
Searching the Searchers with SearchAudit

John P. John‡§, Fang Yu§, Yinglian Xie§, Martı́n Abadi§∗, Arvind Krishnamurthy‡
‡University of Washington §Microsoft Research Silicon Valley

{jjohn, arvind}@cs.washington.edu {fangyu, yxie, abadi}@microsoft.com
∗University of California, Santa Cruz

Abstract

Search engines not only assist normal users, but also pro-
vide information that hackers and other malicious enti-
ties can exploit in their nefarious activities. With care-
fully crafted search queries, attackers can gather infor-
mation such as email addresses and misconfigured or
even vulnerable servers.

We present SearchAudit, a framework that identifies
malicious queries from massive search engine logs in or-
der to uncover their relationship with potential attacks.
SearchAudit takes in a small set of malicious queries as
seed, expands the set using search logs, and generates
regular expressions for detecting new malicious queries.
For instance, we show that, relying on just 500 malicious
queries as seed, SearchAudit discovers an additional 4
million distinct malicious queries and thousands of vul-
nerable Web sites. In addition, SearchAudit reveals a
series of phishing attacks from more than 400 phishing
domains that compromised a large number of Windows
Live Messenger user credentials. Thus, we believe that
SearchAudit can serve as a useful tool for identifying and
preventing a wide class of attacks in their early phases.

1 Introduction

With the amount of information in the Web rapidly grow-
ing, the search engine has become an everyday tool for
people to find relevant and useful information. While
search engines make online browsing easier for normal
users, they have also been exploited by malicious entities
to facilitate their various attacks. For example, in 2004,
the MyDoom worm used Google to search for email ad-
dresses in order to send spam and virus emails. Recently,
it was also reported that hackers used search engines to
identify vulnerable Web sites and compromised them im-
mediately after the malicious searches [20, 16]. These
compromised Web sites were then used to serve malware
or phishing pages.

Indeed, by crafting specific search queries, hackers
may get very specific information from search engines
that could potentially reveal the existence and locations
of security flaws such as misconfigured servers and vul-
nerable software. Furthermore, attackers may prefer us-
ing search engines because it is stealthier and easier than
setting up their own crawlers.

The identification of these malicious queries thus pro-
vides a wide range of opportunities to disrupt or prevent
potential attacks at their early stages. For example, a
search engine may choose not to return results to these
malicious queries [20], making it harder for attackers to
obtain useful information. In addition, these malicious
queries could provide rich information about the attack-
ers, including their intentions and locations. Therefore,
strategically, we can let the attackers guide us to better
understand their methods and techniques, and ultimately,
to predict and prevent followup attacks before they are
launched.

In this paper, we present SearchAudit, a suspicious-
query generation framework that identifies malicious
queries by auditing search engine logs. While auditing is
often an important component of system security, the au-
diting of search logs is particularly worthwhile, both be-
cause authentication and authorization (two other pillars
of security [14]) are relatively weak in search engines,
and because of the wealth of information that search en-
gines and their logs contain.

Working with SearchAudit consists of two stages:
identification and investigation. In the first stage,
SearchAudit identifies malicious queries. In the second
stage, with SearchAudit’s assistance, we focus on ana-
lyzing those queries and the attacks of which they are
part.

More specifically, in the first stage, SearchAudit takes
a few known malicious queries as seed input and tries
to identify more malicious queries. The seed can be ob-
tained from hacker Web sites [1], known security vul-
nerabilities, or case studies performed by other security

1

researchers [16]. As seed malicious queries are usu-
ally limited in quantity and restricted by previous dis-
coveries, SearchAudit monitors the hosts that conducted
these malicious queries to obtain an expanded set of
queries from these hosts. Using the expanded set of
queries, SearchAudit further generates regular expres-
sions, which are then used to match search logs for iden-
tifying other malicious queries. This step is critical as
malicious queries are typically automated searches gen-
erated by scripts. Using regular expressions offers us the
opportunity to catch a large number of other queries with
a similar format, possibly generated by such scripts.

After identifying a large number of malicious queries,
in stage two, we analyze the malicious queries and the
correlation between search and other attacks. In particu-
lar, we ask questions such as: why do attackers use Web
search, how do they leverage search results, and who are
the victims. Answers to these questions not only help
us better understand the attacks, but also provide us an
opportunity to protect or notify potential victims before
the actual attacks are launched, and hence stop attacks in
their early stages.

We apply SearchAudit to three months of sampled
Bing search logs. As search logs contain massive
amounts of data, SearchAudit is implemented on the
Dryad/DryadLINQ [11, 26] platform for large-scale data
analysis. It is able to process over 1.2TB of data in 7
hours using 240 machines.

To our knowledge, we are the first to present a system-
atic approach for uncovering the correlations between
malicious searches and the attacks enabled by them. Our
main results include:

• Enhanced detection capability: Using just 500 seed
queries obtained from one hacker Web site, SearchAu-
dit detects another 4 million malicious queries, some
even before they are listed by hacker Web sites.
• Low false-positive rates. Over 99% of the captured

malicious queries display multiple bot features, while
less than 2% of normal user queries do.
• Ability to detect new attacks: While the seed queries

are mostly ones used to search for Web site vulnerabil-
ities, SearchAudit identifies a large number of queries
belonging to a different type of attack—forum spam-
ming.
• Facilitation of attack analysis: SearchAudit helps

identify vulnerable Web sites that are targeted by at-
tackers. In addition, SearchAudit helps analyze a se-
ries of phishing attacks that lasted for more than one
year. These attacks set up more than 400 phishing do-
mains, and tried to steal a large number of Windows
Live Messenger user credentials.

The rest of the paper is organized as follows. We
start with reviewing related work in Section 2. Then

we present the architecture of SearchAudit in Section 3.
As SearchAudit contains two stages, Section 4 focuses
on the results of the first stage—presenting the mali-
cious queries identified, and verifying that they are in-
deed malicious. Section 5 describes the second stage
of SearchAudit—analyzing the correlation between ma-
licious queries and other attacks. In this paper, we study
three types of attacks in detail: searching for vulnerable
Web sites (Section 6), forum spamming (Section 7), and
Windows Live Messenger phishing attacks (Section 8).
Finally we conclude in Section 9.

2 Related Work

There is a significant amount of automated Web traffic
on the Internet [5]. A recent study by Yu et al. showed
that more than 3% of the entire search traffic may be gen-
erated by stealthy search bots [25] .

One natural question to ask is: what is the motivation
of these search bots? While some search bots have legit-
imate uses, e.g., by search engine competitors or third
parties for studying search quality [8, 17], many oth-
ers could be malicious. It is widely known that attack-
ers conduct click fraud for monetary gain [7, 10]. Re-
cently, researchers have associated malicious searches
with other types of attacks. For example, Provos et
al. reported that worms such as MyDoom.O and Santy
used Web search to identify victims for spreading infec-
tion [20]. Also, Moore et al. [16] identified four types of
evil searches and showed that some Web sites were com-
promised shortly after evil searches. They showed that
attackers searched for keywords like “phpizabi v0.848b
c1 hfp1” to gather all the Web sites that have a known
PHP vulnerability [9]. Subsequently these vulnerable
Web servers were compromised to set up phishing pages.

Besides email spamming and phishing, there are many
other types of attacks, e.g., malware propagation and
Denial of Service (DoS) attacks. Although there are a
wealth of attack-detection approaches, most of these at-
tacks were studied in isolation. Their correlations, espe-
cially to Web searches, have not been extensively stud-
ied. In this paper, we aim to take a step towards a system-
atic framework to unveil the correlations between mali-
cious searches and many other attacks.

