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Abstract
Remote error analysis aims at timely detection and rem-
edy of software vulnerabilities through analyzing run-
time errors that occur on the client. This objective can
only be achieved by offering users effective protection
of their private information and minimizing the perfor-
mance impact of the analysis on their systems without
undermining the amount of information the server can
access for understanding errors. To this end, we propose
in the paper a new technique for privacy-aware remote
analysis, called Panalyst. Panalyst includes a client com-
ponent and a server component. Once a runtime excep-
tion happens to an application, Panalyst client sends the
server an initial error report that includes only public in-
formation regarding the error, such as the length of the
packet that triggers the exception. Using an input built
from the report, Panalyst server performs a taint analysis
and symbolic execution on the application, and adjusts
the input by querying the client about the information
upon which the execution of the application depends.
The client agrees to answer only when the reply does
not give away too much user information. In this way,
an input that reproduces the error can be gradually built
on the server under the client’s consent. Our experimen-
tal study of this technique demonstrates that it exposes a
very small amount of user information, introduces neg-
ligible overheads to the client and enables the server to
effectively analyze an error.

1 Introduction

Remote analysis of program runtime errors enables
timely discovery and patching of software bugs, and has
therefore become an important means to improve soft-
ware security and reliability. As an example, Microsoft
is reported to fix 29 percent of all Windows XP bugs
within Service Pack 1 through its Windows Error Re-
porting (WER) utility [20]. Remote error analysis is

typically achieved by running an error reporting tool on
a client system, which gathers data related to an applica-
tion’s runtime exception (such as a crash) and transmits
them to a server for diagnosis of the underlying software
flaws. This paradigm has been widely adopted by soft-
ware manufacturers. For example, Microsoft relies on
WER to collect data should a crash happen to an applica-
tion. Similar tools developed by the third party are also
extensively used. An example is BugToaster [27], a free
crash analysis tool that queries a central database using
the attributes extracted from a crash to seek a potential
fix. These tools, once complemented by automatic anal-
ysis mechanisms [44, 34] on the server side, will also
contribute to quick detection and remedy of critical se-
curity flaws that can be exploited to launch a large-scale
cyber attack such as Worm epidemic [47, 30].

The primary concern of remote error analysis is its pri-
vacy impact. An error report may include private user
information such as a user’s name and the data she sub-
mitted to a website [9]. To reduce information leaks, er-
ror reporting systems usually only collect a small amount
of information related to an error, for example, a snippet
of the memory around a corrupted pointer. This treat-
ment, however, does not sufficiently address the privacy
concern, as the snippet may still carry confidential data.
Moreover, it can also make an error report less informa-
tive for the purpose of rapid detection of the causal bugs,
some of which could be security critical. To mitigate
this problem, prior research proposes to instrument an
application to log its runtime operations and submit the
sanitized log once an exception happens [25, 36]. Such
approaches affect the performance of an application even
when it works normally, and require nontrivial changes
to the application’s code: for example, Scrash [25] needs
to do source-code transformation, which makes it un-
suitable for debugging commodity software. In addition,
these approaches still cannot ensure that sufficient infor-
mation is gathered for a quick identification of critical
security flaws. Alternatively, one can analyze a vulner-
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able program directly on the client [29]. This involves
intensive debugging operations such as replaying the in-
put that causes a crash and analyzing an executable at
the instruction level [29], which could be too intrusive to
the user’s normal operations to be acceptable for a prac-
tical deployment. Another problem is that such an anal-
ysis consumes a large amount of computing resources.
For example, instruction-level tracing of program execu-
tion usually produces an execution trace of hundreds of
megabytes [23]. This can hardly be afforded by the client
with limited resources, such as Pocket PC or PDA.

We believe that a good remote analyzer should help
the user effectively control the information to be used in
an error diagnosis, and avoid expensive operations on the
client side and modification of an application’s source or
binary code. On the other hand, it is also expected to
offer sufficient information for automatic detection and
remedy of critical security flaws. To this end, we pro-
pose Panalyst, a new technique for privacy-aware remote
analysis of the crashes triggered by network inputs. Pan-
alyst aims at automatically generating a new input on the
server side to accurately reproduce a crash that happens
on the client, using the information disclosed according
to the user’s privacy policies. This is achieved through
collaboration between its client component and server
component. When an application crashes, Panalyst client
identifies the packet that triggers the exception and gen-
erates an initial error report containing nothing but the
public attributes of the packet, such as its length. Taking
the report as a “taint” source, Panalyst server performs an
instruction-level taint analysis of the vulnerable applica-
tion. During this process, the server may ask the client
questions related to the content of the packet, for exam-
ple, whether a tainted branching condition is true. The
client answers the questions only if the amount of infor-
mation leaked by its answer is permitted by the privacy
policies. The client’s answers are used by the server to
build a new packet that causes the same exception to the
application, and determine the property of the underlying
bug, particularly whether it is security critical.

Panalyst client measures the information leaks associ-
ated with individual questions using entropy. Our pri-
vacy policies use this measure to define the maximal
amount of information that can be revealed for individ-
ual fields of an application-level protocol. This treatment
enables the user to effectively control her information
during error reporting. Panalyst client does not perform
any intensive debugging operations and therefore incurs
only negligible overheads. It works on commodity appli-
cations without modifying their code. These properties
make a practical deployment of our technique plausible.
In the meantime, our approach can effectively analyze a
vulnerable application and capture the bugs that are ex-
ploitable by malicious inputs. Panalyst can be used by

software manufacturers to demonstrate their “due dili-
gence” in preserving their customers’ privacy, and by a
third party to facilitate collaborative diagnosis of vulner-
able software.

We sketch the contributions of this paper as follows:

• Novel framework for remote error analysis. We pro-
pose a new framework for remote error analysis.
The framework minimizes the impact of an analy-
sis to the client’s performance and resources, lets
the user maintain a full control of her information,
and in the meantime provides her the convenience
to contribute to the analysis the maximal amount of
information she is willing to reveal. On the server
side, our approach interleaves the construction of
an accurate input for triggering an error, which is
achieved through interactions with the client, and
the analysis of the bug that causes the error. This
feature allows our analyzer to make full use of the
information provided by the client: even if such in-
formation is insufficient for reproducing the error, it
helps discover part of input attributes, which can be
fed into other debugging mechanisms such as fuzz
testing [35] to identify the bug.

• Automatic control of information leaks. We present
our design of new privacy policies to define the
maximal amount of information that can be leaked
for individual fields of an application-level proto-
col. We also developed a new technique to enforce
such policies, which automatically evaluates the in-
formation leaks caused by responding to a question
and then makes decision on whether to submit the
answer in accordance with the policies.

• Implementation and evaluations. We implemented
a prototype system of Panalyst and evaluated it us-
ing real applications. Our experimental study shows
that Panalyst can accurately restore the causal input
of an error without leaking out too much user infor-
mation. Moreover, our technique has been demon-
strated to introduce nothing but negligible over-
heads to the client.

