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ABSTRACT

Virtualization has recently become very popular in the area of system engineering and
administration. This is primarily due to its benefits, such as: longer uptimes, better hardware
utilization, and greater reliability. These benefits can reduce physical infrastructure, space, power
consumption, and management costs. However, managing a virtualized environment to gain those
benefits is difficult and rife with details.

Through the use of a concept known as virtual appliances, the benefits of virtualization can
be brought to organizations without sufficient knowledge or staff to install and support a complex
virtual infrastructure. This same concept can also be used to provide cheap datacenter services to
larger companies, or research facilities that are unable or unwilling to run a high performance
computing environment.

In this paper, we describe Storm, a system designed to simplify the development, deployment
and provisioning for common applications. The system is designed to be easy to configure and
maintain. It can automatically react to changes in system load to deploy additional services and it
dynamically powers client machines using IMPI controls to enhance energy savings. We
demonstrate the utility of the system using scalable mail appliance.

Introduction

Vi r t u a l i z a t i o n has become very popular as a way
of managing a large number of complex software sys-
tems. This is primarily due to its benefits, such as
longer uptimes, better hardware utilization, and greater
reliability enabled by the ability to move a virtual
machine from one host computer to another. These
benefits lead to reduced physical infrastructure/foot-
print, power consumption, and total cost of ownership
[1].

However, managing virtual environments is com-
plex; a number of management frameworks, both
commercial and academic or open source projects,
have been recently developed. These frameworks seek
to reduce the complexity of managing a large scale
deployment or infrastructure. Usually, these frame-
works are complex – that complexity is introduced in
a large part by their attempted generality. We argue
that we can produce a simpler tool by taking a
restricted view of how many information technology
organizations actually conduct their operations.

We argue that the concept of layered virtual
appliances should be central to the development and
deployment of a virtual machine management frame-
work – so much so that we are focused on a virtual
appliance management framework rather than a vir-
tual machine management framework. By adopting
this focus, and using a simple, extensible framework
for managing such appliances, we show how virtual-
ization can be brought to organizations without suffi-
cient knowledge or staff to install and support a

complex virtual infrastructure. We also explore how
virtualization can be used to provide cheap datacenter
services to larger companies, or research facilities that
are unable or unwilling to run a commercial manage-
ment framework. In each case, we’re focused on a
simple management framework that is easy to adopt.

Server sprawl and operating system (OS) man-
agement are major concerns in the area of information
technology [2]. This paper addresses these concerns
by simplifying the use of virtualization and system
configuration for application developers and system
administrators. We also show how our simplified
interface can still be used to provide scalable ‘‘on
demand’’ computing services using standard interfaces
and technologies.

As we describe in more detail later, virtual appli-
ances [3], are a combination of operating system and
application components that provide a specific com-
puting task, such as spam filtering, mail delivery or
web serving. The STORM system provides a virtual
appliance configuration and provisioning system. The
STORM management node controls a cluster of com-
puters that use a virtualization hyperviser, such as
Xen, VMWare or VirtualBox. Each node in the cluster
must run a specific control program (not shown) that
coordinates the STORM management node. Adminis-
trators (or programs) can cause virtual appliances to
be deployed on nodes within the cluster of computers.
The STORM system determines on which nodes the
appliance should be run, loads the appropriate config-
urations and customizes them for the environment.
Given system management mechanisms such as IPMI,
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the STORM system can also dynamically manage the
power state of different computing nodes to reduce the
energy needs based on load and configuration. Using
monitoring interfaces provided by common hypervi-
sors, the STORM system can cause new appliance
instances to be generated when CPU utilization or
reported host demands warrant.

As we’ll describe in related work section, there
are many existing virtual machine management sys-
tems. Some of these are designed for specific applica-
tions, such as managing ‘‘grid’’ computing or clusters
of machines. The approach we took in the STORM sys-
tem is to focus on simplicity and ease of infrastructure
maintenance. The framework is simple because it uses
readily available technologies (reducing the time for
installation) and presents a simple but very capable
web interface for system management. To simplify on-
going management and deployment of applications,
each deployed application contains four ‘‘layers’’:

1. A common operating system substrate that con-
tains the basic components needed by all virtual
appliances; the Ubuntu ‘‘Just Enough OS’’
(JEOS) platform is a representative example of
this substrate.

