
xBook: Redesigning Privacy Control in Social Networking Platforms

Kapil Singh∗ Sumeer Bhola∗ Wenke Lee
School of Computer Science Google School of Computer Science

Georgia Institute of Technologysumeer@acm.org Georgia Institute of Technology
ksingh@cc.gatech.edu wenke@cc.gatech.edu

Abstract
Social networking websites have recently evolved from
being service providers to platforms for running third
party applications. Users have typically trusted the so-
cial networking sites with personal data, and assume that
their privacy preferences are correctly enforced. However,
they are now being asked to trust each third-party applica-
tion they use in a similar manner. This has left the users’
private information vulnerable to accidental or malicious
leaks by these applications.

In this work, we present a novel framework for build-
ing privacy-preservingsocial networking applications that
retains the functionality offered by the current social net-
works. We use information flow models to control what
untrusted applications can do with the information they
receive. We show the viability of our design by means
of a platform prototype. The usability of the platform is
further evaluated by developing sample applications using
the platform APIs. We also discuss both security and non-
security challenges in designing and implementing such a
framework.

1 Introduction
Social networking sites have transformed the way peo-

ple express themselves on the Internet and have become
a door to the social life of many individuals. Users are
contributing more and more content to these sites in or-
der to express themselves as part of their profiles and to
contribute to their social circles online. While this builds
up the online identity for the user, it also leaves the data
vulnerable to be misused, as an example, for targeted ad-
vertising and sale.

More private data online has lead to growing privacy
concerns for the users, and some have faced extreme
repercussions for sharing their private information on
these networking sites. For example, students have been
fined for their online social behavior [29]; a mayor was
forced to resign because of a controversial Myspace pic-
ture [32]. There are numerous such cases, and these inci-
dents clearly underline the importance of privacy control

∗Part of the work was done when the first author was an intern and
the second author was an employee at IBM Research T.J. Watson.

in social networks.

With the advent of Web 2.0 technologies, web appli-
cation development has become much more distributed
with a growing number of users acting as developers and
source of online content. This trend has also influenced
social networks that now act as platforms allowing de-
velopers to run third-party content on top of their frame-
work. Facebook opened up for third-party application
development by releasing its development APIs in May
2007 [22]. Since the release of the Facebook platform,
several other sites have joined the trend by supporting
Google’s OpenSocial [10], a cross-site social network de-
velopment platform.

These third-party applications further escalate the pri-
vacy concerns as user data is shared with these applica-
tions. Typically, there is no or minimal control over what
user information these applications are allowed to access.
In most cases, these applications are hosted on third party
servers that are difficult to monitor. As a result, it is not
feasible to police the data being leaked from the applica-
tion after the data is shared with the application. There
have been several reported cases where users’ private in-
formation was leaked by the applications, either due to
intentional leaks [21] or due to vulnerabilities in the ap-
plication [26].

Most social networking platforms, such as Facebook,
currently provide the applications with full access to user
profile information. This permission is granted in Face-
book when the user adds the application, which requires
the user to make a trust decision. Setting fine-grained ac-
cess control policies for an application, even if they were
supported, would be a complex task. Furthermore, access
control policies are not sufficient in enforcing the privacy
of an individual: once an application is permitted by a
user’s access control policy, it has possession of the user’s
data and can freely leak this information anytime for per-
sonal gains. For example, a popular Facebook applica-
tion, Compare Friends, that promised users’ privacy in
exchange for opinions on their friends later started sell-
ing this information [35].

In this paper, we are concerned with protecting the
users’ private information from leaks by third-party ap-



plications. We present a mechanism that controls not only
what the third-party applications can access, but also what
these applications can do with the data that they are al-
lowed to access. We propose and implement a new frame-
work calledxBook that provides a hosting service to the
applications and enforces information flow control within
the framework. xBook provides three types of enforce-
ment that encapsulate the privacy requirements in a typ-
ical social network setting: (1) user-user access control
(e.g., access to only friends) for data flowing within one
application, (2) information sharing outside xBook with
external parties; and (3) protection of the application’s
proprietary data. While (1) and (2) protects the privacy
of a user from information leaks, (3) prevents the applica-
tion’s proprietary data or algorithm from being leaked to
the application users.

The third-party applications are redesigned in such a
way that they have access to all the data they require (al-
lowing them to perform their functionality) and at the
same time, not allowing these applications to pass this
data to an external entity unless it is approved by the user.
Our framework enforces that the applications make these
communications explicit to the userso that he is more in-
formed before approving an application.

There are several challenges associated with the design
of our xBook framework:
Confinement. The execution of application code needs
to be confined. This problem needs to be dealt with inde-
pendently on the client side within the browser and on the
server side in the web server. We use “the web server” as
a conceptual entity to represent one or more servers.
Mediation. All communication from and within an ap-
plication needs to be mediated by the xBook platform for
permissible information flow. To this end, we developed
a labeling model that enforces user-defined security poli-
cies. High-level policies specified by the user are con-
verted to low-level labels enforced by xBook.
Programmability. The programming abstraction to the
application writers should be practical and easy to use.
xBook provides a set of simple APIs in line with the ex-
isting social networking platforms.
Portability. The requirements imposed by xBook on the
application design should not break the existing applica-
tions. In other words, it should be feasible to port most
functionality of typical applications to xBook with little
effort.

We show the viability of our framework design by im-
plementing a working prototype of our xBook system and
porting some of the popular applications from existing so-
cial networks, such as Facebook, on top of the framework.
We also demonstrate a practical deployment strategy of
our system by porting our framework itself as an appli-
cation on Facebook. Our system is available online [33].
We evaluate the security of our platform by illustrating

some possible application scenarios, and how xBook en-
sures privacy control in such cases. We also create some
synthetic attacks that attempt to exploit the platform to
leak information. Our results illustrate that xBook can
successfully prevent all such attacks. Our performance
results further demonstrate that xBook’s privacy control
mechanism incurs negligible overhead for typical social
networking applications.

The rest of the paper is organized as follows. Sec-
tion 2 motivates our work by analyzing some privacy is-
sues with the current social networking platforms. We
present an overview of our xBook framework in Section
3. Section 4 and 5 discuss the implementation details of
xBook’s client-side and server-side components, respec-
tively. Our labeling model is described in Section 6. Sec-
tion 7 presents the evaluation results. We discuss the limi-
tations of our work in Section 8, followed by related work
in Section 9. Finally, Section 10 concludes the paper.

2 Background

2.1 Social Networking Platforms

Social networks are the backbone of the online social
life of many Internet users. These networks have ex-
panded their development scope by allowing third-party
developers to write their own applications, which in turn
can be accessed and executed via the social network. An
application is an entity that provides some value-added
service to the user, and it requires user’s profile data to
perform its functionality. For example, a simple horo-
scope application generates daily horoscope based on
user’s birth information.

Facebook is one popular network that has pioneered the
concept of the social network as a platform. The applica-
tions bring value both to the platform and its users in pro-
viding new features. Applications are deployed on their
own servers and Facebook only acts as a proxy for in-
tegrating the applications’ output to its own pages. The
growing popularity of applications on Facebook has en-
ticed other networks, such as Google’s Orkut, to start sup-
porting applications. The Orkut platform model is based
on the OpenSocial framework [18]. OpenSocial provides
a set of APIs for its partner sites (which it refers to as
“containers”) to implement. An application that is built
for one container should be able to run with few modifi-
cations on other partner sites. The APIs allow third parties
to have access to the social graph and personal user data.

For the rest of the paper, we use the Facebook case as an
example; similar concepts apply to other social network-
ing platforms.

2.2 Privacy Issues with Current Designs

Facebook supports customized policies for user-user
access control, but currently provides no control on what



(a) (b) (c)
Figure 1: Application architecture for: (a) current platforms. (b) xBook platform. (c) xBook on Facebook.

user profile data can be accessed by third party applica-
tions. Applications run on their own servers that have no
control administered by Facebook (Figure 1(a)). Appli-
cations need data to perform their functionality; they can
request user data from the social platform and store it at
their own servers. Facebook discourages storing user data
on the application’s own servers by barring it in their li-
cense agreement [5], but there is no way of enforcing it in
Facebook’s current architecture.

Application developers have access to a user’s data
even when they are not friends with the user. Unlike
a regular friend relationship, this relationship is neither
symmetric nor transparent: the application developer has
access to the user’s information, but the user does not nec-
essarily know who the application developer is.

