
Application of Named Graphs Towards Custom Provenance Views

Tara Gibson, Karen Schuchardt, Eric Stephan
Pacific Northwest National Laboratory

Abstract

Provenance capture as applied to execution oriented and interactive workflows is designed to record minute detail
needed to support a "modify and restart" paradigm as well as re-execution of past workflows. In our experience,
provenance also plays an important role in human-centered verification, results tracking, and knowledge sharing.
However, the amount of information recorded by provenance capture mechanisms generally obfuscates the concep-
tual view of events. There is a need for a flexible means to create and dynamically control user oriented views over
the detailed provenance record. In this paper, we present a design which leverages named graphs and extensions to
the SPARQL query language to create and manage views as a server-side function, simplifying user presentation of
provenance data.

1. Introduction

Today's scientific workflow tools are built to accurately
represent the execution of a diverse set of scientific
activities. During a single workflow execution, hun-
dreds to thousands of events may be triggered which
add no intrinsic value to human-centered verification,
results tracking, and knowledge sharing. Although the
detailed workflow record is essential for reproducibility
and detailed debugging, provenance must also be raised
to a conceptual level that represents the scientist’s me-
thodology.

Activity tracking systems, which dynamically record
user-driven process execution, share similar problems
capturing and presenting provenance at a suitable level
for user presentation. While it is possible to customize
the level of detail captured by the recording mechan-
ism, it is simply not practical to constantly change the
code to mirror the user’s conceptual perspective which
can vary significantly across a diverse user base as well
as over time.

Workflow provenance is naturally represented by
graphs using standards such as Resource Description
Framework (RDF). RDF provides a very flexible model
for describing any data and is adaptable as models
change over time. This flexibility, while not necessari-
ly required to describe execution provenance, enables
the integration of workflow provenance within a larger
context. This flexibility is the reason that RDF is being
adopted as a representation for many types of data with
a dynamic or open vocabulary (e.g. biology, social
networks) that have similar needs for user views. Simi-
lar to how views were applied to the relational model

[1], views are needed as a general capability for the
graph data model.

In this paper we propose a filtering technique that ex-
tends the SPARQL query language to help avoid in-
formation overload and the pitfalls of constantly rewrit-
ing custom recording or viewing mechanisms. Our
approach leverages extensions to RDF Named Graphs
(NG). With these extensions, client applications can
render provenance in a way that is meaningful to users
and enable users themselves to control the views.
While we apply this approach specifically to workflow
provenance, it is equally applicable to other graph-
based data.

2. Related Work

The workflow community has long recognized data
overload or noisiness as a problem. Altintas et al [2]
proposes controls which screen the level of detail that is
captured. Missier et al [3] propose a technique to con-
trol the level of detail collected by workflow designers
and propose support for filtered views through query
mechanisms that disregard certain lineage chains and/or
exclude specific processors from the lineage graph.
Cohen-Boulakia proposes views based on a grouping
mechanism [4], but this grouping mechanism appears to
be dependent on workflow design specification and
therefore tied specifically to views of workflows. Simi-
larly, research in the semantic web has pointed out the
need for view management in a different context,
namely creation of views across a wide spectrum of
distributed data – the semantic web itself. 1

1 http://www.openarchives.org/ore/1.0/primer Oct. 2008

http://www.openarchives.org/ore/1.0/primer%20Oct.%202008

NGs are an important concept within the RDF commu-
nity. Conceptually an RDF database can represent
large, complex graphs. NGs provide a means to aggre-
gate and assert custom statements relating to sets of
triples within the database. They have been proposed
as a means to share sub-graphs in the semantic web, as
a basis for establishing trust, and generally as a means
to support views [5]. Recent extensions to NGs sup-
port aggregation of a particular set of statements as well
as NGs that are defined by queries [6].

In the context of workflow provenance views, NGs can
also serve as a dynamic filtering mechanism for com-
plex graphs. While it is possible to create a NG that
provides a static view, that graph may become outdated
as new information is added. Further, some of the view
may contain repeating patterns that should always be
aggregated and thus require an element of dynamic rule
evaluation. Our proposal provides for this type of dy-
namic view creation by applying NG aggregations to
query results.

