
An Object Model for
C onv entional Op erating
Systems

Prasun Dewan

Eric Vasilik

Purdue University

Sun Microsystems

ABSTRACT: We have developed an object model
for conventional (UNIX-like) systems. It can be
used for extending such systems with persistent,
shared, protected, and distributed objects. It allows
objects to coexist with, access, and be accessed by
existing components of the operating system, and
has been developed by applying much of the work
done in naming, organization, access, and protec-
tion of conventional resources to support naming,
organization, access, and protection of objects.

Objects are created as combinations of conventional
processes and flles. Like processes, they are active
agents capable of executing code on different hosts
and communicating with other objects. Like frles,

they are persistent, have a protected name in a net-
work file system, and are opened and closed for
access. The model has been implemented in Suite,
which is an extension of UNIX and supports a large
part of the functionality provided by unconven-
tional object-based operating systems.

This research was supported in part by the National Science Foundation
sponsored Software Engineering Research Center at Purdue.

@ Computing Systems, Vol. 3 ' No. 4 ' Fall 1990 517

The paper presents the motivation for the object
model, describes its distinguishing features together
with the rationale for our decisions, outlines its
implementation in Suite, describes the results of our
preliminary experience v/ith building and using
objects in Suite, and presents conclusions and
future directions for research.

l. Introduction

Our interest in objects [Wegner 1987] stems from our work on the
Suite user interface software [Dewan 1990a]. Two of the goals of
Suite are to support (i) loosely-coupled interactive applications,
that is, applications whose interactive and computational com-
ponents execute in different address spaces residing possibly on
different hosts, and (ii) collaborative applications, that is, applica-
tions that allow multiple users interacting possibly from different
workstations to share results in real-time. Objects facilitate the
construction of such applications. Loosely-coupled interactive
applications can be constructed by creating their interactive and
computational components as separate objects communicating via
a high-level remote procedure interface, and collaborative applica-
tions can be constructed by creating them as collections of objects
interacting with different users and communicating with each
other to allow the users to share results in real-time. Figure I
illustrates how objects may be used to construct a simple loosely-
coupled collaborative appointment manager. An appointment
object stores the appointments for a particular user and its dialo-
gue manager allows the user to view and modify them. Appoint-
ment objects and dialogue managers communicate with each other
to allow, for instance, a change made to an appointment by one
user to be immediately viewed by other users involved in the
meeting.

518 Prasun Dewan and Eric Vasilik

appointment object

User I User 2

Figure l: A Loosely-Coupled Collaborative Appointment Manager

None of the existing object models adequately satisfied our
needs. Object models supported by programming languages such
as Smalltalk-80 [Goldberg & Robson 1983] and C++ [Stroustrup
19861 were unsuitable since they did not suppoft sharing of
objects among multiple users. Object models supported by data-
base management systems such as GemStone [Maier 1986] over-
come this limitation of language models. However, when we

started this project, no distributed object-based DBMS was avail-
able. Moreover, object-based DBMS were expected to be too slow
for creating high-bandwidth collaborative user interfaces since
they translate database references to memory addresses in
software.r Object models supported by operating systems such as

Eden [Almes at al. 1985] and Clouds [Dasgupta et al. 1990] met
our requirements best. They support shared, distributed, per-
sistent, and protected objects. Moreover, they map objects to vir-
tual memory, thereby letting the hardware take care of address
translation. However, current object-based operating systems
have taken the "revolutionary" approach of defining object
models that are incompatible with conventional systems. They
are new systems built entirely around the concept of objects and
offer unconventional methods for supporting operating system

rThe area of distributed objecl-based DBMS is still in its infancy and, to the best of our
knowledge, there is no experimental data available to confirm our expectation about the
performance of such a syslem. At Purdue, we are currently involved in the engineering of
such a system [Dewan et al. 1989] and plan to study its performance for collaborative appli-
cations.

An Object Model for Conventional Operating Systems 519

components such as devices, files, and access control. Moreover,
they are mainly prototype kernels instead of full systems, and do
not offer alternatives to the large number of facilities offered by
existing systems. Thus, we were unwilling to use any of these sys-
tems as a basis for Suite.

Therefore, we developed our own object model which is a
variation of the object models supported by Eden and Clouds.
Unlike these systems, we have taken the approach of defining a

model that integrates objects with conventional systems, in two
main ways: First, objects can coexist with, access, and be accessed
by existing components of the operating system. In particular,
objects can access conventional resources; and conventional
processes can invoke methods in objects. As a result, program-
mers can incrementally explore the use of objects without the fear
of sacrificing existing components of conventional systems.
Second, we have applied much of the work done in naming,
organization, access, and protection ofconventional resources to
support naming, organization, access, and protection of objects.
As a result, few new concepts need to be introduced in the under-
lying system to support objects and the implementation of existing
components in the system can be reused to implement objects.

We have implemented the model in Suite, which is an exten-
sion of UNIX supporting TCP/P and Sun NFS (Network File Sys-
tem) [Sandberg 1986]. In Suite, objects are created as combina-
tions of conventional processes and files. Like processes, they are
active agents capable of executing code and communicating with
other objects. Like files, they are persistent, can be accessed by
different users, have a protected name in a network file system,
and are opened and closed for access.

While the Suite object layer was designed specifically as an
extension of UNIX, it represents a general object model that can
be implemented in a conventional operating system to extend the
system with distributed, persistent, shared, and protected objects.
Indeed, a simpler version of this model was implemented by the
first author in Dost [Sweet 1985] on top of the Mesa-based XDE
(Xerox Development Environment) [Dewan & Salomon 1987].

The rest of this paper is organized as follows. Section 2

describes the Suite object model, discussing how we handle nam-
ing, interobject communication, persistence, activation and

520 Prasun Dewan and Eric Vasilik

passivation, object placement, and other issues in the design of
the model. Section 3 describes its implementation on UNIX. Sec-

tion 4 outlines our preliminary experience in creating objects in
Suite. Finally, Section 5 presents conclusions and directions for
future work.

Part of this work was presented previously in Dewan & Vasilik

[1989], where we referred to the Suite object layer as DOBS (Dis-
tributed Object-Based System).

2. Object model

Before we describe the Suite object model, we need to define a

"conventional operating system" and associated terminology. We
use this term to refer to an operating system that supports: con-
ventional (Pascal-like) languages; a set of resource-independent frle

operations (that is, applicable to frle and non-file resources) such

as Create, 0pen, Close, Link, and Detete; a hierarchical multi-
user network frle system; a frxed number of system-defined access

rights that include the read, write, and execute rights; access

control based on access lists that keep with each protected
resource a list of user groups and their access rights to the
resource; UNIXlike user identifiers determining ownership of
processes; and CreateProcess, Kit1Process. and other process

operations.

