
Authorisation and Delegation in the
Machination Configuration System

Colin Higgs – University of Edinburgh

ABSTRACT

Experience with a crudely delegated user interface to our internally developed configuration
management system convinced us that delegated access to configuration systems was worth
pursuing properly. This paper outlines our approach to authorising access both to individual
aspects of configurations and to collections of configurations. We advocate the use of authorisation
of some kind on configuration changes and we believe that the system of authorising primitive
manipulations of a configuration representation outlined herein could be accommodated by a
number of existing configuration systems. The authorisation system described is still experimental
and we regret that real world experience of the system in use with end users is not yet available.

Introduction

There are a number of configuration manage-
ment systems for computers [12, 13, 15, 6, 7, 14]. Of
those, all those known to us assume that use of the
configuration management system will be restricted to
those people who would have been system administra-
tors on the managed collection of computers in the
absence of the configuration management system. One
can usually use file-system permissions or other mech-
anisms (inherited ACLs operating in a similar fashion
to file-system permissions in Active Directory [10] or
database access controls in SMS) to allow or deny
access to the configuration representations of comput-
ers, but those mechanisms are difficult to use in a
structured manner, do not allow delegated control of
sub-parts of machine configuration information and,
with the exception of Active Directory’s ACLs, are not
at all designed with configuration delegation in mind.

There are a number of reasons it is desirable to
delegate configuration management as much as possi-
ble:

• Avoiding extra work and bureaucratic delay.
If a system does not delegate some control to
end users, those who need something about
their system changed (for example a new appli-
cation added) cannot realise that change with-
out speaking to an operator of the configuration
management system. This required interaction
between two people creates extra work for the
operators (and probably also for the end users).
Also, a certain amount of delay between re-
quest and action is inevitable, which is undesir-
able to the end user and usually detrimental to
the operation of the business.
The version of our tool currently in service,
which does not include the authorisation fea-
tures described in this paper, nonetheless allows
end users to perform some basic configuration
tasks via a graphical interface – namely manip-
ulating packages and printers. From a computer

population of 300 and a user population of 200,
there are around 400 delegated configuration
changes per month. That’s 20 change requests
per working day that would otherwise need an
IT team member to enact. We would expect the
rate of change requests to increase slightly if
access was delegated to more configuration
aspects.

• End user satisfaction. End users like to feel in
control of their computers. A system that gives
them as much control as can possibly be given
is more likely to be popular.

• Separation of expertise. Large organisations –
the ones who are most likely to require configu-
ration management tools – have larger teams of
administrators. Responsibility may be distrib-
uted among these administrators in different
ways – some may be responsible for servers,
with responsibilities split by server or service,
others may be responsible for groups of clients,
split by location. Still others may have a
responsibility that covers a domain of expertise
– for example, networking. It ought to be possi-
ble to support the various ways that the organi-
sation might choose to delegate responsibility.

Of course, there are also extra complications
when many people can edit configuration information.

• Conflicts in intent. When many people from
different parts of an organisation can contribute
configuration instructions, any given computer
might be given conflicting instructions from
multiple sources. There is no guarantee that
those contributing to the configuration of the
computer even agree on what it should do. The
configuration management system must have a
method of resolving such conflicts.

• Accidental breakage. End users are not usu-
ally, and should not have to be, experts in con-
figuring computers – individually or en mass.
This lack of expertise could easily result in

22nd Large Installation System Administration Conference (LISA ’08) 191



Authorisation and Delegation in the Machination Configuration System Higgs

breakage, either of their own computer or fur-
ther afield unless the system guards against it.
An example of this would be trying to make
two mutually exclusive configuration changes,
or making only one change of a dependent pair.

• Malicious intent. If an interface into the config-
uration management system is provided to every-
one, then either the interface or the system itself
must guard against input with malicious intent.
Of the systems mentioned above, only Active

Directory with its LDAP based hierarchy explicitly
allows for delegation and sub-delegation of computer
configuration on collections of computers. Active
Directory’s tree structure suffers from the deficiencies
inherent in single inheritance trees outlined later, how-
ever. These have a negative impact on the way that
configuration information may be organised and com-
posed, and on the way that configuration tasks may be
delegated. None of those systems allow delegation of
access to aspects [2, 3] of the configuration – if one
has access to the object representing the computer, one
can change anything the configuration management
system is capable of controlling.