2. An appliance specific component that provides
the application and necessary libraries; an ex-
ample might be the the ‘‘postfix’’ program, ldap
and mysql libraries for remote mail deliver and
other necessary libraries.

3. A deployment specific component that cus-
tomizes the combination of the operating sys-
tem substrate and the appliance specific compo-
nent; an example might be the configuration
files for postfix, mysql, nfs and ldap. The
deployment specific component essentially cap-
tures changes to the underlying appliance com-
ponent – for example, the appliance component
would typically include ‘‘off the shelf’’ config-
urations provided by an O/S distribution. The
deployment specific component would be the
result of an appliance maintainer editing the
specific configuration files to customize those
files for the local environment.

4. An instance specific component that uses infor-
mation provided by the STORM server to con-
figure a specific instance of a more general
appliance. For exmaple, that instance specific
information may configure the domain name to
be ‘‘mail.foo.com’’ vs. ‘‘mail.bar.com’’ and makes
(minor) changes to /etc/sendmail configuration
files based on data from a specific configura-
tion file accessed by the STORM server.

On Linux, the STORM system can deploy an ‘‘ini-
tial RAM disk’’ that combines these four layers using
the ‘‘union file system.’’ This configuration allows a
single O/S configuration to be used by multiple
clients, and that single configuration can be provided
by NFS or iSCSI. Using the union file system in such

a structured fashion greatly simplifies the task of
building the ‘‘deployment specific component’’ – the
local administrator essentially logs in to an instance of
the machine and updates the configuration files. The
top ‘‘writable’’ layer of the union filesystem will cap-
ture those changes. Many of the changes will involve
adding instance specific components, which are speci-
fied as ‘‘variables’’ in the configuration files that are
later expanded when the instance is created.

These layers allow the base O/S and the specific
applications to be split; this means that an underlying
O/S image, including all the common libraries and
management tools, can be patched without having to
then patch each individual appliance component. Re-
ducing the number of operating system configurations
greatly reduces the security risks of multiple un-
patched configurations; it also reduces the workload
on the administrator. Likewise, the separation of the
appliance specific component, the deployment specific
component and the instance specific allows the com-
mon components to be upgraded without having to
reconfigure each component; again, this assists in
securing those appliance components. It also reduces
the storage needed for the underlying O/S substrate –
while this seems like a minor feature, having many
appliances use the same O/S image means that the file
server can more effectively cache common utilities,
speading access and reducing needed resources.

This layering is not perfect – depending on the
package management system used by the underlying
O/S, it may be that an appliance component may
install patches already provided by an updated or
modified O/S substrate. In our experience, systems
similar the ‘‘debian’’ package management system
provide the most flexible interface – these systems
stores package information in individual files, rather
than in databases as is done in the common ‘‘redhat’’
package management system. Either packaging sys-
tem works, but the database versions will consume
more space.

These individual components can be automati-
cally combined when configuring the provisioned sys-
tem. STORM can also be used to exert finer levels of
control should the ‘‘virtual appliance’’ model not be
sufficient; however, these are not the focus on STORM

nor of this paper. Likewise, the STORM system also
provides a secure XML-RPC service that can be used
by appliances themselves to control provisioning
based on environmental or load conditions.

Again, by offering guidence in how a system
should be configured an by limiting the scope of prob-
lems that we try to address, we believe that STORM

provides a simplified workflow for an IT administra-
tor. In this remainder of this paper, we briefly describe
the virtualization technology that underpins STORM.
Then, in the Method section we describe the compo-
nents that make up STORM. In the Example and

110 22nd Large Installation System Administration Conference (LISA ’08)



Dehus and Grunwald STORM: Simple Tool for Resource Management

Analysis section, we walk through an example of
using STORM to configure an energy and load-aware
mail processing system. We subject that system to arti-
ficial load and demonstrate that STORM is capable of
adaptively adjusting the number of mail processing
appliances. Lastly, in section Future Work, we
describe similar systems and future directions for
STORM.

Background

Virtualization is not a very new area of computer
science. The concept of virtual machines date back to
the 60’s with the IBM research system titled CP-40
[4]. This system is one of the first known to be able to
run multiple instances of client operating systems
within it. Virtualization gained popularity as a man-
agement tool with the development and widespread
deployment of VMware circa 1998. The VMware vir-
tualization technology took a different approach than
the IBM hardware – the virtualization was done by
binary rewriting.