2.1 Objects : Files + Processes

In Suite, an object possesses properties of processes and files.

Like a process, it executes some program and is associated with an

owner and other process properities. The program executed by an

object is called its class, which is a conventional program without
a main procedure, and can be written in one of the languages sup-
pofed by the system.2 It contains special comments called annota-
tions, which are directives to the object compiler used for compil-
ing class declarations. Figure 2 shows a simple C class in Suite.

2Currently, our implementation supports only C. However, it has been designed to accom-
modate other languages, as discussed in $ 2.4.

An Object Model for Conventional Operating Systems 521

/ *oc
Method AddAppointnent
Eternal appt

*/

typedef char xString;
typedef struct { int hour, ninute; } Tine;
typedef struct { Tine start, finish; } Interval;
typedef enun {Yes, No} Appt0K;

typedef struct {
String with-who;
Interval when;

Strlng why;

) APPointnent;

typedef struct {
unsigned nun-appointments ;

Appointnent xapPointments-arr ;

) APPointnents;

Appointnents appts;

Appt0K AddAppointnent (appt)
Appointnent appt;
{

... code for verifying and adding an appoj.ntnent ...
)

Figure 2: An Example-C Class

Each instance of this class keeps in the variable aPPts the list of
appointments for a user.

Like a file, an object has one or more protected file names, is
persistent, and is associated with both an active and a passive

state. Its clients can use one of its names in the Open0bj ect call,
which returns a temporary obiect desøiptor that refers to the
object. For instance, a client interested in accessing the object

/usr/ joelappts may invoke

joe-appts = Open0bj ect (r'lusr/joelappts") ;

522 Prasun Dewan and Eric Vasilik

where joe-appts is a variable of the system-defrned type OBJECT.
It may use this descriptor to send messages to the object (ç 2.2).

When it no longer needs to access the object, it can call CloseOb-
j ect to close its connection with the object.

An object may be created by the CreateObj ect call which is a
cross between the CreateProcess and Create calls for creating
processes and frles respectively. The call takes all arguments of
the former, such as the name and arguments of the program to be

executed. It also takes arguments of the latter, such as the file
name and permissions for the new object, and returns a descriptor
referring to the object. Thus an appointments object may be

created by a call ofthe form

joe-appts = CreateObject (" /usr/ joe/appts", perns,
tr/usr/bin/Apptst' , host , owner, argc , argv) ;

where hsr/ joe/appts is the name of the object, perms con-
tains the permissions for the object, /tsr/bin/Appts is the
name of the frle containing the class of the object, host indicates
the host on which it is to created, oh¡ner indicates the owner of
the object, and argc and argv specify arguments for the object.
The interpretation of permissions for an object is discussed later.

The CreateProcess call provided by the host system can also

be used for creating an object. The file name and permissions for
the object are specified in special arguments to the program exe-

cuted by the object. This call allows objects to be created from
the host command interpreter, as illustrated below:

% /usr/bin/Appts -n /usr/joelAppts -p 777

An object may be deleted from the system by calling Del-ete0b-
j ect.

2.2 Communicating with an Object

Objects and processes execute in different address spaces and can

exchange information using the IPC channels provided by the
host system. In addition, Suite provides a facility for calling
high-level methods in an object, which is motivated by the
research done in remote procedure call [Nelson l98l]. A method
is like a procedure except that it can be invoked from remote

An Object Model for Conventional Operating Systems 523

address spaces. It is declared using an annotation specifying the
procedure that implements it. An invocation of a remote method
is like the invocation of a local procedure except that it takes an
extra argument specifying the object in which the method is to be
invoked. A method is invoked synchronously unless the keyword
Asynchronous begins the annotation for the method. An asyn-

chronous method must not return a result. Methods can be
invoked both by objects and processes.

The class declaration in Figure 2 illustrates how methods are

defined in Suite. The class uses the annotation

Method AddAppointnent

to defrne the synchronous method AddAppointnent. A client
may invoke the method by executing the stub ($ 3)

AddAppointnent (j oe-appts, new-appt) ;

where j oe-appts is an object descriptor referring to the instance
in which the method is to be invoked.

In the above example, the name of the method is identical to
the name of the procedure that implements it. While this naming
scheme is simple to use, it does not allow an object to invoke a

method in another object of the same class, since the local pro-
cedure and the (stub for the) remote method have the same

names. Vy'e resolve this problem by letting the programmer expli-
citly declare a different name for the method, as illustrated by the
following declaration:

Method Ext ernalAddAppointnent
uses AddAppointment

It would be useful if remote calls looked the same as local calls
since local modules could be be easily replaced with remote
objects. Indeed, in the implementation of RPC in Cedar [Birrel &
Nelson 1984], local and remote call syntax is identical. As a
result, a Cedar procedure call can be bound to a local or remote
instance of the module implementing the procedure. However,
this approach is not object-based in that it does not allow a pro-
cedure call in a client to be directed at multiple user-specified
instances of a server module. Since a Suite remote call takes an

524 Prasun Dewan and Eric Vasilik

extra argument specifying the instance in which the call is to be
invoked, it can be used, for example, to inform multiple appoint-
ment instances about a new appointment:3

for (i=0; i (nun-instances; i++)
AddAppointment (appointnent-instance [i],

new_appt);

2.3 Persistence

Suite objects are persistent in that their data structures can be
checkpointed on disk and later restored in memory. As a result,
changes to their state can survive machine crashes. Moreover, as

discussed in $ 2.5, they can be passivated in order to release
memory resources used by them.

Typically, an object's address space consists of a mixture of
persistent and temporary data structures. Therefore, like Argus

[Liskov & Schelfer 19827, Suite lets an object specify which of its
variables are persistent, as illustrated by the annotation

Eternal appts

in Figure 2. These data structures are implicitly saved on secon-
dary storage when the object is passivated and restored in its
address space when it is activated. Moreover, an object may
explicitly checkpoint them at any time by calling Checkpoint and
later restore them by calling Restore.

2.4 Input/Output

In Suite, objects may input and output values in three ways: bV (i)
sending arguments to and receiving results from method invoca-
tions, (ii) checkpointing and restoring persistent data structures,
and (iii) writing to and reading from terminals, sockets, pipes, and
other files. Suite provides a common approach to handle all
forms of I/O. Moreover, it supports a "type complete" I/O

3Naturally, we could have invented an unconventional Smalltalk-like procedure call
mechanism in which even a local procedure call takes an object descriptor such as self as
an argument. However, that would be inconsistent with our goal of supporting existing
conventional programming languages.