Before adding an application, the users are required to
agree to a service agreement that allows the application to
have access to their profile data. This general agreement
is presented for every application, and no other specific
information is provided about the application. Since a ma-
jority of the applications are known not to exploit users’
personal data, the users tend to add any application, effec-
tively defeating the purpose behind the service agreement.
Additionally, second-degree permissions that allow appli-
cations to have access to the profiles of the users’ friends
add another layer of complexity.

There have been several reported incidents where users’
information was leaked due to a vulnerability in the appli-
cation [26]. The platform is trusting all third party devel-
opers, but the trust is misplaced since there is no restric-
tion on who is allowed to develop an application. One of
the most popular Facebook applications, TopFriends, had
a vulnerability that allowed any user of TopFriends to see
the profile of another user, even if they are not friends with
each other [26]. Private information of some high profile
users was leaked. Facebook’s response to this controversy
was that theyexpectthird party applications to follow their
policies, which is not acceptable considering that there is
no effective way to police the application developers.

User data has a lot of commercial value to market-
ing companies, competing networking sites, and identity
thieves. Therefore, it is not surprising that many applica-
tions have been observed to intentionally leak user data to
external parties for profit [21]. Other surveys have also
discovered similar violations based on an application’s
externally-visible behavior [19]. The situation could be

even worse as it is not feasible to determine how many
other applications violate the user’s privacy with internal
data collection.

Social networking sites have a responsibility to protect
user data that has been entrusted to them. The current ap-
proach is to legally bind the third parties using a Terms
of Service (TOS) agreement [4]. However, it is not possi-
ble to monitor the path of information once the informa-
tion has been released to these parties. Therefore, social
networks can not rely on untrusted third parties follow-
ing their TOS agreements to protect user privacy. Instead,
privacy policies should be enforced by the platform and
applied to all data that has been entrusted to the social
networking site. Our platform design,xBook, is one step
forward in this direction.

Felt et al. [19] have proposed a solution to proxy the
user information in the form of tags to the third-party ap-
plications. These applications do not have access to user
data and instead use pre-defined tags to format their output
being displayed to the user. Their solution limits the ca-
pability of some important and popular applications, such
as the horoscope application, that perform processing on
user data beyond just displaying it. Our work enforces no
such restriction on the application behavior.

3 xBook Overview
xBook is an architectural framework for building social

networks that prevents untrusted third-party applications
from leaking users’ private information. The applications
are hosted on xBook’s trusted platform (Figure 1(b)), and
xBook provides complete mediation for all communica-
tion to and from these applications.

In a social network setting, an application might com-
municate with entities outside the xBook system, called
external entities, to perform specific tasks. For exam-
ple, the horoscope application may communicate with
www.tarot.com to receive horoscopes for every sun-
sign. The application also encapsulates its own data or
algorithm that needs to be protected from untrusted users.

In the xBook framework, applications are designed as a
set ofcomponents; a component being the smallest granu-
larity of application code monitored by xBook. A compo-
nent is chosen based on what information the component
has access to and what external entity it is allowed to com-
municate with. In the horoscope application, one compo-



nent communicates withwww.tarot.com and has no
access to user data. Another component has access to
user’s birthday, but does not communicate with any ex-
ternal entity.

From an end user’s perspective, the applications are
monolithic as the user does not know about the compo-
nents. At the time of adding a particular application, the
user is presented with a manifest that states what user
profile data is needed by the application and which ex-
ternal entity will it be sharing this data with. For exam-
ple, horoscope’s manifest would specify that it does not
share any information with any external entity. Note that
the horoscope application does not need to reveal that it
communicates withwww.tarot.com as no user infor-
mation is being sent towww.tarot.com. The user can
now make a more informed decision before adding the ap-
plication. Admittedly, the user will need to make a trust
decision with respect to the parties with which the appli-
cation shares user data, but these external parties can be
expected to be larger and better branded entities providing
internet services, such as Google for ads, Yahoo for maps,
etc.

Figure 2 shows a typical life cycle of an application.
The developer of an application decides on the structure of
the components for that application and during the appli-
cation’s deployment on xBook, he specifies the informa-
tion required by each component and the external entity a
particular component needs to communicate with. xBook
uses this information to generate the manifest for the ap-
plication. As shown in the figure, a manifest is basically a
set that specifies all of the application’s external commu-
nications (irrespective of the components) along with the
user’s profile data that is shared for each communication.
Additionally, the xBook platform ensures that all of the
application’s components comply with the user’s privacy
policy and the manifest approved by the user. We discuss
this further using the case study of an example application
in Section 6.3.

The division of an application into multiple compo-
nents allows the application writer to develop different
functionality within an application that rely on different
pieces of the user profile. For example, let us consider
an application that requires a user’s information to gen-
erate a customized profile for the user. It also requires
his address information to be passed to Google to gener-
ate a map showing the address. In the application design
of current social networks, the application would be able
to pass all information about the user to Google. In the
xBook framework, the application would be split into two
components: the first component presents the customized
profile of the user, has full access to the user’s data and
is not allowed to communicate with Google; the second
component encapsulates the user’s address (with no map-
ping to the user’s profile) that is passed to Google to gen-

Figure 2: Typical life cycle of an application in xBook.

erate the map. We discuss some example applications in
Section 7.1.

Figure 3 shows a high-level design of our xBook frame-
work. There are two parts of the xBook platform, one that
runs on the server-side and another that executes on the
client-side in the user’s browser (Figure 3). The applica-
tion components, in turn, are also split into client-side and
server-side components. The components are written in a
safe subset of javascript, called ADsafe [1], which facili-
tates confinement of these components in our xBook im-
plementation. Any communication to and from the com-
ponents occurs by using xBook APIs, thereby allowing
all such communication to be mediated by xBook. Each
component is associated with a privilege level or label that
is derived from the application’s manifest. The platform
mediates the information flow between the components
based on these labels (Section 6).

Both client-side and server-side components commu-
nicate with server-side storage to retrieve data. There
are two types of storage in xBook system: one for stor-
ing xBook data that includes user profiles, and second for
the data stored by the application. While the structure of
xBook data is known, the semantic of the application data
is internal to the application and hence unknown to the
platform. All data fields are labeled to control access by
application components. These labels are assigned based
on high-level user-defined policies, such as a policy al-
lowing access to only the user’s friends, and the manifest
approved by the user (Figure 2).

To store application data with unknown structure and
semantics, xBook contains a group of storage pools,
where data is stored as a set of name-value pairs. An ap-
plication can have multiple storage pools, which could be
for each user or for user-independent data.

3.1 Leakage Prevention by xBook Design

In the current platform designs, a user’s information
can be leaked in three major ways: (1) applications can



Figure 3: xBook architecture shown along with sources of potential leaks.

share user’s information with any third party, including
advertisers, or fraudulent parties [21], and as shown in
Figure 1(a), there is no way such a leak can be moni-
tored in the current designs; (2) an application can pass
information of one application user to another user, break-
ing free from the platform restriction that only friends
can view a user’s profile. The reported vulnerability in
TopFriends allowed such a leak [26]; (3) the application
can recreate the social graph of all its users by connecting
common friends as edges in the graph.

xBook’s design enforces complete mediation of all
communication with the external entities (Figure 1(b)),
thus preventing these applications from leaking informa-
tion, effectively preventing (1) by design. A separate ap-
plication instance is created for every user, and that in-
stance only has a view of the data accessible to that user.
Data access is restricted to allowed user policies, such as
access to friends. We mediate any direct or indirect com-
munication between the components of two application
instances, thereby deterring (2). (3) is prevented as no
single component of an application can have direct access
to the data of all its users: a component can only access
an anonymized view of this data set (Section 5.2).

xBook, by design, solves most of the leakage problems
of the current platforms. However, there are still some
potential mechanisms to leak information in our system.
We enumerate these possible threats in our formal model
and address these threats one by one throughout the paper.

3.2 Formal Requirements

We present a formal model in this section that general-
izes xBook’s mediation of untrusted third party applica-
tions. We use this model to analyze possible attacks, in
terms of potential data leaks, under an adversary that de-
ploys an application for collecting users’ private data. We
also identify a list of requirements that our system should
satisfy in order to defeat such attacks. These formal re-
quirements drive the design and architecture of our sys-

tem.
Consider an applicationA consisting of a set of client-

side components and a set of server-side components. Let
U be the set of all users of the platform andY be the set
of all external entities. Suppose the application is allowed
to communicate to a set of external entitiesX ⊆ Y and a
set of usersFu ⊆ U for a particular useru ∈ U who is
using the system. Now, we divide the set of all data items
D into three categories. First, there is a set of proprietary
data or code of the application represented asdA ⊆ D.
Second, the set of data itemsdu→x belonging to the user
u ∈ U that the application can transfer to the external
entityx ∈ X . This set could be in the form of user’s age,
interests, photos, etc. Third, for an application instance
of userui ∈ U , the set of data itemsdui→uj

is what the
application can transfer to a useruj ∈ Fui

.
The platform wants to monitor the occurrence of a set

of eventsE that can pass information outside an appli-
cation component. Any evente ∈ E is actively moni-
tored by intercepting the information flow path between
the point of the event occurring and the point where the
event is handled. The platform monitors the content in-
formationIe contained in the event. We express the re-
sponse of the platform when the particular instance of the
event has potential leaking information asR(Ie), which
may include filtering the content, blocking the communi-
cation, etc.

