
memory adjustment mechanisms. By separating poli- 
cies and mechanisms, we can easily study the effects 
of different policies. 

A memory adjustment policy needs some system 
wide state information, including the number of ac- 
tive sorts, the amount of free memory in the system, 
the stage of each sort, etc. It also relies on a set 
of predefined parameters such as memory adjustment 
bounds. The objective is to improve system perfor- 
mance (throughput and response time) while at the 
same time ensuring fair treatment of competing sorts. 

System sort space 

In principle, a memory-adaptive sort should adjust its 
memory usage according to the total available memory 
space to the system. However, some database systems 
specify a maximum size for total sort space or use a 
separate buffer pool for sorts. If so, the total mem- 
ory for sort jobs is limited. The limit can be a hard 
limit with a fixed value or a soft limit which changes 
according to the system workload. In this section and 
the following one, available memory space refers to the 
available memory reserved for sort jobs. 

In our adaptive sort two configuration param+ 
ters determine total sort space and memory alloca- 
tion: SysSortSpace and MemUnit. SysSortSpace is 
the limit on total memory space available for sorts. 
MemUnit is the size of one data buffer plus re- 
lated sort structures. A sort allocates memory one 
MemUnit at a time. The value of SysSortSpace is 
set according to total memory size, while MemUnit 
can be used to tune sort performance. 

Sort stages 

For the purpose of memory adjustment, we consider a 
sort to be in one of seven different stages. 

Stage 0: The sort is waiting to start. Since a small 
sort requires little memory and releases the memory 
quickly, it may be beneficial to give a sort in this stage 
a small amount of memory and let it start. If it re- 
quires more space and the system is short of memory, 
the sort can be put into a wait queue later on. 

Stage 1: The sort is processing the first run during 
the in-memory sort phase. It is not known yet if the 
input will fit completely in memory. Giving a sort in 
this stage additional memory may be very beneficial 
if it results in the input being sorted completely in 
memory. 

Stage 2: All input data has been loaded into mem- 
ory and the sort is in the in-memory merge phase, i.e., 
the sort has enough space for an in-memory sort. A 
sort in this stage is unable to reduce its memory usage. 
On the other hand, extra memory will not improve the 
performance of the sort. 

Stage 3: The sort is processing the remaining runs 
during in-memory sort phases. At this stage it is 
known that an external merge is necessary. Additional 
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memory may reduce the number of runs, which may 
reduce the number of external merge steps and speed 
up merging. If a single merge step is sufficient, the sort 
time is not very sensitive to memory usage. Therefore, 
memory space is less critical to a sort in this stage than 
it is to a sort in stage 1 or stage 5. 

Stage 4: The sort is processing the remaining runs 
during in-memory merge phases. Similar to Stage 3, 
it is known that external merging is necessary. ’ 

Stage 5: The number of runs could not be merged 
in a single step and the sort is performing interme- 
diate merges during this stage. It checks the avail- 
able memory before each merge step and adjusts the 
fan-in accordingly. When there is enough memory to 
merge all remaining runs in one step, the sort allo 
cates enough space, and goes to the last merge step 
right away. Since extra memory will help reduce the 
amount of I/O, additional memory is very important 
to a sort in this stage. 

Stage 6: The sort merges all remaining runs pro- 
ducing the final output. Since the amount of data is 
known at the start of the merge step, the sort is able to 
allocate exactly the amount of memory needed. One 
page less of memory will result in another merge step. 

Based on the above analysis, we decided on the fol- 
lowing priorities (from highest to lowest): 0, 1, 5, 3, 4. 
Sorts in stage 2 or stage 6 are not included in the list 
because they do not change their memory usage. 