In this paper, a method for organising and dele-
gating access to configuration information is dis-
cussed. These ideas have been implemented in an (as
yet) experimental extension to our existing configura-
tion management system, ‘‘Machination’’ [11].

First, strategic goals and desired features and
properties of the system are discussed. The paper then
covers two main authorisation topics: how to represent
and manipulate configuration information such that
control over aspects can be authorised; and how to
organise configuration information when dealing with
many configuring entities and configurable objects.

Goals

With the above justification in mind, the follow-
ing high level goals were set and used as guidelines to
extend our existing configuration management system.

1. Maximise delegation. Use delegation to help
improve acceptance of the configuration man-
agement system and to streamline the configu-
ration change process. Any delegation so intro-
duced should also have authorisation and ac-
cess controls sufficient to satisfy management
that the system will not be misused, where the
meaning of ‘‘misused’’ is defined by manage-
ment.

2. Structure with flexibility. The system should
be compatible with with the way people and
things are organised now, or most naturally – not
the other way around. This requires a flexible
structure with which to organise both configura-
tion and authorisation information. Delegation
should be possible to individual end-users, to
experts based on their expertise, over computers
based on their organisational affiliation or their

purpose or their physical locations, along with a
number of other criteria.

At a more detailed level, the following require-
ments relevant to authorisation were set for the sys-
tem:

1. Ability to authorise access to configuration
aspects individually. This is required to achieve
the strategic goal of Maximising Delegation,
allowing delegated access to people who could
not be granted access to the whole configuration.
This feature should allow one to guard against
malicious intent targeted at an the configuration
representation of an individual configurable ob-
ject.

2. Ability to authorise access to collections of
some kind. To eff e c t i v e l y manage large numbers
of configurable objects without large amounts of
effort, the configuration systems mentioned
above all have facilities to collect objects in
some way before applying configuration in-
structions. The authorisation layer should be
capable of applying to the same kinds of col-
lections.

3. Inheritance and/or aggregation. It was decided
early on that the configuration system should
have an inheritance or aggregation structure for
configuration instructions. The structure chosen
is described later. Although this feature is more
targeted towards the organisation of configura-
tion instructions, it has strong implications for
the way authorisation should work.

4. Merging and conflict resolution mechanism.
The organisational structure mentioned above
requires a mechanism for merging configura-
tion information from multiple potentially con-
flicting sources. This mechanism has conse-
quences for authorisation and delegation, as
described later.

5. User interface. There is no use in giving peo-
ple permission to do something if they lack the
means to do it. Delegating configuration to end
users requires a user interface that is suitable
for end users to use.

6. Dependency mechanism. This is required to
alleviate the accidental breakage problem de-
scribed above. Machination has such a depen-
dency mechanism, but it is not discussed fur-
ther since it is only peripherally related to
authorisation.

Authorising Access to Configuration Aspects

The ability to authorise access to configuration
aspects individually requirement, set out above, requires
the system to authorise access to individual configura-
tion aspects. These aspects are elements of configura-
tion information which are logically connected in some
way – packages, web server configuration, network set-
tings or the like. To facilitate this, a representation for

192 22nd Large Installation System Administration Conference (LISA ’08)



Higgs Authorisation and Delegation in the Machination Configuration System

configuration information was sought with the follow-
ing properties:

• The rules for constructing representations must
allow representations that are capable of repre-
senting all required configurations!

• One should be able to collect related configura-
tion elements together so that access to related
elements can be authorised and delegated sensi-
bly.

• One should be able to utilise a finite, and
preferably small, number of primitive instruc-
tions to manipulate the representation. Authori-
sation rules will apply to these primitives, so
each primitive should have a limited scope so
as to avoid the potential for circumnavigating
said authorisation.

is_allow: 1
entities: joe
operation: add_elt
xml_path: /profile/worker[packageman-1]
pattern: <pattern>

<constraint on="tag" type="string">package</constraint>
<constraint on="id" type="set" set_id="unrestricted packages"/>
</pattern>

Listing 1: Authorising configuration instructions.

In the rest of this section, the particular XML repre-
sentation used in Machination and the primitives used
to manipulate it are described.

The XML Representation
In our case the representation chosen was based

on XML with the following restrictions:
1. Mixed content elements are not allowed. Every

element should either contain child elements or
text – not both. It is permissible for elements to
contain nothing (normally carrying their infor-
mation in their attributes).