In SearchAudit, we derive regular expression patterns
for matching malicious queries. There are many exist-
ing signature-generation techniques for detecting worms
and spam emails such as Polygraph [18], Hamsa [15],
Autograph [12], Earlybird [21], Honeycomb [13], Ne-
man [24] Vigilante [6], and AutoRE [23]. Some of these
approaches are based on semantics, e.g., Neman and Vig-
ilante, and hence are not suitable for us, since query
strings do not have semantic information. The remain-
ing content-based signature-generation schemes, Hon-

2

eycomb, Polygraph, Hamsa, and AutoRE, can generate
string tokens or regular expressions. These are more ap-
pealing to us since attackers add random keywords to
query strings, and we want the generated signatures to
capture this polymorphism. In this work, we choose Au-
toRE, which generates regular expression signatures.

In [20], Provos et al. found malicious queries from the
Santy worm by looking at search results. In those at-
tacks, the attackers constantly changed the queries, but
obtained similar search results (viz., the Web servers that
are vulnerable to Santy’s attack). SearchAudit, on the
other hand, is primarily targeted at finding new attacks,
of which we have no prior knowledge. SearchAudit is
thus a general framework to detect and understand ma-
licious searches. While there might already be propri-
etary approaches adopted by various search engines, or
anecdotal evidence of malicious searches, we hope that
our analysis results can provide useful information to the
general research community.

3 Architecture

Our main goal is to let attackers be our guides—to follow
their activities and predict their future attacks. We use a
small-sized set of seed activities to bootstrap our system.
The seed is usually limited and restricted to malicious
searches of which we are aware. The system then applies
a sequence of techniques to extend this seed set in order
to identify previously unknown attacks and obtain a more
comprehensive view of malicious search behavior.

Figure 1 presents the architecture of our system. At
a high level, the system can be viewed as having two
stages. In the first stage, it examines search query logs,
and expands the set of seed queries to generate additional
sets of suspicious queries. This stage is automated and
quite general, i.e., it can be used to find different types of
suspicious queries pertaining to different malicious ac-
tivities. The second stage involves the analysis of these
suspicious queries to see how different attacks are con-
nected with search—this is mostly done manually, since
it requires a significant amount of domain knowledge to
understand the behavior of the different malicious enti-
ties. This section focuses on the first stage of our system
and Sections 6, 7, and 8 provide examples of the analysis
done in the second stage.

Extending the seed using query logs appears to be a
straightforward idea. Yet, there are two challenges. First,
hackers do not always use the same queries; they mod-
ify and change query terms over time in order to ob-
tain different sets of search results, and thereby identify
new victims. Therefore, simply using a blacklist of bad
queries is not effective. Second, malicious searches may
be mixed with normal user activities, especially on prox-
ies. So we need to differentiate malicious queries from

normal ones, though they may originate from the same
machine or IP address. To address these challenges, we
do not simply use the suspicious queries directly, but in-
stead generate regular expression signatures from these
suspicious queries. Regular expressions help us capture
the structure of these malicious queries, which is nec-
essary to identify future queries. We also filter regu-
lar expressions that are too general and therefore match
both malicious and normal queries. Using these two ap-
proaches, the first stage of the system now consists of a
pipeline of two steps: Query Expansion and Regular Ex-
pression Generation. Since any set of malicious queries
could potentially lead to additional ones, we loop back
these queries until we reach a fixed point with respect to
query expansion. The rest of this section presents each
of the stages in detail.

3.1 Query Expansion

The first step in our system is to take a small set of seed
queries and expand them. These seed queries are known
to be suspicious or malicious. They could be obtained
from a variety of sources, such as preliminary analysis of
the search query logs or with the help of domain experts.

Our search logs contain the following information: a
query, the time at which the query was issued, the set of
results returned to the searcher, and a few properties of
the request, such as the IP address that issued the request
and the user agent (which identifies the Web browser
used). Since the amount of data in the search logs is mas-
sive, we use the Dryad/DryadLINQ platform to process
data in parallel on a cluster of hundreds of machines.

The seed queries are expanded as follows. We run the
seed queries through the search logs to find exact query
matches. For each record where the queries match ex-
actly, we extract the IP address that issued the query. We
then go back to the search logs and extract all queries
that were issued by this IP address. The reasoning here
is that since this IP address issued a query that we believe
to be malicious, it is probably that other queries from this
IP address would also be malicious. This is because at-
tackers typically issue not just a single query but rather
multiple queries so as to get more search results. This
method of expansion would allow us to capture the other
queries issued.

However, it must be noted that since we are using the
IP address to expand to other queries, we need to be care-
ful about dynamic IP addresses because of DHCP. In or-
der to reduce the impact of dynamic IPs on our data, we
consider only queries that were made on the same day as
the seed query.

At the end of this step, we have all the queries that
were issued from suspicious IP addresses on the same
day.

3

Stage 1

Stage 2

Search
log

Seed
queries

Seed
query IPs

Expanded
query set

Regular
expression

engine

Attackers'
queries +

results
Proxy
filter

Seed
queries

Seed
queries

Regular
expressions

Attack
analysis

Prediction

Prevention

Data
dissemination

Phishing

Spam

Malware

Loop back seed queries

Figure 1: The architecture of the system is a pipeline connecting the query expansion framework, the proxy elimination, and the
regular expression generation.

3.2 Regular Expression Generation

The next step after performing query expansion is the
generation of regular expressions. We prefer regular ex-
pressions over fixed strings for two reasons. First, they
can potentially match malicious searches even if attack-
ers change the search terms slightly. In our logs, we find
that many hackers add restrictions to the query terms,
e.g., adding “site:cn” will obtain search results in the
.cn domain only; regular expressions can capture these
variations of queries. Second, as many of the queries are
generated using scripts, regular expressions can capture
the structure of the queries and therefore can match fu-
ture malicious queries.

Signature Generation: We use a technique similar
to AutoRE [23] to derive regular expressions, with a
few modifications to incorporate additional information
from the search domain, such as giving importance to
word boundaries and special characters in a query. The
regular-expression generator works as follows. First, it
builds a suffix array to identify all popular keywords in
the input set. Then it picks the most popular keyword
and builds a root node that contains all the input strings
matching this keyword. For the remaining strings, it re-
peats the process of selecting root nodes until all strings
are selected. These root nodes are used to start building
trees of frequent substrings. Then the regular-expression
generator recursively processes each tree to form a forest.
For each tree node, the keywords on the path to the root
construct a pattern. It then checks the content between
keywords and places restrictions on it (e.g., [0-9]{1,3}
to constrain the intervening content to be one to three

digits). In addition, for each regular expression, we com-
pute a score that measures the likelihood that the regular
expression would match a random string. This score is
based on entropy analysis, as described in [23]; the lower
the score, the more specific the regular expression. How-
ever, a too specific regular expression would be equiva-
lent to having an exact match, and thus loses the bene-
fit of using the regular expression in the first place. We
therefore need a score threshold to pick the set of regular
expressions in order to trade off between the specificity
of the regular expression and the possibility of it match-
ing too many benign queries. In SearchAudit, we select
regular expressions with score lower than 0.6. (Parame-
ter selection is discussed in detail in Section 4.2.)

Eliminating Redundancies: One issue with the gener-
ated regular expressions is that some of them may be re-
dundant, i.e., though not identical, they match the same
or similar set of queries. For example, three input strings
query site:A, query site:B, and query may
generate two regular expressions query.{0,7} and
query site:.{1}. The two regular expressions have
different coverage and scores, but are both valid. In or-
der to eliminate redundancy in regular expressions, we
use the REGEX CONSOLIDATE algorithm described in
Algorithm 1. The algorithm takes as input S, the set of
input queries, R1, . . . , Rn, the regular expressions, and
returns R, the subset of input regular expressions. Here,
the function MATCHES(S , Ri) returns the strings V ⊆ S
that match the regular expression Ri.