We can identify several sources of potential leaks in the
xBook system (Figure 3). The first class of attacks (A1)
bypasses the active monitoring by the xBook platform to
leak private information from one client-side component
to another, by creating a prohibited flow. Such attacks ex-
ploit some of the abstract features of the development lan-
guage and the browser to leak information maliciously. In
other words, A1 occurs if responseR(Ie) is not triggered
even if theIe contains private information content that
is being leaked. Similar leaks (A2) are possible on the
server-side where application components can break out



of the sandbox to create a prohibited channel with other
components. In addition, some attacks (A3 and A4) can
occur during a component’s access to data store, where the
component gains access to restricted user or application
data. Leaks (A5) can also occur in the communication
between client-side and server-side components. Other
attacks (A6 and A7) leak private information to entities
outside the system. The leaks could be to anx ∈ Y that is
prohibited (x /∈ X), or it could be leaking restricted piece
of informationd ∈ D to an entity via communication that
is allowed by the system, i.e., forx ∈ X, d /∈ du→x for a
useru ∈ U .

We completely forbid cross-application communica-
tion, effectively preventing leaks across applications. We
also prevent direct communication between server-side
components, only allowing them to communicate via stor-
age, thereby preventing attacks of type A2. We medi-
ate other communication paths based on the labels of the
communicating parties (Section 6). We address all other
identified classes of attacks in Section 7.3. The require-
ments of an ideal social networking platform that guides
the xBook design are as follows:

• ResponseR(Ie) is invoked ifIe contains prohibited
private information. In other words, the platform
should be able to monitor any event that might be
potentially leaking information, and should take ac-
tion to prevent such leaks.

• Applications can invoke an evente iff e ∈ E, i.e.,
applications are restricted to a limited set of events
for passing information to external entities.

• Application component having access to useru’s pri-
vate datad can send information to an external entity
x ∈ Y iff x ∈ X andd ∈ du→x. In other words, the
platform should enforce user policies by limiting the
communication to onlyallowedexternal parties and
passing onlyallowedinformation to these parties.

• Application component having access to userui’s
private datad can send information to another com-
ponent acting for useruj iff uj ∈ Fui

and d ∈
dui→uj

. This means that the applications should in-
herit the user-user access control policies of the plat-
form.

• Application componentx can accessdA only if x ∈
S, i.e., only server-side component of the application
should have access to application’s proprietary data.

We do not cover attacks against the browser in this work
and assume that the browser behaves non-maliciously. Al-
though phishing attacks can entice the user in choosing
policies that might leak user information, we do not con-
sider such attacks here. This work enforces the policies
specified by the user, and does not consider social engi-
neering attacks against the user.

Figure 4: Client-side components inxBook design.

4 Client-side Components
The client-side of the xBook platform and the client

components of the applications run within the web
browser. The components are further divided into two
parts: the user interface (UI) part that is visible as part
of the page to the user, and the non-UI part that provides
communication interfaces with the external parties and
with the server side. There is a one-to-one mapping be-
tween the non-UI and the UI parts, i.e., for every non-UI
part, there is a corresponding UI part visible to the user
(Figure 4).

A component is allowed to create another component.
Information can flow during the component creation and
this opens up the possibility of an information leak. We
prevent such leaks by allowing components to create other
components that are at least as restricted as the creating
component. This principle prevents the creating compo-
nent from leaking information out of the system via a less
restrictive component.

At the front end, the creating component needs to dele-
gate some screen space to the created component. One
challenge is to isolate the third-party application com-
ponents within the Document Object Model (DOM) of
the webpage. A DOM is a platform- and language-
independent standard model for representing HTML or
XML documents in a browser. We present our confine-
ment approach in the next section.

4.1 Confinement Mechanism

The components of an application encapsulate differ-
ent levels of private information for the users. Therefore,
these components need to be isolated from each other in
order to prevent information leaks. On the client side, the
components form a part of the DOM of the web page. The
web page’s DOM may include multiple components from
one or multiple applications, apart from the platform’s
DOM objects.

In the current browser specifications, any script in a
page has intimate access to all of the information and re-
lationships of the page. As a result, the components are
free to access information about the DOM objects of other
components. In order to confine the components within



their own control domain, we limit the application code
to be written in an object capability language called AD-
safe [1]. In an object capability language, references are
represented by capabilities and objects are accessed using
these references. Other alternatives to ADsafe, such as
Caja [25], are also available; we decided in favor of AD-
safe due to its simpler design and easier feature addition
and customization to meet our system needs.

ADsafe. ADsafe defines a subset of javascript that
makes it safe to put guest code (such as third-party
scripted advertising or widgets) on any web page. ADsafe
removes features from javascript that are unsafe or grant
uncontrolled access to browser elements. Some of the fea-
tures that are removed from javascript are global variables
and functions such asthis, eval andprototype. It
is powerful enough to allow guest code to perform valu-
able interactions, while at the same time preventing ma-
licious or accidental damage or intrusion. The ADsafe
subset can be verified mechanically by static tools like JS-
Lint [8].

ADsafe was initially developed to host untrusted ad-
vertising content safely on a webpage. xBook’s isolation
mechanism is designed with the code base taken from an
earlier version of ADsafe. We customized ADsafe by
adding code for our component confinement model and
mediation based on our labeling model, to prevent in-
formation leaks from the “sandboxed” application com-
ponents. A recent version of ADsafe have since im-
plemented some of our features, but still would require
changes to be useful for our system.

One such example is that ADsafe runtime supports only
a single level of confinement: all subtrees of the untrusted
guest applications exist as children of the trusted web page
code. One guest application does not have another guest
application as a child to its subtree. In contrast, xBook
design requiresnestedDOM subtrees that need to be iso-
lated from each other. Figure 4 shows an example of a
nested subtree, where componentC3 is a child of compo-
nentC1, which in turn is a child ofC0.

Our requirement is to restrict an application component
to within a set of connected DOM elements that form the
component. In the current DOM specification, any DOM
element can parse through the tree of the page via its par-
ent, children or siblings. We enforce confinement by pro-
viding the component elements only with a partial view
of the page’s DOM and only indirect access to the DOM
objects.

Confinement Rule 1. One DOM element belonging
to an application component should only access another
DOM element of the page (that includes accessing its
properties, adding a new element to it, etc.) iff they both
belong to the same component.

As part of the implementation, xBook associates each
component with a uniqueDOM wrapper object at the

time of creation. Figure 5 shows the partial code of
our DOM wrapper implementation. Before deploying
an application, xBook verifies that each component code
is ADsafe compliant. The code must be wrapped in a
<div> element having an identifier, which forms the
root of the component. xBook ensures that this identi-
fier is unique to the application page. TheADSAFE.go
method gives the component code access to theAPI ob-
ject that maps to our DOM wrapper object. TheADSAFE
code ensures that the second parameter passed to the
createDOMWrapper function is equal to the identifier
of the encapsulating<div> element, effectively prevent-
ing the developer from faking the identity of the compo-
nents. It also ensures that the DOM wrapper instance gets
the right identity of the component’s root node.

The wrapper allows an untrusted component to view
DOM nodes simply as integer handles; the component
has no direct access to the real DOM. To read or mod-
ify the DOM, the component code passes the appropri-
ate handles to the wrapper DOM object using the xBook
APIs, which in turn interacts with the real DOM. Addi-
tionally, element creation and modification are adminis-
tered using this component-specific wrapper object. For
example,createTextNode method in Figure 5 would
return an integer handle. Since a wrapper instance is iden-
tified by its root element<div> that is unique, the DOM
wrapper object restricts the untrusted component code to
interacting only with the portion of the document tree that
belongs to that component. All direct accesses to any real
DOM elements are forbidden: the wrapper is the only in-
terface for accessing the elements and it is mediated by
the xBook platform.