Memory adjustment bounds 

We do not allow a sort to increase or decrease its work 
space arbitrarily but restrict the size to be within a 
specified range. The range depends on what stage the 
sort is in and on the number of active sorts. The main 
purpose of this restriction is to prevent a sort from 
monopolizing resources, thereby starving other sorts. 
The lower bounds prevent sorts from attempting to 
run with too few resources. Figure 1 illustrates these 
memory bounds. 

l 1stMin: minimum memory for a sort to start. 
One MernlJnit is usually enough. 

l 1stRunMin: minimum memory for the first run. 
This bound guarantees that a sort of size less than 
1stRunMin will always be sorted in memory. 

l 1stMax: maximum memory for the first run. 
When a sort reaches this point, it gives up its ef- 
fort to sort the data in memory and falls back on 
external sorting. A substantial amount of mem- 
ory is then released to improve the performance 
of other sorts in the system. 

SysSortSpace 

4 1stMax : --me. 

I ’ : 
I I * 

I 1stRunMin ’ 1 
I 

-Be----,’ 

I 
I ’ I i 2ndMax ’ exM= I * ---- 1 ---- 
I I I . 
I I 1: ;; yg 4; 4 

1 ; 

1. 11.. ;-‘E+ 1 
fist run : remaining runs : external merge 

Figure 1: Sort Memory Usage Bounds 

2ndMin: minimum memory for processing the re- 
maining runs. This should be large enough so 
that most medium size sorts will require only one 
merge step. 

2ndMax: maximum memory for processing the 
remaining runs. This bound prevents a very large 
sort from taking too much sort space when there 
are competing sorts in the system. 

exMin: minimum memory for an external merge. 
This must be high enough for a fan-in of a least 
two. 

exMax: maximum memory for an external merge. 
This prevents a sort consisting of many runs from 
taking too much sort space for merge buffers. 
When reaching this limit, a sort converts to u5 

ing multiple merge steps. 

The lower bounds are usually fixed based on sy5 

tern configuration, while the upper bounds depend on 
total amount of free memory and workload in the sy5 

tern. Table 1 list the values used for our experiments. 
evenShareMem is the total sort space size divided by 
the number of active sorts in the system. It changes 
dynamically as the workload changes. 

Waiting 

When a sort fails to allocate more memory, it can 
either wait or proceed with its current work space. 
Proceeding immediately without waiting may cause a 
small sort to rely on external merging or a sort with rel- 
atively few runs to resort to multiple merge steps. On 
the other hand, waiting increases the sort’s response 
time. 

In our system, a sort is allowed to wait only if it has 
not reach the upper bound on memory for its current 
stage (IstRunMin, 2ndMax, or exMax). Otherwise, it 
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Table 1: Default Values for Memory Usage Bounds 

exMin MemUnit 
exMax evenShareMem 

will proceed with the memory it has acquired. A sort 
may wait in one of five situations: 

Wl: in stage 0 waiting to start; 
W2: in stage 1 with 1stMin space; 
W3: in stage 1 with more memory; 
W4: in stage 3; 
W5: before an external merge step. 

When memory is released and there are multiple 
sorts waiting, we must decide which sort to wake up. 
For reasons explained below we settled on the following 
priority order for waiting sorts: Wl, W3, W5, W4, 
w2. 

In general, sorts with more memory space should 
have higher priority so that they can finish sooner and 
release a large amount of memory. However, we assign 
Wl sorts the highest priority to give very small sorts 
(requiring less than 1stMin memory) a chance to finish 
quickly. If a sort requires more memory and there is no 
free space, it becomes a W2 sort which are assigned a 
low priority because they hold little memory. Among 
sorts in stage 1, we make W2 sorts yield to W3 sorts 
to give them a chance to proceed (and finish) sooner. 
Sorts in stage 3 are allowed to acquire more memory 
and become W4 sorts when there is no free space in the 
system. If the remaining runs can be merged in one 
step with exMax memory and the sort cannot acquire 
enough memory to do so, the sort becomes a W5 sort. 
We give W5 sorts priority over W4 sorts to give them 
a chance to acquire enough memory to finish quickly 
and release all memory held. 