In 2003, Xen, developed at the University of
Cambridge [1], introduced a para-virtualization sys-
tem, where in the ‘‘guest’’ operating system cooper-
ated with the virtualization system to reduce virtual-
ization overhead. Their described an implementation
of a hypervisor that made para-virtualization possible
on the x86 architecture. The code for this implementa-
tion was released under an open source license, and
distributed freely on the Internet, greatly increasing
the popularity of virtualization on commodity plat-
forms. Since that time, Intel and AMD have provided
additional hardware support to improve virtualization
performance.

With the availability of an inexpensive and high
performance virtualization system, many projects have
been started using this technology to provide homoge-
neous computing, in which the operating system is
independent from the hardware.

The hypervisor is the software that enables mul-
tiple operating systems to run on a single physical
host. It is the intermediary between the operating sys-
tem being virtualized and the physical host. The
hypervisor is also responsible for handling time shar-
ing between virtual machines. There are several hyper-
visors currently available, a few worthwhile mention-
ing are: Vmware, Xen, KVM, and Virtual Box. In this
paper, our description of the STORM system is based
on the Xen hypervisor, but STORM is not limited to
that virtualization hypervisor. STORM uses the libvirt
virtualization library to interface to the hypervisor,
meaning it can support Xen [1], Qemu [5], KVM and
‘‘container systems’’ [6] such as the Linux Container
System and OpenVZ. The libvirt interface can be easily
extended to other virtualization systems.

A virtual machine is the guest operating system
being controlled by the hypervisor. It contains the

application(s) that a specific user desires to run.
Depending on the type of virtualization used, the oper-
ating system can be run on the hypervisor without any
modification.

When using Xen, a virtual machine is typically
referred to as DomainU, where U is a unique number
to the specific virtual machine. The number 0 is
reserved for a special domain that has escalated privi-
leges for management purposes.

A virtual appliance [7, 8] is the definition of a
virtual machine designed to performance a specific
application. The definition typically includes metadata
describing information about services provided, re-
sources required, and dependencies. The metadata is
typically stored in a portable format, such as XML.

There are two types of ways to describe a virtual
machine. One method [7, 8, 9, 10] describes it entirely
in metadata. All information regarding packages to
install, ports to open, services to configure, is defined
in metadata. The software creating virtual machines
from the definition will take this description and do
everything necessary to make sure the virtual machine
created is exactly as the author intended. Configuring
the system solely from metadata is very extensible;
however it requires more work from appliance devel-
opers. There are tools available that can reduce this
workload.

Another method takes the combination of meta-
data, and a disk image containing a pre-configured
version of the operating system and all software
desired. This method is not as extensible as the first
since it requires the distribution of a hard disk image.
However, it allows the developer to have more free-
dom in configuring the virtual appliance and requires
adoption of fewer tools. This is the approach we have
take in STORM, but we’ve extended the basic ‘‘disk
image’’ approach by using layered appliance deploy-
ments. We describe this method in the next section.

Method

The overall STORM system consists of three pri-
mary entities:

1. the STORM manager (see the Virtual Appliance
Server section)

2. channel server (see the Channel Server section),
3. a disk image server (that may be integrated

with the channel server),
4. and the virtual appliance server (see the Appli-

ance Definition section).

The interactions between these entities are
shown Figure 1. The management appliance plays the
most important role in the system. It is responsible for
creating & controlling virtual machines, appliance ser-
vers, and for fetching appliances. In practice, the
STO R M manager is a virtual appliance. Having the man-
agement software implemented inside a virtual appli-
ance provides increased security, simplified installation,
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the ability to run on any available virtual appliance
server, and adheres to the guidelines given by the Xen
creators [1].

Figure 1: STORM system components and interactions.

STORM provides an easy-to-use web interface
which is programmed in Python with the help of a
framework called TurboGears [11]. This web interface
gives administrators the ability to control the current
state (running, stopped, paused) of any virtual ma-
chine, install new appliances, and manage available
appliance channels.

Each appliance in the STORM cloud receives a
DHCP address from the STORM appliance, or if con-
figured, from an external DHCP server. This address
can be dynamic or statically configured. Running a
DHCP server on the management appliance prevents
other appliance developers from having to worry
about network configuration.