An Object Model þr Conventional Operating Systems 525

system which treats typing and I/O as orthogonal issues and sup-
ports I/O of values of arbitrary types including pointers. Thus it
generalizes the approach taken by persisfent languages [Atkinson
& Bruneman 19871 which allow values of arbitrary types to per-
sist. Finally, it supports machine- and language- independentl/O,
which is in the spirit of machine- and language- independent
interprocess communication supported by Matchmaker [Jones &
Rashid 19861 and Sun XDR ISun 1986].

We defrne a generic type-specification language supporting
characters, integers, enumerations, subranges, records, discrim-
inated unions, arrays, sequences (variable length arrays), strings,
and pointers. A set of language-specifrc transþrmatíon routines
convert between the language-specific declarations and their gen-
eric counterparts. Moreover, we define a machine-independent
external representation for the generic data structures. A set of
predefrned machine-speciftc I/O routínes convert between the
machine representation of primitive data structures and their
external representation. These routines are invoked by I/O rou-
tines generated for converting between the internal and external
representation of user-defrned data structures.

To illustrate, assume that values of type Appointnents of
Figure 2 are to be input/output. Then the C-specific transforma-
tion routines are used to generate the following generic type
declarations:a

type
int = integer range -21.47483648

2147483647;
char = character;
String = string of char;
Time = record

hour : int;
minute : int

end record;

aln fact, only an internal symbol table representation ofthese declarations is generated.

526 Prasun Dewan and Eric Vasilik

Interval = record
start : Time;
finish : Tine

end record;
Appointnent = record

with-who : String;
when : Interval;
why : String

end record;
Appointments = sequence of Appointment;

These declarations together with the machine-specific I/O routines
are used to generate I/O routines for converting between the inter-
nal representation of values of type Appointments and their
external representation.

The external representation of a pointer is created by recur-

sively creating the external representation ofthe data structure to
which it refers. If a pointer-connected data structure is output
and later input, then the value read is isomorphic to the one that
was written

The external representation of data structures and the associ-

ated I/O routines are shared by all three forms of l/O-method
invocation, checkpointing/restoring of persistent values, and file
I/O. As a result, all three forms benefit from the machine- and
language- independence of this representation. For instance,

objects executing on different machines can communicate with
each other and share files containing structured data. Moreover,
it is possible to activate an object on a machine that is different
from the one on which it was passivated.s The external representa-

tion is not suitable for screen input/output since it is not human
readable. As described in $ 2.9, a generic language-independent

dialogue manager is provided for converting between the external

and (customizable) visual representations of data structures.
I/O routines are implicitly called during

checkpointing/restoring and marshalling/unmarshalling of data.
They can also be explicitly invoked to do file I/O. Complete

sHowever, for reasons discussed in $ 2.8, Suite does not currently support this feature.

An Object Model for Conventional Operating Systems 527

annotations are used to specify the types of values that are to be
read from and written to files. The object compiler processes
them by generating appropriate I/O routines. For instance, the
annotation

Conplete Appointnents
results in the generation of the I/o routines ReadAppointnents
and l/rlriteAppointments which can be explicitly invoked to read
and write, respectively, data structures of type Appointments .

Suite automatically allocates memory for inputing dynamic
data structures such as strings, pointers, and sequences. It also
provides type-specifrc routines for (recursively) freeing these data
structures. Moreover, when a method returns, suite automatically
frees memory allocated for storing the arguments unless the
method calls SaveArgunents.

In order to support automatic I/o of a data structure, the sys-
tem needs to unambiguously determine its type. However,
weakly-typed languages such as C do not uniquely type a data
structure. For instance, in c, the fields of an undiscriminated c
union such as

union {
int fl;
int xf2)

cannot be interpreted uniquely. Similarly, a character pointer
such as

char *ptr
can be used in C as a pointer to a character, a pointer to a null
terminated string, or a pointer to an array.

Suite uses several disambiguating rules for weakly-typed data
structures in c. It assumes that an enumeration field preceding a
union freld in a record is the discriminant of the record. Thus it
assumes that in the record

.struct {
enun {tagl, tag2, tag3} tag;
union {

int choicel;
real choice2;
int xchoÍce3))

528 Prasun Dewan and Eric Vasilik

the freld tagisthe discriminant of the union. It also assumes that

sequences are simulated by records such as Appointnents of
Figure 2 containing a length freld and aî array pointer. Moreover,

it interprets a character pointer as a pointer to a string. An object

can explicitly disambiguate the types of data structures by using

special annotations.
An object may manually handle input and output data struc-

tures of a particular type by providing a bidirectional I/O handler

for that type. I/O handlers are in the spirit of Sun XDR routines

[Sun 1986] and GLAM bundlers [cohrs & Miller 1988] for con-

verting between internal and external representations of data. In

Suite, they allow objects to input/output values whose types can-

not be interpreted uniquely such as undiscriminated unions

without preceding discriminant fields.

An alternative approach to handling weakly-typed languages is

to require that the types of data structures that are to be

input/output be declared directly in the strongly-typed generic

language. This approach is taken by Mach [Jones & Rashid 1986]

which requires that the types of all parameters/results of remote

procedures be declared in the Matchmaker interface specification

iung,.tug.. We did not use this approach since it requires that a

programmer implementing a class use two different languages.

2.5 Obiect States and Handlers

Figure 3 shows the various states of an object and handlers called

at state transitions. An object may be in the passive ot active

state. when an object is passive, a passive representation of it ($
3) is kept in an instance file maintained by the system for the

object. Later, when it is activated, this representation is used to

create a temporary instance process for executing the methods of

the object. An active object is associated with a reference count

which stores the number of objects that have opened it'
The object creation calls start the object in the active state.

The CreateProcess call initializes the reference count to 0, while

the Crearegb j ect call, which also opens the object, initializes the

reference count to 1. An QpenQbject call activates an object ifit
is passive, and increments the reference count. A closeobj ect

call decrements the reference count of the object' The

An Object Modet for Conventional Operating Systems 529

CloseObject
(ref--)

Cre¡
(

Cre

ateProcess
(ref= 0)

:ate0bject

passivate
handler persistent
called ãata saved

--

handlcr
ct \ ¿-¡¡iot¡æ /

2 openoiject (' a ssi ve

called
?\ (rel= L) /

handleracliv.ale persistent
neucuer data restored
called

j ect

tntttafe
terminate
ndler called

OpenObject
(ref++)

Figure 3: Object State Transition Diagram

Delere0bject call removes the object if it is unreferenced, and
returns an error message otherwise.

when should an object be passivated? A simple approach
(which we implemented initially) is to passivate an object when its
reference count goes to zero. under this approach the cost of
opening an unreferenced object or closing the last reference to an
object is high since the object has to be activated and passivated,
respectively. Our initial measurements indicate that this overhead
can be signifrcant. For instance, the combined cost of opening
and closing on a Sequent-symmetry multiprocessor computer a
local active object takes 80 milliseconds and a passive object with
40K persistent data takes 2100 milliseconds. Therefore, â better
approach is to delay the passivation for a period of time in the
hope that the object would be opened soon by some other object,
and passivate the object only ifit is not accessed during that
period. This approach reduces the overhead ofopening and clos-
ing frequently accessed objects.