The rest of the paper is organized as follows. Section 2
formally models the problem of remote error analysis.
Section 3 elaborates the design of Panalyst. Section 4
describes the implementation of our prototype system.
Section 5 reports an empirical study of our technique us-
ing the prototype. Section 6 discusses the limitations of
our current design. Section 7 presents the related prior
research, and Section 8 concludes the paper and envi-
sions the future research.
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2 Problem Description

We formally model the problem of remote error analysis
as follows. Let P : S × I → S be a program that maps
an initial process state s ∈ S and an input i ∈ I to an end
state. A state here describes the data in memory, disk and
register that are related to the process of P . A subset of
S, Eb, contains all possible states the process can end at
after an input exploits a bug b.

Once P terminates at an error state, the client runs
an error reporting program G : I → R to generate a
report r ∈ R for analyzing P on the server. The re-
port must be created under the constraints of the com-
puting resources the client is able or willing to commit.
Specifically, Ct : {G} × I × R →  measures the
delay experienced by the user during report generation,
Cs : {G} × I ×R →  measures the storage overhead,
and Cn : {G} × I × R −→  measures the bandwidth
used for transmitting the report. To produce and submit a
report r ∈ R, the computation time, storage consumption
and bandwidth usage must be bounded by certain thresh-
olds: formally, (Ct(G, i, r) ≤ Tht) ∧ (Cs(G, i, r) ≤
Ths)∧ (Cw(G, i, r) ≤ Thw), where Tht, Ths and Thw

represent the thresholds for time, storage space and band-
width respectively. In addition, r is allowed to be sub-
mitted only when the amount of information it carries is
acceptable to the user. This is enforced using a function
L : R × I →  that quantifies the information leaked
out by r, and a threshold Thl. Formally, we require
L(r, i) ≤ Thl.

The server runs an analyzer D : R → I to diagnose
the vulnerable program P . D constructs a new input us-
ing r to exploit the same bug that causes the error on
the client. Formally, given P (i) ∈ Eb and r = G(i),
the analyzer identifies another input i from r such that
P (i) ∈ Eb. This is also subject to resource constraints.
Specifically, let C 

t : {D}×R×I →  be a function that
measures the computation time for running D and C 

s :
{D} × R × I →  that measures the storage overhead.
We have: (C 

t(D, r, i) ≤ Th
t) ∧ (C 

s(D, r, i) ≤ Th
s),

where Th
t and Th

s are the server’s thresholds for time
and space respectively.

A solution to the above problem is expected to achieve
three objectives:

• Low client overheads. A practical solution should
work effectively under very small Tht, Ths and
Thw. Remote error analysis aims at timely de-
tecting critical security flaws, which can only be
achieved when most clients are willing to collabo-
rate in most of the time. However, this will not hap-
pen unless the client-side operations are extremely
lightweight, as clients may have limited resources
and their workloads may vary with time. Actually,
customers could be very sensitive to the overheads

brought in by error reporting systems. For example,
advice has been given to turn off WER on Windows
Vista and Windows Mobile to improve their perfor-
mance [12, 17, 13]. Therefore, it is imaginable that
many may stop participating in error analysis in re-
sponse to even a slight increase of overheads. As
a result, the chance to catch dangerous bugs can be
significantly reduced.

• Control of information leaks. The user needs to
have a full control of her information during an er-
ror analysis. Otherwise, she may choose not to par-
ticipate. Indispensable to this objective is a well-
constructed function L that offers the user a reason-
able measure of the information within an error re-
port. In addition, privacy policies built upon L and
a well-designed policy enforcer will automate the
information control, thereby offering the user a re-
liable and convenient way to protect her privacy.

• Usability of error report. Error reports submitted
by the user should contain ample information to al-
low a new input i to be generated within a short
period of time (small Th

t) and at a reasonable stor-
age overhead (small Th

s). The reports produced
by the existing systems include little information,
for example, a snapshot of the memory around a
corrupted pointer. As a result, an analyzer may
need to exhaustively explore a vulnerable program’s
branches to identify the bug that causes the error.
This process can be very time-consuming. To im-
prove this situation, it is important to have a report
that gives a detailed description about how an ex-
ploit happens.

In Section 3, we present an approach that achieves
these objectives.

3 Our Approach

In this section, we first present an overview of Panalyst
and then elaborate on the designs of its individual com-
ponents.

3.1 Overview
Panalyst has two components, client and server. Panalyst
client logs the packets an application receives, notifies
the server of its runtime error, and helps the server ana-
lyze the error by responding to its questions as long as
the answers are permitted by the user’s privacy policies.
Panalyst server runs an instruction-level taint analysis on
the application’s executable using an empty input, and
evaluates the execution symbolically [37] in the mean-
time. Whenever the server encounters a tainted value that
affects the choice of execution paths or memory access,
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Figure 1: The Design of Panalyst.

it queries the client using the symbolic expression of that
value. From the client’s answer, the server uses a con-
straint solver to compute the values of the input bytes
that taint the expression. We illustrate the design of our
approach in Figure 1.

Figure 2: An Illustrative Example.

An example. Here we explain how Panalyst works
through an example, a program described in Figure 2.
The example is a simplified version of Null-HTTPd [8].
It is written in C for illustration purpose: Panalyst ac-
tually is designed to work on binary executables. The
program first checks whether a packet is an HTTP POST
request. If so, it allocates a buffer with the size com-
puted by adding 1024 to an integer derived from the
Content-Length field and moves the content of the
request to that buffer. A problem here is that a buffer
overflow can happen if Content-Length is set to be
negative, which makes the buffer smaller than expected.
When this happens, the program may crash as a result of
writing to an illegal address or being terminated by an er-
ror detection mechanism such as GLIBC error detection.

Panalyst client logs the packets recently received by

the program. In response to a crash, the client iden-
tifies the packet being processed and notifies Panalyst
server of the error. The server then starts analyzing the
vulnerable program at instruction level using an empty
HTTP request as a taint source. The request is also de-
scribed by a set of symbols, which the server uses to
compute a symbolic expression for the value of every
tainted memory location or register. When the execution
of the program reaches Line 1 in Figure 2, the values
of the first four bytes on the request need to be revealed
so as to determine the branch the execution should fol-
low. For this purpose, the server sends the client a ques-
tion: “B1B2B3B4 = ‘POST’?”, where Bj represents the
jth byte on the request. The client checks its privacy
policies, which defines the maximal number of bits of
information allowed to be leaked for individual HTTP
field. In this case, the client is permitted to reveal the
keyword POST that is deemed nonsensitive. The server
then fills the empty request with these letters and moves
on to the branch determined by the client’s answer. The
instruction on Line 2 calls malloc. The function ac-
cesses memory using a pointer built upon the content of
Content-Length, which is tainted. To enable this
memory access, the server sends the symbolic expression
of the pointer to the client to query its concrete value.
The client’s reply allows the server to add more bytes to
the request it is working on. Finally, the execution hits
Line 3, a loop to move request content to the buffer al-
located through malloc. The loop is identified by the
server from its repeated instruction pattern. Then, a ques-
tion is delivered to the client to query its exit condition:
“ where is the first byte Bj = ‘\n’?”. This question con-
cerns request content, a field on which the privacy poli-
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cies forbid the client to leak out more than certain amount
of information. Suppose that threshold is 5 bytes. To an-
swer the question, only one byte needs to be given away:
the position of the byte ‘\n’. Therefore, the client an-
swers the question, which enables the server to construct
a new packet to reproduce the crash.