The STORM appliance also provides Kerberos
and LDAP services. This allows for the customer to
have a centralized user and password database against
which virtual machines can authenticate. Again, our
emphasis on simplicity of system configuration and
common IT tasks led us to provide such a centeralized
authentication and authorization service. That service
also gives granular control over which virtual ma-
chines users have access to. For example; Bob can be
detailed to have access to upload files to the web
server but not make alterations to the MySQL data-
base. The services provided are similar to Microsoft
Active Directory, but use open source software and
database schemas. If desired an external or appliance
based active directory server can be used instead.

Lastly, the STORM appliance can control the
power state of the client machines using the Intelligent
Platform Management Interface (IPMI) [12]. Client
machine hardware requirements depend on the num-
ber of virtual machines desired to be ran concurrently.
The amount of RAM should always be 128 MB
greater then the amount required to run the desired vir-
tual machines. This ensures that domain 0 has enough
memory available to operate the STORM control dae-
mon. There should also be sufficient cores available to
meet the requirements of each virtual machine.

Virtual Appliance Server
In order to accomplish these tasks the manage-

ment software communicates with two daemons run-
ning within Domain0 on any given virtual appliance
server. One of the daemons is libvirtd, which provides
remote access to the Xen API [13]. The other (stormd)
is specifically designed for this project and provides
access to services and information that cannot cur-
rently be obtained from the virtual appliance server
through libvirtd. These services include: appliance
retrieval, upgrades, virtual machine creation, removal,
virtual appliance IP address reassignment, shutdown
and restart. The daemon is a XML-RPC server imple-
mented in python and it extends the built-in XML-
RPC server class. It listens for and handles connec-
tions from authorized STORM virtual machines. It is
the sole piece of software responsible for handling the
services described above.

Both of these daemons authenticate and encrypt
communications from the STORM virtual machine
using SSL. Each virtual appliance server has a local
certificate authority that is responsible for generating,
signing and providing a public/private key pair to the
management appliance. The appliance then uses that
key pair when connecting to either daemon when
requesting to perform tasks.

Channel Server
A channel server is responsible for distributing

and providing virtual appliances to STORM users. The
user points the STORM appliance server to the desired
channel, and then all information regarding appliances
available is cached. After this step is completed, the
user may create virtual machines based off the appli-
ances on the channel server.

The information about available appliances is
stored in an RSS feed, which are currently unlocked
due to the scope of the project. The RSS feed provides
URL’s to the location of each appliance, allowing for
load to be distributed across multiple servers. The feed
and appliances are accessed via the HTTP protocol.
Any standard HTTP server is suitable to act as a chan-
nel server, however Lighttpd is recommended.
Lighttpd offers several performance enhancements
over others and also requires very few resources to
run.

Appliance Definition
The metadata that goes with a given STORM

appliance is defined entirely in XML. This allows
other systems to easily recognize and parse an appli-
ance. It also makes it much simpler for a developer to
create an appliance as they do not have to obtain
knowledge of a proprietary format.

A key difference between the STORM appliance
definition and other appliance definitions is simplicity.
Formats such as the Open Virtual Machine [14], or
CVL [8] are either too complex or non-trivial to parse.
The STO R M appliance definition contains ‘bare
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minimum’ metadata to describe a virtual appliance.
The remaining information required is stored within
the appliance image itself. Some sample fields of the
data supplied are: label, description, resource require-
ments, dependencies, and control panel URL. A sam-
ple configuration is shown in Figure 2 A full descrip-
tion of the specification can be found in Appendix A.

<?xml version=’1.0’ encoding=’utf-8’?>
<appliance version=’1.0’>

<label>Simple Web Server</label>
<description>A very simple and efficient test web server.</description>
<version>1.0.0-0</version>
<size>1024</size>
<url>http://cs.colorado.edu/appliances/webserv.tgz</url>
<sig>http://cs.colorado.edu/appliances/webserv.asc</sig>
<provides>webserv</provides>
<webpanel>/upload.php</webpanel>
<hardware>

<cpus>1</cpus>
<memory>524288</memory>
<ostype>linux</ostype>
<disk name="hda1" type="system" file="sys.img" />
<disk name="hda3" type="swap" size="128" />
<disk name="hda2" type="user" size="128" />

</hardware>
<dependency>emailserv:1.0.0-0</dependency>
<dependency>firewall</dependency>

</appliance>

Figure 2: Sample appliance configuration.

