xBook: Redesigning Privacy Control in Social Networking Patforms

Kapil Singht Sumeer Bhola Wenke Lee
School of Computer Science Google School of Computer &cienc
Georgia Institute of Technologysuneer @cm or g Georgia Institute of Technology
ksi ngh@c. gat ech. edu wenke@c. gat ech. edu
Abstract in social networks.

Social networking websites have recently evolved from With the advent of Web 2.0 technologies, web appli-
being service providers to platforms for running thirgation development has become much more distributed
party applications. Users have typically trusted the swith a growing number of users acting as developers and
cial networking sites with personal data, and assume tfatirce of online content. This trend has also influenced
their privacy preferences are correctly enforced. Howeve@cial networks that now act as platforms allowing de-
they are now being asked to trust each third-party applis&lopers to run third-party content on top of their frame-
tion they use in a similar manner. This has left the useiork. Facebook opened up for third-party application
private information vulnerable to accidental or malicioudevelopment by releasing its development APIs in May
leaks by these applications. 2007 [22]. Since the release of the Facebook platform,
In this work, we present a novel framework for buildseveral other sites have joined the trend by supporting
ing privacy-preserving social networking applicationstthGoogle's OpenSocial [10], a cross-site social network de-
retains the functionality offered by the current socialnetelopment platform.
works. We use information flow models to control what These third-party applications further escalate the pri-
untrusted applications can do with the information thescy concerns as user data is shared with these applica-
receive. We show the viability of our design by meanions. Typically, there is no or minimal control over what
of a platform prototype. The usability of the platform igiser information these applications are allowed to access.
further evaluated by developing sample applications usiltgmost cases, these applications are hosted on third party
the platform APIs. We also discuss both security and nagervers that are difficult to monitor. As a result, it is not
security challenges in designing and implementing suclfieasible to police the data being leaked from the applica-

framework. tion after the data is shared with the applicatiofthere
) have been several reported cases where users’ private in-
1 Introduction formation was leaked by the applications, either due to

Social networking sites have transformed the way pagtentional leaks [21] or due to vulnerabilities in the ap-
ple express themselves on the Internet and have becgtigation [26].
a door to the social life of many individuals. Users are Most social networking platforms, such as Facebook,
contributing more and more content to these sites in @urrently provide the applications with full access to user
der to express themselves as part of their profiles andptofile information. This permission is granted in Face-
contribute to their social circles online. While this bsildbook when the user adds the application, which requires
up the online identity for the user, it also leaves the dat#e user to make a trust decision. Setting fine-grained ac-
vulnerable to be misused, as an example, for targeted eglss control policies for an application, even if they were
vertising and sale. supported, would be a complex task. Furthermore, access

More private data online has lead to growing privaayontrol policies are not sufficient in enforcing the privacy
concerns for the users, and some have faced extrasfien individual: once an application is permitted by a
repercussions for sharing their private information agser’s access control policy, it has possession of thesuser’
these networking sites. For example, students have beata and can freely leak this information anytime for per-
fined for their online social behavior [29]; a mayor wasonal gains. For example, a popular Facebook applica-
forced to resign because of a controversial Myspace piion, Compare Friends, that promised users’ privacy in
ture [32]. There are numerous such cases, and these iggehange for opinions on their friends later started sell-
dents clearly underline the importance of privacy contrigig this information [35].

“Part of the work was done when the first author was an intern and!n th|3_ paper, we are concerned with p_rOteCtmg the
the second author was an employee at IBM Research T.J. Watson users’ private information from leaks by third-party ap-

plications. We present a mechanism that controls not oslyme possible application scenarios, and how xBook en-
what the third-party applications can access, but also wkates privacy control in such cases. We also create some
these applications can do with the data that they are synthetic attacks that attempt to exploit the platform to
lowed to access. We propose and implement a new frarteak information. Our results illustrate that xBook can
work calledxBook that provides a hosting service to theuccessfully prevent all such attacks. Our performance
applications and enforces information flow control withiresults further demonstrate that xBook’s privacy control
the framework. xBook provides three types of enforcerechanism incurs negligible overhead for typical social
ment that encapsulate the privacy requirements in a tytworking applications.
ical social network setting: (1) user-user access controlThe rest of the paper is organized as follows. Sec-
(e.g., access to only friends) for data flowing within ongon 2 motivates our work by analyzing some privacy is-
application, (2) information sharing outside xBook witBues with the current social networking platforms. We
external parties; and (3) protection of the applicationgesent an overview of our xBook framework in Section
proprietary data. While (1) and (2) protects the privag, Section 4 and 5 discuss the implementation details of
of a user from information leaks, (3) prevents the appliceBook’s client-side and server-side components, respec-
tion’s proprietary data or algorithm from being leaked tvely. Our labeling model is described in Section 6. Sec-
the application users. tion 7 presents the evaluation results. We discuss the limi-
The third-party applications are redesigned in suchtations of our work in Section 8, followed by related work
way that they have access to all the data they require alSection 9. Finally, Section 10 concludes the paper.
lowing them to perform their functionality) and at the
same time, not allowing these applications to pass tids Background
data to an external entity unless it is approved by the user, . .
Our framework enforceé/ that the appIiF():r')o\tions mi':\ke theé‘el Social Networking Platforms
communications explicit to the usso that he is more in- Social networks are the backbone of the online social

formed before approving an application. life of many Internet users. These networks have ex-
There are several challenges associated with the dedigAded their development scope by allowing third-party
of our xBook framework: developers to write their own applications, which in turn

Confinement. The execution of application code needgan be accessed and executed via the social network. An
to be confined. This problem needs to be dealt with ind@Pplication is an entity that provides some value-added
pendently on the client side within the browser and on tRrvice to the user, and it requires user’s profile data to
server side in the web server. We use “the web server’R@fform its functionality. For example, a simple horo-
a conceptual entity to represent one or more servers. SCope application generates daily horoscope based on
Mediation. All communication from and within an ap-User's birth information.
plication needs to be mediated by the xBook platform for Facebook is one popular network that has pioneered the
permissible information flow. To this end, we developegPncept of the social network as a platform. The applica-
a labeling model that enforces user-defined security pdiPns bring value both to the platform and its users in pro-
cies. High-level policies specified by the user are cowiding new features. Applications are deployed on their
verted to low-level labels enforced by xBook. own servers and Facebook only acts as a proxy for in-
Programmability. The programming abstraction to thdegrating the applications’ output to its own pages. The
application writers should be practical and easy to uggowing popularity of applications on Facebook has en-
xBook provides a set of simple APIs in line with the exticed other networks, such as Google’s Orkut, to start sup-
isting social networking platforms. porting applications. The Orkut platform model is based
Portability. The requirements imposed by xBook on then the OpenSocial framework [18]. OpenSocial provides
application design should not break the existing applica-set of APIs for its partner sites (which it refers to as
tions. In other words, it should be feasible to port mostontainers”) to implement. An application that is built
functionality of typical applications to xBook with little for one container should be able to run with few modifi-
effort. cations on other partner sites. The APIs allow third parties
We show the viability of our framework design by im{© have access to the social graph and personal user data.

p|ementing a Working protone of our xBook System and For the rest of the paper, we use the Facebook case as an
porting some of the popular applications from existing s§*@mple; similar concepts apply to other social network-
cial networks, such as Facebook, on top of the framewolkd platforms.

We also demonstrate a practical deployment strategy of)) .

our system by porting our framework itself as an appfe-2 Privacy Issues with Current Designs

cation on Facebook. Our system is available online [33].Facebook supports customized policies for user-user
We evaluate the security of our platform by illustratingccess control, but currently provides no control on what

Unmonitored
Information leak
4 > xBook xBook
| - @ A Explicit @ x Explicit
- -7 Information «
User

- Information
Third-party
‘ Platform Third-party | _
(e.g. Facebook) applications >

User T ~

‘ N

Platform 1, | Third-party [©~ T flow as

flow as (e.g. Facebook) F———»>

E—=>

applications [Z allowed by

applications [~ allowed by

N e "
policies ~ policies
N User N

(@) (b) (©
Figure 1: Application architecture for: (a) current platforms. (HBook platform. (¢) xBook on Facebook.

user profile data can be accessed by third party applieaen worse as it is not feasible to determine how many
tions. Applications run on their own servers that have mdher applications violate the user’s privacy with intdrna
control administered by Facebook (Figure 1(a)). Applétata collection.

cations need data to perform their functionality; they can Social networking sites have a responsibility to protect
request user data from the social platform and store itigfer data that has been entrusted to them. The current ap-
their own servers. Facebook discourages storing user d&@ach is to legally bind the third parties using a Terms
on the application’s own servers by barring it in their liof Service (TOS) agreement [4]. However, it is not possi-
cense agreement [5], but there is no way of enforcing itfile to monitor the path of information once the informa-
Facebook’s current architecture. tion has been released to these parties. Therefore, social

Application developers have access to a user’s daworks can not rely on untrusted third parties follow-
even when they are not friends with the user. Unlikag their TOS agreements to protect user privacy. Instead,
a regular friend relationship, this relationship is neith@rivacy policies should be enforced by the platform and
symmetric nor transparent: the application developer hasplied to all data that has been entrusted to the social
access to the user’s information, but the user does not neetworking site. Our platform desigrBook, is one step
essarily know who the application developer is. forward in this direction.