The performance of an analysis can be improved by
sending the server an initial report with all the fields
that are deemed nonsensitive according the user’s privacy
policies. In the example, these fields include keywords
such as ‘POST’ and the Content-Length field. This
treatment reduces the communication overheads during
an analysis.

Threat model. We assume that the user trusts the in-
formation provided by the server but does not trust her
data with the server. The rationale behind this assump-
tion is based upon the following observations. The own-
ers of the server are often software manufacturers, who
have little incentive to steal their customers’ information.
What the user does not trust is the way in which those
parties manage her data, as improper management of the
data can result in leaks of her private information. Ac-
tually, the same issue is also of concern to those owners,
as they could be reluctant to take the liability for protect-
ing user information. Therefore, the client can view the
server as a benign though unreliable partner, and take ad-
vantage of the information it discovers from the vulner-
able program to identify sensitive data, which we elabo-
rate in Section 3.2.

Note that this assumption is not fundamental to Pana-
lyst: more often than not, the client is capable of identi-
fying sensitive data on its own. As an example, the afore-
mentioned analysis on the program in Figure 2 does not
rely on any trust in the server. Actually, the assumption
only serves an approach for defining fine-grained privacy
policies in our research (Section 3.2), and elimination of
the assumption, though may lead to coarser-grained poli-
cies under some circumstances, will not invalidate the
whole approach.

3.2 Panalyst Client

Panalyst client is designed to work on the computing
devices with various resource constraints. Therefore, it
needs to be extremely lightweight. The client also in-
cludes a set of policies for protecting the user’s privacy
and a mechanism to enforce them. We elaborate such a
design as follows.

Packet logging and error reporting. Panalyst client in-
tercepts the packets received by an application, extracts
their application-level payloads and saves them to a log
file. This can be achieved either through capturing pack-
ets at network layer using a sniffer such as Wireshark [1],

or by interposing on the calls for receiving data from net-
work. We chose the latter for prototyping the client: in
our implementation, an application’s socket calls are in-
tercepted using ptrace [10] to dump the application-
level data to a log. The size of the file is bounded, and
therefore only the most recent packets are kept.

When a serious runtime error happens, the process of
a vulnerable program may crash, which triggers our error
analysis mechanism. Runtime errors can also be detected
by the mechanisms such as GLIBC error detection, Win-
dows build-in diagnostics [11] or other runtime error de-
tection techniques [28, 21]. Once an error happens to
an application, Panalyst client identifies the packets it is
working on. This is achieved in our design by looking at
all the packets within one TCP connection. Specifically,
the client marks the beginning of a connection once ob-
serving an accept call from the application and the end
of the connection when it detects close. After an ex-
ception happens, the client concatenates the application-
level payloads of all the packets within the current con-
nection to form a message, which it uses to talk to the
server. For simplicity, our current design focuses on the
error triggered by network input and assumes that all
information related to the exploit is present in a single
connection. Panalyst can be extended to handle the er-
rors caused by other inputs such as data from a local
file through logging and analyzing these inputs. It could
also work on multiple connections with the support of
the state-of-art replay techniques [43, 32] that are capa-
ble of replaying the whole application-layer session to
the vulnerable application on the server side. When a
runtime error occurs, Panalyst client notifies the server
of the type of the error, for example, segmentation fault
and illegal instruction. Moreover, the client can ship to
the server part of the message responsible for the error,
given such information is deemed nonsensitive according
to the user’s privacy policies.

After reporting to the server a runtime error, Panalyst
client starts listening to a port to wait for the questions
from the server. Panalyst server may ask two types of
questions, either related to a tainted branching condi-
tion or a tainted pointer a vulnerable program uses to
access memory. In the first case, the client is supposed
to answer “yes” or “no” to the question described by a
symbolic inequality: C(Bk[1], . . . , Bk[m]) ≤ 0, where
Bk[j] (1 ≤ j ≤ m) is the symbol for the k[j]th byte
on the causal message. In the second case, the client is
queried about the concrete value of a symbolic pointer
S(Bk[1], . . . , Bk[m]). These questions can be easily ad-
dressed by the client using the values of these bytes on
the message. However, the answers can be delivered to
the server only after they are checked against the user’s
privacy policies, which we describe below.
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Privacy policies. Privacy policies here are designed to
specify the maximal amount of information that can be
given away during an error analysis. Therefore, they
must be built upon a proper measure of information.
Here, we adopt entropy [48], a classic concept of infor-
mation theory, as the measure. Entropy quantifies uncer-
tainty as number of bits. Specifically, suppose that an
application field A is equally likely to take one of m dif-
ferent values. The entropy of A is computed as log

2
m

bits. If the client reveals that A makes a path condition
true, which reduces the possible values the field can have
to a proportion ρ of m, the exposed information is quan-
tified as: log

2
m− log

2
ρm = − log

2
ρ bits.

The privacy policies used in Panalyst define the max-
imal number of bytes of the information within a pro-
tocol field that can be leaked out. The number here is
called leakage threshold. Formally, denote the leakage
threshold for a field A by τ . Suppose the server can in-
fer from the client’s answers that A can take a proportion
ρ of all possible values of that field. The privacy pol-
icy requires that the following hold: − log

2
ρ ≤ τ . For

example, a policy can specify that no more than 2 bytes
of the URL information within an HTTP request can be
revealed to the server. This policy design can achieve
a fine-grained control of information. As an example,
let us consider HTTP requests: protocol keywords such
as GET and POST are usually deemed nonsensitive, and
therefore can be directly revealed to the server; on the
other hand, the URL field and the cookie field can be
sensitive, and need to be protected by low leakage thresh-
olds. Panalyst client includes a protocol parser to parti-
tion a protocol message into fields. The parser does not
need to be precise: if it cannot tell two fields apart, it just
treats them as a single field.

A problem here is that applications may use closed
protocols such as ICQ and SMB whose specifications are
not publically available. For these protocols, the whole
protocol message has to be treated as a single field, which
unfortunately greatly reduces the granularity of control
privacy policies can have. A solution to this problem is to
partition information using the parameters of API (such
as Linux kernel API, GLIBC or Windows API) functions
that work on network input. For example, suppose that
the GLIBC function fopen builds its parameters upon
an input message; we can infer that the part of the mes-
sage related to file access modes (such as ‘read’ and
‘write’) can be less sensitive than that concerning file
name. This approach needs a model of API functions and
trust in the information provided by the server. Another
solution is to partition an input stream using a set of to-
kens and common delimiters such as ‘\n’. Such tokens
can be specified by the user. For example, using the to-
ken ‘secret’ and the delimiter ‘.’, we can divide the
URL ‘www.secretservice.gov’ into the follow-

ing fields: ‘www’, ‘.’, ‘secretservice’ and ‘gov’.
Upon these fields, different leakage thresholds can be de-
fined. These two approaches can work together and also
be applied to specify finer-grained policies within a pro-
tocol field when the protocol is public.