4.1.1 Event Handling

Another possibility of an application breaking the con-
finement mechanism originates from the way event han-
dling is designed in the current DOM specification.

Every event has a target, i.e., the XML or HTML el-
ement most closely associated with the event. An event
handler is a piece of executable code or markup that re-
sponds to a particular event. Any element of the DOM
can register an event handler to receive a particular event
type. Since an event generated from within a component
can be received outside the component, the flow of events
within a DOM needs to be controlled by the xBook plat-
form for any potential leaks.

In the current DOM implementation, it is possible to
assign multiple handlers for a given event. It allows a
DOM element to capture events during either of the two
phases in the event flow. The event flows down from the
root of the document tree to the target element in the first
phase calledcapture, then it bubbles back up to the root
in thebubblingphase. An element can receive the event
only if it lies in the path between the document root and



Figure 5: DOM wrapper implementation with sample functions.

the event target.
One of the goals of our event handling model is to keep

the functionality of the current DOM model (including
preserving the concept of the two stages). Therefore, we
specify our event flow model as follows: for any appli-
cation component, an element can receive an event iff it
lies in the path between theroot of the componentand the
target element for the event. We still need to restrict this
access to a single component so that no outside compo-
nent can receive the event; we provide such a restriction
by the following confinement rule:

Confinement Rule 2.A DOM element belonging to an
application component can receive an event iff the event
target belongs to the same component.

We implemented our event handling model using the
DOM wrapper object introduced in the previous section.
As shown in Figure 5, the object makes a wrapper to the
event handling interface available to applications. The
wrapper receives the event from the browser’s DOM im-
plementation and filters the information presented in the
received event object before passing the event to the appli-
cations. Any information about the real DOM elements,
such as the handler to the target element, is filtered; this
prevents application’s component code from breaking the
confinement. TheaddEventListenermethod copies
the received evente into new e while transforming the
real DOM element references to wrapped integer values.

The xBook platform mediates the event delivery and as a
result, ensures that an event can only be received by el-
ements that belong to the same component that contains
the target, thereby enforcing the second confinement rule.

4.2 Communication with External Entities

It is common for the applications to communicate with
external parties to perform specific tasks. One typical ex-
ample is the use of Google map APIs to generate maps of
some address known to the application [9]. In other cases,
a user’s date of birth is used by applications to contact
external providers to generate horoscopes [3]. What we
achieve in our architecture as compared to the existing so-
cial networking platforms is thatwe enforce the applica-
tions to make these communications explicitso that more
informed decisions can be made. The user or the platform
can decide on the policies regarding which external enti-
ties are allowed to receive what piece of the user’s private
information. These policies could be coarse-grained for
all applications of a user or fine-grained specific to each
application. xBook ensures that the information flows
from a specific application component to an external en-
tity according to the defined policies.

There are two kinds of communication flows that can
happen in our system:
Symmetric communication in which the response is re-
ceived by the requesting component. This is a typical case



for most client-server communication in which there is a
two-way exchange of information between the two par-
ties.
Asymmetric communication in which the response is
not received by the component that made the request, but
is handled by another component of the application. Our
motivation for supporting this type of communication is
to enable some specific application scenarios. One mo-
tivating example is the advertising scenario where adver-
tisements are generated by external parties based on the
information passed to them: Google generating advertise-
ments based on the address passed to it. These external
party advertisements are typically in the form of links that
users click to access the related site. If we design this sce-
nario using symmetric communication, these advertising
links would not work, since the receiving component has
been restricted to communicate only with Google and not
any other party. In order to solve this problem, we can
create another application component that is considered
part of Google’s trust domain; since Google servers are
unconfined or public from xBook’s point of view, the cre-
ated component is also unconfined. We do not allow any
other application component to peek into this new com-
ponent or disrupt its integrity. Since we are only show-
ing Google’s view in this component and the application
is not allowed to change this component, this component
maintains the trust level of Google. The new component
is placed in aniframe with its own DOM and hence
cannot communicate with any other component. How-
ever, since the component is unconstrained, it is allowed
to communicate with any external entity and as a result,
the advertising links would work.

4.3 Communication between Components: Message
Passing Interface

xBook exposes a one-way message passing API that
the components use to pass messages to other compo-
nents. We implement this interface using the DOM wrap-
per object as shown in Figure 5. The platform mediates
this communication and ensures that the information flow
model is enforced. Since each component is associated
with a unique wrapper object that is used to send the mes-
sage (Section 4.1), the sending component of the mes-
sage can not fake its identify to fraudulently pass the in-
formation flow checks: as seen in Figure 5, the value of
currentUser and sender’scompID are implicitly pro-
vided by the wrapper object to xBook’ssendMessage
function. A component can register a message listener
with the platform through the xBook API. Any message
intended for a particular component is delivered to its
message listener. Since the platform knows the identity
of each component, it makes sure that the message is de-
livered to the right component.

The purpose of our message passing interface is to

allow xBook-mediated communication among untrusted
components of an application, while still preventing cre-
ation of any hidden channels. To this end, we needed to
evaluate some of the features of javascript that gives ap-
plication writers alternatives to pass hidden information
in the messages.

Javascript is a weakly typed language and allows any
property to be added to any object. For example, an object
message can take a propertyfoo usingmessage.foo
= value; wherevalue could be a number, string or
any other object type. Since all application components
run in the same scope, a component can pass informa-
tion to another component if it has access to an object of
that component. Let us assume that a component C1 is
allowed to talk to another component C2 as per the infor-
mation flow policies, but C2 can not communicate to C1.
Effectively, we have a one-way communication channel
from C1 to C2. If C1 passes the objectmessage to C2,
the platform can observemessage, but cannot identify
the object handlerfoo being passed. C2 can pass infor-
mation to C1 by writing to this handler.

We counter such leaks by limiting the message pass-
ing to being a JSON container [7], that is pure data. A
javascript JSON container is a collection of key/value
pairs or an array of values. These key/values are limited
to pure data types such as string or numbers. We make a
copy of the JSON object and pass the copy to guarantee
that there are no additional properties in the passed object.
This solution is also effective against attacks by a message
sender that use getters and setters.

The simplest way of designing the message passing in-
terface is to pass messages from a source to a destina-
tion in a single thread of execution. This option opens up
the possibility of a covert communication channel from a
more restricted to a less restricted component. For exam-
ple, let us consider that a less secret component C0 is pass-
ing multiple messages to a more secret component C1.
Because of the single-threaded non-preemptive nature of
javascript, C1 will complete processing the first message
before the control goes back to C0. This creates a covert
timing channel from C1 to C0. The amount of time taken
by C1 can be observed by C0 and C1 can change this time
to pass the desired information bits to C0.

We reduce the effect of this timing channel by making
the message passing interface asynchronous. We achieve
asynchronous behavior by implementing a global queue
for message passing that is shared among all the compo-
nents of an application. The receiving components reg-
ister listeners with the platform in order to receive mes-
sages. A timer event dequeues an available message and
delivers it to the message listener of the target component
of the message. Note that addressing all covert channels
in our system is beyond the scope of this paper; we discuss
this further in Section 8.



5 Server-side Components
The server-side of the application contains the main

functionality for typical applications. It follows a famil-
iar web server model where a server-side component is
instantiated for every client request.

Besides the regular user-specific components on the
server side, there are certain components that are user in-
dependent and works on non-user data or user public data.
These components perform two tasks: First, they commu-
nicate with external parties to provide functionality inde-
pendent of the user data. Second, they handle statistical
aggregation on user data sets. We discuss declassification
based on data anonymization in Section 5.2.

The server components also protect application propri-
etary data that needs to be declassified before sending it
to the client. The threat model is reversed in this case: the
applications do not trust the user for their data, so they
protect their internal data from being leaked to the users.
For example, an application might be giving horoscope
predictions to users based on their birth date, but it wants
to protect the data or algorithm used for such predictions.

There is no direct communication between the server-
side components: all such communication happens via
application-specific storage. The platform ensures that the
information flow is enforced while accessing the database.
The platform also administers the communication with
external parties and client-side as allowed by the labeling
system.

5.1 Component Confinement

The server-side components need to be isolated from
each other. The server-side of xBook mediates all com-
munication flowing in and out from these components.
There are several options available for server-side iso-
lation. Operating system isolation mechanisms [12,
30] can be used to sandbox the application compo-
nents. Another option is a language level confine-
ment similar to the client-side isolation with options like
Caja (Javascript) [25], ADsafe (javascript) [1] and JoeE
(Java) [20] available. We use ADsafe on the server-side
in order to have the same language for developing appli-
cation components for both client and server.