Before adding an application, the users are required torelt et al. [19] have proposed a solution to proxy the
agree to a service agreement that allows the applicationg@r information in the form of tags to the third-party ap-
have access to their profile data. This general agreemgiifations. These applications do not have access to user
is presented for every application, and no other specifigta and instead use pre-defined tags to format their output
information is provided about the application. Since a mpeing displayed to the user. Their solution limits the ca-
jority of the applications are known not to exploit usergability of some important and popular applications, such
personal data, the users tend to add any application, effggthe horoscope application, that perform processing on
tively defeating the purpose behind the service agreemeder data beyond just displaying it. Our work enforces no
Additionally, second-degree permissions that allow app§uch restriction on the application behavior.
cations to have access to the profiles of the users’ friends
add another layer of complexity. o 3 xBook Overview

There have been several reported incidents where users’
information was leaked due to a vulnerability in the appli- XBook is an architectural framework for building social
cation [26]. The platform is trusting all third party develn€tworks that prevents untrusted third-party application
opers, but the trust is misplaced since there is no restfi@m leaking users’ private information. The applications
tion on who is allowed to develop an application. One @€ hosted on xBook's trusted platform (Figure 1(b)), and
the most popular Facebook applications, TopFriends, hggpok provides complete mediation for all communica-
a vulnerability that allowed any user of TopFriends to sé@n to and from these applications.
the profile of another user, even if they are not friends with In a social network setting, an application might com-
each other [26]. Private information of some high profile@unicate with entities outside the xBook system, called
users was leaked. Facebook’s response to this controveydgrnal entities to perform specific tasks. For exam-
was that thexpecthird party applications to follow their ple, the horoscope application may communicate with
policies, which is not acceptable considering that therewgw. t ar ot . comto receive horoscopes for every sun-
no effective way to police the application developers. sign. The application also encapsulates its own data or

User data has a lot of commercial value to markealgorithm that needs to be protected from untrusted users.
ing companies, competing networking sites, and identityln the xBook framework, applications are designed as a
thieves. Therefore, it is not surprising that many applicaet ofcomponentsa component being the smallest granu-
tions have been observed to intentionally leak user datdanty of application code monitored by xBook. A compo-
external parties for profit [21]. Other surveys have alswnt is chosen based on what information the component
discovered similar violations based on an applicatiortias access to and what external entity it is allowed to com-
externally-visible behavior [19]. The situation could benunicate with. In the horoscope application, one compo-

nent communicates wittwwv. t ar ot . comand has no ['components Data External Entity
access to user data. Another component has access !nformation

L . . provided by co <none>
user’s birthday, but does not communicate with any ex’,,icati
. appllcatlon Cc1 age horoscope.com
ternal entity. to xBook
, . . . Cc2 Full profile <none>
From an end user’s perspective, the applications ar
C3 address google.com

monolithic as the user does not know about the compc

nents. At the time of adding a particular application, the \

user is presented with a manifest that states what us User's platform policies .
profile data is needed by the application and which X (e.g. access to friends) Data External Entity
ternal entity will it be sharing this data with. For exam- age horoscope.com
ple, horoscope’s manifest would specify that it does no address google.com

share any information with any external entity. Note thai
the horoscope application does not need to reveal that
communicates wittmww. t ar ot . comas no user infor-
mation is being sent temw. t ar ot . com The user can Figure 2: Typical life cycle of an application in xBook.
now make a more informed decision before adding the ap-
plication. Admittedly, the user will need to make a trugrate the map. We discuss some example applications in
decision with respect to the parties with which the applection 7.1.
cation shares user data, but these external parties can figgure 3 shows a high-level design of our xBook frame-
expected to be larger and better branded entities providiggrk. There are two parts of the xBook platform, one that
internet services, such as Google for ads, Yahoo for magfs on the server-side and another that executes on the
etc. client-side in the user’s browser (Figure 3). The applica-
Figure 2 shows a typical life cycle of an applicatiortion components, in turn, are also split into client-sidd an
The developer of an application decides on the structuresefver-side components. The components are written in a
the components for that application and during the appdiafe subset of javascript, called ADsafe [1], which facili-
cation’s deployment on xBook, he specifies the informgates confinement of these components in our xBook im-
tion required by each component and the external entitplementation. Any communication to and from the com-
particular component needs to communicate with. xBopknents occurs by using xBook APIs, thereby allowing
uses this information to generate the manifest for the apt such communication to be mediated by xBook. Each
plication. As shown in the figure, a manifest is basically@mponentis associated with a privilege level or label that
set that specifies all of the application’s external commig-derived from the application’s manifest. The platform
nications (irrespective of the components) along with tigediates the information flow between the components
user’s profile data that is shared for each communicati@ased on these labels (Section 6).
Additionally, the xBook platform ensures that all of the Both client-side and server-side components commu-
application’s components comply with the user’s privagyicate with server-side storage to retrieve data. There
policy and the manifest approved by the user. We discuge two types of storage in xBook system: one for stor-
this further using the case study of an example applicatigig xBook data that includes user profiles, and second for
in Section 6.3. the data stored by the application. While the structure of
The division of an application into multiple compoxBook data is known, the semantic of the application data
nents allows the application writer to develop differems internal to the application and hence unknown to the
functionality within an application that rely on differenplatform. All data fields are labeled to control access by
pieces of the user profile. For example, let us considgrplication components. These labels are assigned based
an application that requires a user’s information to gean high-level user-defined policies, such as a policy al-
erate a customized profile for the user. It also requiresving access to only the user’s friends, and the manifest
his address information to be passed to Google to gerspproved by the user (Figure 2).
ate a map showing the address. In the application desigiio store application data with unknown structure and
of current social networks, the application would be absemantics, xBook contains a group of storage pools,
to pass all information about the user to Google. In thehere data is stored as a set of name-value pairs. An ap-
xBook framework, the application would be split into twglication can have multiple storage pools, which could be
components: the first component presents the customif@deach user or for user-independent data.
profile of the user, has full access to the user’s data and))
is not allowed to communicate with Google; the secontit Leakage Prevention by xBook Design
component encapsulates the user’s address (with no mapn the current platform designs, a user’s information
ping to the user’s profile) that is passed to Google to gazan be leaked in three major ways: (1) applications can

Application’s manifest

Component Labels shown to the user

Legend of potential leaks:

Eve's A1: Hidden communication between
- components in browser
Ad network GO“ 'Sle A2: Malicious server component
External entities | communication
YzHOO! LocaL A3, A4: Invalid access to protected data
A A A5: Hidden communication between
| | client and server components
A1 I A6 A7 I A2 A6, AT: Leaks to external entities

-7

h Client-side AS >| Server-side A User
Components Components Data
A T A A A3 '

User = | "mm e — — —t - —————

xBook platform

Figure 3: xBook architecture shown along with sources of potential leaks.

share user’s information with any third party, includingem.
advertisers, or fraudulent parties [21], and as shown inConsider an applicatiod consisting of a set of client-
Figure 1(a), there is no way such a leak can be moside components and a set of server-side components. Let
tored in the current designs; (2) an application can pdsde the set of all users of the platform akdbe the set
information of one application user to another user, breaif-all external entities. Suppose the application is alidwe
ing free from the platform restriction that only friendso communicate to a set of external entiti€sC Y and a
can view a user’s profile. The reported vulnerability iset of userd’,, C U for a particular user. € U who is
TopFriends allowed such a leak [26]; (3) the applicatiarsing the system. Now, we divide the set of all data items
can recreate the social graph of all its users by connectibdnto three categories. First, there is a set of proprietary
common friends as edges in the graph. data or code of the application represented asC D.
xBook’s design enforces complete mediation of aBecond, the set of data itenis ., belonging to the user
communication with the external entities (Figure 1(b)), € U that the application can transfer to the external
thus preventing these applications from leaking informantity z € X. This set could be in the form of user’s age,
tion, effectively preventing (1) by design. A separate apterests, photos, etc. Third, for an application instance
plication instance is created for every user, and that o useru; € U, the set of data itemg,, ..., is what the
stance only has a view of the data accessible to that us@plication can transfer to a usey € F,,.
Data access is restricted to allowed user policies, such a¥he platform wants to monitor the occurrence of a set
access to friends. We mediate any direct or indirect conf-eventsE that can pass information outside an appli-
munication between the components of two applicatigation component. Any evert € E is actively moni-
instances, thereby deterring (2). (3) is prevented as toed by intercepting the information flow path between
single component of an application can have direct accéss point of the event occurring and the point where the
to the data of all its users: a component can only accesgnt is handled. The platform monitors the content in-
an anonymized view of this data set (Section 5.2). formation I, contained in the event. We express the re-
xBook, by design, solves most of the leakage problemsonse of the platform when the particular instance of the
of the current platforms. However, there are still sonevent has potential leaking information &¢1..), which
potential mechanisms to leak information in our systemmay include filtering the content, blocking the communi-
We enumerate these possible threats in our formal modation, etc.
and address these threats one by one throughout the pap&ve can identify several sources of potential leaks in the
xBook system (Figure 3). The first class of attacks (Al)
bypasses the active monitoring by the xBook platform to
We present a formal model in this section that generddak private information from one client-side component
izes xBook’s mediation of untrusted third party applicae another, by creating a prohibited flow. Such attacks ex-
tions. We use this model to analyze possible attacks,ploit some of the abstract features of the development lan-
terms of potential data leaks, under an adversary that daage and the browser to leak information maliciously. In
ploys an application for collecting users’ private data. \Wether words, Al occurs if respong& 1.) is not triggered
also identify a list of requirements that our system shoudgten if thel, contains private information content that
satisfy in order to defeat such attacks. These formal ie-being leaked. Similar leaks (A2) are possible on the
guirements drive the design and architecture of our syerver-side where application components can break out