2. Every element whose tag could appear multiple
times within a given parent must be given an id
attribute, which is unique amongst that ele-
ment’s siblings with the same tag.

3. The id attribute must only be used for the pur-
pose outlined above.

Rules 1 and 2 together guarantee that every element in
the representation can be uniquely referenced by an
xpath of the form:
/tag/arrayTag[@id=’id1’]/tag/...

This is important for the configuration manipulating
instructions described in the next section. In fact, since
the id attribute is the only one required to address ele-
ments, in many cases xpaths are abbreviated to the form:
/tag/arrayTag[id1]/tag/...

Rule 3 is stated for completeness, though it is consid-
ered unlikely that anyone would wish to use the id
attribute for anything else.

Assuming a mechanism exists for translating
XML to real configuration (and it does exist) the

problem of configuration management has been re-
duced to producing and distributing valid XML for
that mechanism. Quite a number of configuration
management systems take a similar approach – for
example LCFG distributes configuration information
via an XML representation [4], while bcfg2 configura-
tions are specified in XML [5]. The rules described
above restrict our XML representation to be simpler
than would be allowed in plain XML, and allow it to
be manipulated using a set of primitive operations (as
described in the next section) which require the unique
xpaths described above to address elements in the rep-
resentation. It is those primitive operations to which
authorisation rules are applied.
Configuration Manipulating Primitives

XML representations conforming to the rules
described above may be manipulated using the follow-
ing primitives:

• add_elt <element_path>
• del_elt <element_path>
• set_att <element_path> <attribute name> <value>
• del_att <element_path> <attribute_name>
• set_text <element_path> <text> NB – also erases

any child elements.
• order <tag_path> <id> <first|last> or

order <tag_path> <id1> [before|after] <id2>
All element_paths are abbreviated xpaths as described
earlier. All primitives are declarative in the sense
defined by LCFG [1], which means that add_elt and
the like are slightly mis-named. A name more in keep-
ing with it’s function might be ‘ensure_elt_exists’, but
this was judged a little unwieldy. It is also worthy of
note that the primitives described above allow reason-
ably general XML to be constructed. This results in
the above approach potentially having quite wide
applicability.

In Machination these primitives are called con-
figuration instructions and are collected together in a
hierarchical structure as described later.
Authorisation of Configuration Instructions

The instruction set described above can be used to
make demands about some configuration representa-
tion. They are very general – one can construct fairly
arbitrary XML with them – and that they are reasonably
small in number. It is to these primitives, or configura-
tion instructions, that authorisation rules are applied.

Authorisation instructions are held in a database,
and a typical instruction might be represented as

22nd Large Installation System Administration Conference (LISA ’08) 193



Authorisation and Delegation in the Machination Configuration System Higgs

something like that shown in Listing 1, which says
that user joe1 should be allowed to add sub-elements
to /profile/ worker[packageman-1] as long as the sub-ele-
ment’s tag is ‘‘package’’ and its id matches the name
of one of the elements of the set ‘‘unrestricted pack-
ages.’’

The schema for any eventual representation
should be designed such that related pieces of configu-
ration are bundled together in the representation. It is
these related configuration pieces that form configura-
tion aspects. An authorisation instruction relates to,
and thus controls access to, an aspect if its xml_path
attribute contains the XML path of the aspect.

Figure 1: Is-a inheriting tree. Rectangular call-outs show authorisation instructions, round ones show configuration
instructions. Containers inherit authorisation instructions from all containers above them in the tree. Some paths
and instructions are abbreviated or omitted for reasons of space.

The optional pattern clause allows the instruction
to be more selective, subject to the content of the
potential change. Tags and ids may be constrained for
add_elt and del_elt, attribute names and values for
set_att and so on. Current constraints allowed include
string-wise equality, regular expressions, one of a pro-
vided list of strings, equal to the name (or other speci-
fied) attribute of one of the members of a set and their
appropriate negatives.

Authorisation instructions control the ability of
configuration instructions (primitives acting on XML)
to access individual aspects of a configuration. The
other promised topic for authorisation was authorising

1One can specify individual entities or sets of entities here,
or a description using operators like or (require any of the
pair), and (require both), and any N of some set.

access to the structure which organises configuration
information for lots of objects, which is introduced next.