To facilitate specification of the privacy policies, Pan-
alyst can provide the user with policy templates set by
the expert. Such an expert can be any party who has the
knowledge about fields and the amount of information
that can be disclosed without endangering the content of
a field. For example, people knowledgeable about the
HTTP specifications are in the position to label the fields
like ‘www’ as nonsensive and domain names such as
‘secretservice.gov’ as sensitive. Typically, pro-
tocol keywords, delimiters and some API parameters can
be treated as public information, while the fields such
as those including the tokens and other API parameters
are deemed sensitive. A default leakage threshold for
a sensitive field can be just a few bytes: for example,
we can allow one or two bytes to be disclosed from a
domain-name field, because they are too general to be
used to pinpoint the domain name; as another example,
up to four bytes can be exposed from a field that may
involve credit-card numbers, because people usually tol-
erate such information leaks in real life. Note that we
may not be able to assign a zero threshold to a sensitive
field because this can easily cause an analysis to fail: to
proceed with an analysis, the server often needs to know
whether the field contains some special byte such as a
delimiter, which gives away a small amount of informa-
tion regarding its content. These policy templates can be
adjusted by a user to define her customized policies.

Policy enforcement. To enforce privacy policies, we
need to quantify the information leaked by the client’s
answers. This is straightforward in some cases but less
so in others. For example, we know that answering ‘yes’
to the question “B1B2B3B4 = ‘POST’?” in Figure 2
gives away four bytes; however, information leaks can
be more difficult to gauge when it comes to the ques-
tions like “Bj × Bk < 256? ”, where Bj and Bk

indicates the jth and the kth bytes on a message re-
spectively. Without loss of generality, let us consider a
set of bytes (Bk[1], . . . , Bk[m]) of a protocol message,
whose concrete values on the message makes a condi-
tion “C(Bk[1], . . . , Bk[m]) ≤ 0” true. To quantify the
information an answer to the question gives away, we
need to know ρ, the proportion of all possible values
these bytes can take that make the condition true. Find-
ing ρ is nontrivial because the set of the values these
bytes can have can be very large, which makes it im-
practical to check them one by one against the inequal-
ity. Our solution to the problem is based upon the classic
statistic technique for estimating a proportion in a popu-
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lation. Specifically, we randomly pick up a set of values
for these bytes to verify a branching condition and re-
peat the trial for n times. From these n trials, we can
estimate the proportion ρ as x

n where x is the number
of trials in which the condition is true. The accuracy of
this estimate is described by the probability that a range
of values contain the true value of ρ. The range here
is called confidence interval and the probability called
confidence level. Given a confidence interval and a con-
fidence level, standard statistic technique can be used to
determine the size of samples n [2]. For example, sup-
pose the estimate of ρ is 0.3 with a confidence inter-
val ±0.5 and a confidence level 0.95, which intuitively
means 0.25 < ρ < 0.35 with a probability 0.95; in
this case, the number of trials we need to play is 323.
This approach offers an approximation of information
leaks: in the prior example, we know that with 0.95 con-
fidence, information being leaked will be no more than
− log

2
0.25 = 4 bits. Using such an estimate and a pre-

determined leakage threshold, a policy enforcer can de-
cide whether to let the client answer a question.

3.3 Panalyst Server
Panalyst server starts working on a vulnerable applica-
tion upon receiving an initial error report from the client.
The report includes the type of the error, and other non-
sensitive information such as the corrupted pointer, the
lengths of individual packets’ application-level payloads
and the content of public fields. Based upon it, the server
conducts an instruction-level analysis of the application’s
executable, which we elaborate as follows.

Taint analysis and symbolic execution. Panalyst server
performs a dynamic taint analysis on the vulnerable pro-
gram, using a network input built upon the initial re-
port as a taint source. The input involves a set of pack-
ets, whose application-layer payloads form a message
characterized by the same length as the client’s message
and the information disclosed by the report. The server
monitors the execution of the program instruction by in-
struction to track tainted data according to a set of taint-
propagation rules. These rules are similar to those used
in other taint-analysis techniques such as RIFLE [51],
TaintCheck [44] and LIFT [45], examples of which are
presented in Table 1. Along with the dynamic analysis,
the server also performs a symbolic execution [37] that
statically evaluates the execution of the program through
interpreting its instructions, using symbols instead of real
values as input. Each symbol used by Panalyst represents
one byte on the input message. Analyzing the program
in this way, we can not only keep close track of tainted
data flows, but also formulate a symbolic expression for
every tainted value in memory and registers.

Whenever the execution encounters a conditional

branching with its condition tainted by input symbols,
the server sends the condition as a question to the client
to seek answer. With the answer from the client, the
server can find hypothetic values for these symbols using
a constraint solver. For example, a “no” to the question
Bi = ‘\n’ may result in a letter ‘a’ to be assigned to the
ith byte on the input. To keep the runtime data consis-
tent with the hypothetic value of symbol Bi, the server
updates all the tainted values related to Bi by evaluat-
ing their symbolic expressions with the hypothetic value.
It is important to note that Bi may appear in multiple
branching conditions (C1 ≤ 0, . . . , Ck ≤ 0). Without
loss of generality, suppose all of them are true. To find
a value for Bi, the constraint solver must solve the con-
straint (C1 ≤ 0)∧ . . .∧ (Ck ≤ 0). The server also needs
to “refresh” the tainted values concerning Bi each time
when a new hypothetic value of the symbol comes up.

The server also queries the client when the program
attempts to access memory through a pointer tainted by
input symbols (Bk[1], . . . , Bk[m]). In this case, the server
needs to give the symbolic expression of the pointer
S(Bk[1], . . . , Bk[m]) to the client to get its value v, and
solve the constraint S(Bk[1], . . . , Bk[m]) = v to find
these symbols’ hypothetic values. Query of a tainted
pointer is necessary for ensuring the program’s correct
execution, particularly when a write happens through
such a pointer. It is also an important step for reliably
reproducing a runtime error, as the server may need to
know the value of a pointer, or at least its range, to deter-
mine whether an illegal memory access is about to occur.
However, this treatment may disclose too much user in-
formation, in particular when the pointer involves only
one symbol: a “yes” to such a question often exposes
the real value of that symbol. Such a problem usually
happens in a string-related GLIBC function, where let-
ters on a string are used as offsets to look up a table.
Our solution is to accommodate symbolic pointers in our
analysis if such a pointer carries only one symbol and is
used to read from a memory location. This approach can
be explicated through an example. Consider the instruc-
tion “MOV EAX, [ESI+CL]”, where CL is tainted by
an input byte Bj . Instead of directly asking the client
for the value of ESI+CL, which reveals the real value of
Bj , the server gathers the bytes from the memory loca-
tions pointed by (ESI+0, ESI+1, . . . , ESI+ 255) to
form a list. The list is used to prepare a question should
EAX get involved in a branching condition such as “CMP
EAX, 1”. In this case, the server generates a query in-
cluding [ESI+CL], which is the symbolic expression
of EAX, the value of ESI, the list and the condition. In
response to the query, the client uses the real value of
Bj and the list to verify the condition and answer either
“yes” or “no”, which enables the server to identify the
right branch.
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Table 1: Examples of the Taint Rules.
Instruction Category Taint Propagation Examples
data movement (1) taint is propagated to the destination if the source is tainted,