3.2 Formal Requirements

of the sandbox to create a prohibited channel with other Ul part
components. In addition, some attacks (A3 and A4) can
occur during a component’s access to data store, where the
component gains access to restricted user or application
data. Leaks (A5) can also occur in the communication cy
between client-side and server-side components. Other
attacks (A6 and A7) leak private information to entities
outside the system. The leaks could be tazan Y that is xBook
prohibited ¢ ¢ X), or it could be leaking restricted piece
of informationd € D to an entity via communicationthat Figure 4: Client-side components Book design.
is allowed by the system, i.e., farc X,d ¢ d,,_,, fora
useru € U. . - _ 4 Client-side Components

We completely forbid cross-application communica-
tion, effectively preventing leaks across applicationg W The client-side of the xBook platform and the client
also prevent direct communication between server-sgmponents of the applications run within the web
ComponentS, on'y a”owing them to communicate via Std?[OWSGI’. The Components are further divided into two
age, thereby preventing attacks of type A2. We mediarts: the user interface (Ul) part that is visible as part
ate other communication paths based on the labels of #iéhe page to the user, and the non-Ul part that provides
communicating parties (Section 6). We address all otfféfmmunication interfaces with the external parties and
identified classes of attacks in Section 7.3. The requiMith the server side. There is a one-to-one mapping be-

ments of an ideal social networking platform that guidé¥een the non-Ul and the Ul parts, i.e., for every non-Ul
the xBook design are as follows: part, there is a corresponding Ul part visible to the user

(Figure 4).
A component is allowed to create another component.
formation can flow during the component creation and
is opens up the possibility of an information leak. We
Cy:ireventsuch leaks by allowing components to create other
components that are at least as restricted as the creating
e Applications can invoke an eventiff e € £, i.e., component. This principle prevents the creating compo-
applications are restricted to a limited set of event@nt from leaking information out of the system via a less
for passing information to external entities. restrictive component.

e Application component having access to ussipri- At the front end, the creating component needs to dele-
vate datal can send information to an external entitate some screen space to the created component. One
r €Y iff z € X andd € d,_... In other words, the challenge is to isolate the third-party application com-
platform should enforce user policies by limiting th@onents within the Document Object Model (DOM) of
communication to onlpllowedexternal parties andthe webpage. A DOM is a platform- and language-

passing onlallowedinformation to these parties. independent standard model for representing HTML or

Aoplicati havi . XML documents in a browser. We present our confine-
e Application component having access to uses .. approach in the next section.

private datal can send information to another com-

ponent act!ng for uset; iff w; € Fy andd € 4.1 Confinement Mechanism

du, ;- This means that the applications should in- o)
herit the user-user access control policies of the plat-1 "€ components of an application encapsulate differ-
form. ent levels of private information for the users. Therefore,

o) these components need to be isolated from each other in
* Application component can accesga only if 2 € 4ger to prevent information leaks. On the client side, the
S, i.e., only server-side component of the applicatiqty nonents form a part of the DOM of the web page. The
should have access to application’s proprietary datgqp, page’s DOM may include multiple components from
We do not cover attacks against the browser in this wopke or multiple applications, apart from the platform’s
and assume that the browser behaves non-maliciously. BOM objects.
though phishing attacks can entice the user in choosindn the current browser specifications, any script in a
policies that might leak user information, we do not copage has intimate access to all of the information and re-
sider such attacks here. This work enforces the policiationships of the page. As a result, the components are
specified by the user, and does not consider social erfgie to access information about the DOM objects of other
neering attacks against the user. components. In order to confine the components within

non-Ul part

|
|
il
|
|

e Respons&?(l.) is invoked if I, contains prohibited
private information. In other words, the platforrqn
should be able to monitor any event that might b[ﬁ
potentially leaking information, and should take a
tion to prevent such leaks.

their own control domain, we limit the application codéme of creation. Figure 5 shows the partial code of
to be written in an object capability language called ADzur DOM wrapper implementation. Before deploying
safe [1]. In an object capability language, references ane application, xBook verifies that each component code
represented by capabilities and objects are accessed usingDsafe compliant. The code must be wrapped in a
these references. Other alternatives to ADsafe, such<d$ v> element having an identifier, which forms the
Caja [25], are also available; we decided in favor of ADroot of the component. xBook ensures that this identi-
safe due to its simpler design and easier feature additf@r is unique to the application page. TABSAFE. go
and customization to meet our system needs. method gives the component code access taAfie ob-
ADsafe. ADsafe defines a subset of javascript thégct that maps to our DOM wrapper object. TRESAFE
makes it safe to put guest code (such as third-paggde ensures that the second parameter passed to the
scripted advertising or widgets) on any web page. ADsafe eat eDOMN apper function is equal to the identifier
removes features from javascript that are unsafe or grahthe encapsulatingdi v> element, effectively prevent-
uncontrolled access to browser elements. Some of the fisg-the developer from faking the identity of the compo-
tures that are removed from javascript are global variablegnts. It also ensures that the DOM wrapper instance gets
and functions such ashi s, eval andpr ot ot ype. It the right identity of the component’s root node.
is powerful enough to allow guest code to perform valu- The wrapper allows an untrusted component to view
able interactions, while at the same time preventing nla©OM nodes simply as integer handles; the component
licious or accidental damage or intrusion. The ADsafeas no direct access to the real DOM. To read or mod-
subset can be verified mechanically by static tools like J8¢ the DOM, the component code passes the appropri-
Lint [8]. ate handles to the wrapper DOM object using the xBook
ADsafe was initially developed to host untrusted ad\Pls, which in turn interacts with the real DOM. Addi-
vertising content safely on a webpage. xBook’s isolatidionally, element creation and modification are adminis-
mechanism is designed with the code base taken fromtared using this component-specific wrapper object. For
earlier version of ADsafe. We customized ADsafe bgxamplecr eat eText Node method in Figure 5 would
adding code for our component confinement model argiurn an integer handle. Since a wrapper instance is iden-
mediation based on our labeling model, to prevent itified by its root elementdi v> that is unique, the DOM
formation leaks from the “sandboxed” application conwrapper object restricts the untrusted component code to
ponents. A recent version of ADsafe have since innteracting only with the portion of the documenttree that
plemented some of our features, but still would requikelongs to that component. All direct accesses to any real
changes to be useful for our system. DOM elements are forbidden: the wrapper is the only in-
One such example is that ADsafe runtime supports ofi@fface for accessing the elements and it is mediated by
a single level of confinement: all subtrees of the untrustét® XBook platform.
guest applications exist as children of the trusted web page)
code. One guest application does not have another gtfgétl Event Handling
application as a child to its subtree. In contrast, xBook Another possibility of an application breaking the con-
design requiresesteddOM subtrees that need to be isofinement mechanism originates from the way event han-
lated from each other. Figure 4 shows an example otiiing is designed in the current DOM specification.
nested subtree, where compon€ptis a child of compo- Every event has a target, i.e., the XML or HTML el-
nentCy, which in turn is a child oCj. ement most closely associated with the event. An event
Our requirement is to restrict an application componendler is a piece of executable code or markup that re-
to within a set of connected DOM elements that form tteponds to a particular event. Any element of the DOM
component. In the current DOM specification, any DOMan register an event handler to receive a particular event
element can parse through the tree of the page via its ggpe. Since an event generated from within a component
ent, children or siblings. We enforce confinement by prean be received outside the component, the flow of events
viding the component elements only with a partial viewithin a DOM needs to be controlled by the xBook plat-
of the page’s DOM and only indirect access to the DOKérm for any potential leaks.
objects. In the current DOM implementation, it is possible to
Confinement Rule 1. One DOM element belongingassign multiple handlers for a given event. It allows a
to an application component should only access anotiDM element to capture events during either of the two
DOM element of the page (that includes accessing fiRases in the event flow. The event flows down from the
properties, adding a new element to it, etc.) iff they botbot of the document tree to the target element in the first
belong to the same component. phase calle¢apture then it bubbles back up to the root
As part of the implementation, xBook associates eatrhthe bubblingphase. An element can receive the event
component with a uniqu®OM wrapper object at the only if it lies in the path between the document root and