3. Motivating Example

To show the utility of filtered views we consider its use
in a simulation workbench. The workbench utilizes a
workflow execution tool to schedule and execute simu-
lations as well as stage data to and from compute serv-
ers. In addition, it consists of an activity management
application that assists with the interactive, complex
simulation setup and analysis of results. Provenance is
captured for both the activity environment and the
workflow environment. Our objective is to use the
provenance record both as a workspace for conducting
numerical studies and as a means to answer questions
about results derivation.

As the numerical studies are conducted, the simulation
workbench records the workflow by capturing the
process and data relationships in the Open Provenance
Model (OPM) [7] model. To review the results, users
need to see a high level summary of their process ex-
ecution history without the clutter generated by present-
ing all of the data artifacts and parameters. Figure 1
shows a small graph fragment before and after aggrega-
tion is applied where the aggregation groups output
data with the process that created them. In practice, the
number of files far exceeds the number of processes
such that this filtering accomplishes significant view
reduction.

Figure 1. Aggregation applied to an OPM modeled
graph for a process view of the model.

Within the process view, there are usually data transla-
tion steps that add little in the way of meaningful detail.
They typically can be viewed as a pre-processing ac-
tivity to a more conceptually meaningful end-user ac-
tivity. Pairing these can greatly reduce graph clutter.

Figure 2. Aggregation of preprocessing steps to reduce
intermediate results.

Similarly, post-processing activities can be considered
as uninteresting detail. As shown in the figure below,
post-processing generates data which together with the
original source data can be applied to analysis steps in a
looping manner. The graph for this is very complex.
However, if the post-processing step is aggregated with
the data generation activity, the information presented
is clear.

Figure 3. Aggregation of post processing steps.

Finally, in the general case, aggregation can be used to
group an arbitrary set of specific processes as in the
Figure 4. This type of aggregation also supports trun-
cation which is useful in a number of contexts. It can
be used to simply remove data down an execution path
based on the type of process or it can be used to support
end-user annotation and hiding of uninteresting chains
of investigation.

Figure 4. General user-defined aggregation.

Figure 5a) provides an example of a larger graph that
contains all of the patterns described in Figures 1
through 4. Figure 5b) shows the graph after reduction
to a process-to-process model. Figure 5c) shows the
graph after reducing the patterns in Figures 2 through 4.

Figure 5. Example demonstrating multiple views ap-
plied to achieve significant complexity reduction.

The aggregated nodes are enlarged and numbered ac-
cording to the type of aggregation performed where the
numbers tie back to the previous figures. Clearly the
visual clutter is greatly reduced. The reduction of clut-
ter and hiding the uninteresting detail results in a graph
can meaningfully convey more information to a user.
Our specific contribution is the use and extension of
NGs and the introduction of the APPLY keyword to the
SPARQL query language, to support complex and
nested view reduction operations.

4. Design

A powerful NG syntax, described by Schenk et al, sup-
ports both explicit triples and query notations [5]. The
following example illustrates a basic NG with the triple
structure of RDF and the use of explicit references us-
ing Trig2 notation. In this example, RDF statements
are listed in curly brackets, prefaced by the name of the
graph. Due to space constraints, we will use abbre-
viated URIs without namespaces.

:DBLP {
 :proc2 dc:title :”Proc #2”.
 :proc2 :from :xform.
 :xform dc:title “Xform”
}
Figure 6. Named Graph with static triples.

2 http://www4.wiwiss.fu-berlin.de/bizer/TriG/

An example NG using dynamic query notation is
shown in Figure 7. The view definition is included in
statements of the form: ng:definedBy <query> where
<query> is a literal containing a CONSTRUCT query.
Such a statement is called a view definition statement.
A NG may contain a number of these view definition
statements, all of which contribute to the dynamic NG
[6]. In order to meet the needs of custom user views,
we also require the extension of SPARQL-style va-
riables within the view definition. The variables (in
bold) should match those created in the query CON-
STRUCT.