We note that REGEX CONSOLIDATE is a greedy algo-
rithm and does not return the minimal set of regular ex-

4

Algorithm 1 REGEX CONSOLIDATE(S, R1, . . . , Rn)
R← {}
V ← ∪n

i=1 MATCHES(S , Ri)
while |V | > 0 do

Rmax ← Rj where Rj is the regular expression
that matches the most number of strings in V
R← R ∪Rmax

V ← V− MATCHES(V , Rmax)
end while
return R

pressions required to match all the input strings. Finding
the minimal set is in fact NP-Hard [4].

This ability to consolidate regular expressions has an-
other advantage: if the input to the regular-expression
generator contains too many strings, it is split into mul-
tiple groups, and regular expressions are generated for
each group separately. These regular expressions can
then be merged together using REGEX CONSOLIDATE.

Eliminating Proxies: We observe that we can speed
up the generation of regular expressions by reducing the
number of strings fed as input to the regular-expression
generator. However, we would like to do this without
sacrificing the quality of the regular expressions gener-
ated. We observe in our experiments that some of the
seed malicious queries are performed by IP addresses
that correspond to public proxies or NATs. These IPs are
characterized by a large query volume, since the same
IP is used by multiple people. Also, most of the queries
from these IPs are regular benign queries, interspersed
with a few malicious ones. Therefore, eliminating these
IPs would provide a quick and easy way of decreasing
the number of input strings, while still leaving most of
the malicious queries untouched.

In order to detect such proxy-like IPs, we use a sim-
ple heuristic called behavioral profiling. Most users in
a geographical region have similar query patterns, which
are different from that of an attacker. For proxies that
have mostly legitimate users, their set of queries will
have a large overlap with the popular queries from the
same /16 IP prefix. We label an IP as a proxy if it issues
more than 1000 queries in a day, and if the k most pop-
ular queries from that IP and the k most popular queries
from that prefix overlap in m queries. (We empirically
find k = 100 and m = 5 to work well.) Note however,
that the proxy elimination is purely a performance opti-
mization, and not necessary for the correct operation of
SearchAudit. Behavioral profiling could also be replaced
with a better technique for detecting legitimate proxies.

Looping Back Queries: Once the regular expressions
are generated, they are applied to the search logs in order
to extract all queries that match the regular expressions.
This is an enlarged set of suspicious queries. These

Matching Type Total Queries Uniq. Queries IPs

Seed match 122,529 122 174
Exact match (expanded) 216,000 800 264
Regular expression match 297,181 3,560 1,001

Table 1: The number of search requests, unique queries, and
IPs for different matching techniques on the February 2009
dataset.

!

!"#

!"$

!"%

!"&

'

! !"# !"$!"% !"& '

!"
#$
%&'

()
'*
)+

#%
$,
-.

)/
0-

"&-
1)

,#
2&
(3
)(
-4

)$
''

5&
-1

6-3-7)8,"-1,'9.

Figure 2: Selecting the threshold for regular expression scores:
for regular expressions having score 0.6 or less, nearly all the
matched queries have new cookies.

queries generated by SearchAudit can now be fed back
into the system as new seed queries for another itera-
tion. A discussion on the effect of looping back queries
as seeds, and its benefits, is presented in Section 4.3.3.

4 Stage One Results

We apply SearchAudit to several months of search logs
in order to identify malicious searchers. In this section,
we first describe the data collection and system setup.
Then we explain the process of parameter selection. Fi-
nally, we present the detection results and verify the re-
sults.

4.1 Data Description and System Setup

We use three months of search logs from the Bing search
engine for our study: February 2009 (when it was known
as Live Search), December 2009, and January 2010.
Each month of sampled data contains around 2 billion
pageviews. Each pageview records all the activities re-
lated to a search result page, including information such
as the query terms, the links clicked, the query IP ad-
dress, the cookie, the user agent, and the referral URL.
Because of privacy concerns, the cookie and the user
agent fields are anonymized by hashing.

The seed malicious queries are obtained from a hacker
Web site milw0rm.com [1]. We crawl the site and ex-
tract 500 malicious queries, which were posted between
May 2006 and August 2009.

5

We implement SearchAudit on the Dryad/DryadLINQ
platform, where data is processed in parallel on a clus-
ter of 240 machines. The entire process of SearchAudit
takes about 7 hours to process the 1.2 TB of sampled
data.

4.2 Selection of Regular Expressions

As described in Section 3.2, we can eliminate proxies
to speed up the regular expression generation. If we do
not eliminate proxies, the input to the regular-expression
generator can contain queries from the proxies, and there
may be many benign queries among them. As a result, al-
though some of the generated regular expressions may be
specific, they could match benign queries. In this setting,
we need to examine each regular expression individu-
ally, and select those that match only malicious queries.
To do this, we use the presence of old cookies to guide
us. We observe that if we pick a random set of search
queries (which may contain a mix of normal and mali-
cious queries), the number of new cookies in them is sub-
stantially low. However, for the known malicious queries
(the seed queries), it is close to 100%, because most au-
tomated traffic either does not enable cookies or presents
invalid cookies. (In both these cases, a new cookie is
created by the search engine and assigned to the search
request.) Of course, cookie presence is just one feature
of regular user queries. We can use other features as well,
as discussed in Section 4.5.

If proxies are eliminated, the remaining queries are
from the attackers’ IPs, and we find that most of them are
malicious. In this case, we can simply use a threshold
to pick regular expressions based on their scores. This
threshold represents a trade-off between the specificity of
the regular expression and the possibility of it being too
general and matching too many random queries. Again,
we use the number of new cookies as a metric to guide us
in our threshold selection. Figure 2 shows the relation-
ship between the regular expression score and the per-
centage of new cookies in the queries matched by the
regular expressions. We see empirically that expressions
with scores lower than 0.6 have a very high fraction of
new cookies (> 99.85%), similar to what we observe
with the seed malicious queries. On the other hand, regu-
lar expressions with score greater than 0.6 match queries
where the fraction of new cookies is similar to what we
see for a random sampling of user queries; therefore it
is plausible that these regular expressions mostly match
random queries that are not necessarily malicious.

In our tests, proxy elimination filters most of the be-
nign queries, but less than 3% of the unique malicious
queries (using cookie-age as the indicator). Therefore
it has little effect on the generated regular expressions.
Consequently, all the results presented in the paper are

Seed Queries Used Coverage

100 queries (pre-2009) 100%
Random 50% 98.50%
Random 25% 88.50%

Table 2: Malicious query coverage obtained when using differ-
ent subsets of the seed queries.

with the use of proxy elimination. We choose 0.6 as the
regular expression threshold, and this ends up picking
about 20% of the generated regular expressions.

4.3 Detection Results
We now present results obtained from running
SearchAudit, and show how each component con-
tributes to the end results.

4.3.1 Effect of Query Expansion and Regular Ex-
pression Matching

We feed the 500 malicious queries obtained from
milw0rm.com into SearchAudit, and examine the
February 2009 dataset. Using exact string match, we
find that 122 of the 500 queries appear in the dataset, and
we identify 174 IP addresses that issued these queries.
Many of these queries are submitted from multiple IP
addresses and many times, presumably to fetch multi-
ple pages of search results. In all, there are 122,529 such
queries issued by these IP addresses to the search engine.
Then we use the query expansion module together with
the proxy elimination module of SearchAudit and obtain
800 unique queries from 264 IP addresses. Finally we
run these queries through the regular expression genera-
tion engine.

Table 1 quantifies the number of additional queries
SearchAudit identifies by the use of query expansion
and regular expression generation. Using regular expres-
sion matching, SearchAudit identifies 3,560 distinct ma-
licious queries from 1001 IP addresses. Compared to
exact matching of the seed queries, regular-expression-
based matching increases the number of unique queries
found by almost a factor of 30. We also find 4 times more
attacker IPs. Thus using regular expressions for match-
ing provides significant gains.