API Implementation
Upon connection to either the libvirt or storm dae-

mon, the management appliances verifies the authentic-
ity of the daemon it is connecting to, and the daemon
verifies the authenticity of the management appliance.
Once the connection has been established, the manage-
ment appliance may issue nurmerous procedure calls.
The following highlights procedure calls that are impor-
tant to the opperation of the system as a whole:

• get_downloadprogress(): Returns the progress of
a current operating system, or appliance in a
percentage number less than 1. This function
will return -1 if nothing is currently being
downloaded.

• get_downloadspeed(): Returns the speed (in kilo-
bytes per second) at which a current operating
system or appliance is downloading at. Returns
-1 if nothing is currently being downloaded.

• get_diskspace_used(): Gives amount of physical
disk space allocated in megabytes for virtual
machine usage. Actual usage information is
available only from the virtual machine itself,
and is currently the responsibility of the appli-
ance developer to give per virtual machine disk
usage. Future work includes developing a
method for obtaining per virtual machine disk
usage.

• get_virt_uptime(virtual_machine_id): Provides uptime
information for a given virtual machine.

• server_info(): Returns the version of the server,
list of capabilities, and other general informa-
tion such as uptime.

• server_upgrade(): Updates all programs running
on the virtual appliance server.

• server_set_network(self,...): Sets the network con-
figuration for the virtual appliance server iden-
tified by the specific network configuration (IP
address, netmask, gateway, primary and sec-
ondary DNS server). If the DHCP flag is set
then all other network parameters are ignored
and information is taken from DHCP.

• disk_create(): Create a blank or empty disk for
the instance about to be deployed; this image is
used to store automatically modified configura-
tion files and data files for the instance.

• app_install: Downloads an appliance image (e.g.,
a sendmail appliance) from the channel server;
instances can be created from this image.

• app_check: Checks to see if an appliance image
exists (if it does not, the image is retrieved
using app_install ).

• app_upgrade: Forces an upgrade for an appli-
ance, downloading a fresh image from the
channel server and replacing the current appli-
ance image with that updated image.

• os_install: This is similar to the app_install
method, but it specific to the operating system
layer rather than the application layer.

• Additional interfaces: There are a number of
interfaces that provide services complimentary
to the ones described above. We omit the de-
tailed description for these interfaces: server_
reboot(), server_shutdown(), disk_remove, app_
remove, os_check, os_upgrade, and os_ remove.

Scalability

With the addition of network attached storage, or
a storage area network the STORM system will scale to
support a very large number physical hosts and virtual
machines. It can theoretically address up to 232 (size
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of an unsigned integer) physical hosts on a 32-bit
architecture.

Figure 3: Web panel used to create virtual appliance.

Figure 4: UML description of system component interactions.

The channel server can also be scaled to meet
demand from multiple clients. This can be done by
having a single server maintain the RSS feed, and an

index of appliances available. The actual appliances
themselves can be stored across multiple image
servers with different URL’s or on a single URL with
an HTTP load balancer to dynamically redirect traffic
to servers which are least busy.
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Both the physical hosts and channel servers can
easily scale without any problems and the only poten-
tial bottleneck is within the management software.
Any performance issues in the software can simply be
resolved by fixing the problem area within our code.
We did not have sufficient hardware to test a large
scale installation, but did not encounter any problems
on the setup with our 16 node cluster.

Usability
The web interface for the STORM system was

designed with Palmer’s five constructs [15] for web-
site usability in mind. The interface was also designed
to meet the following standards: XHTML4, CSS1, and
508. Each of these standards helps to ensure that the
interface will be portable, readable, and easily accessi-
ble in all browsers.

Security
In order for the STORM system to be secure two

important areas must be resistant to attacks: communi-
cations and software. Secure communications are
required to ensure that an attacker cannot listen in or
hijack any connections between a user and the web
interface, or between the web interface and manage-
ment daemons running on the hypervisor. Secure soft-
ware is required to prevent an attacker from exploiting
bugs in code to gain unauthorized access, or to make
the software behave in an undesired manner.

Secured communications are achieved through
the use of TLSv1, which at the time of writing is a
known to be secure protocol [16, 17]. Each session is
authenticated using SHA1 signed certificates, and
encrypted under AES128. This includes: the session
between the user and the web interface, and between
the web interface and hypervisor. For the purpose of
testing self-signed certificates were used, however in a
production environment all certificates would be
signed by a commonly known certificate authority
such as VeriSign.