However, neither of these approaches supports the notion of
base objects, that is, objects that need to remain active even when
they are not referenced by other objects. These objects, typically,
are used to open and manipulate other objects and are not them-
selves opened by any other object. An example of such an object
is a Suite dialogue manager, which allows users to edit other

530 Prasun Dewan and Eric Vasilik

objects. The dialogue manager is started from the command

interpreter and provides a window in which an object can be

edited (Figure 5). It supports the 'oload" "close" and "quit" com-

mands, which are invoked by a user for opening an object for

editing, closing the object, and terminating the dialogue manager

respectively. A diatogue manager is often not connected to any

object and would be deactivated by both approaches described

above.
Therefore, we use a modifred version of the second approach

that provides primitives for supporting base objects. An object

can disable passivation by calling DisablePassivation and later

enable passivation by calling EnablePassivation. A base object

can disable passivation when it is created or activated and enable

passivation when it no longer needs to be active. For instance, a

Suite dialogue manager enables passivation when the user exe-

cutes the "quit" command.
The suite approach of passivating an object only if its refer-

ence count is zero can potentially lead to cycles of "garbage"

instance processes doing no useful work. However, in practice,

we have found that cycles among instance processes get broken

since an initiating event that results in the opening of an object is

typically followed by a terminating event that closes the object ($

4). V/e have considered, but not implemented, a o'mark and

sweep" algorithm that only keeps those objects active that are

reachable from base objects. Such an algorithm would reduce the

likelihood of creating cycles of "garbage" instance processes but

not eliminate it since a base object may forget to close an object it
refers to.

Before an active object is passivated, it may need to delete

windows, close object and file descriptors, and perform other

actions necessary for establishing its passive invariant. Therefore,

Suite lets an object define a passivate handler which is invoked

before it is passivated.
Iü/hen a passive object is activated, it may need to create win-

dows, open file and object descriptors, call DisablePassivation,
and perform other actions necessary to establish its active invari-

ant. Therefore, Suite also lets an object define an activate

handler, which is invoked whenever the object is activated.

An Obiect Modet þr Conventional Operating Systems 531

A newly created object executes its inítiate handler, which may
be used, for instance, to create an initial set offrles, objects, and
other resources necessary for the execution of the objeõt. simi-
larly, before an object is removed, a terminate handler is called,
which can be used, for instance, to remove the resources being
used by the object.

one more handler is defined for supporting periodic back-
ground activity in the object. A referenced active object waiting
for a request for method invocation periodically executes a back-
ground handler (Figure 4). The background handler and the time
period between invocations of it are specified by the object. This
facility can be used by an object to, for instance, periodically
refresh its display.

The various state transition handlers and associated parame-
ters are specified in the class ofthe object by handler annotatíons.
For instance, the annotation

Background with ApptsBackgroundHandler delay 50

in the class ofan object specifles the background handler for the
object and the time period between invocations of it.

2.6 Class Modules

So far, we have assumed that a class consists of a single module.
In general, it consists of several crass modules, whichãre fike Ada
packages. Each class module defines a set of methods and data
structures and may be linked with other modules to form a class.
Thus a programmer may separately define an Appts modure and
a Graphics module and link them together to form the

finish method execurion

Figure 4: Background Handler

532 Prasun Dewan and Eric Vasilik

background_handler

Executing

start method execufion

Graphical-Appts class. Instances of Graphical-Appts would

be capable of executing methods defrned in both class modules'

Initiate, passivate, and other handlers can be defrned in each

class module, thereby allowing a class module to define its
response to various state transitions independently of other

modules. When a state transition occurs in an object, the

corresponding handler in each class module defining the object is

called.

2.7 Distribution

Objects may reside on different computers connected by a net-

work. For the most part, the design of our object model is
independent of whether objects are confined to a single host or
distributed. For instance, the syntax of a method invocation is

independent of the location of the object in which the method is

to be invoked. Two main distribution-related issues in the design

of the model are naming and placement of objects.

Our design distinguishes between the naming of objects on

same and different LANs. It assumes that each LAN supports a

hierarchical network file system allowing a host to name frles on

other hosts and borrows the naming scheme from the underlying

network file system. Thus, suite inherits the naming scheme from

Sun NFS, and lets an object name be put in a directory mounted

on a remote system.
This naming scheme has two drawbacks. First, it does not

guarantee host-independent object names since the underlying net-

work frle system may define local name spaces. In particular, in
Suite, it does not allow a dialogue manager on a personal worksta-

tion to communicate its name to an object on a shared host, since

typically, the file systems of personal workstations are not
mounted on shared hosts. This problem would not occur if a net-

work file system such as Andrew [Satyanarayanan 1990] that
places names of files in a global space was used. Second, it does

not support communication among objects on hosts that are not

part of a common network frle system. In particular, in Suite' it
does not allow us to study the performance of configurations in
which dialogue managers and objects execute on hosts connected

by a WAN. Therefore, we also support network-wide object

An Object Modet for Conventional Operating Systems 533

names which uniquely identify objects in a network. A network-
wide name, like frle specifiers supported by the UNIX rcp pro-
gram, specifles the file name of an object relative to a host and is
the host name followed by the frle name:

arthur . cs . purdue . edu : /usr / joe/appts

In a distributed persistent object system, the locations of the
passive representations and activations of objects need to be
determined. In suite, the passive representation of an object is
kept on the host that stores its parent directory, thereby reusing
the implementation of name resolution from the underlying file
system ($ 3). we initially considered dynamic schemes for object
activation that activate an object on different hosts, thereby sup-
porting "object migration". unlike process migration schemes,
these schemes were easy to implement and only required facilities
to start instance processes on and read instance frles from remote
hosts, which existed in our system. Moreover, they were compati-
ble with process migration schemes which could be used to sup-
port migration of object activations. Two simple dynamic
schemes we considered were:

. Activate an object on the host on which the client that
activates it resides. This approach guarantees that at least
one client communicating with the object is on the same
machine as the object, thereby providing efficient communi-
cation between them.6

. Activate an object on the host on which the object's
instance flle resides. This approach supports efficient object
activations and passivations since an instance process
accesses a local instance file. Moreover, it lets a user
migrate objects by renaming them. on the other hand, it is
possible for an object to be activated on a machine on
which none of its clients reside. This situation would occur
frequently when objects are created and opened from disk-
less workstations.