:proc1Agg {
 :proc1Agg :targetURI ?proc.
 :proc1Agg :type ?type.
 :proc1Agg :title ?title.
 :proc1Agg :someProp1 “someVal”.
 : proc1Agg ng:definedBy
 "CONSTRUCT {?proc ?pred ?obj.
 ?proc :title ?title.
 ?proc :type ?type.
 ?data ?pred ?obj}
 WHERE { ?proc :type :Process.
 ?data :generatedBy ?proc.
 ?data :type :Data.
 }”.
}
Figure 7. Dynamic Named Graph

The above notations can describe some fairly complex
and dynamic NGs. In particular, the query demon-
strates how data artifacts in Figure 1 can be filtered out
of the workflow graph. By adding query extensions to
this NG notation, we can support the reductions shown
in Figure 5. Our SPARQL grammar extension provides
methods to replace and filter results by defining a NG
model where the user view is specified with at least a
targetURI, type, and title. The new keyword ‘APPLY’
tells the query interface which views should be applied
to the query result. Based on the specified views, each
NG is aggregated into a logical, user-defined node.
This new node is then created based on the properties
associated with the NG definition.

An example that demonstrates Figures 1 & 2 will clari-
fy the design. The initial query result contains all of the
process and data resources from a given workflow.
Within this graph are the processes named proc#1,
Xform, and proc#2. The user wants to apply two NGs,
the first of which filters out data artifacts by combining
them with their generating process as seen in Figure 1
and the second contains the resources Xform and
proc#2 as seen in Figure 2. The NG definition in Fig-
ure 7 depicts the view shown in Figure 1, and the defi-
nition in Figure 8 depicts the view for Figure 2.

:proc2Agg {
 :proc2Agg :targetURI :proc2’.
 :proc2Agg :title “proc#2`”.
 :proc2Agg :type :Process.
 :proc2Agg :someProp1 “someVal”.
 : proc2Agg g:definedBy
 "CONSTRUCT {?proc2 ?pred ?obj.
 ?xform ?pred ?obj}
 WHERE { ?proc2 :type :Process2.
 ?proc2 :from ?xform.
 ?proc2 ?pred ?obj.
 ?xform ?pred ?obj.
 ?xform :type :XForm
 }”.
}
Figure 8. A Dynamic Named Graph for Figure 2.

Given these NGs, the query would then be formulated
with the new APPLY keyword (Figure 9). The APPLY
keyword is appended to the end of the standard
SPARQL query, and it should be used after all other
standard SPARQL keywords. The keyword should be
followed by a comma delimited list of NGs to be ap-
plied to the result set. There may also be a second
modifier, ‘AS’, to control the output format of the
query result. The response format may be one of the
several standard RDF serializations (RDF/XML,
N3…), or a standardized graph format such as
GraphML or GXL.

CONSTRUCT {?sub ?pred ?obj}
WHERE {?sub :inWorkflow :WorkflowX.
 ?sub ?pred ?obj
}
APPLY :proc1Agg, :proc2Agg. AS GraphML
Figure 9. Query using the named graphs for filtering.

The query in Figure 9 executes as follows. First the
primary query (everything except APPLY) is per-
formed and the results are cached. Next, the :proc1Agg
NG is applied to the full query result graph producing a
reduced graph where each process is combined with its
output data. As defined in Figure 7, the targetURI in
this NG definition is linked to each process URI.
Therefore, an aggregated node will be created for each
process and given the type and title from that process
node. Finally, the :proc2Agg NG is applied to the re-
duced graph which removes the contents Xform and
Proc#2 and replaces them with a single node titled
Proc#2’ as defined in Figure 8. As this example de-
monstrates, it is important to apply multiple views to
achieve the desired results. In this case, the first view
provides the reduction described in Figure 1. The
second view provides the reduction described in Figure
2. The order of evaluation must be carefully considered
by the issuer of the query since the data within the
graph changes after each application of a view. A well
defined naming mechanism is necessary to identify

which components (NGs) should be used to create
these layered views.