The primary area of concern with software secu-
rity is in the code that provides network functionality.
Standard python libraries were used to provide net-
working functionality within the storm daemon. These
libraries are xmlrpclib [18] and m2crypto [19]. They
are both open source, community maintained projects.
No custom code was written to provide network func-
tionality; therefore the storm daemon is secure as long
as the libraries used are also secure. At the time of
writing there are no known exploits for the versions
used in either library. Furthermore, once libvirt re-
ceives more development in the area of virtual appli-
ance management it could eliminate the requirement
for the storm daemon altogether.

Component Interaction
The interaction of the components can best be

explained by describing the interactions during spe-
cific operations, such as virtual machine creation and
configuration, as shown in Figures 3 and 4.

In that example, the Web interface (Figure 3) is
used to create a specific machine instance. The UML
descripton, shown in Figure 4, indicates that request is
relayed to the STORM controller written in Python,
running on the management appliance; the controller
then communicates with the STORM daemon using
XML-RPC to determine if the appliance is already
available on that specific system; if not, the appliance
is installed by retrieving the required disk image from
the channel server. The STORM daemon then contacts
the STORM management controller to inform it that the
appliance has been installed; the controller then directs
the storm daemon to create disks and other resources
as directed by the appliance specification. Once those
resources are created, the controller defines a new Xen
domain, configures the network resources indicates to
the the user that the machine has been created. Note
that the entire process can be controlled by XML-RPC
and does not need to be driven by the web interface.

Example and Analysis

To illustrate the capabilities of the STORM sys-
tem, we use the XML-RPC interface and the Xen ker-
nel monitoring utilities to implement a scalable email
processing system. In this scenario, we configured an
email appliance using the ‘‘postfix’’ MTU. To demon-
strate the power control and automatic provisioning
made possible by STORM, we used two slots or blades
in a Dell M1000 cluster with M605 blades (dual
socket, four cores, 3.0 GHz, 16 GB RAM) as the mail
processing engines. We used an additional four blades
as load generators to subject the mail processing
engines to extreme load. The Dell M605 blades pro-
vide an IPMI interface that allows us to measure
power usage (in Watts) as well as control the power
state of individual blades. We used information from
the Xen virtual machines to estimate server loads; an
alternate mechanism would be to monitor SNMP data
from individual operating systems, but we focused on
O/S-independent mechanisms and mechanisms that
would be available even if the guest O/S is subject to
intense service loads. We determined that a guest O/S
is overwhelmed when the assigned CPU utilization is
at 90%, and that a physical host is overwhelmed when
the overall CPU utilization of the host is at 90%. The
CPU utilization is based off the number of CPU sec-
onds used as provided by Xen.

In the original configuration, we deployed a sin-
gle mail processing utility; each mail agent simply dis-
carded email’s that were successfully delivered. Fol-
lowing the start of the mail processing system, we
enabled the load generating programs (which were
also configured as STORM appliances on alternate
blades); those programs produced 25 MB mail mes-
sages at a rate of 2000 per second.

CPU Frequency scaling was not deployed on the
test system, thus the increases in power usage as appli-
ances are being brought online is not very visible until

22nd Large Installation System Administration Conference (LISA ’08) 115



STORM: Simple Tool for Resource Management Dehus and Grunwald

a new node is turned on. Power fluctuation is mostly
attributed to the boot process of the second node. Dur-
ing POST all fans are spun at full speed, disks are
spun up, and initialization procedures are run for the
underlying hypervisor and Domain.
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Figure 5: Power Usage Under Increasing Load. This
diagram shows measurements of instantaneous
power usage collected using an IPMI interface as
two blade slots are used for mail processing. The
individual data points indicate the power for the
individual blades and the line indicates the power
for the combined set of blades.