Fairness 

Our memory adjustment policy aims to improve over- 
all system performance, that is, throughput and aver- 
age response time, but it also takes into account fair- 
ness considerations. However, fairness is not achieved 
by simply assigning the same amount of memory to 
each sort job. Specifically, the following fairness con- 
siderations are reflected in our policy: 

l a sort should not allocate more memory than 
needed. It is unfair for one sort to allocate extra 

memory it cannot use while others are waiting; 

l a sort whose performance is not very sensitive to 
memory should yield to sorts whose performance 
is more affected by memory space; 

l large sorts should not block small sorts indefi- 
nitely, while small sorts should not prevent large 
sorts from getting a reasonable amount of mem- 
ory; 

l when all other conditions are the same, older sorts 
should have priority over younger sorts. 

3 Experimental Results 

3.1 Sort Testbed 

To evaluate our ideas for dynamic memory adjust- 
ment, we implemented our memory-adaptive sort and 
a testbed system. The sort testbed emulates (part of) 
a database environment, as shown in Figure 2. It in- 
cludes a memory manager, a disk space manager, asyn- 
chronous I/O support, a sort job generator, and the 
sort system. When provided with system configura- 
tion parameters and sort test parameters, the testbed 
generates and executes a sequence of sort jobs and col- 
lects performance results. 

Sort system configuration parameters 
Sort test parameters 

t 

1 Sort Job Initiator 1 

Sort System 

Experiment performance results 

Figure 2: Testbed System 
The memory manager is similar to the buffer man- 

ager in a database system but, in our case, it manages 
only the system sort space. 
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The disk apace manager manages allocation and 
deallocation of run blocks on disk. It does not rely 
on the file system for space management - all run files 
are stored in a raw disk partition. 

Asynchronous I/O is implemented by using sepa- 
rate I/O threads. Sort threads and I/O threads com- 
municate through queues. All buffers are in shared 
memory and raw I/O is used for reading and writing. 

The sort job generator constructs sort jobs accord- 
ing to the given test parameters and drives the sort 
system by submitting sort request. 

The sort system implements our memory-adaptive 
sort, including in-buffer sort, in-memory merge, exter- 
nal merge, and memory adjustment. The system is 
multi-threaded with each sort job running as a sepa- 
rate thread. 

Input for a sort can either be read from disk or 
generated on the fly. The sort output is packed into 
buffers which can then be either written to disk or sim- 
ply discarded. All experiments reported in this paper 
were run with input data generated on the fly and dis- 
carding output data. This allowed us to drive the sort 
system at maximal speed. It simulates the case when 
the sort is an intermediate operator between a (fast) 
producer and a (fast) consumer operator. 

Static sorts are run using exactly the same system, 
the only difference being that memory adjustment is 
disabled. In this mode, each sort allocates a fixed 
amount of memory and releases the whole space when 
the sort is finished. By using exactly the same sort 
algorithms, we isolate the effects of dynamic memory 
adjustment. 

3.2 System Configuration 

The machine used for the experiments was a Dee Al- 
pha 3000/5OOS with a clock rate of 150 MHz and a 
512 Kb off-chip cache. All runs were stored on a single 
disk, a Seagate ST-15150W with the following charac- 
teristics: average access time (read/write) 8.0/9.0 ms, 
single track seek (read/write) 0.6/0.9 ms, maximum 
seek time (read/write) 17/19 ms, average latency 4.17 
ms, and transfer rate 47.4 to 71.9 mbits/set. 

Table 2 lists the configuration parameters and their 
default values used in the experiments. 

System sort space is the total memory space avail- 
able for sorts. The one sort space limit is used by 
memory-static sort as the default memory size. 

Sort bufler size is the size of a data buffer for in- 
memory sort/merge. The unit of memory adjustment 
is a data buffer plus the space for additional data struc- 
ture for sorting. Instead of sorting the records in the 
data buffer directly, we sort a set of pointers pointing 
to the records. 

The run block size is the buffer size for external 

Table 2: Sort System Parameters 

Parameter 
system sort space 
one sort space limit 
sort buffer size 
run block size 
number of disks 
I/O agents per disk 
read-ahead buffers 
maximum doncurrency 

Default Value 
32 Mb 
4Mb 

64 Kb 
32 Kb 

1 
.2 
2 

10 

merge and the I/O transfer unit. To be able to drive 
disks at full speed, we use two I/O threads and two 
extra buffers per disk. 