4.3.2 Effect of Incomplete Seeds

Seed queries are inherently incomplete, since they are a
very small set of known malicious queries. In this sec-
tion, we look at how much coverage SearchAudit contin-
ues to get when the number of seed queries is decreased.

First, we split the 122 seed queries into two sets: 100
queries that were first posted on milw0rm.com before

6

IPs Queries % Queries
with Cookies

No loopback 1,001 297,181 0.15%
Loopback 1 39,969 8,992,839 0.87%
Loopback 2 40,318 9,001,737 0.96%
Loopback 3 41,301 9,028,143 0.97%

Table 3: The number of IPs and queries captured by SearchAu-
dit in the February 2009 dataset, with and without looping back.

2009, and the remaining 22 that were posted in 2009. We
then use the 100 queries as our seed, and run SearchAudit
on the same search log for a week in February 2009. We
find that the queries generated by SearchAudit recover
all the 122 seed queries. Therefore SearchAudit is ef-
fective in finding the malicious queries even before they
are posted on the Web site; in fact we find queries in the
search logs several months before they are first posted on
the Web site.

Next, we choose a random subset of the original seed
queries. With 50% of the randomly selected seed queries,
our coverage is 98.5% out of the 122 input seed queries;
and using just 25% of the seed queries, we can obtain
88.5% of the queries. These results are summarized in
Table 2.

4.3.3 Looping Back Seed Queries

After SearchAudit is bootstrapped using malicious
queries, it uses the derived regular expressions to gen-
erate a steady stream of queries that are being performed
by attackers. SearchAudit uses these as new seeds to gen-
erate additional suspicious queries. Each such set of sus-
picious queries can subsequently be fed back as new seed
input to SearchAudit, until the system reaches a fixed
point, or until the marginal benefit of finding more such
queries outweighs the cost.

To measure when this fixed point would occur, we use
the February 2009 dataset, and run SearchAudit multiple
times, each time taking the output from the previous run
as the seed input. For the first run, we use the 500 seed
queries obtained from milw0rm.com.

Table 3 summarizes our findings. We see that, as ex-
pected, the number of queries captured increases when
the generated queries are looped back as new seeds.
Also, the number of queries that have valid cookies re-
mains quite small throughout (< 1%), suggesting that
the new queries generated through the loopback are sim-
ilar to the seed queries and the queries generated in the
first round. We observe that looping back once signifi-
cantly increases the set of queries and IPs captured (from
1001 IPs to almost 40,000 IPs), but subsequent iterations
do not add much information.

Therefore, we restrict SearchAudit to loop back the
generated queries as seeds exactly once.

Dataset IPs Total Queries Uniq. Queries

Feb-2009 39,969 8,992,839 542,505
Dec-2009 29,364 5,824,212 3,955,244
Jan-2010 42,833 2,846,703 422,301

Table 4: The number of search requests, unique queries, and
IPs captured by SearchAudit in the different datasets.

4.3.4 Overall Matching Statistics

Putting it all together, i.e., using regular expression
matching and loopback, Table 4 shows the number of
IPs, total queries, and distinct queries that SearchAudit
identifies in each of the datasets. Overall, SearchAu-
dit identifies over 40,000 IPs issuing more than 4 mil-
lion malicious queries, resulting in over 17 million
pageviews. One interesting point to note here is the sig-
nificant spike in the number of unique queries found in
the December dataset. The reason for this spike is the
presence of a set of attacker IPs that do not fetch multiple
result pages for a query, but instead generate new queries
by adding a random dictionary word to the query, thereby
increasing the number of distinct queries we observe.

4.4 Verification of Malicious Queries

Next, we verify that the queries identified by SearchAu-
dit are indeed malicious queries. As we lack ground truth
information about whether a query is malicious or not,
we adopt two approaches. The first is to check whether
the query is reported on any hacker Web sites or secu-
rity bulletins. The second is to check query behavior—
whether the query matches individual bot or botnet fea-
tures.

For each query q returned by SearchAudit, we issue a
query “q AND (dork OR vulnerability)” to the search en-
gine, and save the results. Here, the term “dork” is used
by attackers to represent malicious searches. We add the
terms “dork” and “vulnerability” to the query to help us
find forums and Web sites that discuss these queries. We
then look at the most popular domains appearing in the
search results across multiple queries. Domains that list
a large number of malicious searches from our set are
likely to be security forums, blogs by security companies
or researchers, or even hacker Web sites. These can now
be used as new sources for finding more seed queries.
We manually examine 50 of these Web sites, and find that
around 60% of them are security blogs or advisories. The
remaining 40% are in fact hacker forums. In all, 73% of
the queries reported by SearchAudit contain search re-
sults associated with these 50 Web sites.

Next we look at two sets of behavioral features that
would indicate whether the query is automated, and
whether a set of queries was generated by the same

7

script. The first set of features applies to individual bot-
generated queries, e.g., not clicking any link. They indi-
cate whether a query is likely to be scripted or not. The
second set of features relates to botnet group properties.
In particular, they quantify the likelihood that the differ-
ent queries captured by a particular regular expression
were generated by the same (or similar) script.

Note that although these behavior features could dis-
tinguish bot queries from human-generated ones, they
are not robust features because attackers can easily use
randomization or change their behavior if they know
these features. In this work, we use these behavior fea-
tures only for validation rather than relying on them to
detect malicious queries.

4.4.1 Verification of Queries Generated by Individ-
ual Bots

To distinguish bot queries from those generated by hu-
man users, we select the following features:
• Cookie: This is the cookie presented in the search re-

quest. Most bot queries do not enable cookies, result-
ing in an empty cookie field. For normal users who
do not clear their cookies, all the queries carry the old
cookies.
• Link clicked: This records whether any link in the

search results was clicked by the user. Many bots do
not click any link on the result page. Instead, they
scrape the results off the page.
We compare queries returned by SearchAudit with

queries issued by normal users for popular terms such
as facebook and craigslist. Table 5 and Table 6
show the comparison results. We see that for SearchAu-
dit returned queries, 98.8% of them disable cookies, as
opposed to normal users, where only 2.7% disable cook-
ies. We also see that on average, all the queries in a group
returned by SearchAudit had no links clicked. On the
other hand, for normal users, over 85% of the searches
resulted in clicks. All these common features suggest
that the queries returned by SearchAudit are highly likely
to be automated or scripted searches, rather than being
submitted by regular users.

4.4.2 Verification of Queries Generated by Botnets

Having shown that individual queries identified by
SearchAudit display bot characteristics, we next study
whether a set of queries matched by a regular expression
are likely to be generated by the same script, and hence
the same attacker (or botnet). For all the queries matched
by a regular expression, we look at the behavior of each
IP address that issued the queries. If most of the IP ad-
dresses that issued these queries exhibit similar behavior,
then it is likely that all these IPs were running the same

script. We pick the following four features that are rep-
resentative of querying behavior:

• User agent: This string contains information about the
browser and the version used.
• Metadata: This field records certain metadata that

comes with the request, e.g., where the search was is-
sued from.

Some botnets use a fixed user agent string or metadata,
or choose from a set of common values. For each group,
we check the percentage of IP addresses that have identi-
cal values or identical behavior, e.g., changing value for
each request. If over 90% of the IPs show similar behav-
ior, we infer that IPs in this group might have used the
same script.

• Pages per query: This records the number of search
result pages retrieved per query.
• Inter-query interval: This denotes the time between

queries issued by the same IP.

Queries generated by the same script may retrieve a
similar number of result pages per query or have a simi-
lar inter-query interval. For these two features, we com-
pute median value for each IP address and then check
whether there is only a small spread in this value across
IP addresses (< 20%). This allows us to infer whether
the different IPs follow the same distribution, and so be-
long to the same group.