Authorising Access to Aspects of Collections of
Configurables

When configuring lots of objects, it is necessary
to collect them together in some way. Strategies for
this include database sets with no inheritance relation-
ship (e.g., collections in Microsoft SMS), tree inheri-
tance (e.g., OU tree in Microsoft Active Directory)
and inverted tree inheritance (e.g., #include in LCFG,
groups in Bcfg). SMS’s unstructured sets lack an
inheritance mechanism. The difference between the
other two systems is similar to the difference between
the is-a and has-a relationships in object oriented pro-
gramming, though the distinction between the two is
less clear in configuration management since ‘inheri-
tance’ here is usually synonymous with accruing prop-
erties and values, and has no meaning in terms of
method inheritance and method over-rides.

We now consider the implications of authorising
actions on representations for these two types of inher-
itance.

is-a Inheritance
This kind of structure forms a tree of categories

with the whole organisation at the root. The categories
can be thought of as containers (as they are in Active
Directory), containing configurable objects and other
containers. Configuration instructions are attached to

194 22nd Large Installation System Administration Conference (LISA ’08)



Higgs Authorisation and Delegation in the Machination Configuration System

containers and apply to all configurable objects in that
container or any of its sub containers.

Machination uses this style of inheritance (in-
cluding multiple inheritance, as described below).
Aspect authorisation instructions in Machination are
attached to containers in the same way as configura-
tion instructions, as shown in Figure 1. The authorisa-
tion instructions determine which configuration in-
structions are allowed to apply when the instructions
are compiled into a representation, and are inherited
from the root down the tree to the container being
evaluated. A computer in the ‘‘finance’’ container in
the tree shown would accrue instructions as shown in
Table 1. Notice that the instruction to add package
‘‘fin’’ attached to the finance container is allowed
because of an authorisation instruction attached to the
ACME container.

Figure 2: Has-a inheriting inverted tree. The two ACME icons represent the same file. Inheritance of authorisation
instructions is order dependent, as explained later in the ‘‘Conflicts and Merging’’ section.

Source Instruction Allowed? Reason
ACME add package ‘‘pkg1’’ allowed ACME allow packages

set screensaver text ‘‘asleep’’ denied ACME deny all
finance add package ‘‘fin’’ allowed ACME allow packages

set screensaver text ‘‘Finance: asleep’’ allowed finance allow screensaver

Table 1: Authorisation instructions for a ‘‘finance’’ computer.

has-a Inheritance

With this kind of structure, each configurable
object has an associated tree rooted at that object.

Each object can include or subscribe to collections of
configuration instructions, and each such collection
can include other collections.

For this style of inheritance aspect authorisation
instructions could be included with the collections of
configuration instructions as shown in Figure 2. Such
authorisation instructions would determine which con-
figuration instructions are allowed in the collection,
which could be evaluated either at attachment time or
at representation compile time.

The full list and order of authorisation instruc-
tions (and thus the results of the authorisation step) is
order dependent, and cannot be determined from Fig-
ure 2 without further ordering information. This is
explored in more detail later.

Multiple Inheritance
Either inheritance mechanism described above

can support multiple inheritance. In is-a trees this is
achieved by allowing objects to appear in more than
one container and in has-a inverted trees by allowing

22nd Large Installation System Administration Conference (LISA ’08) 195



Authorisation and Delegation in the Machination Configuration System Higgs

more than one include or subscription. It was decided
that Machination should support multiple inheritance
to avoid the following two problems:

1. Different tasks require different division cri-
teria. For example, consider the is-a tree in
Figure 3. This would work well for configura-
tion tasks that follow departmental boundaries,
like ‘‘install finance_app1 on all finance com-
puters,’’ but would be rather clumsy for tasks
like ‘‘make A4 paper the default on all comput-
ers in the UK,’’ for which one would rather the
computers were organised like the tree shown
in Figure 4. A similar argument follows for del-
egation boundaries.

2. Some objects fit more than one category. In
general, there will be objects that require con-
figuration information for multiple reasons, and
that therefore ought to be in multiple cate-
gories.
As an example, consider the tree organised by
department in Figure 3. Computers in the fi-
nance container have the finance suite of appli-
cations installed, while computers in the mar-
keting container have the marketing suite. Now
consider a computer that is used by both fi-
nance and marketing people, or by a person
who has both finance and marketing roles. Such
a computer needs both application suites (the
union of the two sets of applications).