Maximum concurrency limits the number of active 
sorts. When the number of active sorts reaches this 
limit, incoming sorts are forced to wait until the num- 
ber of active sorts drops below the limit. 

The data plotted in the graphs in this section rep 
resent averages computed from five experiments. 

3.3 Single Sort Performance 

When there is only one active sort in the system (the 
single sort case), our adaptive sort is able to employ all 
memory resources available while a static sort is lim- 
ited by the single sort space limit. Figure 3 shows the 
observed elapsed time of a single sort as a function of 
input size. Figure 4 shows the corresponding through- 
put measured as the amount of sorted data produced 
per second. Static sort changes from in-memory sort 
to external sort at an input size of 3585 Kb, while the 
adaptive sort changes at an input size of 29 Mb. 

Data Size (Mbytes) 

Figure 3: Elapsed Time as a Function of Input Size 

For input less than 3585 Kb, both adaptive sort and 
static sort finish the sort entirely in memory and have 
the same elapsed time and throughput. For medium 
size input (3585 Kb - 29 Mb), static sort relies on 
external merging, while adaptive sort sorts the -data 
completely in memory. The difference in throughput 
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Figure 4: Throughput as a Function of Input Size 

is dramatic, dropping from about 6 Mb/s to slightly 
over 1 Mb/s. One of the main objectives of memory- 
adaptive sort is to exploit this difference by trying to 
complete as many sorts as possible in memory. 

Although the system sort space size was fixed in 
these experiment, adaptive sort also utilizes memory 
efficiently when the system sort space changes dynam- 
ically. Static sort allocates the same amount of mem- 
ory for all sorts. If the system sort space is too small 
to meet the requirement, the sort has to wait. How- 
ever, adaptive sort can proceed with a small amount 
of memory. If the input size happens to be small, the 
job finishes quickly without waiting for a large chunk 
of memory it in fact does not need. 

In summary, adaptive sort saves memory space on 
small sorts, drastically reduces the elapsed time of 
medium size sorts, and performs better than or as well 
as static sort for large inputs. 

3.4 Concurrent Sorts 

A database system does not have the luxury of running 
only one operation at a time. Many operations may be 
running concurrently, competing for memory and I/O 
resources. This section reports on experiments inves- 
tigating the effects of memory adjustment on (sort) 
system throughput and response time when multiple 
sorts are running concurrently. 

Workload 

The workload for each experiment consisted of a se- 
quence of sort jobs of varying size. The input size of a 
sort job was randomly drawn from a specified sort size 
distribution. Several different distributions were used 
(see further below). Input records were 64 bytes long 
with a randomly generated 10 byte key. 

Within each test run, a fixed number of sort jobs 
were always running concurrently. This degree of con- 
currency is an input parameter for a test run. If the 
degree of concurrency is n, n sort jobs would be started 

initially and as soon as one finished another one would 
be started. 

To get some basis for deciding on a distribution of 
sort sizes, we analyzed the sorts generated when run- 
ning the TPC-D benchmark queries [Raa95]. More 
specifically, we analyzed the execution plans used by 
DB2/6000 version 2 for each of the 17 queries on a 
TPC-D database with 26 indexes. We found a total of 
55 sorts with the size distribution shown in Table 3. 

Table 3: TPC-D Sort Sizes, scale factor 1.0 

Our analysis revealed that small sorts occurred frs 
quently while large sorts were relatively rare. Small 
sorts were often used in nested loop joins to sort row 
identifiers before accessing the inner table. Many of 
the TPC-D queries also require a sort of the final re- 
sult, which usually is small. Large sorts were typically 
caused by sort-merge joins or groupby. 

The number and size distribution of sorts depend on 
the database system and the execution plans generated 
so no general conclusions can be drawn from this anal- 
ysis. Nevertheless, it provides some data where there 
was none before. 

Table 4 shows the four sort job sets used for the 
experiments in this section. Dl is from execution plans 
of a set of queries on a small database in our system. 
D3 is based on the result of our analysis of the queries 
in the TPC-D benchmark. D2 is a case between Dl 
and D3 while D4 contains larger sorts than Dl-D3. 