Table 7 and Table 8 show the comparison between ma-
licious queries and regular query groups. We see that
for query groups returned by SearchAudit, a significant
fraction of the queries agree on the metadata feature. For
regular users, one usually observes a wide distribution of
metadata. We see a similar trend in the user-agent string
as well. For regular users, the user-agent strings rarely
match, while for suspicious queries, more than half of
them share the same user-agent string. With respect to
the number of pages retrieved per search query, we see
that regular users typically take only the first page re-
turned. On the other hand, groups captured by SearchAu-
dit fetch on average around 15 pages per query. This
varies quite a bit across groups, with many groups fetch-
ing as few as 5 pages per query, and several groups fetch-
ing as many as 100 pages for a single query.

The average inter-query interval for normal users is
over 2.5 hours between successive queries. On the other
hand, the average inter-query interval for bot queries is
only 7 seconds, with most of the attackers submitting the
queries every second or two. A few stealthy attackers
repeated search queries at a much slower rate of once
every 3 minutes.

For each regular expression group, we sum up the bot-
net features that it matches. Figure 3 shows the distri-
bution. A majority (87%) of the groups have at least

8

Field
Fraction of Queries
within a Group with
Same Value

Cookie enabled = false 87.50%
Link clicked = false 99.90%

Table 5: The fraction of search queries within each regular ex-
pression group agreeing on the value of each field.

Field
Fraction of Queries
within a Group with
Same Value

Cookie enabled = false 2.70%
Link clicked = false 14.23%

Table 6: The fraction of search queries by normal users agreeing
on the value of each field.

Feature
Fraction of Queries
within a Group
with Same Value

User agent 51.30%
Metadata 87.50%
Pages per query 14.82
Inter-query interval 6.98 seconds

Table 7: The fraction of search queries within each SearchAudit
regular expression group agreeing on botnet features.

Feature
Fraction of Queries
within a Group
with Same Value

User agent 4.02%
Metadata 21.80%
Pages per query 1.07
Inter-query interval 9275.5 seconds

Table 8: The fraction of search queries by normal users agreeing
on botnet features.

!"#$%

!"&'%

!"()%

!"!)%
!"!!%

!"(!%

!")!%

!"&!%

!"#!%

*"!!%

*% (% +%)%

!"
#$
%
&'

(&
)("
*+
*,
(+
"&
-.

/(

0-12*"(&)(2&3'*3()*#3-"*/(

Figure 3: Graph showing the fraction of regular expressions
that match one or more botnet features.

one similar botnet feature and 69% of them have two or
more features, suggesting that the queries captured by
SearchAudit are probably generated by the same script.

4.5 Discussion
Network security can be an arms race and the generated
regular expressions can become obsolete [20]. However,
we believe that the signature-based approach is still a vi-
able solution, especially if we have good seed queries. In
the paper, we show that even a few hundred seed queries
can help identify millions of malicious queries. In ad-
dition, SearchAudit can also identify new hackers’ fo-
rums or security bulletins that can be used as additional
sources for seed queries. As long as there are a few IP
addresses participating in different types of attacks, the
query expansion framework of SearchAudit can be used
to follow attackers and capture new attacks.

With the publication of the SearchAudit framework,
attackers may try to work around the system and hide
their activities. Attackers may try to mix the malicious
searches with normal user traffic to trick SearchAudit to

conclude that they are using proxy IP addresses. This
is hard because behavior profiling requires attackers to
submit queries that are location sensitive and also time
sensitive. As many attackers use botnets to hide them-
selves, their IP addresses are usually spread all over the
world, making it a challenging task to come up with nor-
mal user queries in all regions. In addition, as we men-
tioned in Section 3, proxy elimination is an optimization
and it can be disabled. In such settings, both the normal
queries and malicious queries can generate regular ex-
pressions. But the regular expressions of normal queries
will be discarded because they match many other queries
from normal users.

Attackers may also try to add randomness to the
queries to escape regular expression generation. The reg-
ular expression engine looks at frequently occurring key-
words to form the basis of the regular expression. There-
fore, even if one attacker can manage not to reuse key-
words for multiple queries, he has no control over other
attackers using a similar query with the same keyword.
An attacker may also simply avoid using a keyword, but
since the query needs to be meaningful in order to get
relevant search results, this approach would not work.

In this work, we use the presence of old cookies to
help us choose regular expressions that are more likely
to be malicious; old cookies are a feature associated with
normal benign users. We use the cookies as a marker for
normal users because it is very simple, and works well
in practice. If the attackers evolve and start to use old
cookies, possibly by hijacking accounts of benign users,
we can rely on other features such as the presence of a
real browser, long user history, actual clicking of search
results, or other attributes such as user credentials.

9

Even if a particular attacker is very careful and man-
ages to escape detection, if other attackers are less careful
and use similar queries and get caught by SearchAudit,
the careful attacker should still be found.

5 Stage 2: Analysis of Detection Results

In this section, we move on to the second stage of
SearchAudit: analyzing malicious queries and using
search to study the correlation between attacks.

The detected suspicious queries were submitted from
more than 42,000 IP addresses across the globe. Large
countries such as USA, Russia, and China are respon-
sible for almost half the IPs issuing malicious queries.
Looking at the number of queries issued from each IP,
we find a large skew: 10% of the IPs are responsible for
90% of the queries.

SearchAudit generates around 200 regular expres-
sions. Table 9 lists ten example regular expressions,
ordered by their scores. As we can see, the lower the
score, the more specific the regular expression is. The
last one .{1,25}comment.{2,21} is an example of a
discarded regular expression, with a score 0.78. It is very
generic (searching for string comment only) and hence
may cause many false positives.

By inspecting the generated regular expressions and
the corresponding query results, we identify two asso-
ciated attacks: finding vulnerable Web sites and forum
spamming. We describe them next.

Vulnerable Web sites: When searching for vulnerable
servers, attackers predominantly adopt two approaches:

1. They search within the structure of URLs to find
ones that take particular arguments. For example,

index.php?content=[ˆ?=#+;&:]{1,10}

searches for Web sites that are generated by PHP
scripts and take arguments (content=). Attackers
then try to exploit these Web sites by using specially
crafted arguments to check whether they have pop-
ular vulnerabilities like SQL injection.

2. They perform malicious searches that are targeted,
focusing on particular software with known vulner-
abilities.

We see many malicious queries that start with
"Powered by" followed by the name of the soft-
ware and version number, searching for known vul-
nerabilities in some version of that software.

Forum spamming: The second category of malicious
searches are those that do not try to compromise Web
sites. Instead, they are aimed towards performing certain
actions on the Web sites that are generated by a particular

piece of software. The most common goal is Web spam-
ming, which includes spamming on blogs and forums.
For example, a regular expression
"/includes/joomla.php" site:.[a-zA-Z]{2,3}
searches for blogs generated by the Joomla software.
Attackers may have scripts to post spam to such blogs or
forums.

Windows Live Messenger phishing: Besides iden-
tifying malicious searches generated by attackers,
SearchAudit is also useful to study malicious searches
triggered by normal users. In April 2009, we noticed in
our search logs a large number of queries with the key-
word party, generated by a series of Windows Live
Messenger phishing attacks [25]. We see these queries
because the users are redirected by the phishing Web
site to pages containing the search results for the query.
Since the queries are triggered by normal users compro-
mised by the attack, expanding the queries by IP address
will not gain us any information. In this case we use
SearchAudit only to generate regular expressions to de-
tect this series of phishing attacks.

In the next three sections, we study these three attacks
(compromise of vulnerable Web sites, forum spamming,
and Windows Live Messenger phishing) in detail. We
aim to answer questions such as how do attackers lever-
age malicious searches for launching other attacks, how
do attacks propagate and at what scale do they operate,
and how can the results of SearchAudit be used to better
understand and perhaps stop these attacks in their early
stages.