ADSAFE = function() {

function createDOMWrapper (compID, root node) { - .
- /* provides the core ADsafe runtime */

/* node2Handle returns the integer mapping of the node */
/* handle2Node returns the node of the integer handle */
API.createTextNode = function(str) {

/* check if str is a string type */

var node = document.createTextNode (str) ;

return node2Handle (node) ;

}i

return {
go:function(id, £f) {

/* check if ‘id’ refers to the <div>

element (root of the component) */

var dom = document.getElementById(id) ;

if (dom.tagName != ‘DIV’)
error () ;

/* create the DOM wrapper and pass its
reference to the component */

var API = createDOMWrapper (id, dom) ;

API.appendChild = function(node_ handle, child handle) {
/* check if node_handle and child handle are valid */
var child = handle2node (node_handle) ;

handle2node (node_handle) .appendChild (child)) ; X £(API);
b e Skeleton ADsafe code added to
API.addEventListener = function(node_ handle, } encapsulate a component code
eventtype, listenfunction, useCapture) { })’

/* check if node_handle is an valid handle */ // TS oo T T L ——— N N

handle2Node (node_Handle) .addEventListener (| <div ldf a0co"> |

eventtype, | <script> |

\ ADSAFE.go (“a0C0”, function (API) { Vi

function (e e ST EERN B L £ SR e L
(e { /* create a button with ‘Horoscope’ label */

var elem = API.createElement (“button”) ;
API.appendChild (elem,
API.createTextNode (“Horoscope”)) ;

/* copy e to new_e while passing only the integer
handle of the target */
listenfunction (new_e) ;

Y,

useCapture) ;

}i

/* send a message to component Cl */
API.sendMessage (“C1”, “CO to Cl1”);

API.sendMessage = function(destCompID, message) {

/* check if destCompID and message are string types */ N

/* sendMessage checks validity of information flow f/script>

before passing the message */ </div>

sendMessage (currentUser, compID, destCompID, message); Component Code made ADsafe compliant and
}i verified by JSLint

return API;
Figure 5: DOM wrapper implementation with sample functions.

the event target. The xBook platform mediates the event delivery and as a
One of the goals of our event handling model is to ke&psult, ensures that an event can only be received by el-
the functionality of the current DOM model (includingements that belong to the same component that contains
preserving the concept of the two stages). Therefore, the target, thereby enforcing the second confinement rule.
specify our event flow model as follows: for any appli- o) -
cation component, an element can receive an event iffti¢ Communication with External Entities
lies in the path between thieot of the componerzind the It is common for the applications to communicate with
target element for the event. We still need to restrict thisternal parties to perform specific tasks. One typical ex-
access to a single component so that no outside comammple is the use of Google map APIs to generate maps of
nent can receive the event; we provide such a restrictséme address known to the application [9]. In other cases,
by the following confinement rule: a user’s date of birth is used by applications to contact
Confinement Rule 2.A DOM element belonging to anexternal providers to generate horoscopes [3]. What we
application component can receive an event iff the evexthieve in our architecture as compared to the existing so-
target belongs to the same component. cial networking platforms is thatie enforce the applica-
We implemented our event handling model using thi®ns to make these communications expBoithat more
DOM wrapper object introduced in the previous sectioimformed decisions can be made. The user or the platform
As shown in Figure 5, the object makes a wrapper to than decide on the policies regarding which external enti-
event handling interface available to applications. Tlies are allowed to receive what piece of the user’s private
wrapper receives the event from the browser's DOM innformation. These policies could be coarse-grained for
plementation and filters the information presented in tldl applications of a user or fine-grained specific to each
received event object before passing the event to the appiiplication. xBook ensures that the information flows
cations. Any information about the real DOM elementfom a specific application component to an external en-
such as the handler to the target element, is filtered; ttifg according to the defined policies.
prevents application’s component code from breaking theThere are two kinds of communication flows that can
confinement. ThaddEvent Li st ener method copies happen in our system:
the received everg into new_e while transforming the Symmetric communicationin which the response is re-
real DOM element references to wrapped integer valuesived by the requesting component. This is a typical case

for most client-server communication in which there isalow xBook-mediated communication among untrusted
two-way exchange of information between the two patomponents of an application, while still preventing cre-
ties. ation of any hidden channels. To this end, we needed to
Asymmetric communication in which the response isevaluate some of the features of javascript that gives ap-
not received by the component that made the request, plitation writers alternatives to pass hidden information
is handled by another component of the application. Ouarthe messages.
motivation for supporting this type of communication is Javascript is a weakly typed language and allows any
to enable some specific application scenarios. One m@eperty to be added to any object. For example, an object
tivating example is the advertising scenario where adveiessage can take a properfyoo usingnmessage. f 0o
tisements are generated by external parties based on=theal ue; whereval ue could be a number, string or
information passed to them: Google generating advertisgy other object type. Since all application components
ments based on the address passed to it. These exteuralin the same scope, a component can pass informa-
party advertisements are typically in the form of links thaion to another component if it has access to an object of
users click to access the related site. If we design this sggat component. Let us assume that a compongrisC
nario using symmetric communication, these advertisiajowed to talk to another componens &s per the infor-
links would not work, since the receiving component hasation flow policies, but € can not communicate to,C
been restricted to communicate only with Google and reffectively, we have a one-way communication channel
any other party. In order to solve this problem, we cdrom C, to C,. If C; passes the objeatessage to C;,
create another application component that is considetgd platform can observeessage, but cannot identify
part of Google’s trust domain; since Google servers affe object handlef 0o being passed. £can pass infor-
unconfined or public from xBook’s point of view, the cremation to G by writing to this handler.
ated component is also unconfined. We do not allow anNWAe counter such leaks by ||m|t|ng the message pass-
other application component to peek into this new cofry to being a JSON container [7], that is pure data. A
ponent or disrupt its integrity. Since we are only shovjgyascript JSON container is a collection of key/value
ing Google’s view in this component and the applicatigfairs or an array of values. These key/values are limited
is not allowed to change this component, this compongstpure data types such as string or numbers. We make a
maintains the trust level of Google. The new componefpy of the JSON object and pass the copy to guarantee
is placed in an frame with its own DOM and hence that there are no additional properties in the passed object
cannot communicate with any other component. Howhis solution is also effective against attacks by a message
ever, since the component is unconstrained, it is allowgshder that use getters and setters.
to commupi_catg with any external entity and as a result,The simplest way of designing the message passing in-
the advertising links would work. terface is to pass messages from a source to a destina-
L tion in a single thread of execution. This option opens up
4.3 Com_munlcatlon between Components: Messagehe possibility of a covert communication channel from a
Passing Interface more restricted to a less restricted component. For exam-
xBook exposes a one-way message passing API thk, let us consider that a less secret compongig fass-
the components use to pass messages to other conp®-multiple messages to a more secret compongnt C
nents. We implement this interface using the DOM wrapecause of the single-threaded non-preemptive nature of
per object as shown in Figure 5. The platform mediatg@srascript, G will complete processing the first message
this communication and ensures that the information fldvefore the control goes back tq CThis creates a covert
model is enforced. Since each component is associdieung channel from €to Cy. The amount of time taken
with a unique wrapper object that is used to send the mbg-C; can be observed byq@nd G can change this time
sage (Section 4.1), the sending component of the maspass the desired information bits tg.C
sage can not fake its identify to fraudulently pass the in-We reduce the effect of this timing channel by making
formation flow checks: as seen in Figure 5, the value tfe message passing interface asynchronous. We achieve
current User and sender'sonpl Dare implicitly pro- asynchronous behavior by implementing a global queue
vided by the wrapper object to xBooksendMessage for message passing that is shared among all the compo-
function. A component can register a message listem@nts of an application. The receiving components reg-
with the platform through the xBook API. Any messaggter listeners with the platform in order to receive mes-
intended for a particular component is delivered to ittges. A timer event dequeues an available message and
message listener. Since the platform knows the identiiglivers it to the message listener of the target component
of each component, it makes sure that the message isgiehe message. Note that addressing all covert channels
livered to the right component. in our system is beyond the scope of this paper; we discuss
The purpose of our message passing interface istlis further in Section 8.

