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Abstract 

 
Provenance capture as applied to execution oriented and interactive workflows is designed to record minute detail 
needed to support a "modify and restart" paradigm as well as re-execution of past workflows.  In our experience, 
provenance also plays an important role in human-centered verification, results tracking, and knowledge sharing.  
However, the amount of information recorded by provenance capture mechanisms generally obfuscates the concep-
tual view of events.   There is a need for a flexible means to create and dynamically control user oriented views over 
the detailed provenance record.  In this paper, we present a design which leverages named graphs and extensions to 
the SPARQL query language to create and manage views as a server-side function, simplifying user presentation of 
provenance data. 

 
1. Introduction 

Today's scientific workflow tools are built to accurately 
represent the execution of a diverse set of scientific 
activities.  During a single workflow execution, hun-
dreds to thousands of events may be triggered which 
add no intrinsic value to human-centered verification, 
results tracking, and knowledge sharing.  Although the 
detailed workflow record is essential for reproducibility 
and detailed debugging, provenance must also be raised 
to a conceptual level that represents the scientist’s me-
thodology.  

Activity tracking systems, which dynamically record 
user-driven process execution, share similar problems 
capturing and presenting provenance at a suitable level 
for user presentation.  While it is possible to customize 
the level of detail captured by the recording mechan-
ism, it is simply not practical to constantly change the 
code to mirror the user’s conceptual perspective which 
can vary significantly across a diverse user base as well 
as over time.  

Workflow provenance is naturally represented by 
graphs using standards such as Resource Description 
Framework (RDF). RDF provides a very flexible model 
for describing any data and is adaptable as models 
change over time.  This flexibility, while not necessari-
ly required to describe execution provenance, enables 
the integration of workflow provenance within a larger 
context.  This flexibility is the reason that RDF is being 
adopted as a representation for many types of data with 
a dynamic or open vocabulary (e.g. biology, social 
networks) that have similar needs for user views. Simi-
lar to how views were applied to the relational model 

[1], views are needed as a general capability for the 
graph data model. 

In this paper we propose a filtering technique that ex-
tends the SPARQL query language to help avoid in-
formation overload and the pitfalls of constantly rewrit-
ing custom recording or viewing mechanisms.  Our 
approach leverages extensions to RDF Named Graphs 
(NG).  With these extensions, client applications can 
render provenance in a way that is meaningful to users 
and enable users themselves to control the views.  
While we apply this approach specifically to workflow 
provenance, it is equally applicable to other graph-
based data. 

2. Related Work 
 
The workflow community has long recognized data 
overload or noisiness as a problem.   Altintas et al [2] 
proposes controls which screen the level of detail that is 
captured. Missier et al [3] propose a technique to con-
trol the level of detail collected by workflow designers 
and propose support for filtered views through query 
mechanisms that disregard certain lineage chains and/or 
exclude specific processors from the lineage graph.   
Cohen-Boulakia proposes views based on a grouping 
mechanism [4], but this grouping mechanism appears to 
be dependent on workflow design specification and 
therefore tied specifically to views of workflows. Simi-
larly, research in the semantic web has pointed out the 
need for view management in a different context, 
namely creation of views across a wide spectrum of 
distributed data – the semantic web itself. 1  
 

                                                 
1 http://www.openarchives.org/ore/1.0/primer Oct. 2008 

http://www.openarchives.org/ore/1.0/primer%20Oct.%202008


NGs are an important concept within the RDF commu-
nity.  Conceptually an RDF database can represent 
large, complex graphs.  NGs provide a means to aggre-
gate and assert custom statements relating to sets of 
triples within the database.  They have been proposed 
as a means to share sub-graphs in the semantic web, as 
a basis for establishing trust, and generally as a means 
to support views [5].   Recent extensions to NGs sup-
port aggregation of a particular set of statements as well 
as NGs that are defined by queries [6].  
 
In the context of workflow provenance views, NGs can 
also serve as a dynamic filtering mechanism for com-
plex graphs.  While it is possible to create a NG that 
provides a static view, that graph may become outdated 
as new information is added.  Further, some of the view 
may contain repeating patterns that should always be 
aggregated and thus require an element of dynamic rule 
evaluation.  Our proposal provides for this type of dy-
namic view creation by applying NG aggregations to 
query results.   
 
3. Motivating Example 
 
To show the utility of filtered views we consider its use 
in a simulation workbench.  The workbench utilizes a 
workflow execution tool to schedule and execute simu-
lations as well as stage data to and from compute serv-
ers.  In addition, it consists of an activity management 
application that assists with the interactive, complex 
simulation setup and analysis of results.  Provenance is 
captured for both the activity environment and the 
workflow environment.  Our objective is to use the 
provenance record both as a workspace for conducting 
numerical studies and as a means to answer questions 
about results derivation.  
 