Figure 3: A simple tree showing ACME Corp. organ-
ised by department.

Figure 4: A simple tree showing ACME Corp. organ-
ised by location.

Conflicts and Merging

Supporting multiple inheritance immediately leads
to the possibility of conflicts. Considering again the
trees in Figures 1 and 2, if a computer exists in both the
finance and marketing containers, or includes both

finance and marketing files, it will have instructions
both to add and remove the package ‘‘fin’’. Clearly
these conflict. These configuration instructions must
be merged in such a way that such conflicts are
resolved.

The usual way this is resolved is to order the
instructions. For is-a trees this means choosing a fixed
evaluation order for all sibling containers. For exam-
ple, the evaluation order of the finance and marketing
containers in Figure 1 would need to be specified. For
has-a inverted trees this means the inclusion order
must be specified. In Figure 2, this would mean speci-
fying the order in which the finance and marketing
files were included, as well as whether the computer 1
instructions come before or after those inclusions and
whether the ACME file is included before or after the
instructions in each of the marketing and finance files.

Controlling the Hierarchy
So far the discussion has proceeded as if the hier-

archy (is-a or has-a) is fixed, and the results are being
computed based on placement of configurable objects
and instructions within that hierarchy. The shape of
the tree structure (includes or containers), the position
of configuration and authorisation instructions, the
position of configurable objects and the ordering of all
of these are important both to the final configurations
and to the nature of delegated portions. Changes to all
of these need to be authorised.

It is beyond the scope of this paper to discuss
authorisation of actions on the chosen hierarchy itself
in any depth; however such operations fall more
within the scope of the usual access control mecha-
nisms to filesystem or directory objects. Machination’s
approach is to treat the hierarchy as a configurable
object with a representation as defined earlier and to
authorise modifications of that representation as de-
scribed. Thus everything is unified under one authori-
sation system.

Choosing One
Both inheritance mechanisms described above

have their advantages and disadvantages. The choice
in Machination came from a trade-off between config-
uration flexibility and clarity for delegated contribu-
tors.

The has-a model is more flexible. The fact that
instructions can be re-ordered on a configurable object
by configurable object basis means that conflicting
inclusions and instructions can be re-ordered to suit.
However, such re-ordering of inclusions changes what
delegated contributors are allowed to change, due to
re-ordering of the associated authorisation informa-
tion. This makes it less clear to contributors what they
are and are not allowed to do. This and the possibility
of interleaving includes, configuration instructions and
authorisation instructions also make it more difficult
to present such information to contributors in a graphi-
cal user interface.

196 22nd Large Installation System Administration Conference (LISA ’08)



Higgs Authorisation and Delegation in the Machination Configuration System

The multiple inheriting is-a structure was chosen
as the basis for the Machination hierarchy, in large
part due to the relative ease of presenting compart-
mentalised views to delegated contributors.

Machination Specifics

The following features of the Machination hier-
archy are more specific design choices in Machination
and less relevant to the discussion on how to apply
authorisation to general configuration systems. They
are nonetheless important design choices with respect
to the way that delegated portions of the Machination
hierarchy interact.

Merge Policies
As mentioned earlier, choosing is-a style inheri-

tance leaves Machination with a less flexible structure.
We gain some flexibility back by introducing the con-
cept of merge policies which may be attached to con-
tainers, and are applied when configuration instruc-
tions from multiple sibling containers are merged.

These specify the precedence of instructions
between sibling containers depending on the contents
of the instruction. Currently, the only information one
can use is the element path to be altered, though this
may be expanded to include details such as the
attribute or text value being set. As an example, one
could specify that the tree under the by network merge
point should have precedence over the firewall area of
a Machination Windows profile by attaching a merge
policy of the form:
for xml_path /profile/worker[firewall-1] \

local wins

where, similarly to the authorisation instruction shown
earlier, the policy is stored as discrete data values in
the hierarchy, rather than as a written command.

Figure 5: A networking expert has created a sub-tree in an area delegated for that purpose. The merge policy
attached to ‘‘by network’’ gives this portion of the tree precedence over its siblings for firewall rules, which
would otherwise normally take precedence due to the way they are ordered. Three containers (‘‘by location’’,
‘‘by network’’, and ‘‘by risk level’’) have been nominated as merge points, which determine how configurable
objects may be placed in the tree.