5 Server-side Components ecution environment is provided by Helma [6], a popular

The server-side of the application contains the ma@Ren source web application framework.
functionality for typical applications. It follows a famil
iar web server model where a server-side componen
instantiated for every client request. xBook ensures that no user data is leaked against the

Besides the regular user-specific components on tH€r’'s policies. A particular instance of an application ca
server side, there are certain components that are usePy have access to profile data that belongs to the user
dependent and works on non-user data or user public dagd only his friends. Different instances of the applica-
These components perform two tasks: First, they comnii@ns cannot share data due to the restrictions posed by
nicate with external parties to provide functionality indexBook’s labeling system.
pendent of the user data. Second, they handle statisticdf is desirable for some applications to have a view of all
aggregation on user data sets. We discuss declassificat®uisers so that some statistical results can be published
based on data anonymization in Section 5.2. for the whole application. In other words, a component of

The server components also protect application proghe application needs to receive data of all the application
etary data that needs to be declassified before sendingsirs and still should be able to share these statistics as
to the client. The threat model is reversed in this case: ®iétput to all users, crossing the boundary of friends.
applications do not trust the user for their data, so theyln order to facilitate this case, we are exploring a three-
protect their internal data from being leaked to the usegsep anonymization algorithm that provides conservative
For example, an application might be giving horoscopecess to data for the applications. Currently, case 1 and
predictions to users based on their birth date, but it wadt®iave been implemented, case 2 will be explored as part
to protect the data or algorithm used for such predictioref.our future work.

There is no direct communication between the servéase 1If an application component requests a single field
side components: all such communication happens euser information for all application users, itis given ac
application-specific storage. The platform ensures tleat gess to the requested set in an unmodified form, but in a
information flow is enforced while accessing the databasandom order of sequence.

The platform also administers the communication witBase 2. If an application component requests multiple
external parties and client-side as allowed by the labelifiglds of user information for all application users, it is

?ig Anonymized Statistics

system. given access to the requested set in a form generated by
_ anonymizing the original dataset and then randomizing
5.1 Component Confinement the resulting tuples’ order of sequence. We plan to lever-

The server-side components need to be isolated frage some of the existing work [15, 24, 31] to generate the
each other. The server-side of xBook mediates all coaronymized statistics. We acknowledge that providing se-
munication flowing in and out from these componentsurity in anonymity and statistical queries is a challeggin
There are several options available for server-side iggoblem and has its own limitations [13, 24]. Addressing
lation. Operating system isolation mechanisms [1these limitations is orthogonal to our work and is not the
30] can be used to sandbox the application comgecus of this paper.
nents. Another option is a language level confin€ase 3. Applications can also request the xBook plat-
ment similar to the client-side isolation with options likéorm for statistics on unanonymized data. This gives the
Caja (Javascript) [25], ADsafe (javascript) [1] and Joe#pplications more accurate statistics as compared to case
(Java) [20] available. We use ADsafe on the server-sidewhere some fields might be filtered or altered to pre-
in order to have the same language for developing ap@irve anonymity. xBook provides a limited list of such op-
cation components for both client and server. erations, including aggregation, maximum and minimum

To the best of our knowledge, we are the first onaglue over one or multiple fields.
to port ADsafe to the server side. We had to make Discussion. Anonymizing the data might limit some
some modification to the ADsafe object to implement oapplications that rely on the original data for their func-
server-side xBook APIs and to perform checking of the itionality. One such example is an application that plots
formation flow labels. Each server-side component holthe location of a user’s friends on Google maps, and would
a unique handle to the modified ADsafe object, and acces=d to pass names and addresses of the user’s friends to
is restricted to the set of APIs provided by the modificdoogle. The application also makes subsequent queries
ADsafe object. The modified ADsafe object is concepe Google (for example, to build a Google calendar of
tually similar to the DOM wrapper object on the clientriends’ birthdays). If the data is anonymized, the appli-
side, but is customized to work in the server-side envirogation might not produce completely accurate results.
ment. The platform verifies the validity of the informa- On the other hand, if Google is provided with
tion flow before any access is granted. The javascript extanonymized data, it can use the data to cross-reference

and identify the friends. This is a conflict between pri- and server-side components for an applicatign
vacy and functionality. If functionality is preferred and specific to a uset;.

unanonymized information is passed to external entities o C(a;) andS(a;) represents user-independent client-
user’s personal information can be leaked. In such a case, side and server-side components for an application
our xBook design, at the minimum, enforces the applica- ;.

tions to explicitly declare all external communication-(in
cluding the data that will be transferred). Based on such
information, the user can make a much more informed de-
cision about adding the application.

e u; represents the entities that the useiis in com-
plete control of. Once the user; is logged into
the xBook system, the user’s browser is assigned the
principalu,;.

6 Labeling Model e T, | whereT is highest priority principal in the sys-

)) tem and is allotted to the xBook platform. For the
The xBook platform tracks and enforces information

4 , ' i sake of completeness, is the least privileged prin-

flow using a labeling system defined based on existing cipal.
models [17,23,27,36]. All system abstractions are layered . I

. . i . e External entities also have principal names
on top of two types of entities — active and passive. Appli- that contain the hostname and optionally the
cation components represent active entities that actively scheme and port (like in URLS). For example
participate in label compatibility checks; database estri httos:// P exanl e. com 8.888 re ref) '
are passive entities. Every active entity corresponds to a ps: ' pl €. P

N ’ - sents one such principal.
principal and a label; passive entities only have a label. P p_ .)
We do not enforce information flow at the language Our model assumes static labels for the entities and in-

level [27], but instead at the level of application compd@rmation flows from one entity to another if allowed by

nents and database entries. There are multiple reashfslabel comparison of the end points. Information can

for this choice: (1) it is simpler for the application proflow from one labelZ, to another label; only if L, is

grammers as they do not need to learn a new langusRrerestrictedthan; denoted ad; < Lo.

or perform fine-grained code annotations, (2) information Restriction. Ly < Ly <= O(L1) € O(L2) andvo €

flow on a language like javascript with dynamically cre?(L1), B(Ly,0) 2 R(Ls,0)

ated source code.may no_t be feasible, and (3) run-time@y 4cts-for Hierarchy

formation flow at fine-grained language level would prob- - . . .

ably be expensive as compared to a much coarser level ofo facilitate easier conversion of user policies to low-

components level labels, system entities are statically labeled. We de
The label specifies the secrecy level of an entity. It re{ﬁi-ded on im.mutable Iabel§ since it improves usability ,Of

resents what information is contained in a passive ent apphca_tlon_ programming model from the per_spectl_/e

and what information the active entity currently has the application programmer. Unexpected runtime fail-

will read. The entity’s principal defines whether the erfiéS ¢an occur when labels of components change at run-

tity has declassification privileges over the label. xBodi€ [23]- Withimmutable labels one can statically verify

labels originated along the lines of the language based!f3gt all the communication dependencies with respect to
bels in Jif [27]. Labels represent the confidentiality d}ther components, external entities, storage will be-satis

secrecy level of an entity in the system. Integrity Iabefl'-ed' L . .
ing is not the focus of this work since we are focusing on S°M€ principals have the right to act for other prin-
privacy. cipals and assume their power. The acts-for relation is

A label L is represented as a set of tags, with ea&rﬁnsitive, defini_ng a hierarch.y or partial order of princ_i—
tag having one principal as ownerand another set of pals [17]. The right of one principal to act for another is

principals called reader®(L, o). The owner is the prin- pred_efinec_i by_th_e platform. Figure 6 presents the acts-for
cipal whose data was observed in order to construct fiftionship within the xBook system. This hierarchy de-

data value. The readers represent principals to whom {figs the priority of different principles in the system. The
owner is willing to release the information. An exam€@soning behind the defined hierarchy is as follows:

ple of a typical label isL = {01 : 71,79; 02 : 79,73}, e T defines the xbook platform and has the highest se-
whereO(L) = {01, 02} denote the owner set for the label curity label. As a result, it can declassify any label.
and readers sets af{ L, 01) = {r1,m2} andR(L, 02) = e Any data sink or source that is not explicitly defined
{ra,r3}. by xBook is modeled as an unprivileged entity with

In the xBook system, principals represent the identities label L.
of various entities in the |abe|ing model. There are five e The client-side Components are given lower prior-
types of principals in our system: ity than server-side components, because intuitively
e C(a;,u;) and S(a;,u;) represents the client-side server-side components residing on xBook servers

/\

Up Uq -+ S(ao, uo)

Algorithm 1 Label Compatibility Check Algorithm.

eLy = (entity, is a database) 2, : maxDeclassify[{, P;)
eLy = (entity, is a database) B, : maxRestrict,, P»)

C(ao, uo) if eL, < eL, then
l ALLOW flow from entity; to entitys
else
C(ao) DENY flow
end if
4
Figure 7: Algorithm to check if the information flow fronantity; to
Figure 6: Label hierarchy irkxbook. entitys is allowed.

are more trustworthy than client-side components.e maxDeclassify(L, P). Yo € O(L): if (o €
For example,S(ag,ug) has higher priority over descendent(P)) thenO(L) = O(L) — {o}