To the best of our knowledge, we are the first ones
to port ADsafe to the server side. We had to make
some modification to the ADsafe object to implement our
server-side xBook APIs and to perform checking of the in-
formation flow labels. Each server-side component holds
a unique handle to the modified ADsafe object, and access
is restricted to the set of APIs provided by the modified
ADsafe object. The modified ADsafe object is concep-
tually similar to the DOM wrapper object on the client
side, but is customized to work in the server-side environ-
ment. The platform verifies the validity of the informa-
tion flow before any access is granted. The javascript ex-

ecution environment is provided by Helma [6], a popular
open source web application framework.

5.2 Anonymized Statistics

xBook ensures that no user data is leaked against the
user’s policies. A particular instance of an application can
only have access to profile data that belongs to the user
and only his friends. Different instances of the applica-
tions cannot share data due to the restrictions posed by
xBook’s labeling system.

It is desirable for some applications to have a view of all
its users so that some statistical results can be published
for the whole application. In other words, a component of
the application needs to receive data of all the application
users and still should be able to share these statistics as
output to all users, crossing the boundary of friends.

In order to facilitate this case, we are exploring a three-
step anonymization algorithm that provides conservative
access to data for the applications. Currently, case 1 and
3 have been implemented, case 2 will be explored as part
of our future work.
Case 1.If an application component requests a single field
of user information for all application users, it is given ac-
cess to the requested set in an unmodified form, but in a
random order of sequence.
Case 2. If an application component requests multiple
fields of user information for all application users, it is
given access to the requested set in a form generated by
anonymizing the original dataset and then randomizing
the resulting tuples’ order of sequence. We plan to lever-
age some of the existing work [15, 24, 31] to generate the
anonymized statistics. We acknowledge that providing se-
curity in anonymity and statistical queries is a challenging
problem and has its own limitations [13, 24]. Addressing
these limitations is orthogonal to our work and is not the
focus of this paper.
Case 3. Applications can also request the xBook plat-
form for statistics on unanonymized data. This gives the
applications more accurate statistics as compared to case
2, where some fields might be filtered or altered to pre-
serve anonymity. xBook provides a limited list of such op-
erations, including aggregation, maximum and minimum
value over one or multiple fields.

Discussion. Anonymizing the data might limit some
applications that rely on the original data for their func-
tionality. One such example is an application that plots
the location of a user’s friends on Google maps, and would
need to pass names and addresses of the user’s friends to
Google. The application also makes subsequent queries
to Google (for example, to build a Google calendar of
friends’ birthdays). If the data is anonymized, the appli-
cation might not produce completely accurate results.

On the other hand, if Google is provided with
unanonymized data, it can use the data to cross-reference



and identify the friends. This is a conflict between pri-
vacy and functionality. If functionality is preferred and
unanonymized information is passed to external entities,
user’s personal information can be leaked. In such a case,
our xBook design, at the minimum, enforces the applica-
tions to explicitly declare all external communication (in-
cluding the data that will be transferred). Based on such
information, the user can make a much more informed de-
cision about adding the application.

6 Labeling Model
The xBook platform tracks and enforces information

flow using a labeling system defined based on existing
models [17,23,27,36]. All system abstractions are layered
on top of two types of entities – active and passive. Appli-
cation components represent active entities that actively
participate in label compatibility checks; database entries
are passive entities. Every active entity corresponds to a
principal and a label; passive entities only have a label.

We do not enforce information flow at the language
level [27], but instead at the level of application compo-
nents and database entries. There are multiple reasons
for this choice: (1) it is simpler for the application pro-
grammers as they do not need to learn a new language
or perform fine-grained code annotations, (2) information
flow on a language like javascript with dynamically cre-
ated source code may not be feasible, and (3) run-time in-
formation flow at fine-grained language level would prob-
ably be expensive as compared to a much coarser level of
components.

The label specifies the secrecy level of an entity. It rep-
resents what information is contained in a passive entity
and what information the active entity currently has or
will read. The entity’s principal defines whether the en-
tity has declassification privileges over the label. xBook
labels originated along the lines of the language based la-
bels in Jif [27]. Labels represent the confidentiality or
secrecy level of an entity in the system. Integrity label-
ing is not the focus of this work since we are focusing on
privacy.

A label L is represented as a set of tags, with each
tag having one principal as ownero and another set of
principals called readersR(L, o). The owner is the prin-
cipal whose data was observed in order to construct the
data value. The readers represent principals to whom the
owner is willing to release the information. An exam-
ple of a typical label isL = {o1 : r1, r2; o2 : r2, r3},
whereO(L) = {o1, o2} denote the owner set for the label
and readers sets areR(L, o1) = {r1, r2} andR(L, o2) =
{r2, r3}.

In the xBook system, principals represent the identities
of various entities in the labeling model. There are five
types of principals in our system:

• C(ai, uj) and S(ai, uj) represents the client-side

and server-side components for an applicationai

specific to a useruj.
• C(ai) andS(ai) represents user-independent client-

side and server-side components for an application
ai.

• uj represents the entities that the useruj is in com-
plete control of. Once the useruj is logged into
the xBook system, the user’s browser is assigned the
principaluj .

• ⊤,⊥ where⊤ is highest priority principal in the sys-
tem and is allotted to the xBook platform. For the
sake of completeness,⊥ is the least privileged prin-
cipal.

• External entities also have principal names
that contain the hostname and optionally the
scheme and port (like in URLs). For example,
https://www.example.com:8888 repre-
sents one such principal.

Our model assumes static labels for the entities and in-
formation flows from one entity to another if allowed by
the label comparison of the end points. Information can
flow from one labelL1 to another labelL2 only if L2 is
morerestrictedthanL1 denoted asL1 � L2.

Restriction. L1 � L2 ⇐⇒ O(L1) ⊆ O(L2) and∀o ∈
O(L1), R(L1, o) ⊇ R(L2, o)

6.1 acts-for Hierarchy

To facilitate easier conversion of user policies to low-
level labels, system entities are statically labeled. We de-
cided on immutable labels since it improves usability of
the application programming model from the perspective
of the application programmer. Unexpected runtime fail-
ures can occur when labels of components change at run-
time [23]. With immutable labels one can statically verify
that all the communication dependencies with respect to
other components, external entities, storage will be satis-
fied.

Some principals have the right to act for other prin-
cipals and assume their power. The acts-for relation is
transitive, defining a hierarchy or partial order of princi-
pals [17]. The right of one principal to act for another is
predefined by the platform. Figure 6 presents the acts-for
relationship within the xBook system. This hierarchy de-
fines the priority of different principles in the system. The
reasoning behind the defined hierarchy is as follows:

• ⊤ defines the xbook platform and has the highest se-
curity label. As a result, it can declassify any label.

• Any data sink or source that is not explicitly defined
by xBook is modeled as an unprivileged entity with
label⊥.

• The client-side components are given lower prior-
ity than server-side components, because intuitively
server-side components residing on xBook servers



Figure 6: Label hierarchy inxbook.

Algorithm 1 Label Compatibility Check Algorithm.

eL1 = (entity1 is a database) ?L1 : maxDeclassify(L1, P1)
eL2 = (entity2 is a database) ?L2 : maxRestrict(L2, P2)
if eL1 � eL2 then

ALLOW flow from entity1 to entity2

else
DENY flow

end if

Figure 7: Algorithm to check if the information flow fromentity1 to
entity2 is allowed.

are more trustworthy than client-side components.
For example,S(a0, u0) has higher priority over
C(a0, u0) for applicationa0 and useru0. The server-
side components can declassify an application’s pro-
prietary data, which has been labeled in a manner
such that it cannot be directly read by client-side
components.

• User-independent principals are at a lower priority
than any user-specific principal. This allows user-
specific components to read user-independent data
generated by an application, also effectively allowing
users to read statistical data generated for the whole
application.

• Principals representing the end user are higher than
the corresponding client-side principals since the
user controls the client.

6.2 Flow Enforcement

Information flows within the xBook system if the label
of source is less restricted than that of destination. Such
flow restrictions have been proposed earlier in classical
information flow control models [14]. We introduce the
concept of endpoints similar to the Flume model [23]. In-
stead of changing the labels of the entities, for every com-
munication the source and the destination create an end-
point each to facilitate the flow. The entity, based on its
principal, can restrict or declassify its label and allocate
it to an endpoint for communication. While restricting a
label means adding more owners and removing readers,
declassification either adds some readers for an ownero
or removes the ownero. This relabeling can be done only
if the principal of the entity is higher than an ownero in
the hierarchy.