(2) the destination operand is not tainted if the source operand
is not tainted.

mov eax,ebx; push eax;
call 0x4080022;
lea ebx, ptr [ecx+10]

arithmetic (1) taint is propagated to the destination if the source is tainted,
(2) the EFLAGS is also regarded as a destination operand.

and eax, ebx; inc ecx;
shr eax,0x8

address calculation an address is tainted if any element in the address calculation is
tainted

mov ebx, dword ptr
[ecx+2*ebx+0x08]

conditional jump regard EFLAGS as a source operand jz 0x0746323;
jnle 0x878342; jg 0x405687

compare regard EFLAGS as a destination operand cmp eax,ebx; test eax,eax

The analysis stops when the execution reaches a state
where a runtime error is about to happen. Examples
of such a state include a jump to an address outside
the process image or an illegal instruction, and mem-
ory access through an illegal pointer. When this hap-
pens, Panalyst server announces that an input reproduc-
ing the error has been identified, and can be used for
further analysis of the underlying bug and generation of
signatures [52, 50, 39] or patches [49]. Our analysis also
contributes to a preliminary classification of bugs: if the
illegal address that causes the error is found to be tainted,
we have a reason to believe that the underlying bug can
be exploited remotely and therefore is security critical.

Reducing communication overhead. A major concern
for Panalyst seems to be communication overhead: the
server may need to query the client whenever a tainted
branching condition or a tainted pointer is encountered.
However, in our research, we found that the bandwidth
consumed in an analysis usually is quite small, less
than a hundred KB during the whole analysis. This is
because the number of tainted conditions and pointers
can be relatively small in many programs, and both the
server’s questions and the client’s answers are usually
short. Need for communication can be further reduced
if an initial error report supplies the server with a suffi-
cient amount of public information regarding the error.
However, the performance of the server and the client
will still be affected when the program intensively oper-
ates on tainted data, which in many cases is related to
loop.

A typical loop that appears in many network-facing
applications is similar to the one in the example (Line
6 of Figure 2). The loop compares individual bytes in
a protocol field with a delimiter such as ‘\n’ or ‘ ’ to
identify the end of the field. If we simply view the loop as
a sequence of conditional branching, then the server has
to query the client for every byte within that field, which
can be time consuming. To mitigate this problem, we
designed a technique in our research to first identify such
a loop and then let client proactively scan its message
to find the location of the first string that terminates the

loop. We describe the technique below.
The server monitors a tainted conditional branching

that the execution has repeatedly bumped into. When
the number of such encounters exceeds a threshold, we
believe that a loop has been identified. The step value
of that loop can be approximated by the difference be-
tween the indices of the symbols that appear in two con-
secutive evaluations of the condition. For example, con-
sider the loop in Figure 2. If the first time the execu-
tion compares Bj with ‘\n’ and the second time it tries
Bj+1, we estimate the step as one. The server then sends
a question to the client, including the loop condition
C(Bk[1], . . . , Bk[m]) and step estimates λk[1], . . . , λk[m].
The client starts from the k[i]th byte (1 ≤ i ≤ m) to scan
its message every λk[j] bytes, until it finds a set of bytes
(B

k[1], . . . , B

k[m]) that makes the condition false. The

positions of these bytes are shipped to the server. As a
result, the analysis can evaluate the loop condition using
such information, without talking to the client iteration
by iteration.

The above technique only works on a simple loop
characterized by a constant step value. Since such a
loop frequently appears in network-facing applications,
our approach contributes to significant reduction of com-
munication when analyzing these applications. Devel-
opment of a more general approach for dealing with the
loops with varying step size is left as our future research.
Another problem of our technique is that the condition it
identifies may not be a real loop condition. However, this
does not bring us much trouble in general, as the penalty
of such a false positive can be small, including nothing
but the requirement for the client to scan its message and
disclosure of a few bytes that seem to meet the exit con-
dition. If the client refuses to do so, the analysis can
still continue through directly querying the client about
branching conditions.

Improving constraint-solving performance. Solving
a constraint can be time consuming, particularly when
the constraint is nonlinear, involving operations such as
bitwise AND, OR and XOR. To maintain a valid run-
time state for the program under analysis, Panalyst server
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needs to run a constraint solver to update hypothetic sym-
bol values whenever a new branching condition or mem-
ory access is encountered. This will impact the server’s
performance. In our research, we adopted a very sim-
ple strategy to mitigate this impact: we check whether
current hypothetic values satisfy a new constraint before
solving the constraint. This turns out to be very effective:
in many cases, we found that symbol values good for an
old constraint also work for a new constraint, which al-
lows us to skip the constraint-solving step.

4 Implementation

We implemented a prototype of Panalyst under Linux, in-
cluding its server component and client component. The
details of our implementation are described in this sec-
tion.

Message logging. We adopted ptrace to dump the
packet payloads an application receives. Specifically,
ptrace intercepts the system call socketcall()
and parses its parameters to identify the location of an
input buffer. The content of the buffer is dumped to a log
file. We also labels the beginning of a connection when
an accept() is observed and the end of the connection
when there is a close(). The data between these two
calls are used to build a message once a runtime excep-
tion happens to the application.

Estimate of information leaks. To evaluate the infor-
mation leaks caused by answering a question, our imple-
mentation first generates a constraint that is a conjunction
of all the constraints the client receives that are directly
or transitively related to the question, and then samples
values of the constraint using the random values of the
symbols it contains. We set the number of samples to
400, which achieves a confidence interval of ±0.05 and a
confidence level of 0.95. A problem here is that the gran-
ularity of the control here could be coarse, as 400 sam-
ples can only represent loss of one byte of information.
When this happens, our current implementation takes a
conservative treatment to assume that all the bytes in a
constraint are revealed. A finer-grained approach can be
restoring the values of the symbols byte by byte to re-
peatedly check information leaks, until all the bytes are
disclosed. An evaluation of such an approach is left as
our future work.