C'(ag, up) for applicationny and useky. The server- where descendent(P) represents all descendents of a
side components can declassify an application’s pqarincipal P in the acts-for hierarchyQ(L) is the set of
prietary data, which has been labeled in a manmaxners for labell and R(L, o) represents a set of read-
such that it cannot be directly read by client-siders in labelL for ownero. Intuitively, the communi-
components. cating end points support the communication with the

e User-independent principals are at a lower priori§ender declassifying its label to the maximum possible
than any user-specific principal. This allows useHSingmaxDeclassify and the receiver restricting its la-
specific components to read user-independent dfgd usingmaz Restrict. Since the information can only
generated by an application, also effectively allowirfPW from a less restricted to a more restricted component,

users to read statistical data generated for the whE)gSe functions facilitate the flow of information.
application. Some typical flows in the xBook system are depicted
¢ Principals representing the end user are higher t Bifigure 8.‘ To demonstrate the validity of our algorlthm,
the corresponding client-side principals since t Stus consider the example of the flow between the client-
user controls the client side component; and the server-side componéht For

the flow fromsS; to C1,

6.2 Flow Enforcement eL; = maxDeclassify({S(ao) ;; T : C(ag,uo0)},
Information flows within the xBook system if the label S(ao, uo)) = {T : Clao, uo)}

of source is less restricted than that of destination. SucheLe = maxRestrict({T : C(ao, uo)}, C(ao, uo))

flow restrictions have been proposed earlier in classical = {C/(ag,ug) :; C(ag) ;T : Clag, ug)}

information flow control models [14]. We introduce the Recollecting the definition of restriction, we can see

concept of endpoints similar to the Flume model [23]. IRhate,, < eL, , thereforeS; can send data t6;. Con-

stead of changing the labels of the entities, for every cogjgering the reverse flow froifi; to S,

munication the source and the destination create an eggi = mazDeclassify({T : Clag, uo)}, C(ao, uo))

point each to facilitate the flow. The entity, based on its

principal, can restrict or declassify its label and allecat — {T = Clao, uo)}

it to an endpoint for communication. While restricting 8L2 = maxRestrict({S(ao) :; T : C(ao, uo)}, S(ao, uo))

label means adding more owners and removing readers, = {S(ag,uo) :;.S(ag) :; C(ag, uo) :; (ag) 3

declassification either adds some readers for an owner T: C(ao, uo)}

or removes the owner. This relabeling can be done only We can see thatl,, < eLo,

if the principal of the entity is higher than an ownem Effectively, .

the hierarchy. C, ands; .
Figure 7 shows our flow enforcement algorithm, where

maxRestrict and maxDeclassify are defined as: 6.3 Case Study: Horoscope Application Lifecycle

o maxRestrict(L, P). O(L) = O(L)Udescendent(P); An application’s lifecycle consists of three steps: the
Yo € descendent(P): R(L,0) = {} application being hosted by xBook, a user adding the ap-

i.e.,Cq can send data t§ .
there is a two-way communication between

- G_OU le

C(ao, uo)
{ T: C(ao, o), google.com } (;:)
/
X

/ S(ao, up) up data
C(ao, Uo) / {S(@0): ; T: C(ao, o) } u, data
{T:Cla,u)} (C1}————————— — — — xBook Storage

\ {;‘:((ao)) }
ap): Application
C(?,}UO) ’ @ Storage Pool

Figure 8: Typical Flows inxBook system with the corresponding labels. For every compornbatfirst parameter is the
principal and the second is the label associated with thepcoent.

plication and then the user accessing it. any of the client-side componentsy() from viewing this
Hosting. Before xBook accepts a new application, théata, thereby protecting application data from untrusted
developer needs to provide the following information: users.S; is allowed to read from the storage pool. The

e The application provides the components to be d@Pels ofS1 andC correspond to the labels &, and
ployed, in each case specifying if the component§g respectively in Figure 8, where = 0 and;j = 0.
client-side or server-side and if it is user-dependeftt We have observed in the last section, the labelS,of
or not, what user data would the component requi?é‘dcl effectively allow a two-way communication chan-

and which external entities and other componert§l- Thus,S1 can pass the results @, that, in turn, can
will it communicate with. In our horoscope exambpresent a formatted form of the horoscope to the user’s

ple, there are three components; communicates Prowser. B . .
with www. t ar ot . comand requires no user data; Application Addition. When the user is adding the

S, requires user’s birthday?; is on the client-side application, he is provided with a manifest that de-
and also requires user’s birthday. clares what information is passed to which external entity.

xBook derives the manifest from the component informa-

* The application also states that there are us%_n rovided by the application developer. For example
independent or user-dependent storage pools and P y PP per. bie,

each is named declaratively by the application. Th[%rlce none of the components of the horoscope applica-

ion share any user information with any external entity,
ensures that the storage pool names do not leak an , : . .
. . o : oscope’s manifest would specify that it does not pass
user information, as the application has no user infor-

mation at this time. For example, horoscope applica[‘y information to any external entity. Since the user’s

. L .. birthday is not shared with any external entity, the ap-
tion declares a storage pool for storing its application. ~__. .

plication does not need to declare its need to access the
data generated h¥j.

) birthday information.

labels and the principals of the components. The birthdgyp|ication, all user-specific components are instarntiate
field has a labe{ T : C(a;, u;)}, therefore the following for that user, replacing the user wildcard in the template
labels are allocated to the horoscope components: f |abels and principals with the user identifier. This en-

e Sy Principal: S(a;), Label: {S(a;) : } forces access control across multiple users: access is only
e S Principal: S(a;,u;), Label: {S(a;) :; granted if it is aligned with the user’s privacy policy, for
T : Clai, uy)} example, access is granted to only user’s friends.

e C Principal: C(a;,u;), Label: {T : C(a;,u;)} 7 Evaluation

The principals define if the component is server-side or L
client-side, and if it is user-dependent or not. The labefsl Prototype System and Example Applications
allow S; andC; to read the birthday fieldSy’s label al- We developed a working prototype of the xBook sys-
lows it to declassify itself to be public to communicateem, which includes platform code and APIs for devel-
with www. t ar ot . com and write to the storage pooloping third-party applications. We also implemented the
that is givenSy’s label. The storage pool label preventsbeling model that enforces information flow control for

Attack Step Attack Type | Prevented by xBook?
One client component accessing another component’s DOBtbb] Al N4
Leaks via the message passing interface Al Vv
A component creates or destroys a less restricted comptamaking information Al Vv
Retrieve information of another user not in the friend list A3/A4 Vv
Client component retrieves more restricted informatiamfithe server A5 Vv
Leaks to an unknown external entity AB/AT Vv
Leaking restricted information to an allowed external gnti AB/AT7 Vv

Table 1: Prevention of information leaks against various kinds aiftbgtic attacks.

the data flowing through the system and prevents any piatform with Facebook providing two levels of applica-

formation leaks. Our xBook platform consists of abotibn service. First, the current applications based on cur-

4300 lines of javascript code. rent Facebook design would be supported. Second, ap-
We developed two sample applications using the xBopKcations that are developed using xBook APIs are sup-

APIs to show the ease and viability of application deveported, with added privacy protection advantage. Users

opment in xBook. These applications are similar in funean be given the discretion to choose between the two

tionality to two popular Facebook applications: Horoeptions, and the users’ choice can drive new application

scope [3] and TopFriends [11].The horoscope applicatidavelopment on xBook.

produces a user’s daily horoscope based on his birthday

information. The utility application based on TopFriends3 Security Analysis

produces a customized profile for the user based on higyy analysis shows that xBook prevents the applica-
complete profile information. It also generates a Googigns from leaking any user information. All of the doc-
map showing the user’s home location on the map. Thgented leaks in the current social networks are pre-
applications are written in javascript using xBook APlgsented in the xBook system. For example, the TopFriends
W|th the horoscope application ha.Ving about 180 |ineS a%k [26] cannot happen in our System because a Sepa_
the application based on TopFriends having around 48Qe application instance is created for every user. Each
lines of code. We tested these applications against a iggtance only has view of the data accessible to that user
ries of synthetic scenarios, where these applicationd trighd xBook mediates all cross user data accesses.
to leak the user’s private information. Oyr tests s.howedWe evaluated the privacy protection ability of our sys-
that the xBook system was successful in detecting &gl in three steps. First, we analyzed the security of the
preventing all such leaks. xBook design in view of the potential leaks specified in
the formal model (Section 3.2). Second, we developed
a set of synthetic attacks targeting the xBook framework
In order to show the practical viability of the systenand performed experiments to show that our prototype
and to demonstrate that our system can be incrementalligcessfully prevents these attacks. Finally, we prove tha
deployed, we ported the xBook platform as an applicaBook’s information flow model ensures that information
tion on Facebook. Since Facebook allows any applicati@aks cannot happen in the xBook design.
to have access to user data, including their friends’ datay\e first analyze the security of our prototype and show
of any user adding the application, xBook as an “appthat all the attacks discussed in Section 3.2 will not suc-
cation” is able to receive the data of the users agreeigged against our design. Attack type Al is prevented
to use the xBook platform. Applications developed uglue to the various mechanisms developed in our system
ing xBook APIs can execute on top of xBook, while stilfor client-side confinement (Section 4.1), such as compo-
running on xBook servers. Since xBook act as an appliggent isolation, event handling, etc. A2 is prevented by
tion for Facebook, xBook’s response would be rendergdrver-side confinement of application components, only
as part of Facebook’s web page. Since the third party aflowing them to communicate via storage. Leaks via
plications are encapsulated in the page forming xBools and A4 are inherently prevented by mediating the in-
response, the output of these applications would alsofbemation flow from the database to application compo-
effectively rendered on Facebook (Figure 1(c)). Faceboeénts with label enforcement based on user-defined poli-
provides the data feed to xBook, which then enables ates, and also by anonymizing data for statistical purposes
cess to this data for xBook applications in a controllg@ection 5.2). A5 is also prevented by label enforcement
manner through xBook APIs. Facebook’s user identity ligefore the client-side request is passed to the server-side
maintained within xBook. Our running system is avaikomponent and before response is returned. Enforcing the
able online on Facebook [33]. confinement model to mediate the external communica-
We envision xBook to be assimilated into the Facebotikn, both in synchronous and asynchronous communica-

7.2 Porting xBook on Facebook

Application | User latency| Server processing time Time for label checks (Number of check$)Overhead
Horoscope 183.1ms 128.8ms 7.7ms (6) 4.2%
Map utility 111.4ms 51.2ms 3.5ms (2) 3.1%

Table 2: Performance results of various operations in typical xBapglications.

tion scenarios, prevents A6 leaks (Section 4.2). FollowiidnereforeC? < z.
the same lines, A7 is prevented on the server-side.