If there is a clash in merge policies (for example if
two sibling containers’ policies both claim precedence

over one path in the profile) the siblings order in the
parent is used to resolve precedence, just as if the pol-
icy statement did not exist.

Combining merge policies with authorisation in-
structions can be useful when delegating expertise
specific configuration tasks. For example, suppose
that an organisation has a networking expert. This
expert should make sure that firewall rules are in place
on each client appropriate for the client’s network and
status. We can set up a merge point called by network
and delegate full control of the substructure to the
expert (who will have a good idea of how to structure
it for best results). The merge policy should be set to
give precedence to that container for firewall rules, but
to cede precedence for everything else and the authori-
sation instructions should allow configuration of only
the firewall section of the profile. The expert can now
organise computers into containers as required, per-
haps resulting in a tree like that shown in Figure 5.

Merge Points
Multiple inheritance can be a dangerous thing.

As a configurable object inherits configuration infor-
mation from more paths it is more likely that conflicts
will result and it becomes more difficult to follow and
visualise a configuration back to its sources. Some
temperance is required. As an aide to this (or perhaps
an enforcement of it), Machination only allows con-
figurable objects to be placed in two containers if they
are separated by a merge point. For example, in Figure
5, a computer could be placed in both the low risk and
subnet A containers, but not in both the low risk and
high risk containers.

Merge points essentially break the multiply in-
heriting tree up into multiple singly inheriting trees,
which are much simpler. Merge points should be
inserted wherever one or both of the limitations of
singly inheriting trees appears (i.e., different division

22nd Large Installation System Administration Conference (LISA ’08) 197



Authorisation and Delegation in the Machination Configuration System Higgs

criteria or multiple categories are required). The idea
is to use as many merge points as one needs, but as
few as one can get away with.

Conclusions and Future Work

We have the beginnings of a system we hope will
allow us to reduce our configuration workload at the
same time as making our users and our managers
happy. Our hope is based on experience with a useful
but deficient system and underpinned by some new
authorisation features. We are confident we will be
able to delegate access to configuration aspects to
desktop and laptop systems’ end users, as well as
more sophisticated forms of delegation with respect to
collections of computers.

We believe that the authorisation work presented
here, particularly the work on authorising access to
individual configuration aspects, is transportable to
other configuration systems and would be pleased to
see others consider it. To this end, the Machination
project is being open sourced, and code, or a link to it,
should be available at the Machination project page
[11] by the time this paper is published.

There is much work left to do, both on Machina-
tion and investigating more general consequences of
authorising configurations. Some we have identified in
the following.

• Applicability to other configuration manage-
ment systems This paper describes a represen-
tation designed for configuration information
and some primitives to build such representa-
tions which may be authorised. It goes some
way toward describing how those configuration
and authorisation instructions can be collected
in the structures commonly used in other con-
figuration systems before focusing on the struc-
ture used in Machination.
From this follow two broad areas for possible
investigation: could the given representation or
another, better one be used to provide autho-
rised access to configuration aspects across
configuration management systems; and could
the work on applying the authorisation instruc-
tions within other types of hierarchy be taken to
the point where it is usable?

• User interface As stated in the section on
goals, it is a requirement for us that the system
be manipulated by a user interface which is
suitable for use by a broad spectrum of users:
possibly unskilled end users, computing profes-
sionals with expertise in some domain other
than configuration management, and configura-
tion experts with a good overview of the whole
configuration system. Such an interface is cur-
rently under heavy development and not many
details are available at this time, but the follow-
ing are seen as requirements:

Unsophisticated use involving configuration
of only one computer should be possible

and easy. In most cases, this should involve
picking things that the computer should
‘‘have’’ (like packages) from a list of
available options. This mimics the current
interface used to configure Machination
computers.
Authorisation rules should be capable of
allowing our common case of ‘‘you can
configure the computer you are sitting at.’’
No one should be editing XML – not for
configuration instructions, authorisation in-
structions or anything else. The XML is
there for the computers to communicate
with each other and a friendlier interface
should be provided.
Sophisticated users should be able to view
how given instructions will affect comput-
ers throughout the tree, how given comput-
ers inherit their configuration, where any
conflicts are and a number of other types
of information which span the whole or
part of the tree. It is likely this information
will be conveyed using toggled overlays.
Authorised contributors should easily be
able to determine what they have control
over.