6T0 illustrate the difference between the costs of invoking local and remote methods, in our
implementation, on- Sequent-Symmetry multiprocessor.õ-put.i, .onn".t.¿ via a tôM bit
Ethernet nelwork, the costs oflocal and remote invocations ofsynchronous methods taking
no arguments and returning no results was 6.7 and l7 milliseconds, respectively.

534 Prasun Dewan and Eric Vasilik

However, dynamic schemes do not allow an object to use

host-specifrc names, execute on behalf of a frxed user ($ 2.8), or be

compiled for a single type of host. Therefore, we currently adopt

the simple approach of activating an object on a fixed host in the

system specifred by the creator of the object, which by default is

the host on which the creator resides. It is the creator's responsi-

bility to ensure that the object's class is executable on this

machine. A potential problem with this approach is that none of
the clients communicating with the object may reside on the

machine on which the object executes. This problem is reduced

for "private" objects that are accessed mainly by clients executing

on the creator's machine.

2.8 Sharing and Protection

Suite objects can access resources belonging to multiple users.

Like a conventional process, an object executes on behalfofa
specific user called its owner. The owner of an object created

locally is the same as the owner of its creator and remotely is the

user specifred bY Create0bject.
This approach fixes the owner of the object for its entire life-

time. An alternate approach we considered is to give an object

the owner of its activator. unlike the flrst approach, the second

approach does not require that openob j ect communicate with a
privileged process to activate objects ($ 3). It was not adopted

since it makes the access rights of an object depend on the invoca-

tion of 0pen0bj ect that caused its activation.
Objects are themselves protected resources associated with

access lists. The interpretation of these access lists is closely tied

to our implementation and is discussed in $ 3.

2.9 tJser Interface

In Suite, we are experimenting mainly with an object-editing user

interface, which is a direct extension of text-editing interface pro-

vided by conventional systems for manipulating files. It treats all

objects as data that can be edited by the user, and checks user

changes for syntactic and semantic consistency. Returning to the

appointments example, it allows a user to change an appointment

An Object Modet for Conventional Operating Systems 535

by simply editing a visual representation of the current list of
appointments (Figure 5). The user interface of an object is imple-
mented by a generic language-independent dialogue manager,
which is itself an object defrned by a system-provided class, as dis-
cussed later. More details on the user interface can be found in
Dewan [1990b].

other interactive object-based systems such as Eden [Almes et
al. 19851 and Hydra ISnodgrass 1983] offer command languages
for interactively sending messages to objects. command-oriented
object manipulation complements editor-oriented object manipu-
lation since it allows users to manipulate objects that are not
displayed in editor windows. we do not currently provide a spe-
cial object-manipulation command language since it is possible to
write applications programs that are invoked from the command
interpreter to send messages to objects. For instance, it is possible
to write an application program, add_appt, that sends the
AddAppointnent message to an appointment object. This
approach increases the overhead of creating a new class of objects
since it requires that an application program be written for each
method defined by the class. on other hand, it has two important
advantages: First, it allows object-manipulation commands to look
like existing commands provided by the underlying system, as
illustrated below:

% add-appt -object -/appts -user joe \
-time rt12:00r' -reason illunchrt

second, it allows aliasing, environment variables, and other primi-
tives provided by the underlying system for easing the invocation
of commands to be used for object-manipulation commands. For
instance, the add_appt command above can make the object
parameter optional and use the value of an environment variable
as the name of the default appointment object. Nonetheless, it
would be useful if a default command language for sending mes-
sages to objects was automatically provided by the system.

536 Prasun Dewan and Eric Vasilik

3. Implementation

When an object is active, it is associated with an instance process

which executes the object's methods and handlers, checkpoints
and restores the persistent data of the object, and keeps its refer-

ence count. It is also associated with an instance file which keeps

the identifier of its instance process, a UNIX port number used for
sending messages to it, the name of its class, its home (host on
which it was created) and owner, user and group identiflers, and

checkpointed data structures.
The operations on objects are implemented as library routines

linked to client programs. An instance file is created by the

corresponding instance process, read by the Openobj ect operation,
and deleted by the DeleteObj ect operation. It gets the permis-

sions specified for the object in the CreateObj ect and CreatePro-
cess calls. As a result, the following protection scheme is defined

for objects: An object can create and delete objects in a directory
only if it can create and delete files in that directory. It can

invoke the OpenObj ect operation on an object only if it has read

access to the object, since this operation needs to read the
instance frle.

The name of an instance frle is the same as the name of the

corresponding object. As a result our implementation uses the

underlying implementation of a hierarchical network file system to
resolve object names. For instance, the 0penObj ect operation

simply opens the corresponding instance file to determine the

object to be opened. Moreover, the implementation of ñle opera-

tions such as Link and unrink can be directly used for objects.

For instance, the operation

Link (" /rsr / joe/appt srr , " /usr / iack/ ioe-appts'r)

which creates the new alias /usr / iack/ ioe-appts for the
instance frle /usr/joe/appts also creates the same alias for the

corresponding object. Either alias can be used to open the object.

Each host runs an object manage1 which starts instance
processes on that host. A newly created instance process needs to
perform several tasks (including creating a port, binding it to a
socket, and listening on it) before it can respond to messages from

An Obiect Modet for Conventionql Operating Systems 537

other objects. Therefore, an object manager blocks the activator
of an object until the instance process created for the object indi-
cates that it is ready for receiving messages.

An object and a corresponding instance process can be directly
created by the createprocess call provided by the host system.
A subsequent attempt to open the corresponding object may
create another instance process ifthe first process has not frnished
creating the instance file. Therefore, createprocess should not
be used unless it is certain that the race condition will not occur.
This problem does not arise if create0bj ecr is used since crea-
tion of instance processes on a host are serialized by the object
manager on that host.

An invocation of OpenObject, Close0bject, or DeleteObject
that refers to the object by a network-wide name does not directly
read the associated instance file. Instead, it communicates with
the object manager on the remote host, which accesses the
instance file on its behalf. Such an invocation must supply an
argument specifying the name of a user on the remote host whose
access rights are to be used by the object manager when accessing
the instance file. For instance, the invocation

0pen0bj ect ("arthur . cs . purdue . edu:
/usr/ joe/apptstr, tt joett)

is processed by the object manager on arthur. cs . purdue . edu
which reads the corresponding instance file with the access rights
of user j oe. An object manager needs to run as a privileged pro-
cess in order to change its access rights dynamically and set the
owner of an instance process.T

A class module source is compiled by an object compiler which
generates client and server parts for it. The client part contains
stubs for invoking methods in the class module while the server
part contains the implementation of these methods and support
code which includes routines for handling various state transi-
tions. The client part must be linked with any program that
invokes methods in the class module and the server part must be

TRunning it as.a privileged process may not be possible on shared hosts. On such hosts, we
execrrle the object manager on behalfofa particular user and make all shared objects wôrld
readable and writable.