6 Attack 1: Identifying Vulnerable Web
Sites

As vulnerable Web sites are typically used to host phish-
ing pages and malware, we start with a brief overview
of phishing and malware attacks before describing how
malicious searches can help find vulnerable Web sites.

6.1 Background of Phishing/Malware At-
tacks

A typical phishing attack starts with an attacker search-
ing for vulnerable servers by either crawling the Web,
probing random IP addresses, or searching the Web with
the help of search engines. After identifying a vulner-
able server and compromising it, the attacker can host
malware and phishing pages on this server. Next, the
attacker advertises the URL of the phishing or malware
page through spam or other means. Finally, if users are
tricked into visiting the compromised server, the attacker
can conduct cyber crimes such as stealing user creden-
tials and infecting computers.

10

Regular	
�
   Expression Score

"/includes/joomla\.php" site:\.[a-zA-Z]{2,3} 0.06

"/includes/class_item\.php" site:[^?=#+@;&:]{2,4} 0.08

"php-nuke" site:[^?=#+@;&:]{2,4} 0.16

"modules\.php\?op=modload" site:\.[a-zA-Z0-9]{2,6} 0.16

"[^?=#+@;&:]{0,1}index\.php\?content=[^?=#+@;&:]{1,10} 0.24

"powered by xoopsgallery" [^?=#+@;&:]{0,23}site:[a-zA-Z]{2,3} 0.30

"[^?=#+@;&:]{0,12}\?page=shop\.browse".{0,9} 0.35

.{0,8}index\.php\?option=com_.{3,17} 0.40

[^?=#+@;&:]{0,3}webcalendar v1\..{3,17} 0.43

.{1,25}comment.{2,21} 0.78

Table 9: Example regular expressions and their scores. The last row is an example of a regular expression that is not selected
because it is not specific enough.

Currently, phishing and malware detection happens
only after the attack is live, e.g., when an anti-spam
product identifies the URLs in the spam email, when a
browser captures the phishing content, or when anti-virus
software detects the malware or virus. Once detected,
the URL is added to anti-phishing blacklists. However, it
is highly likely that some users may have already fallen
victim to the phishing scam by the time the blacklists are
updated.

6.2 Applications of Vulnerability Searches

With SearchAudit, we can potentially detect phish-
ing/malware attack at the very first stage, when the at-
tacker is searching for vulnerabilities. We might even
proactively prevent servers from getting compromised.

To obtain the list of vulnerable Web sites, we sample
5,000 queries returned by SearchAudit. For every query
q we issue a query “q -dork -vulnerability” to the search
engine and record the returned URLs. Here we explicitly
exclude the terms “dork” and “vulnerabilities” because
we do not want results that point to security forums or
hacker Web sites that discuss and post the vulnerability
and the associated “dork”. Using this approach, we ob-
tain 80,490 URLs from 39,475 unique Web sites.

Ideally, we would like to demonstrate that most of
these Web sites are vulnerable. Since there does not
exist a complete list of vulnerable Web sites to com-
pare against, we use several methods for our validation.
First, we compare this list and a list of random Web sites
against a list of known phishing or malware sites, and
show that the sites returned by SearchAudit are more
likely to appear in phishing or malware blacklists. Sec-

!"

!#$"

!#%"

!#&"

!#'"

("

!" !#(" !#$" !#)" !#%" !#*" !#&" !#+"!"
#
"$
%&

'(
)*+
%,
&
-.

)-
*)/

"(
+0
(1
)

2+%,&-.)-*)+(1"$31),-#4+-#01(5)

Figure 4: The fraction of search results that were present in
phishing/malware feeds for each query.

ond, we test and show that many of these sites indeed
have SQL injection vulnerabilities.

6.2.1 Comparison Against Known Phishing and
Malware Sites

For the potentially vulnerable Web sites obtained from
the malicious queries, we check the presence of these
URLs in known anti-malware and anti-phishing feeds.
We use two blacklists: one obtained from PhishTank [2]
and the other from Microsoft. In addition, we submit
these queries to the search engine again at the time of
our experiments in order to obtain the latest results.

In both cases, the results are similar: 3-4% of the do-
mains listed in the search results of malicious queries are
in the anti-phishing blacklists, and 1.5% of them are in
the anti-malware blacklist. In total, around 5% of the
domains appear in one or more blacklists. This is signif-
icantly higher than other classes of Web sites we consid-
ered.

11

Not all malicious queries may be equally good at find-
ing vulnerable servers. Figure 4 shows the distribution
of compromised search results across queries. For the
top 10% of the queries, at least 15% of the search results
appear in the blacklists.

6.2.2 SQL Injection Vulnerabilities

Next, we show that a subset of these Web sites do indeed
have vulnerabilities. Given that SQL injection is a popu-
lar attack, since many Web sites use database backends,
we test for SQL vulnerabilities.

The best way to prove that a server has SQL injec-
tion vulnerabilities would be to actually compromise the
server; however, we were not comfortable with doing
this. Instead, we limit ourselves to checking if the in-
puts appear to be sanitized by performing the following
study. For the malicious queries, we look at the search
results and crawl all of the links twice. For each link, the
first time we crawl the link as is, and the second time we
add a single quote (’) to the first argument to test whether
the server sanitizes the argument correctly. Note that we
consider URLs that take an argument. We then compare
the Web pages obtained from the successive crawls. If
the two pages are identical, then it suggests that the in-
put arguments are being properly sanitized, so there is
no obvious SQL injection vulnerability. However, if the
pages are different, it does not necessarily mean that the
input is not being sanitized—it could just be an adver-
tisement that changes with each access. Instead, we look
at the diff between the two pages, and check whether
the second page contains any kind of SQL error. If there
is an SQL error in the second page, but not in the first, it
shows that the input string is not being filtered properly.
While the presence of unsanitized inputs does not guar-
antee SQL injection vulnerabilities, it is nevertheless a
strong indicator.

We examine a sample of 14,500 URLs obtained from
the results of malicious queries, and find that 1,760 URLs
(12%) do not sanitize the input strings and therefore may
be vulnerable to SQL injection. Note that this is a conser-
vative estimate since these URLs only account for Web
sites that take arguments in the URL. Other Web sites
that take POST arguments or have input forms on their
pages could also be susceptible to SQL injection attacks.

7 Attack 2: Forum-Spamming Attacks

Using the seed queries from milw0rm (which were for
the purpose of finding vulnerable Web sites), SearchAu-
dit additionally identifies forum-spamming attacks. In
this section, we study the forum-spamming searches in
detail.

Dataset Forum-Searching IPs Total Searches

February 2009 22,466 5,828,704
December 2009 20,309 1,130,337
January 2010 31,071 567,445

Table 11: Stats on forum-searching IPs.

7.1 Attack Process
Forum spamming is an effective way to deliver spam
messages to a large audience. In addition, it may be used
as a technique to boost the page rank of Web sites. To do
so, spammers insert the URL of the target Web site that
they want to promote in a spam message. By posting
the message in many online forums, the target Web site
would have a high in-degree of links, possibly resulting
in a high page rank.

While there are several studies on the effect of forum
spamming [19, 22], this section focuses on exploring the
ways spammers perform forum spamming. In particu-
lar, we show how they discover a large number of forum
pages in the first place.

Table 10 shows a few example forum-related queries
captured by SearchAudit. There are two types of
queries: the first being general like “post a new topic”,
and the second being more specific, tailored for a par-
ticular piece of software. For example,“UBBCode:
!JoomlaComment” searches for pages generated by
the JoomlaComment software. For both types of queries,
random keywords are added to increase the search cov-
erage. The randomness is especially useful if spammers
use botnets, as each bot will get different query results
and they can focus on spamming different forums in par-
allel.