• Applicability to higher order configuration
management A matter of ongoing research in
configuration management is how to raise the
level of instruction from statements like ‘‘add
package A’’ or (as a set of instructions) ‘‘install
and configure a print service’’ to statements
like ‘‘ensure there are two DHCP servers on
every subnet’’ [9]. In a recent paper [8], Alva
Couch also suggested that the semantic level of
configuration management should be adjusted,
such that configuration management systems
reason more about the meaning of configura-
tion instructions, rather than the eventually
delivered content. This paper deals with autho-
risation at a more primitive level than either of
these, and further investigation would be re-
quired to determine whether the authorisation
schemes outlined in this paper could be rele-
vant.

• Building other representations The represen-
tation rules outlined allow fairly general XML
to be generated. The main restriction being the
lack of mixed content elements. from this fol-
low two areas of investigation: what things
might one want to represent that cannot be rep-
resented without mixed content elements; and
what other kinds of XML representation might
a hierarchy like this usefully construct. On the
later front, it has already been mentioned that
Machination represents (and authorises actions
on) its own state in this way. In fact the Machi-
nation hierarchy gives all configuration and
authorisation instructions a service identifier,

198 22nd Large Installation System Administration Conference (LISA ’08)



Higgs Authorisation and Delegation in the Machination Configuration System

which identifies which XML representation the
instruction targets, and which can be used to
keep separate several target representations.

Author Biography

Colin Higgs graduated from the University of
Edinburgh with an Honours degree in Mathematical
Physics. After a few years working as a physicist,
Colin became the sole system administrator for the
department of Chemical Engineering back at the Uni-
versity of Edniburgh. Several mergers and re-organisa-
tions later, he is now part of a larger team for the
School of Engineering and Electronics, where he at
least tries to work toward the ‘‘Bahamas’’ model of
computing support.

Bibliography

[1] Anderson, Paul, A Declarative Approach to the
Specification of Large-Scale System Configurations,
2001, http://www.dcs.ed.ac.uk/˜paul/publications/
conflang.pdf .

[2] Anderson, Paul, George Beckett, Kostas Kavous-
sanakis, Guillaume Mecheneau, Jim Paterson,
and Peter Toft, Gridweaver Project Report D3.1:
Large- Scale System Configuration with lcfg and
smartfrog, 2003, http://www.gridweaver.org/WP3/
report3_1.
pdf .

[3] Anderson, Paul, and Alva Couch, LISA 2004 invited
talk: What is This Thing Called System Configu-
ration?, 2004, http://www.usenix.org/publications/
library/proceedings/lisa04/tech/talks/ couch.pdf .

[4] Anderson, Paul and Alastair Scobie, ‘‘LCFG: The
Next Generation,’’ UKUUG Winter Conference,
UKUUG, 2002, http://www.lcfg.org/doc/
ukuug2002.pdf .

[5] bcfg2 Documentation: Writing Specifications, http://
trac.mcs.anl.gov/projects/bcfg2/wiki/Writing
Specification .

[6] bcfg2 Home Page, http://trac.mcs.anl.gov/projects/
bcfg2 .

[7] cfengine Home Page, http://www.cfengine.org/ .
[8] Couch, Alva, ‘‘From x=1 to (setf x 1): What Does

Configuration Management Mean?’’ USENIX
;login:, Vol. 33, Num. 1, pp. 12-18, 2008.

[9] Delaet, Thomas and Wouter Joosen, ‘‘Podim: A
Language for High-Level Configuration Manage-
ment,’’ Proceedings of the 21st Large Installation
System Administration Conference (LISA ’07),
pp. 261-273, 2007.

[10] Iseminger, David, Active Directory Services for
Microsoft Windows 2000 Technical Reference, pp.
28, 45, Microsoft Press, 2000.

[11] Machination Home Page, http://www.see.ed.ac.uk/
machination .

[12] Active Directory Home Page, http://www.microsoft.
com/windowsserver2003/technologies/directory/
activedirectory/default.mspx .

[13] Microsoft Systems Management Server Home Page,
http://www.microsoft.com/smserver/default.mspx .

[14] Reductive Labs Puppet Project Page, http://
reductivelabs.com/projects/puppet/ .

[15] LCFG Home Page, http://www.lcfg.org .

22nd Large Installation System Administration Conference (LISA ’08) 199