538 Prasun Dewan and Eric Vasilik

linked with any class that serves the methods defined in the
module. An object compiler is required for each language sup-

ported by the system. Our current implementation supports C.

Inter-object communication is built on top of uNIx sockets.

An invocation of a method in an object uses the socket layer to
send a message to the object. The message contains a module
identifier, a method identifier, and the external data representa-

tion of the arguments transmitted. The module identifier is used

to direct the message towards the dispatcher for the module. The

dispatcher creates the internal representations of the arguments

and invokes the appropriate method in the module. In case of
synchronous method invocation it also sends back a return value.

The implementation described above has several limitations:

1. The object operations 0penObject, CloseObject, Create0b-
j ect, ând DeleteObj ect are implemented as library routines
and are thus separate from the corresponding file operations

such as Open, Close, Create, and De1ete.

2. Instance files can be modified in arbitrary ways by processes

with appropriate access rights.

3. The protection scheme is tied to the implementation and is
unintuitive and coarse grained. For instance, the read
access right determines if the Open0bj ect operation can be

invoked on the object. Similarly, an object cannot
separately protect different methods, which is useful for
example, to let an appointment object allow certain clients
to only read its list of appointments and others to both read

and write the appointements.

The first problem can be overcome by making instance files

special frles in the system and integrating object descriptors with
frle descriptors and object operations with the corresponding frle

operations. The kernel can reduce the second problem by ensur-

ing that an instance frle is accessed directly only by the
corresponding instance process. (This technique ensures that
instance files cannot be manipulated by arbitrary processes but
does not prevent an object from arbitrarily modifying the

corresponding instance file.) The third problem is hard to solve in
conventional systems since they support only a fixed number of
system-defined access rights. One approach that can be used in

An Object Model for Conventional Operating Systems 539

systems such as UNIX that support the read, write, and execute
rights is to let an object divide its messages into ..read" o.write"

and "execute" messages protected by the read, write, and exe-
cute access rights respectively. Naturally, this scheme is not a
good substitute for programmer-defined access rights.

we did not overcome these limitations in our implementation
since we were unwilling to modify the kernel.

4. Preliminary Experience

We have used the Suite object layer to create new classes of
interactive applications not found in traditional systems. We
have used objects to support loose coupling between the interac-
tive and computational components of an interactive application.
We have developed generic "dialogue managers" which allow
users to interact with "editable objects." They display presenta-
tions of selected variables of these objects, allow users to edit the
presentations in a syntactically and semantically consistent
fashion, and communicate with the objects to keep the presenta-
tions consistent with the variables they display. Dialogue
managers defrne several remote procedures including submit_DM
and Update_DM which are invoked by editable objects to display
variables and update their displays, respectively.

we have used editable objects and dialogue managers to create
several interactive applications. For instance, we have built a
"line printer tool" which displays editable listings of line printer
queues. A user can open the object using a dialogue manager and
edit the display to delete jobs from the system. The line printer
tool reads the line printer queues and updates their display
periodically as part of its background activity. Similarly, we have
built a simple "process tool" which keeps the list of current
processes on a particular host. A user can ask a dialogue manager
to open a process tool on any system and edit the process list to
delete processes from that system. These two tools are representa-
tive examples of a whole class of similar tools such as "directory
tool" and "current users" tool that allow users to view and
modify system data structures.

540 Prasun Dewan and Eric Vasilik

We have also used objects to built several collaborative appli-
cations. We have built a distributed multi-user appointment ser-

vice consisting of a central "appointment server" and an

"appointment filter" for each user of the service. The appoint-
ment server maintains the appointments of all users of the service,
while an appointment filter displays an aspect of the appointment
server consisting of the appointments of a particular user. Each

appointment filter interacts with the user via a dialogue manager,

which lets the user edit the list of appointments. The appoint-
ment server, appointment filters, and dialogue managers commun-
icate with each other to ensure that their copies of the appoint-
ment records are kept consistent. Thus, if user A uses a dialogue

manager to change his appointment with user B, user B's dialogue

manager is informed about the change and updates its display
(Figure 5).

The appointment service creates a central database with multi-
ple, distributed views. We have also developed applications that
create multiple, distributed databases communicating with each

Figure 5: The Appointment Service

D¡.log nüÌr' /.-àBvvle.ñ.t Jaûþtâ|7ùJf,s' 6'-ltç.6.Pl¡d¡..dt

6.tÈt¡ Fs-aF9tt

10:Þ12:30 Ertc $lto ¡l¡ssßlm

>> 10:$t2:30 Ertc grlÞ t¡tstü

An Object Modet for Conventional Operating Systems 541

other to keep their data consistent. For instance, we have built a
multi-user "expense service" which keeps the common expendi-
tures of a group of users. It consists of an "expense" object for
each user, which keeps the expenses ofall the users and the
amount owed to each user. A user can ask a dialogue manager to
open his expense object and enter an expense incurred by him.
The expense object informs its peers about changes to its user's
expenditures, which enter the changes, recalculate the credits, and
request their dialogue managers to update the displays.

Similarly, we have built a multi-user integrated project
management service for SERC (Software Engineering Center). It
consists of the "project" "aftliate" and "budget" objects. The
project object lets a user enter the description of a new project,
and in response sends a message to the budget object informing it
about the new project. Similarly, the affiliate object lets a user
enter the name and contribution of a new affiliate, and in
response sends a message to the budget object informing it about
the new affiliate. The budget object lets a user allocate money to
the project, and computes the balance based on the contributions
of the affiliates.

Our preliminary experience with the Suite object model has
been mostly positive. Persistent objects have proved to be useful,
which is illustrated by considering how the applications above
would be created in a conventional system. The various data
structures would be kept in files, which would be ..polled" by con-
ventional processes. To take the project management example,
the information about affiliates, projects, and budgets would be
kept in files which would be polled by corresponding processes
manipulating and displaying this information. The object layer
combines the notion of files and processes, thereby supporting
active persistent data that can automatically alert other objects
interested in changes to it.