Figure 5 shows a time series plot of the power
consumed by the individual mail processing systems.
At approximately 300 seconds into the experiment
(shortly after the load generating programs were
enabled), the reported load for ‘‘Slot 1’’ (the primary
mail processing program) was sufficiently large that
the STORM monitoring component elected to configure
a second mail processing node. The system was con-
figured and deployed using the mechanisms described
earlier. The mail processing systems have multiple
MX and A associated records. Every time Storm
brings up a new instance of the mail appliance, the
necessary records are automatically added to the
domain if STORM is designated as the primary DHCP
& DNS server. This effectively balances the load
across all running mail servers. As you can see in Fig-
ure 5, while the demand is low, total system power is
low because one of the processing nodes is shut off.
As the demand rises, more instances of the mail appli-
ance are created on the first eight-core processing
node, causing an increase in power. Eventually the
first appliance server starts to reach maximum capac-
ity, causing the second eight-core blade slot to be
turned on. When the second appliance server becomes
available then new instances are created on whichever
blade slot has the lowest load. Figure 5 shows the sec-
ond processor (‘‘Slot 2’’) being enabled at about 300
seconds. There is a short burst of maximum power as
the system undergoes self-test and then individual
cores are allocated for for processing tasks.

This entire process is not automatic – in particu-
lar, the configuration of our round-robin DNS server is

an afterthought and somewhat grafted to the other in-
frastructure. However, using the XML-RPC interface,
constructing even this extension to the existing system
was a days work. More complex was actually deter-
mining what interfaces could export ‘‘system load’’ in
a reliable fashion when a system was actually being
severely loaded. This example demonstrates both the
capabilities of the underlying STORM system and the
benefits accrued from those capabilities. We’ve found
in practice that we can finely control the power
demands of applications without extensive system
augmentation – this provides a valuable infrastructure
to system administrators seeking to reduce operating
costs without impacting operations reliability.

Related Work

Virtual machine management has been touched
upon by several groups. As we briefly mentioned in
our introduction, the focus of STORM is simplicity and
ease of infrastucture maintenance. In this section we
will compare and contrast STORM to other manage-
ment systems. VMware currently offers several man-
agement products for its hypervisor (ESX Server), the
two most relevant to our work on STORM are Virtual-
Center (VC), and Distributed Resource Scheduler
(DRS) [20].

Vi r t u a l C e n t e r is a centralized management tool
that allows an administrator to provision, deploy, and
manage virtual machines across a cluster of ESX
servers. These virtual machines can be custom built or
downloaded in an appliance-like fashion. STO R M offers
the same functionality as VC, however there are key
differences in approach. VC assumes that the admini-
strator has a general knowledge of virtualization, while
STORM is more designed towards simplicity and as-
sumes no knowledge of virtualization at all. VC and
STORM also greatly differ on their approach to Virtual
Appliances. Vmware offers appliances that may be
manually downloaded from their web site [21], and
ran within VC. Unlike STORM, they provide no real
distinction between a virtual appliance or machine
because of their non-layered approach. An appliance
in VC terms contains both the application and operat-
ing system, which leads to redundant data.

DRS provides the ability to dynamically allocate
virtual machines in a cluster of ESX servers. It will
load balance virtual machines based upon utilization.
For example, if a virtual machine is allocated a large
amount of resources on an ESX server but currently is
not using them then DRS will allow other machines to
execute on that ESX server. When the load increases,
it will adjust accordingly. Using DRS in the scenario
we described in our analysis would result in an unre-
sponsive mail server as it cannot increase the amount
of resources available to that virtual machine. STORM
operates in a similar manner, but offers the ability to
address application specific load and scale accordingly
by creating more virtual machines with the applica-
tions to handle the excess load. In an ideal world, both
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STORM and DRS would increase the amount of pro-
cessors and/or RAM allocated to the virtual machine.
While some operating systems [22] in combination
with certain hypervisors may offer the ability to
dynamically adjust resources, we opted not to restrict
STORM to any hypervisor/operating system pair.

Another company taking advantage of this con-
cept is called Enomalism. They have written a web
based Xen management system that also has a defini-
tion of virtual appliances [23].

There are a number of academic projects focused
on managing virtual cluster system. The Collective [8,
7] is a system designed using a metadata-rich specifi-
cation system; this work is notable for introducing the
notion of ‘‘virtual appliances’’ and designing a system
to manage such appliances. The goal was to manage
collections of virtual appliances using the rich CVL
(Collective Virtual appliance Langiage). A portion of
this project appears to have led to the Moka5 virtual
appliance company, which takes a similar approach
but focuses on desktop virtualization.

Managing Large Networks (MLN) [10] took a
similar approach as the Collective, and used a script-
ing language (Perl) and extensible metalanguage to
configure collections of nodes. MLN was focused on
managing networks of nodes, and offered a rich con-
figuration infrastructure for that. MLN has been used
for projects making use of virtualization for academic
infrastructure [24], an application domain we have
also targeted. Usher [9] extended this approach to fur-
ther simplify the management of clusters of related
virtual machines.