Figure 7 shows our flow enforcement algorithm, where
maxRestrict and maxDeclassify are defined as:

• maxRestrict(L, P). O(L) = O(L)∪descendent(P );
∀o ∈ descendent(P ): R(L, o) = {}

• maxDeclassify(L, P). ∀o ∈ O(L): if (o ∈
descendent(P )) thenO(L) = O(L) − {o}

where descendent(P ) represents all descendents of a
principal P in the acts-for hierarchy,O(L) is the set of
owners for labelL andR(L, o) represents a set of read-
ers in labelL for owner o. Intuitively, the communi-
cating end points support the communication with the
sender declassifying its label to the maximum possible
usingmaxDeclassify and the receiver restricting its la-
bel usingmaxRestrict. Since the information can only
flow from a less restricted to a more restricted component,
these functions facilitate the flow of information.

Some typical flows in the xBook system are depicted
in Figure 8. To demonstrate the validity of our algorithm,
let us consider the example of the flow between the client-
side componentC1 and the server-side componentS1. For
the flow fromS1 to C1,

eL1 = maxDeclassify({S(a0) :;⊤ : C(a0, u0)},

S(a0, u0)) = {⊤ : C(a0, u0)}

eL2 = maxRestrict({⊤ : C(a0, u0)}, C(a0, u0))

= {C(a0, u0) :; C(a0) :;⊤ : C(a0, u0)}

Recollecting the definition of restriction, we can see
thateL1 � eL2 , thereforeS1 can send data toC1. Con-
sidering the reverse flow fromC1 to S1,
eL1 = maxDeclassify({⊤ : C(a0, u0)}, C(a0, u0))

= {⊤ : C(a0, u0)}

eL2 = maxRestrict({S(a0) :;⊤ : C(a0, u0)}, S(a0, u0))

= {S(a0, u0) :; S(a0) :; C(a0, u0) :; (a0) :;

⊤ : C(a0, u0)}

We can see thateL1 � eL2, i.e.,C1 can send data toS1.
Effectively, there is a two-way communication between
C1 andS1.

6.3 Case Study: Horoscope Application Lifecycle

An application’s lifecycle consists of three steps: the
application being hosted by xBook, a user adding the ap-



Figure 8: Typical Flows inxBook system with the corresponding labels. For every component,the first parameter is the
principal and the second is the label associated with the component.

plication and then the user accessing it.
Hosting. Before xBook accepts a new application, the

developer needs to provide the following information:

• The application provides the components to be de-
ployed, in each case specifying if the component is
client-side or server-side and if it is user-dependent
or not, what user data would the component require
and which external entities and other components
will it communicate with. In our horoscope exam-
ple, there are three components:S0 communicates
with www.tarot.com and requires no user data;
S1 requires user’s birthday;C1 is on the client-side
and also requires user’s birthday.

• The application also states that there are user-
independent or user-dependent storage pools and
each is named declaratively by the application. This
ensures that the storage pool names do not leak any
user information, as the application has no user infor-
mation at this time. For example, horoscope applica-
tion declares a storage pool for storing its application
data generated byS0.

Based on the label of the user data, xBook derives the
labels and the principals of the components. The birthday
field has a label{⊤ : C(ai, uj)}, therefore the following
labels are allocated to the horoscope components:

• S0 Principal: S(ai), Label: {S(ai) : }

• S1 Principal: S(ai, uj), Label: {S(ai) : ;
⊤ : C(ai, uj)}

• C1 Principal: C(ai, uj), Label: {⊤ : C(ai, uj)}

The principals define if the component is server-side or
client-side, and if it is user-dependent or not. The labels
allow S1 andC1 to read the birthday field.S0’s label al-
lows it to declassify itself to be public to communicate
with www.tarot.com, and write to the storage pool
that is givenS0’s label. The storage pool label prevents

any of the client-side components (C1) from viewing this
data, thereby protecting application data from untrusted
users.S1 is allowed to read from the storage pool. The
labels ofS1 andC1 correspond to the labels ofS1 and
C1 respectively in Figure 8, wherei = 0 and j = 0.
As we have observed in the last section, the labels ofS1

andC1 effectively allow a two-way communication chan-
nel. Thus,S1 can pass the results toC1 that, in turn, can
present a formatted form of the horoscope to the user’s
browser.

Application Addition. When the user is adding the
application, he is provided with a manifest that de-
clares what information is passed to which external entity.
xBook derives the manifest from the component informa-
tion provided by the application developer. For example,
since none of the components of the horoscope applica-
tion share any user information with any external entity,
horoscope’s manifest would specify that it does not pass
any information to any external entity. Since the user’s
birthday is not shared with any external entity, the ap-
plication does not need to declare its need to access the
birthday information.

Application Access. When the user is accessing an
application, all user-specific components are instantiated
for that user, replacing the user wildcard in the template
of labels and principals with the user identifier. This en-
forces access control across multiple users: access is only
granted if it is aligned with the user’s privacy policy, for
example, access is granted to only user’s friends.

7 Evaluation

7.1 Prototype System and Example Applications

We developed a working prototype of the xBook sys-
tem, which includes platform code and APIs for devel-
oping third-party applications. We also implemented the
labeling model that enforces information flow control for



Attack Step Attack Type Prevented by xBook?
One client component accessing another component’s DOM object A1

√

Leaks via the message passing interface A1
√

A component creates or destroys a less restricted componentleaking information A1
√

Retrieve information of another user not in the friend list A3/A4
√

Client component retrieves more restricted information from the server A5
√

Leaks to an unknown external entity A6/A7
√

Leaking restricted information to an allowed external entity A6/A7
√

Table 1: Prevention of information leaks against various kinds of synthetic attacks.

the data flowing through the system and prevents any in-
formation leaks. Our xBook platform consists of about
4300 lines of javascript code.

We developed two sample applications using the xBook
APIs to show the ease and viability of application devel-
opment in xBook. These applications are similar in func-
tionality to two popular Facebook applications: Horo-
scope [3] and TopFriends [11].The horoscope application
produces a user’s daily horoscope based on his birthday
information. The utility application based on TopFriends
produces a customized profile for the user based on his
complete profile information. It also generates a Google
map showing the user’s home location on the map. The
applications are written in javascript using xBook APIs,
with the horoscope application having about 180 lines and
the application based on TopFriends having around 480
lines of code. We tested these applications against a se-
ries of synthetic scenarios, where these applications tried
to leak the user’s private information. Our tests showed
that the xBook system was successful in detecting and
preventing all such leaks.

7.2 Porting xBook on Facebook

In order to show the practical viability of the system
and to demonstrate that our system can be incrementally
deployed, we ported the xBook platform as an applica-
tion on Facebook. Since Facebook allows any application
to have access to user data, including their friends’ data,
of any user adding the application, xBook as an “appli-
cation” is able to receive the data of the users agreeing
to use the xBook platform. Applications developed us-
ing xBook APIs can execute on top of xBook, while still
running on xBook servers. Since xBook act as an applica-
tion for Facebook, xBook’s response would be rendered
as part of Facebook’s web page. Since the third party ap-
plications are encapsulated in the page forming xBook’s
response, the output of these applications would also be
effectively rendered on Facebook (Figure 1(c)). Facebook
provides the data feed to xBook, which then enables ac-
cess to this data for xBook applications in a controlled
manner through xBook APIs. Facebook’s user identity is
maintained within xBook. Our running system is avail-
able online on Facebook [33].

We envision xBook to be assimilated into the Facebook

platform with Facebook providing two levels of applica-
tion service. First, the current applications based on cur-
rent Facebook design would be supported. Second, ap-
plications that are developed using xBook APIs are sup-
ported, with added privacy protection advantage. Users
can be given the discretion to choose between the two
options, and the users’ choice can drive new application
development on xBook.

7.3 Security Analysis

Our analysis shows that xBook prevents the applica-
tions from leaking any user information. All of the doc-
umented leaks in the current social networks are pre-
vented in the xBook system. For example, the TopFriends
leak [26] cannot happen in our system because a sepa-
rate application instance is created for every user. Each
instance only has view of the data accessible to that user
and xBook mediates all cross user data accesses.

We evaluated the privacy protection ability of our sys-
tem in three steps. First, we analyzed the security of the
xBook design in view of the potential leaks specified in
the formal model (Section 3.2). Second, we developed
a set of synthetic attacks targeting the xBook framework
and performed experiments to show that our prototype
successfully prevents these attacks. Finally, we prove that
xBook’s information flow model ensures that information
leaks cannot happen in the xBook design.