Second, we tested the ability of our prototype by créheorem 2. Given a set of user policieB(z) = D x U,
ating synthetic exploits that try to break out of xBook'¥here the application can pass usek U’s information
information flow control model to leak user informationfieldd € D to another usey € U, and assuming that the
We developed a sample application to launch these attatgnded confinement is enforced, the information flow
against our prototype; if successful, these attacks alledel ensures that user-user access control is enforced
the application to leak information to entities outside tH8 the xBook system. In other words,(if,y) ¢ P(z)
system. Table 1 contains the results of testing our protBenvCi(z), C;(y) : Ci(z) -4 Cj(y), whereC;(z) and
type against a wide range of these synthetic attacks. InG@il(y) are components of application instance for user
our experimental tests, xBook successfully prevented #edy, respectively.
leaks before the information could be passed outside fA@of. Similar to Theorem 1.

system. 7.4 Performance Estimates

We can also prove that if xBook’s confinement mecha- Book d i bstantial burd h
nism is correctly enforced, the information model ensurFsX 00k does not Impose a substantial burden onthe per-

that no user information is leaked to external entities (Thé)rmance of the third party applications. With an archi-

orem 1) and to any other user (Theorem 2) outside &tural framework of developing applications, it is dif-
user-defined policies icult to accurately predict the impact of our design on

Theorem 1.Given a set of policie® — D x X, where the the performance of these applications as perceived by the

application can pass user’s information fields D to ex- user. To get a rough estimate of the cost of supporting the

ternal entityz € X, and assuming that the intended corfSBOOk design and the °Vefhead mvplved n our system,
g conducted some experiments with our sample appli-

finement is enforced, the information flow model ensurd

that there is no possible leak outside the xBook system.cﬂ]i'ons' measuring latency at the user end and overhead

other words, if(d,) ¢ P thenvC; : C; % z, whereC, imposed by the mediating design of xBook.
are applicati,on (;omponents @ @ o sho'ws tha: The xBook server side is hosted on a 2.4GHz Pentium
can not pass data itemto » " 4 machine with 512MB of RAM. The requests are made

Proof. LetC?,C1, - - C* represents the information flow/fom Firéfox 3.0 browser on a 2.33GHz, 2GB RAM, Pen-

path of a data elemewtfrom the xBook database to exflum Core Duo laptop. Each test was run 10 times and
ternal entityz values were averaged. We define user latency as the differ-

. ence in the time when the request is made at the browser
We present the proof by contradiction. Let us assu

. s i "fid the time at which the response is received by the
thatC* can pass any information (representedkpyo z,

_ past : -H=sE _ browser. Table 2 shows the time required by xBook’s in-
illustrated as”" — «. This communication is monitoredsormation flow control in comparison to the user’s over-

by our xBook platform, but the platform does not knowj jatency. Server processing includes the application’s

the semantics of the infgrmation being passed. logic, database access to retrieve required user data, and
Also,Vi € [0,k] : "1 = C" = L'"' < L* (flowis a xBook flow checks, and is independent of the network la-
restriction) tency experienced by the application. We instrumented
C"'—ax= L' L" _ our code to derive the time for performing label checks in
Therefore L'~ < [* = C""! Sz the system, and measured overhead as a function of the
Continuing this by inductiong’® = label checking time over the total latency experienced by

In our labeling model, the computational granularity ihe user. Our results show that the overhead introduced
at the component level. Therefore, we considerttiat: by xBook’s label checks is considerably small: about 4%

Output(C;) = F (Input(C;)) for any computatiort . for the horoscope application and 3% for the map utility
For componentC?, Input(C°) = d, Output(C°) = x marking user's hometown location on Google maps.

= *x=[F(d) On a cluster of commercial servers with much better
Since the input ta? is supplied by the xBook platform,computational capacity, these values will be even smaller.
and sincdd,) ¢ P, C° »* . Although it is not possible to precisely determine the
This is a contradiction. Therefor€; —* z. cost of our approach without a large scale experiment,

By definition, x represents any information (includia. both the details of our design and the results from these

experiments, support the conclusion that xBook desiglication in view of privacy concerns, it would motivate
would not substantially increase the latency experiendbe developers to consider such a transition.

by users. Our system also suffers from classical covert channels,
_) e.g. timing, memory, process, etc. However, in gen-
8 Discussion eral these channels have limited bandwidth and viable

In this section, we discuss the limitations of the applic@PProaches such as randomizing the time (for example,
tion design in xBook and address some of the challendB§ delivery time of our message queue discussed in Sec-
arising from the new requirements imposed by our desigio" 4.3) can further limit their utilities. We plan to study

Our xBook design imposes no limitations on applgome of these channels as part of our future work.
cations that follow a “pull model”, i.e., xBook would Scalability (_)f the applications is not a concern in our
preserve the functionality of applications that only ré&yStem: applications hosted on clusters outside xBook
ceive data from external entities without passing any pfould now be hosted on clusters inside the xBook plat-
vate information to these entities. Our horoscope apdf'™- The application developers are already paying for
cation is an example of such as application: one pdppstmgthelrapphcatlons, in most cases to f[hlrd—panres
lic component of horoscope pulls horoscope data frdifPud owners like Amazon EC2 [2]. Thus, instead of the
www. t ar ot . comand does not pass any of the userdevelopers paying to these parties, they would be paying
profile information. Note that the xBook platform doel® XBook for the hosting service. xBook, in turn, can out-
not need to sanitize the request parameters (in both GE2Hrce the hostlng to_th|rd—part|es, still assuming cdntro
and POST requests), as the component making suchdghe hosted applications. .
quests has no user information that can be leaked. AnYVe also propose a hybrid model where only the appli-
other component, which has access to the user’s birth@&jion components that require access to xBook's private
information, uses the data to calculate the daily horoscdifi@ needs to be hosted at the xBook servers. Other public
corresponding to the particular user. This component H&¥nponents can be controlled by the application develop-
no communication with any external entity. ers on the!r own servers. Such an approach is useful for

On the other hand, our design might limit some of tH82NnY appll_ca'u_ons as research has shown that a large num-
applications that require data to be sent to external difF of applications do not use any private data to perform
tities for receiving user-specific information. One typitheir functionality [19].
cal example is the use of Google APIs to generate maps:
it requires a location to be passed to Google before the Related Work
map is generated. In many cases, we expect these extelrformation flow control at the language level has been
nal entities to be larger and well branded entities, suelell studied [16,27]. Jif is a Java-based programming lan-
as Google, Yahoo, etc. Such cases could be whitelistpehge that enforces decentralized information flow con-
after explicit approval from the user. Note that xBoottol within a program, providing finer grained control than
makes no recommendation about which websites candook [27]. In comparison to these language level tech-
trusted, including Google and Yahoo; such trust decisionigjues that require the applications to be rewritten, the
are made by an individual user from his own knowledgeéBook platform provides a simpler interface to the appli-
and experiences. Our xBook system can keep trackoattion programmers: they do not need to learn a new lan-
these approvals across applications for every user, sogeage or perform any fine-grained code annotations. Ad-
users need to approve an interaction only once. ditionally, information flow on a language like javascript