Unrestricted concurrency 

When the number of concurrent sorts increases, each 
sort gets less memory and there is more competition 
for I/O bandwidth. More sorts will require external 
merging which reduces throughput measured in bytes 
of sorted data produced per second. The question is 
how rapidly performance deteriorates. 

Figure 5 to Figure 8 show the sorted data through- 
put as a function of the number of sorts running con- 
currently. 

All sorts in Dl are small enough to always be sorted 
in memory, even with 12 sorts running concurrently. 
In this case the system is completely CPU bound. Fig- 
ure 5 shows that the two sort methods achieve about 
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Table 4: Sort Job Characteristics 

Sort Data Set Dl: 100 sorts 
Sort Size 1 50K 1 600K 1 1M 1 2.5M 1 

Frequency 1 62% 1 27% 1 7% I 4% 1 

Sort Data Set D2: 100 sorts 
Sort Size 60K 1 1M 1 3M 1 5M 1 1oM 

Frequency I 10% I 20% I 60% I 5% I 5% 

Sort Data Set D3: 100 sorts 
Sort Size I 17K 1 380K I 2M I 7M I 16M 

Frequency -1 -27% 1. 35% I 20% I 7% I 11% 
Sort Data.Set D4: 100 sorts 

Sort Size I 6OK I 3M I 5M I 50M I 1OOM 
Frequency I 10% I 55% I 30% I 3% I 2% 

i D It, , , , , , ,I , 
1 2 3 4 5 6 7 6 9 10 

Number of Concunent Sorts 

Figure 5: Throughput of Dl 

the same throughput, which confirms that the over- 
head of dynamic memory adjustment is minimal. As 
the number of concurrent sorts increases, throughput 
decreases only slightly. This is a result of more fre- 
quent thread switching ‘which (probably) also results 
in poorer cache performance. 

For the other three workloads, memory-adaptive 
sort has significantly higher throughput when the 
number of concurrent sorts is low (see Figures 6 to 
8). In the best case, the throughput is up to 6 times 
higher. The difference decreases as the number of con- 
current sorts increases because of the increased com- 
petition for memory and I/O bandwidth. This shows 
that memory-adaptive sort works in the sense that, 
when possible, it exploits available memory to speed 
up sort jobs and gracefully degrades when the compe- 
tition for memory space increases. 

Only workload D4, see Figure 8, shows increased 
throughput as the number of concurrent sorts increases 
(up to 4). The few large sorts in this workload are com- 
pletely I/O bound, leaving free CPU cycles that will 
only be used (by small sorts) when there are enough 
sorts active at the same time. 

3 7 Sort Job Set : D2 

s 

I I I I I I 1 I 
6.5 s---.+---+ ____ memory-static sort + - g 

: 

6- 
-t----memwy+fipive sort +-- 

5.5 - 
‘I ‘. *. 

5 5- *‘---+--- _ 

g 4.5- 

5 4- 
, 

I 1 I I I I I 1 

1234567 8. 9 10 

Number of Concurrent Sorts 

Figure 6: Throughput of D2 
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Figure 7: Throughput of D3 

An important objective of memory-adaptive sort is 
to reduce the number of external sorts. Table 5 shows 
that, when memory space is available, all but the 
largest sorts are completed entirely in memory. When 
many sorts run concurrently, less memory is availabie 
for each sort so fewer sorts can be completed in mem- 
ory. This effect accounts for most of the decrease in 
throughput. 

Limiting concurrency 

A database system has no control over the load but it 
can decide how to make use of its resources to improve 
throughput and/or response time. As we saw in the 
previous section, running too many sorts concurrently 
reduces throughput significantly. But the system does 
not have to start executing a sort immediately if the 
resources are already strained; it can make the sort 
wait until enough resources have been .freed up. So 
the question is: How many sorts should the system 
run concurrently? The experiments described in this 
section attempt to provide some insight into this issue. 