Most of these system used a common infrastruc-
ture (e.g., libvirt) or a similar design. Each used a con-
figuration language – this becomes increasingly im-
portant when deploying a network of nodes, but is
more complex to deploy and manage in smaller appli-
ance-oriented installations.

Although some of the commercial management
tools provide integrated power management and scal-
ing options, few of the academic systems have focused
on these capabilities. Sandpiper [25] studied the value
of different approaches to migrating virtual machines;
similar mechanisms would be useful in controlling
power, because one goal that we have not imple-
mented would be to ‘‘pack’’ virtual machines into as
few physical systems as possile. Sandpiper used ser-
vice level agreement (SLA) specifications to guide
their migration strategy; a similar policy specification
would be appropriate for power control.

There are fewer projects that have examined
desktop virtualization; as mentioned, Moka5 is one
commercial offering. The Internet suspend/resume
Project [26] is one example of a project that has been
using virtualization technology to simplify system ad-
ministration tasks and the way people think about por-
table personal computing. For example: instead of

carrying around a laptop with operating system and
applications, the ISR project stores that environment
as a virtual machine on the Internet; users carry data
with on small device such as a USB drive.

Future Work

There are numerous applications of the STORM

system in small to medium business, however it is
important to note that there are also several other
applications as well. One of the most notable is cluster
and datacenter management. In the case of cluster and
datacenter management, CPU time could be sold to a
customer. The customer would package an appliance
designed to execute their application. The appliance
would then be uploaded to a channel server, and then
it would be install by the datacenter administrators.
The STORM system is capable of providing this func-
tionality; however it currently lacks an accounting in-
frastructure. Creating this functionality is trivial and
could be completed in a minimal amount of time.
Existing commercial systems such as Amazon’s EC 2
employ similar mechanisms, but the simplicity (and
availability) of the Storm infrastructure should allow
smaller and regional service providers to offer similar
capabilities as similar costs through the automation
offered by Storm.

Several additions can be made to the STORM sys-
tem. Some have already been discussed in this paper,
such as an accounting system capable of keeping track
of virtual machine CPU usage. This capability could
be used to sell time on a datacenter to customers who
would find it more cost effective then purchasing and
running one of their own. Completedly automated
load balancing and service distribution can be added
to the STORM system. We demonstrated a version of
this capability, but improvements are possible – in par-
ticular, accurately estimating load independent of the
specific virtual appliance is a difficult task.

In order to accomplish the difficult task of deter-
mining need for more resources, or need for more vir-
tual machines assigned to a given task, things such as
process load, queue lengths, available I/O operations,
and amount of free space in various kernel buffers
could be taken account.

For example, a customer running a virtual spam
filter suddenly receives a massive amount of incoming
spam. This increase causes the spam filter to become
overwhelmed. The filter would report this information
to the STORM system, which would then respond by
either increasing the amount of resources available to
the filter or spawning more filters.

Service discovery is another feature that should
eventually be added to the STORM system. This would
also require client software installed on each virtual
machine. It would allow a virtual machine to easily
find and contact services provided by other virtual
machines. These could be standard services such as
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DNS, or services developed specifically for an appli-
cation.

Since the current system only supports Xen, it
would be beneficial to add in support for additional
hypervisors; this was the intent of the libvirt project. A
virtualization environment can consist of many differ-
ent hypervisors in order to meet a specific customer’s
needs. It would also be beneficial to support additional
appliance formats. This will allow the customer
greater accessibility to a wider range of services, espe-
cially ones geared towards other hypervisors.

Conclusions

The resurgence of virtualization has greatly im-
pacted the information technology infrastructure. Com-
panies that lack sufficient knowledge to capitalize on
the advantages provided by virtualization are unable to
move towards it. The Storm system successfully al-
lows these companies to capitalize on virtualization
and reduce or eliminate the need for in house technical
support. In general the Storm system allows applica-
tion developers to provide a single pre-configured vir-
tual appliance to which a customer may deploy virtual
machines from. This eliminates the need for each cus-
tomer to maintain their own operating systems to run
the desired application. It does this in a secure and
efficient manner by avoiding the common pitfalls that
similar solutions suffer from.

We plan to make the STORM system available on
SourceForge [27] before the end of 2008.
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