Error analyzer. We implemented an error analyzer as
a Pin tool that works under Pin’s Just-In-Time (JIT)
mode [40]. The analyzer performs both taint analysis
and symbolic execution on a vulnerable application, and
builds a new input to reproduce the runtime error that
occurred on the client. The analyzer starts from a mes-
sage that contains nothing but zeros and has the same

length as the client’s input, and designates a symbol to
every byte on that message. During the analysis, the
analyzer first checks whether a taint will be propagated
by an instruction and only symbolically evaluates those
whose operands involve tainted bytes. Since many in-
structions related to taint propagation use the informa-
tion of EFLAGS, the analyzer also takes this register as
a source operand for these instructions. Once an instruc-
tion’s source operand is tainted, symbolic expressions are
computed for the destination operand(s). For example,
consider the instruction add eax, ebx, where ebx is
tainted. Our analyzer first computes a symbolic expres-
sion Bebx + veax, where Bebx is an expression for ebx
and veax is the value of eax, and then generates another
expression for EFLAGS because the result of the opera-
tion affects Flag OF, SF, ZF, AF, CF, PF.

Whenever a conditional jump is encountered, the
server queries the client about EFLAGS. To avoid ask-
ing the client to give away too much information, such
a query only concerns the specific flag that affects that
branching, instead of the whole status of EFLAGS.
For example, consider the following branching: cmp
eax,ebx and then jz 0x33fd740. In this case, the
server’s question is only limited to the status of ZF,
which the branching condition depends on, though the
comparison instruction also changes other flags such as
SF and CF.

Constraint solver. Our implementation uses Yices [33]
to solve constraints so as to find the hypothetic values
for individual symbols. These values are important to
keeping the application in a state that is consistent with
its input. Yices is a powerful constraint solver which
can handle many nonlinear constraints. However, there
are situations when a constraint is so complicated that
its solution cannot be obtained within a reasonable time.
When this happens, we adopted a strategy that gradually
inquires the client about the values of individual sym-
bols to simplify the constraint, until it becomes solvable
by the constraint solver.

Data compression. We implemented two measures to
reduce the communication between the client and the
server. The first one is for processing the questions that
include the same constraints except input symbols. Our
implementation indexes each question the server sends
to the client. Whenever the server is about to ask a ques-
tion that differs from a previous one only in symbols, it
only transmits the index of the old question and these
symbols. This strategy is found to be extremely effec-
tive when the sizes of the questions become large: in
our experiment, a question with 8KB was compressed to
52 bytes. The strategy also complements our technique
for processing loops: for a complicated loop with vary-
ing steps which the technique cannot handle, the server
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needs to query the client iteratively; however, the sizes of
these queries can be very small as they are all about the
same constraint with different symbols. The second mea-
sure is to use a lightweight real-time compression algo-
rithm to reduce packet sizes. The algorithm we adopted
is minilzo [6], which reduced the bandwidth consump-
tion in our experiments to less than 100 KB for an anal-
ysis, at a negligible computational overhead.

5 Evaluation

In this section, we describe our experimental study of
Panalyst. The objective of this study is to understand the
effectiveness of our technique in remote error analysis
and protection of the user’s privacy, and the overheads
it introduces. To this end, we evaluated our prototype
using 6 real applications and report the outcomes of these
experiments here.

Our experiments were carried out on two Linux work-
stations, one as the server and the other as the client.
Both of them were installed with Redhat Enterprise 4.
The server has a 2.40GHz Core 2 Duo processor and
3GB memory. The client has a Pentium 4 1.3GHz pro-
cessor and 256MB memory.

5.1 Effectiveness

We ran Panalyst to analyze the errors that occurred
in 6 real applications, including Newspost [7], Open-
VMPS [19], Null-HTTPd (Nullhttpd) [8], Sumus [15],
Light HTTPd [5] and ATP-HTTPd [3]. The experimental
results are presented in Table 2. These applications con-
tain bugs that are subject to stack-based overflow, format
string error and heap-based overflow. The errors were
triggered by a single or multiple input packets on the
client and analyzed on the server. As a result, new pack-
ets were gradually built from an initial error report and
interactions with the client to reproduce an error. This
was achieved without leaking too much user information.
We elaborate our experiments below.

Newspost. Newspost is a Usenet binary autoposter for
Unix and Linux. Its version 2.1.1 and earlier has a bug
subject to stack-based overflow: specifically, a buffer in
the socket getline() function can be overrun by a
long string without a newline character. In our experi-
ment, the application was crashed by a packet of 2KB.
After this happened, the client sent the server an initial
error report that described the length of the packet and
the type of the error. The report was converted into an
input to an analysis performed on the application, which
included an all-zero string of 2KB. During the analy-
sis, the server identified a loop that iteratively searched
for ‘0xa’, the newline symbol, as a termination condi-

tion for moving bytes into a buffer, and questioned the
client about the position at which the byte first appeared.
The byte actually did not exist in the client’s packet.
As a result, the input string overflowed the buffer and
was spilled on an illegal address to cause a segmentation
fault. Therefore, the server’s input was shown to be able
to reproduce the error. This analysis was also found to
disclose very little user information: nothing more than
the fact that none of the input bytes were ‘0xa’ were
revealed. This was quantified as 0.9 byte.

OpenVMPS. OpenVMPS is an open-source implemen-
tation of Cisco Virtual Membership Policy Server, which
dynamically assigns ports to virtual networks accord-
ing to Ethernet addresses. The application has a format
string bug which allows the input to supply a string with
format specifiers as a parameter for vfprintf(). This
could make vfprintf() write to a memory location.
In the experiment, Panalyst server queried the client to
get “00 00 0c 02” as illustrated in Figure 4. These
four bytes were part of a branching condition, and seems
to be a keyword of the protocol. We also found that the
string “00 b9” were used as a loop counter. These two
bytes were identified by the constraint solver. The string
“62637” turned out to be the content that the format
specifier “%19$hn” wrote to a memory location through
vfprintf(). They were recovered from the client be-
cause they were used as part of a pointer to access mem-
ory. Our implementation successfully built a new in-
put on the server that reproduced the error, as illustrated
in Figure 4. This analysis recovered 39 bytes from the
client, all of which were either related to branching con-
ditions or memory access. An additional 18.4 bytes of
information were estimated by the client to be leaked, as
a result of the client’s answers which reduced the ranges
of the values some symbols could take.

Null-HTTPd. Null-HTTPd is a small web server work-
ing on Linux and Windows. Its version 0.5 contains
a heap-overflow bug, which can be triggered when the
HTTP request is a POST with a negative Content
Length field and a long request content. In our ex-
periment, the client parsed the request using Wireshark
and delivered nonsensitive information such as the key-
word POST to the server. The server found that the
application added 1024 to the value derived from the
Content Length and used the sum as pointer in the
function calloc. This resulted in a query for the value
of that field, which the client released. At this point, the
server acquired all the information necessary for repro-
ducing the error and generated a new input illustrated in
Figure 5. The information leaks caused by the analysis
include the keyword, the value of Content Length,
HTTP delimiters and the knowledge that some bytes are
not special symbols such as delimiters. This was quan-
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Table 2: Effectiveness of Panalyst.
Applications Vul. Type New Input Generated? Size of client’s message

(bytes)
Info leaks (bytes) Rate of info leaks

Newspost Stack Overflow Yes 2056 0.9 0.04%
OpenVMPS Format String Yes 199 57.4 28.8%
Null-HTTPd Heap Overflow Yes 416 29.7 7.14%
Sumus Stack Overflow Yes 500 7.7 1.54%
Light HTTPd Stack Overflow Yes 211 17.9 8.48%
ATP-HTTPd Stack Overflow Yes 819 16.7 2.04%

Figure 3: Input Generation for Newspost. Left: the client’s packet; Right: the new packet generated on the server.

tified as 29.7 bytes, about 7% of the HTTP message the
client received.