The Suite approach to automatic passivation of objects has
also proved to be useful. It has been possible to interact with
several applications successively without the fear of either (l)
creating a large number of instance processes, some of which, such
as the line printer and process tools, can put a heavy load on the
system, or (2) frequent passivations/activations since referenced
objects and unreferenced objects that are frequently accessed are

542 Prasun Dewan and Eric Vasilik

kept active. Moreover, in our experience, a sequence of initiating
events that causes cyclic references among instance processes is

followed by a sequence of terminating events that deletes these

references. To illustrate how cyclic references are created and

broken in Suite, consider what happens when the user executes

the "load" command in a dialogue manager to connect to an edit-

able object: (1) The dialogue manager opens the object and exe-

cutes the method LoadDialog in it. (2) LoadDialog opens the

dialogue manager, thereby causing a cycle. Conversely, when the

user executes the "close" command in the dialogue manager, the

following events takes place: (1) The dialogue manager closes the

object and executes UnloadDialog in it. (2) UnloadDialog
closes the dialogue manager, thereby breaking the cycle. Thus

with careful programming it has been possible to ensure that
cycles of "garbage" instance processes are not created.

Type-completeness of the I/O system has also proved to be

useful, since it has relieved programmers from the tedious work of
converting between internal and external representations of data

structures. Moreover, a uniform I/O system integrating all forms

of I/O has been simple to understand and use since it provides,

for instance, one set of rules to disambiguate weakly-typed data.

Programmers have benefited in many ways from integration of
the Suite object layer with the underlying UNIX layer. They have

been able to use a familiar environment consisting of the UNIX
system and the C programming language. Moreover, they have

perceived the object layer as a natural extension ofthe existing

system. As a result, they have exhibited little resistance to explor-
ing a new paradigm and have been able to learn and use the sys-

tem in a matter of days. Furthermore, they have been able to
reuse services of existing tools. For instance, the process tool exe-

cutes the UNIX "ps" command to get the current status of the

printer queue.s

The simple protection scheme implemented in Suite has

proved to be sufficient for some of the applications built by us.

For instance, a user's line printer tool is made self readable,

thereby allowing dialogue managers started by the user to invoke

sunfortunately, the tool "polls" the status of the process queue in order to. display current
information.

-Óhanges
in ihe kernel would be required to asynchronously inform the tool

whenever process information changed.

An Object Model for Conventional Operating Systems 543

methods such as DeleteJob in the object. Similarly, an expense
object is made group readable, where the group consists of the
group of users sharing the common expenses. On the other hand,
it has proved to be restrictive for other applications. For
instance, a budget object cannot allow certain users to read its
contents while allowing other users to also modify them. Simi-
larly, an appointment server cannot allow an appointment fllter
for a user to change only the appointments for that user. The first
problem would not occur if we had been willing to change the ker-
nel to separate read and write methods. The second problem
would not occur if the underlying system allowed the receiver of a
message to authenticate the sender.e

An important factor in the usability of an object model is the
performance of its implementation. In our prototype implemen-
tation, we made no special effort to get good performance.
Nonetheless, the response times of most of the applications we
built were acceptable, that is, there were no perceptible delays in
interacting with them. The exceptions were the process and line
printer tools, which drove up the response time of the system by
polling the system for the current status of the process list and
line printer queue, respectively. These problems have less to do
with our approach and more to do with our unwillingness to
change the kernel and other tools (such as the line printer daemon
on UNIX) to inform interested objects about changes to data
structures maintained by them. Indeed, as mentioned above, one
of the advantages of supporting objects is that polling of data
encapsulated by them is unnecessary.

More details on our experience with the Suite object layer can
be found in Dewan & Goudhary [1989].

5. Conclusions and future work

The Suite object model was developed to support loose coupling
between the interactive and computational components of interac-
tive applications, and collaborative applications. It provides per-
sistent distributed, shared, and protected objects, and has been

eor if we had been willing to communicate encrypted messages.

544 Prasun Dewan and Eric Vasilik

implemented as on top of UNIX, TCP/IP, and Sun NFS (Network

File System) [Sun 1986]. It has been used to build several proto-

type applications that would have been difficult to build in con-

ventional systems. Overall, our preliminary experience with it has

been positive.
Several properties of Suite are present in other object-based

systems. For instance, persistent and multi-user objects are also

supported by several other systems including Hydra [wulf et al.

1g741, Argus [Liskov & Scheifler 1982], Eden [Almes et al. 1985],

Clouds [Dasgupta et al. 1990], and Gemstone [Maier et al. 1986];

distributed objects communicating via remote procedure calls are

supported by most modern systems including Mach [Jones &
Rashid 19861, Andrew ISatyanarayanan et al. 1990], Hermes

[Black & Artsy 1990], Argus, Clouds, and Eden; protected objects

are supported by capability-based systems such as Hydra, Eden,

and clouds; and activation and passivation of objects is supported

by Eden and clouds. The novel aspects of the Suite object layer

include: (i) treating objects as combinations of conventional
processes and frles; (ii) activation, passivation, and other state-

transition handlers; (iii) an object passivation scheme based on

the number of active references to objects; (iv) support for exist-

ing conventional programming languages; and (v) a type-complete

I/O system providing a common approach for
marshalling/unmarshalling arguments/results of method invoca-

tions, checkpointing/restoring persistent values, and writing
to/reading from sockets, pipes, and other files.

Our approach has at least three drawbacks: First, since objects,

like processes, access resources through temporary descriptors,

they need to establish active and passive invariants. This over-

head is not necessary in capability-based systems such as Hydra,

Eden, and Clouds, in which objects access all resources through

persistent capabilities that are valid from one activation to

another. Second, objects and other resources are protected by

conventional access lists instead of capabilities. Capability-based

systems offer a more sophisticated protection mechanism which

can ensure, for instance, that different objects created by the same

user have access to different sets of resources. Third, objects can-

not be used to encapsulate small data structures such as integers

and stacks, since it is impractical, for instance, to associate an

An Object Model for Conventional Operating Systems 545

integer with its own address space and frle name. Objects models
supported by most object-oriented languages support small,
private, temporary objects and database management systems sup-
port both small, private, temporary and large, shared, persistent
objects.

The main benefit of our approach is that it supports integra-
tion of objects with conventional systems, in two main ways.
First, objects can coexist with, access, and be accessed by existing
components of the operating system. In particular, objects can
access conventional resources such as pipes, sockets, and files; and
conventional processes can invoke methods in objects. As a
result, programmers can incrementally explore the use of objects
without the fear of sacrificing existing'components of conven-
tional systems. Second, we have applied much of the work done
in naming, organization, access, and protection of conventional
resources to support naming, organization, access, and protection
of objects. As a result, few new concepts need to be introduced in
the base system to support objects and the implementation of
existing components in the system can be reused to implement
objects.