7.2 Attack Scale
From the regular expressions generated by SearchAudit,
we manually identified 46 regular expressions that are
associated with forum spamming. Using these regular
expressions, we proceeded to study the matched queries
and IP addresses. Table 7.2 shows that the number of IPs
used for forum searching stayed quite constant in 2009,
but in 2010, the number of IP addresses increased by
50%.

Most IPs have transient behavior. Comparing the
IPs in December 2009 to those in January 2010, only
3115 (10-15%) IPs overlap. This shows that the forum-
spamming hosts either change frequently, or may reside
on dynamic IP ranges and hence their IPs change over
time. Both these possibilities suggest that they are likely
to be botnet hosts. In fact, when we apply the group
similarity tests to check botnet behavior (defined in Sec-
tion 4.4.2), all forum groups have at least one group sim-
ilarity features.

12

Regular	
�
   Expression #	
�
   of	
�
   

IPs

Group	
�
   

Similarity	
�
   

Features

Targeted	
�
   	
�
   Forum

Genera on	
�
    ware

[^?=#+@;&:]{2,7}	
�
   "Commenta"	
�
   !JoomlaComment -­‐""#R# 253 3 Joomla

[^?=#+@;&:]{6,11}	
�
   "ips,	
�
   inc" 9159 IP.Board

[^?=#+@;&:]{1,8}	
�
   "Message:"	
�
   photogallery#R# 253 3 PhotoPost

[^?=#+@;&:]{1,9}	
�
   "Be	
�
    rst	
�
   to	
�
   comment	
�
   this	
�
    cle"	
�
   

akocomment#R#

255 4 AkoComment

[^?=#+@;&:]{1,6}	
�
   "UBBCode:"	
�
   !JoomlaComment -­‐""#R# 255 3 JoomlaComment

[^?=#+@;&:]{1,8}	
�
   "The	
�
   comments	
�
   are	
�
   owned	
�
   by	
�
   the	
�
   poster\.	
�
   

We	
�
   aren't	
�
   responsible	
�
   for	
�
   their	
�
   content\."	
�
   sec ons#R#

253 3 PHP-­‐Nuke,	
�
   Xoops,	
�
   etc.

[a-­‐zA-­‐Z]{4,12}	
�
   post	
�
   new	
�
   topic 1028 1 phpBB,	
�
   Gallery,	
�
   etc

[^?=#+@;&:]{5,13}	
�
   Board	
�
   Sta s cs.{0,10} 302 1 Invision Power	
�
   Board	
�
   

(IP.Board),	
�
   MyBB,	
�
   etc.

BBS	
�
   [a-­‐zA-­‐Z]{4,12}	
�
    1861 1 Infopop etc.

yabb [a-­‐zA-­‐Z]{4,14}	
�
    388 1 yaBB

ezboard [a-­‐zA-­‐Z]{4,11}	
�
    388 1 ezboard

VBulle n [a-­‐zA-­‐Z]{4,11} 360 1 Vbulle n

4

Table 10: Example regular expressions related to forum searches, their scale, and the targeted forum generation software.

100 102 104 1060

0.2

0.4

0.6

0.8

1

of queries per IP

%
 o

f q
ue

rie
s

(c
df

)

Feb 2009
Dec 2009
Jan 2010

Figure 5: CDF of the distribution of queries among IPs based
on the query volume.

It is interesting to note that, although the number of
IPs increased, the total number of queries decreased. As
shown in Figure 5, IPs are becoming more stealthy. In
February 2009, more than 80% of forum queries were
originated from very aggressive IPs that submitted thou-
sands of queries per IP. Those IPs could be spammers’
own dedicated machines. In Jan 2010, less than 20% of
forum queries are from aggressive IPs. The majority of
the queries are from IPs that search at a low rate.

7.3 Applications of Forum Searching
Queries

Knowledge of forum-searching IPs and query search
terms can be used to help filter forum spam. After a ma-

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Forum group size (# of IPs)

%
 o

f I
Ps

 c
ap

tu
re

d
by

 P
ro

je
ct

 H
on

ey
 P

ot

Figure 6: Fraction of IP addresses appearing in the Project
Honey Pot list vs. the forum group size.

licious search, we can follow the search result pages to
clean up the spam posts. More aggressively, even before
the malicious search, by recognizing the malicious query
terms or the malicious IP addresses, search engines could
refuse to return results to the spammers. Web servers
could also refuse connections from IPs that are known to
search for forums.

We validate the forum-spamming IPs using Project
Honey Pot [3]. Project Honey Pot is a distributed hon-
eypot network that aims to identify Web spamming. Par-
ticipating Web sites embed a piece of software that dy-
namically generates a page containing a different email
address for each HTTP request. Requests are recorded
and the generated email addresses are also monitored.
If later they receive emails (which must be spam, since
these email addresses are unused), Project Honey Pot

13

will know which IP addresses obtained those email ad-
dresses, and which IP addresses sent the spam emails.

Around 12% of the forum searching IPs found
by SearchAudit were captured by Project Honey Pot.
In contrast, among IP addresses that conduct normal
queries such as craigslist, only 0.5% of them were
listed. This shows that the captured forum searching IPs
have a much higher chance of being caught spamming
than the IP addresses of normal users.

Figure 6 plots the matching percentages of different
regular expression groups related to forum searching. We
can see that, across different groups, the percentages of
forum IPs appeared in Project Honey Pot are all signif-
icant. This suggests that most of the forum-spamming
groups are involved in email address scraping as well.
For the largest forum-spamming group, which has 9125
IP addresses, more than 30% of the IP addresses ap-
peared in Project Honey Pot. It is possible that the re-
maining 70% are also associated with spamming, but
they could have targeted Web sites that are not part of
their network, and are hence not captured. Hence, the
analysis of search logs complements Project Honey Pot.
It offers a unique view that allows us to observe all the
IP addresses conducting forum searches, while Project
Honey Pot allows us to see what the attackers do after
performing the searches.

8 Attack 3: Windows Live Messenger
Phishing Attacks

In this section, we study a series of Windows Live Mes-
senger phishing attacks. The queries were not issued by
attackers directly. Rather, they were triggered by normal
users. In this section, we use SearchAudit to generate
regular expressions and study this series of attacks.

8.1 Attack Process

The scheme of these phishing attacks operates as fol-
lows:

1. The victim (say Alice) receives a message from one
of her contacts, asking her to check out some party
pictures, with a link to one of the phishing sites.

2. Alice clicks the link and is taken to the Web page
that looks very similar to the legitimate Windows
Live Messenger login screen and asks her to enter
her messenger credentials. Alice enters her creden-
tials.

3. Alice is now taken to a page
http://<domain-name>.com?user=alice,
which redirects to image search results from a
search engine (in this case, Bing) for party.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 100 200 300 400

C
u
m
u
la
ti
ve
 f
ra
ct
io
n
 o
f

u
se
rs
 c
o
m
p
ro
m
is
e
d

Days since start

Figure 7: The rate at which new users were compromised by
the phishing attack.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

D
om

ai
n

Day

Figure 8: The timeline of how different domain names were
used during the phishing attack. All lines of the same color
correspond to the same IP address.

4. The attackers now have Alice’s credentials. They
log in to Alice’s account and send a similar message
to her friends to further propagate the attack.

We believe there are two reasons why the attackers use
a search engine here. First, using images from a search
engine is less likely to tip the victim off than if the images
were hosted on a random server. Second, the attackers do
not need to host the image Web pages themselves, and
can thus offload the cost of hosting to the search engine
servers.