Sumus. Sumus is a server for playing Spanish “mus”
game on the Internet. It is known that Sumus 0.2.2 and
the earlier versions have a vulnerable buffer that can be
overflowed remotely [14]. In our experiment, Panalyst
server gradually constructed a new input through inter-
actions with the client until the application was found
to jump to a tainted address. At this point, the input
was shown to be able to reproduce the client’s error.
The information leaked during the analysis is presented
in Figure 6, including a string “GET” which affected a
path condition, and 4 “0x90”, which were the address
the application attempted to access. These 7 bytes were
counted as leaked information, along with the fact that
other bytes were not a delimiter.

Light-HTTPd. Light-HTTPd is a free HTTP server. Its
version 0.1 has a vulnerable buffer on the stack. Our ex-
periment captured an exception that happened when the
application returned from the function vsprintf()
and constructed the new input. The input shared 14
bytes with the client’s input which were essential to de-
termining branching conditions and accessing memory.
For example, the keyword “GET” appeared on a condi-
tional jump and the letter “H” were used as a condition in
the GLIBC function strstr. The remaining 3.9 bytes
were caused by the intensive string operations, such as
strtok, which frequently used individual bytes for ta-
ble lookup and comparison operations. Though these op-
erations did not give away the real values of these bytes,
they reduced the range of the bytes, which were quanti-
fied into another 3.9 bytes.

ATP-HTTPd. ATP-HTTPd 0.4 and 0.4b involve a re-
motely exploitable buffer in the socket gets() func-
tion. A new input that triggered this bug was built in our
experiment, which are presented in Figure 8. For exam-

ple, the string “EDCB” was an address the application at-
tempted to jump to; this operation actually caused a seg-
mentation fault. Information leaks during this analysis
are similar to that of Light-HTTPd, which was quanti-
fied as 16.7 bytes.

5.2 Performance
We also evaluated the performance of Panalyst. The
client was deliberately run on a computer with 1 GHz
CPU and 256MB memory to understand the performance
impact of our technique on a low-end system. The server
was on a high-end, with a 2.40GHz Core 2 Duo CPU
and 3GB memory. In our experiments, we measured the
delay caused by an analysis, memory use and bandwidth
consumption on both the client and the server. The re-
sults are presented in Table 3.

The client’s delay describes the accumulated time that
the client spent to receive packets from the server, com-
pute answers, evaluate information leaks and deliver the
responses. In our experiments, we observed that this
whole process incurred the latency below 3.2 seconds.
Moreover, the memory use on the client side was kept be-
low 5 MB. Given the hardware platform over which this
performance was achieved, we have a reason to believe
that such overhead could be afforded by even a device
with limited computing resources, such as Pocket PC and
PDA. Our analysis introduced a maximal 99,659 bytes
communication overhead. We believe this is still rea-
sonable for the client, because the size of a typical web
page exceeds 100 KB and many mobile devices nowa-
days have the capability of web browsing.

The delay on the server side was measured between
the reception of an initial error report and the generation
of a new input. An additional 15 seconds for launching
our Pin-based analyzer should also be counted. Given
this, the server’s performance was very good: the maxi-
mal latency was found to be under 1 minute. However,
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Figure 4: Input Generation for OpenVMPS. Left: the client’s packet; Right: the new packet generated on the server.

Figure 5: Input Generation for Null-HTTPd. Left: the client’s packet; Right: the new packet generated on the server.

this was achieved on a very high-end system. Actually,
we observed that the latency was doubled when moving
the server to a computer with 2.36 GHz CPU and 1 GB
memory. More importantly, the server consumed about
100 MB memory during the analysis. This can be easily
afforded by a high-end system as the one used in our ex-
periment, but could be a significant burden to a low-end
system such as a mobile device. As an example, most
PDAs have less than 100 MB memory. Therefore, we be-
lieve that Panalyst server should be kept on a dedicated
high-performance system.

6 Discussion

Our research makes the first step towards a fully auto-
mated and privacy-aware remote error analysis. How-
ever, the current design of Panalyst is still preliminary,
leaving much to be desired. For example, the approach
does not work well in the presence of probabilistic er-
rors, and our privacy policies can also be better designed.
We elaborate limitations and possible solutions in the left
part of this section, and discuss the future research for
improving our technique in Section 7.

The current design of Panalyst is for analyzing the er-
ror triggered by network input alone. However, runtime
errors can be caused by other inputs such as those from
a local file or another process. Some of these errors can
also be handled by Panalyst. For example, we can record

all the data read by a vulnerable program and organize
them into multiple messages, each of which corresponds
to a particular input to the program; an error analysis
can happen on these messages in a similar fashion as de-
scribed in Section 3. A weakness of our technique is that
it can be less effective in dealing with a probabilistic er-
ror such as the one caused by multithread interactions.
However, it can still help the server build sanitized in-
puts that drive the vulnerable program down the same
execution paths as those were followed on the client.

Panalyst may require the client to leak out some infor-
mation that turns out to be unnecessary for reproducing
an error, in particular, the values of some tainted pointer
unrelated to the error. A general solution is describing
memory addresses as symbolic expressions and taking
them into consideration during symbolic execution. This
approach, however, can be very expensive, especially
when an execution involves a large amount of indirect
addressing through the tainted pointers. To maintain a
moderate overhead during an analysis, our current design
only offers a limited support for symbolic pointers: we
introduce such a pointer only when it includes a single
symbol and is used for reading from memory.

The way we treat loops is still preliminary: it only
works on the loops with constant step sizes and may
falsely classify a branching condition as a loop condi-
tion. As a result, we may miss some real loops, which
increases the communication overhead of an analysis, or
require the client to unnecessarily disclose extra informa-
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Figure 6: Input Generation for Sumus. Left: the client’s packet; Right: the new packet generated on the server.

Figure 7: Input Generation for Light HTTPd. Left: the client’s packet; Right: the new packet generated on the server.

tion. However, the client can always refuse to give more
information and set a threshold for the maximal number
of the questions it will answer. Even if this causes the
analysis to fail, the server can still acquire some infor-
mation related to the error and use it to facilitate other
error analysis techniques such as fuzz testing. We plan
to study more general techniques for analyzing loops in
our future research.

Entropy-based policies may not be sufficient for reg-
ulating information leaks. For example, complete dis-
closure of one byte in a field may have different privacy
implications from leakage of the same amount of infor-
mation distributed among several bytes in the field. In
addition, specification of such policies does not seem to
be intuitive, which may affect their usability. More effec-
tive privacy policies can be built upon other definitions of
privacy such as k-Anonymity [46], l-Diversity [41] and
t-Closeness [38]. These policies will be developed and
evaluated in our future work.