As the numerical studies are conducted, the simulation 
workbench records the workflow by capturing the 
process and data relationships in the Open Provenance 
Model (OPM) [7] model.  To review the results, users 
need to see a high level summary of their process ex-
ecution history without the clutter generated by present-
ing all of the data artifacts and parameters.  Figure 1 
shows a small graph fragment before and after aggrega-
tion is applied where the aggregation groups output 
data with the process that created them.  In practice, the 
number of files far exceeds the number of processes 
such that this filtering accomplishes significant view 
reduction. 
 

 
Figure 1. Aggregation applied to an OPM modeled 
graph for a process view of the model.  
 
Within the process view, there are usually data transla-
tion steps that add little in the way of meaningful detail.  
They typically can be viewed as a pre-processing ac-
tivity to a more conceptually meaningful end-user ac-
tivity.  Pairing these can greatly reduce graph clutter. 
 

 
Figure 2. Aggregation of preprocessing steps to reduce 
intermediate results. 
 
Similarly, post-processing activities can be considered 
as uninteresting detail.  As shown in the figure below, 
post-processing generates data which together with the 
original source data can be applied to analysis steps in a 
looping manner.  The graph for this is very complex.  
However, if the post-processing step is aggregated with 
the data generation activity, the information presented 
is clear. 

 
Figure 3. Aggregation of post processing steps. 
 
Finally, in the general case, aggregation can be used to 
group an arbitrary set of specific processes as in the 
Figure 4.  This type of aggregation also supports trun-
cation which is useful in a number of contexts.  It can 
be used to simply remove data down an execution path 
based on the type of process or it can be used to support 
end-user annotation and hiding of uninteresting chains 
of investigation. 

 
Figure 4.  General user-defined aggregation. 



 
Figure 5a) provides an example of a larger graph that 
contains all of the patterns described in Figures 1 
through 4.  Figure 5b) shows the graph after reduction 
to a process-to-process model.   Figure 5c) shows the 
graph after reducing the patterns in Figures 2 through 4.   

 

Figure 5.  Example demonstrating multiple views ap-
plied to achieve significant complexity reduction. 

The aggregated nodes are enlarged and numbered ac-
cording to the type of aggregation performed where the 
numbers tie back to the previous figures.  Clearly the 
visual clutter is greatly reduced.  The reduction of clut-
ter and hiding the uninteresting detail results in a graph 
can meaningfully convey more information to a user.  
Our specific contribution is the use and extension of 
NGs and the introduction of the APPLY keyword to the 
SPARQL query language, to support complex and 
nested view reduction operations. 
 
4. Design 
 
A powerful NG syntax, described by Schenk et al, sup-
ports both explicit triples and query notations [5].  The 
following example illustrates a basic NG with the triple 
structure of RDF and the use of explicit references us-
ing Trig2 notation.  In this example, RDF statements 
are listed in curly brackets, prefaced by the name of the 
graph. Due to space constraints, we will use abbre-
viated URIs without namespaces.   
 
:DBLP { 
     :proc2 dc:title :”Proc #2”. 
     :proc2 :from :xform. 
     :xform dc:title “Xform”  
} 
Figure 6. Named Graph with static triples. 

                                                 
2 http://www4.wiwiss.fu-berlin.de/bizer/TriG/ 

 
An example NG using dynamic query notation is 
shown in Figure 7. The view definition is included in 
statements of the form: ng:definedBy <query> where 
<query> is a literal containing a CONSTRUCT query.  
Such a statement is called a view definition statement.  
A NG may contain a number of these view definition 
statements, all of which contribute to the dynamic NG 
[6].   In order to meet the needs of custom user views, 
we also require the extension of SPARQL-style va-
riables within the view definition.  The variables (in 
bold) should match those created in the query CON-
STRUCT. 
 
:proc1Agg { 
      :proc1Agg :targetURI ?proc. 
      :proc1Agg :type ?type. 
      :proc1Agg :title ?title. 
      :proc1Agg :someProp1 “someVal”. 
     : proc1Agg ng:definedBy 
          "CONSTRUCT {?proc ?pred ?obj. 
                                     ?proc :title ?title. 
                                     ?proc :type ?type. 
                                     ?data ?pred ?obj} 
          WHERE { ?proc :type :Process. 
                            ?data :generatedBy ?proc. 
                            ?data :type :Data. 
          }”. 
} 
Figure 7. Dynamic Named Graph  
 
The above notations can describe some fairly complex 
and dynamic NGs.  In particular, the query demon-
strates how data artifacts in Figure 1 can be filtered out 
of the workflow graph.  By adding query extensions to 
this NG notation, we can support the reductions shown 
in Figure 5.  Our SPARQL grammar extension provides 
methods to replace and filter results by defining a NG 
model where the user view is specified with at least a 
targetURI, type, and title.  The new keyword ‘APPLY’ 
tells the query interface which views should be applied 
to the query result.  Based on the specified views, each 
NG is aggregated into a logical, user-defined node.  
This new node is then created based on the properties 
associated with the NG definition.   
 