8.2 Attack Scale

Since this attack generated search traffic that contains the
keyword party, we feed this keyword as the seed query
into SearchAudit. Since all the queries of this attack are
identical or similar, we modify SearchAudit to focus on
the query referral field, which records the source of traf-
fic redirection. SearchAudit generates two regular ex-
pressions from the query referral field:
1.http://[a-zA-Z0-9.]*.<domain-name>/

2.http://<domain-name>?user=[a-zA-Z0-9.]*

14

In the second regular expression, the pattern
[a-zA-Z0-9.]* may seem like a random set of let-
ters and numbers, but it actually describes usernames.
In our example attack scenario, when Alice is redirected
to the image search results, the HTTP-referrer is set to
http://<domain-name>.com?user=alice. Using
this information, we can identify the set of users whose
credentials may have been compromised.

Using these regular expressions, SearchAudit identi-
fies a large number of unique user names in the log col-
lected from May 2008 to July 2009. Figure 7 shows the
cumulative fraction of users compromised by this attack
over time. When the attack first started, there was an ex-
ponential growth phase, similar to other worm or virus
breakouts. This phase ended around day 50, when most
of the domains got blacklisted (see Figure 8). This attack
then transited into a steady increase phase, until day 250
when it broke out again.

There are over 400 unique phishing domain names as-
sociated with this attack. The top domains targeted more
than 105 users. Around one third of the domains phished
fewer than 100 users each. These domains were the ones
that were quickly blacklisted. Figure 8 plots the timeline
of how different domains were used over time. For read-
ability, the plot contains only the top domains (out of the
total 400 domains) that were responsible for compromis-
ing at least 1000 users. The figure plots the domains on
the Y-axis, and the days on which that domain was active
on the X-axis. Each horizontal line corresponds to the
set of days a particular domain was seen in our search
log. The different colors correspond to the different IP
addresses on which the Web pages were hosted. We ob-
serve that though there were over 180 domain names in
circulation, they were all hosted on only a dozen differ-
ent IP addresses. It can also be seen that multiple do-
main names were associated with an IP address at the
same time. Therefore, it is not the case that a new do-
main name was registered and used only after an older
one was blocked.

8.3 Characteristics of Compromised Ac-
counts

We find that the compromised accounts had a large num-
ber of short login sessions (lasting less than one minute).
These short login sessions were initiated from IPs in sev-
eral different /24 subnets. Figure 9 shows the compar-
ison between the short logins from multiple subnets for
compromised users and for the other users. We see that
for typical users, 99% of the short logins happened from
fewer than 4 different subnets. However, for the compro-
mised users, we see that more than 50% had short logins
from 15 or more different subnets.

!"

!#$"

!#%"

!#&"

!#'"

("

!" $!" %!" &!" '!" (!!"

!"
#
"$
%&

'(
)*+
%,
&
-.

)-
*)"

/(
+/
)

0)123(+(.4)567/)48%4)%)"/(+)8%/)/8-+4)$-92./)*+-#)

)*+,-.,/"01,21"
344"01,21"

Figure 9: Number of different /24 subnets from which short
logins happen.

We also observe that many of the short logins came
from IPs which were located in Hong Kong. Given
that the phishing sites were also mostly located in Hong
Kong, the attackers might have resources in Hong Kong,
where they logged in to the compromised accounts and
sent messages to spread the phishing attacks.

Using these characteristics, we can then look back at
the login patterns of all Windows Live Messenger users
to identify more user accounts with similar suspicious
login patterns, thus enabling us to take remedial actions
for protecting a larger number of compromised users.

9 Conclusion

In this paper we present SearchAudit, a framework to
identify malicious Web searches. By taking just a small
number of known malicious queries as seed, SearchAu-
dit can identify millions of malicious queries and thou-
sands of vulnerable Web sites. Our analysis showes that
the identification of malicious searches can help detect
and prevent large-scale attacks, such as forum spamming
and Windows Live Messenger phishing attacks. More
broadly, our findings highlight the importance of ana-
lyzing search logs and studying correlations between the
various attacks enabled by malicious searches.

Acknowledgements

We thank Fritz Behr, Dave DeBarr, Dennis Fetterly, Ge-
off Hulten, Nancy Jacobs, Steve Miale, Robert Sim,
David Soukal, and Zijian Zheng for providing us with
data and feedback on the paper. We are also grateful to
anonymous reviewers for their valuable comments.

References

[1] milw0rm.com. http://www.milw0rm.com/.

[2] PhishTank - Join the fight against phishing. http://
www.phishtank.com.

15

[3] Project Honey Pot. http://www.
projecthoneypot.org/home.php.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, 1974.

[5] G. Buehrer, J. W. Stokes, and K. Chellapilla. A large-
scale study of automated Web search traffic. In the 4th
International Workshop on Adversarial Information Re-
trieval on the Web (AIRWeb), 2008.

[6] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end contain-
ment of Internet worms. In the 12th ACM Symposium on
Operating Systems Principles (SOSP), 2005.

[7] N. Daswani and M. Stoppelman. The anatomy of Click-
bot.A. In the 1st Conference on Hot Topics in Under-
standing Botnets (HotBots), 2007.

[8] E. N. Efthimiadis, N. Malevris, A. Kousaridas, A. Lepe-
niotou, and N. Loutas. An evaluation of how search en-
gines respond to greek language queries. In HICSS, 2008.

[9] D. Eichmann. The RBSE spider - Balancing effective
search against Web load, 1994.

[10] S. Frantzen. Clickbot. http://isc.sans.org/
diary.html?storyid=1334.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequen-
tial building blocks. In European Conference on Com-
puter Systems (EuroSys), 2007.

[12] H.-A. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. In the 13th Confer-
ence on USENIX Security Symposium, 2004.

[13] C. Kreibich and J. Crowcroft. Honeycomb: Creating in-
trusion detection signatures using honeypots. In the 2nd
Workshop on Hot Topics in Networks (HotNets-II), 2003.

[14] B. W. Lampson. Computer security in the real world.
IEEE Computer, 37(6):37–46, June 2004.

[15] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez.
Hamsa: Fast signature generation for zero-day polymor-
phic worm with provable attack resilience. In IEEE Sym-
posium on Security and Privacy, 2006.

[16] T. Moore and R. Clayton. Evil searching: Compromise
and recompromise of Internet hosts for phishing. In 13th
International Conference on Financial Cryptography and
Data Security, 2009.

[17] H. Moukdad. Lost in cyberspace: How do search engines
handle Arabic queries. In the 32nd Annual Conference of
the Canadian Association for Information Science, 2004.

[18] J. Newsome, B. Karp, and D. Song. Polygraph: Auto-
matically generating signatures for polymorphic worms.
In IEEE Symposium on Security and Privacy, 2005.

[19] Y. Niu, Y. Wang, H. Chen, M. Ma, and F. Hsu. A quanti-
tative study of forum spamming using context based anal-
ysis. In Network and Distributed System Security (NDSS)
Symposium, 2007.

[20] N. Provos, J. McClain, and K. Wang. Search worms. In
the 4th ACM Workshop on Recurring Malcode (WORM),
2006.

[21] S. Singh, C. Estan, G. Varghese, and S. Savage. Auto-
mated worm fingerprinting. In Operating Systems Design
and Implementation (OSDI), 2004.

[22] Y. Wang, M. Ma, Y. Niu, and H. Chen. Spam double-
funnel: Connecting Web spammers with advertisers. In
World Wide Web Conference (WWW), 2007.

[23] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and
I. Osipkov. Spamming botnets: Signatures and character-
istics. In SIGCOMM, 2008.

[24] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An ar-
chitecture for generating semantics-aware signatures. In
the 14th USENIX Security Symposium, 2005.

[25] F. Yu, Y. Xie, and Q. Ke. Sbotminer: Large scale search
bot detection. In International Conference on Web Search
and Data Mining (WSDM), 2010.

[26] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing us-
ing a high-level language. In Operating Systems Design
and Implementation (OSDI), 2008.

16