Panalyst client can only approximate the amount of
information disclosed by its answers using statistical
means. It also assumes a uniform distribution over the
values a symbol can take. Design of a better alternative
for quantifying and controlling information is left as our
future research.

Another limitation of our approach is that it cannot
handle encoded or encrypted input. This problem can

be mitigated by interposing on the API functions (such as
those in the OpenSSL library) for decoding or decryption
to get their plaintext outputs. Our error analysis will be
conducted over the plaintext.

7 Related Work

Error reporting techniques have been widely used for
helping the user diagnose application runtime error. Win-
dows error reporting [20], a technique built upon Mi-
crosoft’s Dr. Watson service [18], generates an error
report through summarizing a program state, including
contents of registers and stack. It may also ask the user
for extra information such as input documents to investi-
gate an error. Such an error report is used to search an ex-
pert system for the solution provided by human experts.
If the search fails, the client’s error will be recorded for
a future analysis. Crash Reporter [16] of Mac OS X
and third-party tools such as BugToaster [27] and Bug
Buddy [22] work in a similar way. As an example, Bug
Buddy for GNOME can generate a stack trace using gdb
and let the user post it to the GNOME bugzilla [4].

Privacy protection in existing error reporting tech-
niques mostly relies on the privacy policies of those who
collect reports. This requires the user to trust the collec-
tor, and also forces her to either send the whole report
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Figure 8: Input Generation for ATP HTTPd. Left: the client’s packet; Right: the new packet generated on the server.

Table 3: Performance of Panalyst.
Programs client delay (s) client memory use

(MB)
server delay (s) server memory

use (MB)
total size of questions
(bytes)

total size of answers
(bytes)

Newspost 0.022 4.7 12.14 99.3 527 184
OPenVMPS 1.638 3.9 17 122.3 45,610 6,088
Null-HTTPd 1.517 5.0 13.09 118.1 99,659 3,416
Sumus 0.123 4.8 1.10 85.4 5,968 2,760
Light HTTPd 0.88 4.8 6.59 110.1 14,005 2,808
ATP-HTTPd 3.197 5.0 37.11 145.4 50,615 15,960

or submit nothing at all. In contrast, Panalyst reduces
the user’s reliance on the collectors to protect her privacy
and also allows her to submit part of the information she
is comfortable with. Even if such information is insuf-
ficient for reproducing an error, it can make it easier for
other techniques to identify the underlying bug. More-
over, Panalyst server can automatically analyze the error
caused by an unknown bug, whereas existing techniques
depend on human to analyze new bugs.

Proposals have been made to improve privacy protec-
tion during error reporting. Scrash [25] instruments an
application’s source code to record information related
to a crash and generate a “clean” report that does not
contain sensitive information. However, it needs source
code and therefore does not work on commodity ap-
plications without the manufacturer’s support. In ad-
dition, the technique introduces performance overheads
even when the application works properly, and like other
error reporting techniques, uses a remote expert sys-
tem and therefore does not perform automatic analy-
sis of new errors. Brickell, et al propose a privacy-
preserving diagnostic scheme, which works on binary
executables [24, 36]. The technique aims at searching
a knowledge base framed as a decision tree in a privacy-
preserving manner. It also needs to profile an applica-
tion’s execution. Panalyst differs from these approaches
in that it does not interfere with an application’s normal
run except logging inputs, which is very lightweight, and
is devised for automatically analyzing an unknown bug.

Techniques for automatic analysis of software vulner-
abilities have been intensively studied. Examples include
the approach for generating vulnerability-based signa-
tures [26], Vigilante [30], DACODA [31] and EXE [53].

These approaches assume that an input triggering an er-
ror is already given and therefore privacy is no longer
a concern. Panalyst addresses the important issue on
how to get such an input without infringing too much
on the user’s privacy. This is achieved when Panalyst
server is analyzing the vulnerable program. Our tech-
nique combines dynamic taint analysis with symbolic ex-
ecution, which bears some similarity to a recent proposal
for exploring multiple execution paths [42]. However,
that technique is primarily designed for identifying hid-
den actions of malware, while Panalyst is for analyzing
runtime errors. Therefore, we need to consider the issues
that are not addressed by the prior approach. A promi-
nent example is the techniques we propose to tackle a
tainted pointer, which is essential to reliably reproducing
an error.

Similar to Panalyst, a technique has been proposed re-
cently to symbolically analyze a vulnerable executable
and generate an error report through solving con-
straints [29]. The technique also applies entropy to
quantify information loss caused by the error report-
ing. Panalyst differs from that approach fundamentally
in that our technique generates a new input remotely
while the prior approach directly works on the causal
input on the client. Performing an intensive analysis
on the client is exactly the thing we want to avoid, be-
cause this increases the client’s burden and thus discour-
ages the user from participating. Although an evalua-
tion of the technique reports a moderate overhead [29], it
does not include computation-intensive operations such
as instruction-level tracing, which can, in some cases,
introduce hundreds of seconds of delay and hundreds of
megabytes of execution traces [23]. This can be barely
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acceptable to the user having such resources, and hardly
affordable to those using weak devices such as PocketPC
and PDA. Actually, reproducing an error without direct
access to the causal input is much more difficult than
analyzing the input locally, because it requires a care-
ful coordination between the client and the server to en-
sure a gradual release of the input information without
endangering the user’s privacy and failing the analysis
at the same time. In addition, Panalyst can enforce pri-
vacy policies to individual protocol fields and therefore
achieves a finer-grained control of information than the
prior approach.

8 Conclusion and Future Work

Remote error analysis is essential to timely discovery of
security critical vulnerabilities in applications and gener-
ation of fixes. Such an analysis works most effectively
when it protects users’ privacy, incurs the least perfor-
mance overheads on the client and provides the server
with sufficient information for an effective study of the
underlying bugs. To this end, we propose Panalyst, a
new techniques for privacy-aware remote error analy-
sis. Whenever a runtime error occurs, the Panalyst client
sends the server an initial error report that includes noth-
ing but the public information about the error. Using
an input built from the report, Panalyst server analyzes
the propagation of tainted data in the vulnerable applica-
tion and symbolically evaluates its execution. During the
analysis, the server queries the client whenever it does
not have sufficient information to determine the execu-
tion path. The client responds to a question only when
the answer does not leak out too much user information.
The answer from the client allows the server to adjust
the content of the input through symbolic execution and
constraint solving. As a result, a new input will be built
which includes the necessary information for reproduc-
ing the error on the client. Our experimental study of
this technique demonstrates that it exposes a very small
amount of user information, introduces negligible over-
heads to the client and enables the server to effectively
analyze an error.

The current design of Panalyst is for analyzing the er-
ror triggered by network inputs alone. Future research
will extend our approach to handle other types of errors.
In addition, we also plan to improve the techniques for
estimating information leaks and reduce the number of
queries the client needs to answer.
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