An example that demonstrates Figures 1 & 2 will clari-
fy the design. The initial query result contains all of the 
process and data resources from a given workflow. 
Within this graph are the processes named proc#1, 
Xform, and proc#2.  The user wants to apply two NGs, 
the first of which filters out data artifacts by combining 
them with their generating process as seen in Figure 1 
and the second contains the resources Xform and 
proc#2 as seen in Figure 2.  The NG definition in Fig-
ure 7 depicts the view shown in Figure 1, and the defi-
nition in Figure 8 depicts the view for Figure 2. 
 



:proc2Agg { 
      :proc2Agg :targetURI :proc2’. 
      :proc2Agg :title “proc#2`”. 
      :proc2Agg :type :Process. 
      :proc2Agg :someProp1 “someVal”. 
     : proc2Agg g:definedBy 
          "CONSTRUCT {?proc2 ?pred ?obj. 
                                      ?xform ?pred ?obj} 
          WHERE { ?proc2 :type :Process2. 
                            ?proc2 :from ?xform. 
                            ?proc2 ?pred ?obj. 
           ?xform ?pred ?obj. 
                            ?xform :type :XForm 
          }”. 
} 
Figure 8. A Dynamic Named Graph for Figure 2. 
 
Given these NGs, the query would then be formulated 
with the new APPLY keyword (Figure 9). The APPLY 
keyword is appended to the end of the standard 
SPARQL query, and it should be used after all other 
standard SPARQL keywords.  The keyword should be 
followed by a comma delimited list of NGs to be ap-
plied to the result set.    There may also be a second 
modifier, ‘AS’, to control the output format of the 
query result.  The response format may be one of the 
several standard RDF serializations (RDF/XML, 
N3…), or a standardized graph format such as 
GraphML or GXL. 
 
CONSTRUCT {?sub ?pred ?obj} 
WHERE {?sub :inWorkflow :WorkflowX. 
                 ?sub ?pred ?obj 
} 
APPLY :proc1Agg, :proc2Agg. AS GraphML 
Figure 9.  Query using the named graphs for filtering. 
 
The query in Figure 9 executes as follows.  First the 
primary query (everything except APPLY) is per-
formed and the results are cached.  Next, the :proc1Agg 
NG is applied to the full query result graph producing a 
reduced graph where each process is combined with its 
output data.  As defined in Figure 7, the targetURI in 
this NG definition is linked to each process URI. 
Therefore, an aggregated node will be created for each 
process and given the type and title from that process 
node.  Finally, the :proc2Agg NG is applied to the re-
duced graph which removes the contents Xform and 
Proc#2 and replaces them with a single node titled 
Proc#2’ as defined in Figure 8. As this example de-
monstrates, it is important to apply multiple views to 
achieve the desired results. In this case, the first view 
provides the reduction described in Figure 1.  The 
second view provides the reduction described in Figure 
2. The order of evaluation must be carefully considered 
by the issuer of the query since the data within the 
graph changes after each application of a view.  A well 
defined naming mechanism is necessary to identify 

which components (NGs) should be used to create 
these layered views.   
 
When a query with a NG filter returns aggregated 
nodes in the graph, it may be useful for client tools to 
view the detail of the aggregate node. This ‘drill down’ 
functionality is inherently provided by SPARQL and 
NGs. As defined in http://www.w3.org/TR/rdf-sparql-
query/#specDataset a SPARQL query may use the 
‘FROM NAMED’ clause to specify the NG to be used 
for querying against (rather than the entire RDF graph.)  
This allows for queries to retrieve all or a subset of the 
values within the NG.   

5. Discussion 
 
The design as presented leverages NGs to create and 
manage views as a server-side function, simplifying 
user presentation of provenance data.  By including this 
server-side functionality through SPARQL, users al-
ready familiar with the query language can use this 
functionality in a standardized way.  Making this a 
server-side capability opens an opportunity for optimi-
zation which we have yet to explore.  Scalability is 
another concern. In a basic implementation, all queries 
and applications of NGs would be performed dynami-
cally.  This approach will work as long as the initial 
query result set is not too large.  For large result sets, 
our expectation is that the performance will decrease.  
However, it is possible for more sophisticated imple-
mentations to create persistent views and update these 
dynamically as required.  
 
It is our intention to implement the described functio-
nality in the Sesame framework.  This includes func-
tions to transitively search or ’walk’ the graph. For 
OPM and likely other data models, it is necessary to be 
able to traverse the graph using multiple predicates and 
specify stop conditions.  We also intend to implement 
the APPLY keyword.  We will evaluate both the per-
formance and the suitability of this approach when ap-
plied to a variety of use cases focused on provenance 
graphs generated by both workflow systems and activi-
ty tracking systems. 
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