When a query with a NG filter returns aggregated
nodes in the graph, it may be useful for client tools to
view the detail of the aggregate node. This ‘drill down’
functionality is inherently provided by SPARQL and
NGs. As defined in http://www.w3.org/TR/rdf-sparql-
query/#specDataset a SPARQL query may use the
‘FROM NAMED’ clause to specify the NG to be used
for querying against (rather than the entire RDF graph.)
This allows for queries to retrieve all or a subset of the
values within the NG.

5. Discussion

The design as presented leverages NGs to create and
manage views as a server-side function, simplifying
user presentation of provenance data. By including this
server-side functionality through SPARQL, users al-
ready familiar with the query language can use this
functionality in a standardized way. Making this a
server-side capability opens an opportunity for optimi-
zation which we have yet to explore. Scalability is
another concern. In a basic implementation, all queries
and applications of NGs would be performed dynami-
cally. This approach will work as long as the initial
query result set is not too large. For large result sets,
our expectation is that the performance will decrease.
However, it is possible for more sophisticated imple-
mentations to create persistent views and update these
dynamically as required.

It is our intention to implement the described functio-
nality in the Sesame framework. This includes func-
tions to transitively search or ’walk’ the graph. For
OPM and likely other data models, it is necessary to be
able to traverse the graph using multiple predicates and
specify stop conditions. We also intend to implement
the APPLY keyword. We will evaluate both the per-
formance and the suitability of this approach when ap-
plied to a variety of use cases focused on provenance
graphs generated by both workflow systems and activi-
ty tracking systems.

Acknowledgments

This research is supported by the U. S. Department of
Energy's Office of Science under the Scientific Discov-
ery through Advanced Computing (SciDAC) program
and through the Laboratory Directed Research and De-
velopment Program at the Pacific Northwest National
Laboratory operated by Battelle for the U.S. Depart-
ment of Energy under contract DE-AC05-76Rl0 1839.

References

1. Codd, E. (1982). "Relational database: a practical

foundation for productivity." Communications of
the ACM 25(2): 109-117.

2. Altintas, I., Barney, O., & Jaeger-Frank, E. (2006).
Provenance collection support in the Kepler Scien-
tific Workflow System, In International Provenance
and Annotation Workshop (IPAW), LNCS, Prove-
nance and Annotation of Data, 4145: 118-132,
2006.

3. Paolo Missier, Khalid Belhajjame, Jun Zhao, Carole
Goble, Data lineage model for Taverna workflows
with lightweight annotation requirements, IPAW'08,
Springer LNCS series, vol. 5272/2008, Salt Lake
City, Utah, June 2008.

4. Cohen-Boulakia, S., Biton, O., Cohen, S., and Da-
vidson, S. 2008. Addressing the provenance chal-
lenge using ZOOM. Concurr. Comput. : Pract. Ex-
per. 20, 5 (Apr. 2008), 497-506.

5. Carroll, J.J., Bizer C., Hayes P., Stickler P. “Named
Graphs, Provenance and Trust.” In Proceedings of
the 14th international conference on World Wide
Web. 2005, Chiba, Japan. New York; ACM, pp.
613-622.

6. Schenk, S. and Staab, S. 2008. Networked graphs: a
declarative mechanism for SPARQL rules,
SPARQL views and RDF data integration on the
web. In Proceeding of the 17th international Confe-
rence on World Wide Web (Beijing, China, April 21
– 25, 2008). WWW ’08. ACM, New York, NY,
585-594

7. Moreau L, J Freire, J Myers, J Futrelle, and PR
Paulson. 2007. "The Open Provenance Model."
Presented by Luc Moreau at Workshop on Prin-
ciples of Provenance, Edinburgh, Scotland on No-
vember 20, 2007

	This research is supported by the U. S. Department of Energy's Office of Science under the Scientific Discovery through Advanced Computing (SciDAC) program and through the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76Rl0 1839.