We first analyze the security of our prototype and show
that all the attacks discussed in Section 3.2 will not suc-
ceed against our design. Attack type A1 is prevented
due to the various mechanisms developed in our system
for client-side confinement (Section 4.1), such as compo-
nent isolation, event handling, etc. A2 is prevented by
server-side confinement of application components, only
allowing them to communicate via storage. Leaks via
A3 and A4 are inherently prevented by mediating the in-
formation flow from the database to application compo-
nents with label enforcement based on user-defined poli-
cies, and also by anonymizing data for statistical purposes
(Section 5.2). A5 is also prevented by label enforcement
before the client-side request is passed to the server-side
component and before response is returned. Enforcing the
confinement model to mediate the external communica-
tion, both in synchronous and asynchronous communica-



Application User latency Server processing time Time for label checks (Number of checks)Overhead
Horoscope 183.1ms 128.8ms 7.7ms (6) 4.2%
Map utility 111.4ms 51.2ms 3.5ms (2) 3.1%

Table 2: Performance results of various operations in typical xBookapplications.

tion scenarios, prevents A6 leaks (Section 4.2). Following
the same lines, A7 is prevented on the server-side.

Second, we tested the ability of our prototype by cre-
ating synthetic exploits that try to break out of xBook’s
information flow control model to leak user information.
We developed a sample application to launch these attacks
against our prototype; if successful, these attacks allow
the application to leak information to entities outside the
system. Table 1 contains the results of testing our proto-
type against a wide range of these synthetic attacks. In all
our experimental tests, xBook successfully prevented the
leaks before the information could be passed outside the
system.

We can also prove that if xBook’s confinement mecha-
nism is correctly enforced, the information model ensures
that no user information is leaked to external entities (The-
orem 1) and to any other user (Theorem 2) outside the
user-defined policies.
Theorem 1.Given a set of policiesP = D×X , where the
application can pass user’s information fieldd ∈ D to ex-
ternal entityx ∈ X , and assuming that the intended con-
finement is enforced, the information flow model ensures
that there is no possible leak outside the xBook system. In
other words, if(d, x) /∈ P then∀Ci : Ci 9d x, whereCi

are application components andCi 9d x shows thatCi

can not pass data itemd to x.
Proof. LetC0, C1, · · ·Ck represents the information flow
path of a data elementd from the xBook database to ex-
ternal entityx.

We present the proof by contradiction. Let us assume
thatCi can pass any information (represented by∗) to x,
illustrated asCi ∗

−→ x. This communication is monitored
by our xBook platform, but the platform does not know
the semantics of the information being passed.
Also, ∀i ∈ [0, k] : Ci−1 ∗

−→ Ci =⇒ Li−1 � Li (flow is a
restriction)
Ci ∗

−→ x =⇒ Li � Lx

Therefore,Li−1 � Lx =⇒ Ci−1 ∗

−→ x
Continuing this by induction,C0 ∗

−→ x

In our labeling model, the computational granularity is
at the component level. Therefore, we consider that∀Ci :
Output(Ci) = ̥(Input(Ci)) for any computation̥ .
For componentC0, Input(C0) = d, Output(C0) = ∗
=⇒ ∗ = ̥(d)
Since the input toC0 is supplied by the xBook platform,
and since(d, x) /∈ P, C0 9∗ x.
This is a contradiction. Therefore,Ci 9∗ x.
By definition,∗ represents any information (includingd).

Therefore,Ci 9d x.

Theorem 2.Given a set of user policiesP (x) = D × U ,
where the application can pass userx ∈ U ’s information
fieldd ∈ D to another usery ∈ U , and assuming that the
intended confinement is enforced, the information flow
model ensures that user-user access control is enforced
in the xBook system. In other words, if(d, y) /∈ P (x)
then∀Ci(x), Cj(y) : Ci(x) 9d Cj(y), whereCi(x) and
Cj(y) are components of application instance for userx
andy, respectively.
Proof. Similar to Theorem 1.

7.4 Performance Estimates

xBook does not impose a substantial burden on the per-
formance of the third party applications. With an archi-
tectural framework of developing applications, it is dif-
ficult to accurately predict the impact of our design on
the performance of these applications as perceived by the
user. To get a rough estimate of the cost of supporting the
xBook design and the overhead involved in our system,
we conducted some experiments with our sample appli-
cations, measuring latency at the user end and overhead
imposed by the mediating design of xBook.

The xBook server side is hosted on a 2.4GHz Pentium
4 machine with 512MB of RAM. The requests are made
from Firefox 3.0 browser on a 2.33GHz, 2GB RAM, Pen-
tium Core Duo laptop. Each test was run 10 times and
values were averaged. We define user latency as the differ-
ence in the time when the request is made at the browser
and the time at which the response is received by the
browser. Table 2 shows the time required by xBook’s in-
formation flow control in comparison to the user’s over-
all latency. Server processing includes the application’s
logic, database access to retrieve required user data, and
xBook flow checks, and is independent of the network la-
tency experienced by the application. We instrumented
our code to derive the time for performing label checks in
the system, and measured overhead as a function of the
label checking time over the total latency experienced by
the user. Our results show that the overhead introduced
by xBook’s label checks is considerably small: about 4%
for the horoscope application and 3% for the map utility
marking user’s hometown location on Google maps.

On a cluster of commercial servers with much better
computational capacity, these values will be even smaller.
Although it is not possible to precisely determine the
cost of our approach without a large scale experiment,
both the details of our design and the results from these



experiments, support the conclusion that xBook design
would not substantially increase the latency experienced
by users.

8 Discussion
In this section, we discuss the limitations of the applica-

tion design in xBook and address some of the challenges
arising from the new requirements imposed by our design.

Our xBook design imposes no limitations on appli-
cations that follow a “pull model”, i.e., xBook would
preserve the functionality of applications that only re-
ceive data from external entities without passing any pri-
vate information to these entities. Our horoscope appli-
cation is an example of such as application: one pub-
lic component of horoscope pulls horoscope data from
www.tarot.com and does not pass any of the user’s
profile information. Note that the xBook platform does
not need to sanitize the request parameters (in both GET
and POST requests), as the component making such re-
quests has no user information that can be leaked. An-
other component, which has access to the user’s birthday
information, uses the data to calculate the daily horoscope
corresponding to the particular user. This component has
no communication with any external entity.

On the other hand, our design might limit some of the
applications that require data to be sent to external en-
tities for receiving user-specific information. One typi-
cal example is the use of Google APIs to generate maps:
it requires a location to be passed to Google before the
map is generated. In many cases, we expect these exter-
nal entities to be larger and well branded entities, such
as Google, Yahoo, etc. Such cases could be whitelisted
after explicit approval from the user. Note that xBook
makes no recommendation about which websites can be
trusted, including Google and Yahoo; such trust decisions
are made by an individual user from his own knowledge
and experiences. Our xBook system can keep track of
these approvals across applications for every user, so the
users need to approve an interaction only once.

Any social networking application would follow either
the pull model or the push model to get data from external
entities. In both cases, our platform enforces the appli-
cations to make all such interactions explicit and allows
the user to make a more informed decision based on the
information available. We argue that an application using
the pull model would be more acceptable to the users as
it requires minimal trust decisions from a user’s perspec-
tive. It is possible to transform many of the current social
networking applications that use the push model to start
using the pull model. We acknowledge that such a trans-
formation would require some changes to the application
design, and in some cases, such transformations might not
be practical due to large download size of the required
data. However, if enough users decide not to use the ap-

plication in view of privacy concerns, it would motivate
the developers to consider such a transition.

Our system also suffers from classical covert channels,
e.g. timing, memory, process, etc. However, in gen-
eral these channels have limited bandwidth and viable
approaches such as randomizing the time (for example,
the delivery time of our message queue discussed in Sec-
tion 4.3) can further limit their utilities. We plan to study
some of these channels as part of our future work.

Scalability of the applications is not a concern in our
system: applications hosted on clusters outside xBook
would now be hosted on clusters inside the xBook plat-
form. The application developers are already paying for
hosting their applications, in most cases to third-partiesor
cloud owners like Amazon EC2 [2]. Thus, instead of the
developers paying to these parties, they would be paying
to xBook for the hosting service. xBook, in turn, can out-
source the hosting to third-parties, still assuming control
of the hosted applications.

We also propose a hybrid model where only the appli-
cation components that require access to xBook’s private
data needs to be hosted at the xBook servers. Other public
components can be controlled by the application develop-
ers on their own servers. Such an approach is useful for
many applications as research has shown that a large num-
ber of applications do not use any private data to perform
their functionality [19].