While the Suite object layer was developed to meet two
specifrc user interface requirements, it has broad applications. In
general, it can be used to replace passive files and directories with
distributed "active databases" [Morgenstern 1983]. We plan to
use it to explore replacement of existing files and directories in
our system with corresponding objects. We also plan to expand
our set of collaborative applications to include, for instance, a col-
laborative multi-module program editor.

We have so far not addressed two important issues in the
design of objects: transactions and class evolution. These have
been addressed, for instance, by Argus and ORION [Banerjee et
al. 1983], respectively, and we plan to explore how current
approaches to addressing them can be integrated with the Suite
object model.

546 Prasun Dewan and Eric Vasilik

Acknowledgments

Paul Thomas built an early version of the object manager.

Rajiv Choudhary, Paul Buis, Harry Duin, Joe Heim, and Harlene
Sepulveda helped us test the current implementation of Suite.

Harlene Sepulveda and Harry Duin built the line printer tool.
Rajiv Choudhary implemented network-wide naming of objects

and made performance measurements. Harry Duin, Ronnie
Miller, John Riedl, Harlene Sepulveda, and the referees gave

useful suggestions for improving the presentation of the paper.

References

G.T. Almes, A.P Black, E.D. Lazowska, and J.D. Noe, The Eden System:

A Technical Overview, IEEE Transactions on Software Engineer-

ingtt(l), pages 43-59 (January 1985).

Malcolm P. Atkinson and O. Peter Buneman, Types and Persistence in
Database Programming Languages, ACM Computer Surveys l9(2)
(June 1987).

Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth, Seman-

tics and lmplementation of Schema Evolution in Object-Oriented
Databases, Proceedings of ACM SIGMOD Conference on Manage-
ment of Dat¿ (March 1987).

Andrew D. Birrel and Bruce Jay Nelson, Implementing Remote Pro-
cedure Calls, ACM TOCS 2(l) (February 1984).

Andrew P. Black and Yeshayahu Artsy, Implementing Location Indepen-
dent lnvocation,IEEE Transactions on Parallel and Distributed
Systems r(l) (January 1990).

David L. Cohrs and Barton P. Miller, Distributed Upcalls: A Mechanism
for Layering Asynchronous Abstractions, I EEE I nternational
Conference on Distributed Computing Systems, pages 55-62 (June

1988).
,

P. Dasgupta, R.C.Chen, S. Menon, M. P. Pearson, R. Ananthanaray-
anan, [.J. Ramachandran, M. Ahamad, R. J. LeBlanc, W. F.

Appelbe, J. M. Bernabeu-Auban, P. W. Hutto, M.Y'4. Khalidi,
and C. J. Wilkenloh, The Design and Implementation of the
Clouds Distributed Operating System, Computing Systems 3(l),
pages ll-46 (Winter 1990).

An Object Modet for Conventional Operating Systems 547

Prasun Dewan and Eric Vasilik, Supporting Objects in a Conventional
Operating System, Proceedings of the San Diego Winter '89 Usenix
Conference, pages 273-286 (February l9S9).

Prasun Dewan, Ashish Vikram, and Bharat Bhargava, Engineering the
Object-Relation Database Model in O-Raid, Proceedings of the
Third Internationql Conference on Foundations of Data Organiza-
tion and Algorithms, pages 389-403, Springer Verlag (June 1989).

Prasun Dewan and Marvin Solomon, An Approach to Support
Automatic Generation of User Interfaces, ACM Transactions on
Programming Languages and Systems t2(4), page 566-609 (1990).
Preliminary version presented at the ACM SIGSOFT/SIGZLAN
Software Engineering Symposium on Practical Software Develop-
ment Environments, SIGPLAN Notices 22:l pp. 150-159 (January
l 987)

Prasun Dewan, A Tour of the Suite user Interface software, proceedings
of the 3rd ACM SIGGRAPH Symposium on User Interfoce
Software and Technology, page 57-65 (1990).

Prasun Dewan and Rajiv Choudhary, Experience with the Suite Distri-
buted Object Model, Proceedings of IEEE Workshop on Experi-
mental Distributed Systems. page 5i -63 (I 990).

Adele Goldberg and David Robson, Smalltalk-\}: The Language and its
Implementation, Addison-Wesley, Reading, Mass. (l 983).

Michael B. Jones and Richard F. Rashid, Mach and MatchMaker: Ker-
nel and Language Support for Object-Oriented Distributed Sys-
tems, OOPSLA '86 Proceedilrgs, pages 67-77 (September 1986).

Barbara Liskov and Robert scheifler, Guardians and Actions: Linguistic
Support for Robust, Distributed Programs, Proceedings of the 9th
POPL, pages 7-19 (1982).

David Maier, Jacob Stein, Allen Otis, and Alan purdy, Development of
an Object-Oriented DBMS, OOPSLa| '86 Proceedings, pages 472-
483 (September 1986).

Sun Microsystems, Inc., External Data Representation Protocol
Specifrcation, Networking on the Sun Worlcstations (1986).

M. Morgenstern, Active Databases as a Paradigm for Enhanced Comput-
ing Environments, Proceedings of the 9th International Conference
of Very Large Data Bases, pages 34-42 (1983).

Bruce Jay Nelson, Remote Procedure Call, Ph.D. Thesis and Tech
Report CMU-CS-81-l19, Department of Computer Science,
Carnegie-Mellon University (May I 98 I).

548 Prasun Dewan and Eric Vasilik

R. Sandberg, The Sun Network File System: Implementation and Experi-
ence, Proceedíngs of the Florence Spring '86 EUUG Conference
(1e86).

Mahadev Satyanarayanan, Scalable, Secure, and Highly Available Distri-
buted File Access, IEEE Computer 23(5), pages 9-22 (May 1990).

R.T Snodgrass, An Object-Oriented Command Language,IEEE Transac-
tions on Software Engineering SE-g(l), pages l-7 (January 1983).

Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,
Reading, Mass. (1986).

Richard E. Sweet, The Mesa Programming Environmerfi, Proceedings of
the ACM SIGPLAN Symposium on Language Issues in Program-
ming Environments, pages 216-229 (June 1 985).

Peter Wegner, Dimensions of Object-Based Language Design, OOPSL-A
'87 Proceedingr, pages 168-182 (October 1987).

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Iævin, C. Pierson, and F.
Pollack, Hydra: The Kernel of a Multiprocessor Operating System,

CACM 17(6) (June 1974).

lsubmitted Dec. 27, 1989; revised Sept. 20, 1990; accepted Oct. 3, 19901

An Object Model for Conventional Operating Systems 549