Any social networking application would follow eithemwith dynamically created source code may not be feasi-
the pull model or the push model to get data from exterride. Cong et al. [16] presented a technique of writing se-
entities. In both cases, our platform enforces the appiiire web applications, which generates javascript code on
cations to make all such interactions explicit and allovilse client side and java code on the server side. However,
the user to make a more informed decision based on the applications are still written in the Jif language.
information available. We argue that an application usingThere are other systems [23, 36] that have utilized the
the pull model would be more acceptable to the usersiaformation flow concept to control data flow at the oper-
it requires minimal trust decisions from a user’s perspeating systems (OS) level. Information flows are tracked
tive. It is possible to transform many of the current sociat low-level OS object types such as threads, processes,
networking applications that use the push model to stett. xBook works at a much coarser level at the applica-
using the pull model. We acknowledge that such a trar®ns, with smallest unit of information being an applica-
formation would require some changes to the applicatiban component. As a result, run-time information flow
design, and in some cases, such transformations mightinotBook would probably be less expensive as compared
be practical due to large download size of the requiréal a much finer granularity level used in these systems.
data. However, if enough users decide not to use the &porder to make these systems useful for a typical social

networking environment, it would require the systems fdeferences

be installed at a user’s computer because Ieaks_can alsQ ADsafe. htt p: // adsaf e. or g. Last accessed Feb. 1,

happen at the browser, which might not be feasible. In 2009,

comparison, xBook runs on a typical web server withouf2] Amazon elastic computing cloud. http://aws.

any changes to the OS environment. amazon. conl ec2/ . Last accessed Feb. 1, 2009.
Similar to the ADsafe environment, other safe subseti3] Daily horoscopes.htt p:// apps. f acebook. cont

of programming languages, such as JoeE [20] (for java[) ga' Iby- T(Odr OSFOpe-_LSSt alccessed Febil, 2\239- _

and Caja [25] (for javascript), allow third-party applica-] Facebook developers: Developer terms of servite. p:

. . : L o /I devel opers. facebook. coni t er ms. php.

tions to provide active content safely and flexibility withi Last accessed Feb. 1. 2009

the e>§|§t|ng Web.stan.dards. While we used ADsafe for it$s) Facebook’s privacy policyht t p: / / ww. f acebook.

simplicity and suitability to meet our system needs, we ex- * ¢onf pol i cy. php. Last accessed Feb. 1, 2009.

pect that it would be similarly possible to develop xBook[6] Helma javascript web application frameworkt t p: / /

using these alternatives. www. hel ma. or g.
[7] Javascript object notation (JSON). htt p:// waww.
10 Conclusions j son. or g. Last accessed Feb. 1, 2009.

We presented a novel architecture for a social network[—s] JSLint: The javascript verifieht t p: //www. j sl i nt.
com Last accessed Feb. 1, 2009.

ing framework,_called xBook, that substantial_ly improves[g] Map your friends. ht t p: / / apps. f acebook. com

privacy controlin the presence of untrusted third-partyap” * ngpyourfri ends. Last accessed Feb. 1, 2009.

plication. Our design allows the applications to have agto] Opensocial.ht t p: / / wwv. opensoci al . or g/ . Last

cess to user data to preserve their functionality, but at the accessed Feb. 1, 2009.

same time preventing them from leaking users’ private ifit1] Topfriends. http://apps. f acebook. com

formation. topfri ends. Last accessed Feb. 1, 2009.

We developed a working prototype of the system that k421 A- Acharya and M. Raje. MAPbox: using parameterized

available as an application on Facebook [33]. We showed beha_wor classes to confine untru_sted apphcgtlonﬁ’.rdn
S . . ceedings of the’® USENIX Security Symposiybenver,

the viability of our system by developing sample applica-

. . S L CO, Aug. 2000.
tions using the xBook APIs: these applications are simil] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore

in functionality to the applications on existing socialnet’ "~ 4t thou r3579x?: Anonymized social networks, hidden
works. patterns, and structural steganography. Pheceedings
Our system shows promise in designing potentially of the 16" International Conference on World Wide Web
valuable future applications, that would require user data (WWW) Banff, Canada, May 2007.
to provide more customized service to the user. The grol#4] D. E. Bell and L. J. Lapadula. Secure computer system:
ing popularity Of Sociai networks Would attract increasing Unified eXpOSition and multics interpretation. Technical
attention from attackers because of the value of user infor- Report MTR-2997, MITRE Corp., Bedford, MA, Mar.
mation available in these networks. This user informatiqn 1976.

not only has commercial value, but when combined wi 151 A. Blum, C. Dwork, F. McSherry, and K. Nissim. Prac-
y ’ tical privacy: the SuLQ framework. IACM SIGMOD-

some anonymized public data such as medical records, g caACT-SIGART Symposium on Principles of Database
might leak more sensitive information [28, 34]. The cur- systemsBaltimore, MD, 2005.

rent design of social networking applications poses a §86] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
rious threat to the privacy of individuals that needs to be L. Zheng, and X. Zheng. Secure web applications via
mitigated; the xBook platform is a major step in protect- automatic partitioning. IfProceedings of the 21 Sympo-

ing user privacy in social networking applications. sium on Operating Systems Principles (SQS#venson,
WA, Oct. 2007.
Acknowledgement [17] D. E. Denning. A lattice model of secure information flow

Communications of the ACM9(5):236—243, 1976.

This material is based upon work supported in part l:[3(8] D. Farber. Google to open orkut opensocial developer
the NSF under grants no. 0716570 and 0831300 and gandbox tonight, Nov. 200t t p: / / bl ogs. zdnet .

the Department of Homeland Security under contract no. com BTL/ ?p=6856. Last accessed Feb. 1, 2009.

FA8750-08-2-0141. Any opinions, findings, and concly49] A. Felt and D. Evans. Privacy protection for social net-

sions or recommendations expressed in this material are working platforms. InVeb 2.0 Security and Privacy Work-

those of the authors and do not necessarily reflect the shop Oakland, CA, May 2008.

views of the NSF or the Department of Homeland Sec{g0] M. Finifter, A. Mettler, N. Sastry, and D. Wagner. Ver-

rity. We would also like to thank Monirul Sharif, Roberto ﬁgﬁ/'legg:?;‘;rr‘]i'ep;:'téc')ya";'r ;rzzr(écfni?rin%'scgf';:eSe
L . . u uni | -

Perdisci and the anonymous reviewers for_thelr h_elpful curity (CCS) Alexandria, VAF: Oct. 2008,

comments and our shepherd George Danezis for his valu-

able suggestions.

[21] S. Hacking. More advertising
on facebook (updated), 2008. htt p:
/1t hehar nronyguy. com 2008/ 06/ 20/
nor e- adverti si ng-i ssues- on-facebook/ .
Last accessed Feb. 1, 2009.

[22] R. Konrad. Facebook opens to third-party develop-

ers, May 2007ht t p: / / www. nsnbc. nsn. cont i d/

18899269/ . Last accessed Feb. 1, 2009.
[23] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.

Kaashoek, E. Kohler, and R. Morris. Information flow
control for standard OS abstractions Aroceedings of the [32]
21t Symposium on Operating Systems Principles (SOSP)

Stevenson, WA, Oct. 2007.

[24] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkita[33]
subramaniam. L-diversity: Privacy beyond k-anonymity.
ACM Transactions of Knowledge Discovery from Data

1(1):3, 2007.

[25] M. S. Miller, M. Samuel, B. Laurie, |. Awad, and M. Stay.
Caja: safe active content in sanitized javascript, Oct.

2007.htt p: / / googl e- caj a. googl ecode. com
files/caja-spec-2007-10-11. pdf.

[26] E. Mills. Facebook suspends app that permitted peephol

2008. http://news.cnet.coni 8301-10784_
3-9977762- 7. ht m . Last accessed Feb. 1, 2009.

[27] A. C. Myers and B. Liskov. A decentralized model for

information flow control. InProceedings of the 16 Sym-
posium on Operating Systems Principles (SOSR)jnt-
Malo, France, Oct. 1997.

[28] A. Narayanan and V. Shmatikov.
anonymization of large sparse datasets. |IEEE

Symposium on Security and Priva®akland, CA, May

2008.

Robust de-

issues[29] T. Panja. Oxford using Facebook to snoogt t p:

[/ www. msnbc. nsn. com i d/ 19813092/ . Last ac-
cessed Feb. 1, 2009.

D. S. Peterson, M. Bishop, and R. Pandey. A flexible con-
tainment mechanism for executing untrusted cod®rtr
ceedings of the ¥ USENIX Security SymposiyrBan
Franscisco, CA, Aug. 2002.

P. Samarati. Protecting respondents’ identities inroi
data releaselEEE Transactions on Knowledge and Data
Engineering 13(6):1010-1027, 2001.

D. Sciba. Mayor in myspace photo flap asked to re-
sign. http://ww. kat u. conf news/ 13670287.

ht m . Last accessed Feb. 1, 2009.

K. Singh, S. Bhola, and W. Lee. xBook on Facebook.
http://apps. f acebook. com nyxbook. Last ac-
cessed Feb. 1, 2009.

L. Sweeney. Weaving technology and policy together to
maintain confidentiality. Journal of Law, Medicine and
Ethics 25:98-110, 1997.

C. Williams. Facebook application hawks
your personal opinions for cash, Sept. 2007.
http://wwmv. t her egi ster. co. uk/ 2007/

09/ 12/ f acebook_conpar e_peopl e/ . Last
accessed Feb. 1, 2009.

N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazieres. Making information flow explicit in his-
tar. In Proceedings of the® Symposium on Operating
Systems Design and Implementation (OSB#8attle, WA,
Nov. 2006.