9 Related Work
Information flow control at the language level has been

well studied [16,27]. Jif is a Java-based programming lan-
guage that enforces decentralized information flow con-
trol within a program, providing finer grained control than
xBook [27]. In comparison to these language level tech-
niques that require the applications to be rewritten, the
xBook platform provides a simpler interface to the appli-
cation programmers: they do not need to learn a new lan-
guage or perform any fine-grained code annotations. Ad-
ditionally, information flow on a language like javascript
with dynamically created source code may not be feasi-
ble. Cong et al. [16] presented a technique of writing se-
cure web applications, which generates javascript code on
the client side and java code on the server side. However,
the applications are still written in the Jif language.

There are other systems [23, 36] that have utilized the
information flow concept to control data flow at the oper-
ating systems (OS) level. Information flows are tracked
at low-level OS object types such as threads, processes,
etc. xBook works at a much coarser level at the applica-
tions, with smallest unit of information being an applica-
tion component. As a result, run-time information flow
in xBook would probably be less expensive as compared
to a much finer granularity level used in these systems.
In order to make these systems useful for a typical social



networking environment, it would require the systems to
be installed at a user’s computer because leaks can also
happen at the browser, which might not be feasible. In
comparison, xBook runs on a typical web server without
any changes to the OS environment.

Similar to the ADsafe environment, other safe subsets
of programming languages, such as JoeE [20] (for java)
and Caja [25] (for javascript), allow third-party applica-
tions to provide active content safely and flexibility within
the existing web standards. While we used ADsafe for its
simplicity and suitability to meet our system needs, we ex-
pect that it would be similarly possible to develop xBook
using these alternatives.

10 Conclusions
We presented a novel architecture for a social network-

ing framework, called xBook, that substantially improves
privacy control in the presence of untrusted third-party ap-
plication. Our design allows the applications to have ac-
cess to user data to preserve their functionality, but at the
same time preventing them from leaking users’ private in-
formation.

We developed a working prototype of the system that is
available as an application on Facebook [33]. We showed
the viability of our system by developing sample applica-
tions using the xBook APIs: these applications are similar
in functionality to the applications on existing social net-
works.

Our system shows promise in designing potentially
valuable future applications, that would require user data
to provide more customized service to the user. The grow-
ing popularity of social networks would attract increasing
attention from attackers because of the value of user infor-
mation available in these networks. This user information
not only has commercial value, but when combined with
some anonymized public data such as medical records,
might leak more sensitive information [28, 34]. The cur-
rent design of social networking applications poses a se-
rious threat to the privacy of individuals that needs to be
mitigated; the xBook platform is a major step in protect-
ing user privacy in social networking applications.

Acknowledgement
This material is based upon work supported in part by
the NSF under grants no. 0716570 and 0831300 and
the Department of Homeland Security under contract no.
FA8750-08-2-0141. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of the NSF or the Department of Homeland Secu-
rity. We would also like to thank Monirul Sharif, Roberto
Perdisci and the anonymous reviewers for their helpful
comments and our shepherd George Danezis for his valu-
able suggestions.

References
[1] ADsafe. http://adsafe.org. Last accessed Feb. 1,

2009.
[2] Amazon elastic computing cloud. http://aws.

amazon.com/ec2/. Last accessed Feb. 1, 2009.
[3] Daily horoscopes.http://apps.facebook.com/

daily-horoscope. Last accessed Feb. 1, 2009.
[4] Facebook developers: Developer terms of service.http:

//developers.facebook.com/terms.php.
Last accessed Feb. 1, 2009.

[5] Facebook’s privacy policy.http://www.facebook.
com/policy.php. Last accessed Feb. 1, 2009.

[6] Helma javascript web application framework.http://
www.helma.org.

[7] Javascript object notation (JSON). http://www.
json.org. Last accessed Feb. 1, 2009.

[8] JSLint: The javascript verifier.http://www.jslint.
com. Last accessed Feb. 1, 2009.

[9] Map your friends. http://apps.facebook.com/
mapyourfriends. Last accessed Feb. 1, 2009.

[10] Opensocial.http://www.opensocial.org/. Last
accessed Feb. 1, 2009.

[11] Topfriends. http://apps.facebook.com/
topfriends. Last accessed Feb. 1, 2009.

[12] A. Acharya and M. Raje. MAPbox: using parameterized
behavior classes to confine untrusted applications. InPro-
ceedings of the 9th USENIX Security Symposium, Denver,
CO, Aug. 2000.

[13] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore
art thou r3579x?: Anonymized social networks, hidden
patterns, and structural steganography. InProceedings
of the 16th International Conference on World Wide Web
(WWW), Banff, Canada, May 2007.

[14] D. E. Bell and L. J. Lapadula. Secure computer system:
Unified exposition and multics interpretation. Technical
Report MTR-2997, MITRE Corp., Bedford, MA, Mar.
1976.

[15] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Prac-
tical privacy: the SuLQ framework. InACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database
Systems, Baltimore, MD, 2005.

[16] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng. Secure web applications via
automatic partitioning. InProceedings of the 21st Sympo-
sium on Operating Systems Principles (SOSP), Stevenson,
WA, Oct. 2007.

[17] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[18] D. Farber. Google to open orkut opensocial developer
sandbox tonight, Nov. 2007.http://blogs.zdnet.
com/BTL/?p=6856. Last accessed Feb. 1, 2009.

[19] A. Felt and D. Evans. Privacy protection for social net-
working platforms. InWeb 2.0 Security and Privacy Work-
shop, Oakland, CA, May 2008.

[20] M. Finifter, A. Mettler, N. Sastry, and D. Wagner. Ver-
ifiable functional purity in java. InProceedings of the
ACM Conference on Computer and Communication Se-
curity (CCS), Alexandria, VA, Oct. 2008.



[21] S. Hacking. More advertising issues
on facebook (updated), 2008. http:
//theharmonyguy.com/2008/06/20/
more-advertising-issues-on-facebook/.
Last accessed Feb. 1, 2009.

[22] R. Konrad. Facebook opens to third-party develop-
ers, May 2007.http://www.msnbc.msn.com/id/
18899269/. Last accessed Feb. 1, 2009.

[23] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information flow
control for standard OS abstractions. InProceedings of the
21st Symposium on Operating Systems Principles (SOSP),
Stevenson, WA, Oct. 2007.

[24] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkita-
subramaniam. L-diversity: Privacy beyond k-anonymity.
ACM Transactions of Knowledge Discovery from Data,
1(1):3, 2007.

[25] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja: safe active content in sanitized javascript, Oct.
2007. http://google-caja.googlecode.com/
files/caja-spec-2007-10-11.pdf.

[26] E. Mills. Facebook suspends app that permitted peephole,
2008. http://news.cnet.com/8301-10784_
3-9977762-7.html. Last accessed Feb. 1, 2009.

[27] A. C. Myers and B. Liskov. A decentralized model for
information flow control. InProceedings of the 16th Sym-
posium on Operating Systems Principles (SOSP), Saint-
Malo, France, Oct. 1997.

[28] A. Narayanan and V. Shmatikov. Robust de-
anonymization of large sparse datasets. InIEEE
Symposium on Security and Privacy, Oakland, CA, May
2008.

[29] T. Panja. Oxford using Facebook to snoop.http:
//www.msnbc.msn.com/id/19813092/. Last ac-
cessed Feb. 1, 2009.

[30] D. S. Peterson, M. Bishop, and R. Pandey. A flexible con-
tainment mechanism for executing untrusted code. InPro-
ceedings of the 11th USENIX Security Symposium, San
Franscisco, CA, Aug. 2002.

[31] P. Samarati. Protecting respondents’ identities in micro-
data release.IEEE Transactions on Knowledge and Data
Engineering, 13(6):1010–1027, 2001.

[32] D. Sciba. Mayor in myspace photo flap asked to re-
sign. http://www.katu.com/news/13670287.
html. Last accessed Feb. 1, 2009.

[33] K. Singh, S. Bhola, and W. Lee. xBook on Facebook.
http://apps.facebook.com/myxbook. Last ac-
cessed Feb. 1, 2009.

[34] L. Sweeney. Weaving technology and policy together to
maintain confidentiality. Journal of Law, Medicine and
Ethics, 25:98–110, 1997.

[35] C. Williams. Facebook application hawks
your personal opinions for cash, Sept. 2007.
http://www.theregister.co.uk/2007/
09/12/facebook_compare_people/. Last
accessed Feb. 1, 2009.

[36] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in his-
tar. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA,
Nov. 2006.