In these experiments we had 10 clients repeatedly 
submitting sort jobs. As soon as a client’s previous job 
finished, it submitted another sort job. In other words, 
there were always 10 outstanding sort jobs, some being 
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Figure 8: Throughput of D4 

Table 5: Number of External Sorts (out of 100 Sorts) 

10 5 1 10 1 15 ) 18 1 12 1 35 ] 
(ma: adaptive sort; st: static sort) 

processed and some waiting to start, We then varied 
the number of sorts being processed concurrently and 
measured throughput and response time. Response 
time is the average time from when a client submitted 
a request until the last record in the output arrived. 

Figures 9 to 12 show the throughput and average 
response time for D2 and D4 as the limit on concurrent 
sorts varies. (Limiting the number on concurrent sorts 
has no effect on Dl because the sorts are so small. The 
results for D2 and D3 are very similar because all sorts 
in these job sets are less then 32 Mb and, hence, can be 
sorted entirely in memory if run in isolation.) In all 
cases, except for Dl, memory-adaptive sort achieves 
both better throughput and response time than static 
sort. 

The graphs are best read from right to left. We 
first consider data set D2, see Figures 9 and 10. As 
the number of sorts being processed concurrently is 
decreased, both throughput and average response time 
improve for memory-adaptive sorts as more and more 
of the sorts are done in memory. The reverse is true 
for static sort. 

D4 contains a few large sorts that cannot be com- 
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Figure 9: Throughput of D2 
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Figure 10: Average Response Time of D2 

pleted in memory. In the time it takes to complete a 
100 Mb sort, about 24 (6x4) sorts of size 25 Mb can 
be completed (assuming they can be done in memory). 
So in this case, processing only one sort at a time is 
clearly not a good idea. This effect is also visible in the 
graphs. Figure 11 shows that throughput initially in- 
creases as the limit on concurrent sorts decreases but 
then starts dropping (because CPU and memory re+ 
sources are not fully utilized). Response time, see Fig- 
ure 12, increases steadily as fewer sorts are processed 
concurrently. 

These experiments reinforce what we found in the 
previous section: completing as many sorts as possible 
in memory is crucial to overall system performance. 
But we also found that it is important to fully utilize 
available resources (memory, CPU, I/O). 

4 Summary 

This paper introduced a method and policy for dynam- 
ically adjusting the memory usage of external merge- 
sort at run time. We experimentally showed that 
this enables sorts to adapt their memory usage grace- 
fully to the actual input size and fluctuations in avail- 
able memory space. This was found to improve sort 
throughput significantly compared with static memory 

384 



Figure 11: Throughput of D4 

memory-stetic sort -b - 
memory-edeptive sort +-. 

.- 
1 2 3 4 5 6 7 8 9 10 

Maximum Cortcwrent Sorts 

Figure 12: Average Response Time of D4 

allocation. 
To improve sort throughput, it is crucial to com- 

plete as many sorts as possible in memory. Allowing 
many sorts to run concurrently reduces the memory 
available to each sort, thereby reducing the fraction of 
in-memory sorts. In our experiments we found that 
limiting the number of sorts running concurrently im- 
proved both throughput and response time. This con- 
clusion does not hold in general though; it depends on 
the sort size distribution. 

We proposed a policy for balancing memory alloca- 
tion among sorts running concurrently and competing 
for memory space. The policy worked fine in the sense 
that system throughput and response time were much 
improved over static allocation. 

This paper applied dynamic memory adjustment to 
sorting. The same techniques can be applied to other 
memory intensive operations, join being the obvious 
candidate. Sort-merge join uses little memory for the 
actual join (except when there are many rows with 
the same value for the join columns). More memory 
is required for sorting the two input tables and the 
performance of sort-merge join depends largely on sort 
performance. 

Dynamic memory adjustment is more important to 

hash join algorithms. Memory adjustment for hash 
joins has been studied by [ZG90], [PCL93b], and 
[DG94]. However, their work focused on how a sin- 
gle join can use extra space or release part of its space 
to affect I/O transfer unit size. They did not take into 
account the memory requirements in different stages 
of a join and did not consider balancing memory re- 
quirements among concurrent joins (and sorts). 
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