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ABSTRACT

Automated system deployment frameworks and configuration management systems have
been in wide use for a number of years. However, due to increasing pressures to maintain high
availability, coupled with the price effects of commodity servers, administrators may be required
to deploy large numbers of systems in shorter time frames than is normally possible with available
staff. In this paper, we describe a straightforward procedure using commonly-available in-
frastructure to enable rapid simultaneous deployment of hundreds of machines by temporary staff.
As an example of the efficacy of this approach, we present a case study in rapid systems
deployment at Purdue University. On May 5th, we deployed Purdue’s ‘‘Steele’’ cluster, installing
over 500 compute nodes in a single business day.

Introduction

Changing system requirements, additional proj-
ects, and life-cycle system replacements all result in
deployment of new machines in the data center. Given
the current popularity of grid computing and software-
as-a-service, and the proliferation of virtual servers
within the enterprise, the number of new systems will
likely continue to rise.

Modern services, particularly high performance
computing centers, often deploy clusters of hundreds,
if not thousands, of individual machines. While sev-
eral custom tool sets exist to aid this sort of environ-
ment [1, 2], these tools are usually heavily adapted to
their task and may not readily integrate into existing
configuration management tools. Also, these tools are
often built around a particular market segment, such as
the high performance cluster community. As such,
they may not be well suited to other uses (e.g., dedi-
cated application servers, web farms, digital rendering
clusters, etc.)

Several configuration management tools exist to
allow few administrators to manage large collections
of machines [3, 4, 5]. These can easily be used to
encompass both large-scale system deployments (clus-
ters, render farms, etc.), but do not encompass the
actual operating system installation. Other tools must
be employed to actually deploy the system, and load
the configuration management software.

Most modern operating systems provide some
means for repeatable, automatic software installation
[6, 7]. These tools can, in some cases, be directed to
prepare configuration management software on the
new host. However, they assume some external meth-
od is used to identify the system being installed –
either via a pre-configured service, like DHCP, or by
manual network name and address assignment. These
are generally quite labor intensive.

By combining the available component tools, we
describe a server deployment approach more flexible
than current purpose-built tools. With the addition of
IPVS [8], an IP-level load balancing service, such an
approach is readily able to handle the peak load of
hundreds, if not thousands, of new servers being
deployed simultaneously. This capability greatly re-
duces software deployment time, and (with the addi-
tion of temporary labor to assist with physical tasks)
can enable the installation of large systems in surpris-
ingly little time.

For the remainder of this paper, we present an
insight into our motivation behind taking this deploy-
ment approach, followed by a more detailed discus-
sion of the difficulties involved in a highly parallel
deployment and our implementation to address these.
As evidence of the success of this approach, we
present a case study in rapid cluster deployment – the
recent installation of Purdue’s ‘‘Steele’’ cluster. We
conclude with the lessons learned from this deploy-
ment exercise, and some indications of possible scal-
ing limitations moving forward.

Motivation

Purdue University is home to several active sci-
entific research communities, many of which make
use of high-performance compute clusters maintained
in central campus data centers. As with many institu-
tions, data center space is at a premium. New systems
cannot be deployed without first removing older equip-
ment. In most cases, the out-bound older equipment is
still serving a research group the day it leaves. These
users are effectively left without service until a new
system can be deployed.

In the spring of 2008, Purdue faculty, staff, and
administrators began the design and purchase of a
806-node compute cluster (more fully described below).
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Data center facilities limitations forced the removal of
three existing clusters, with a combined total of over
900 compute nodes. Equipment removal alone would
take approximately one week, and required all available
staff with familiarity with the facility. Only a small por-
tion of the new cluster could be assembled before the
existing equipment’s removal.

To reduce the overall impact on Purdue’s research
community, we developed the techniques described to
deploy the majority of the nodes in a single day. The
success of this endeavor is covered in more detail in the
case study section.

Infrastructure Components

Rapid server deployment depends on automating
the installation process as much as possible. Any
amount of variation between servers requires manual
intervention, and this must be minimized to maximize
system administrators’ productivity.

The server deployment process can be seen as a
three-phase process: Installation of the base system
software, identification of the machine (including as-
signment of network addresses), and merging the new
machine into a full configuration management system.

Base System Software

Modern gigabit networks can deliver data in
excess of 100 MB/sec, rivaling hard disks and exceed-
ing the speed of any other installation media. To
improve deployment times and eliminate administrator
time spent swapping media, using a network-based
install method is essential.

As mentioned above, most modern operating
systems have some sort of network-based installation
system. With firmware-level network boot services
(such as PXE [9]) on most new hardware, using this is
fairly straightforward. Multiple machines can be si-
multaneously installed from a dedicated PXE configu-
ration, to invoke systems like RedHat’s KickStart or a
Solaris JumpStart as appropriate.1 For the remainder
of this discussion we will focus on extensions to Red-
Hat’s KickStart system, which is in wide use in our
environment.

The PXE environment does have one large draw-
back: in order to uniquely identify each machine being
deployed, an administrator must either populate a
DHCP server with the MAC address of each machine
in question (along with each machine’s proper IP
address), or separate installation configuration files for
each system. While scriptable, selecting the proper

1The PXE boot system can easily be extended to provide
for more than a mass-deployment mechanism. In our envi-
ronment, individual servers being installed are brought to a
PXE menu where administrators can select from a number
of installation and testing options including memtest, Knop-
pix [10], and dedicated entries for each operating system and
version we have on site.

configuration for each host is often extremely time-
consuming. For this reason, we have chosen to install
all deployed systems with a common operating system
load at first boot, using temporary network addresses.
Network address assignment, and proper machine
identification, can be done as a second pass through
the mostly-installed systems (as described in the Ma-
chine Identification section).

KickStart Configuration

RedHat’s KickStart system is a means to auto-
mate the installation and initial configuration of Red-
Hat’s Enterprise Linux operating system. Several types
of media (e.g., CD-ROM, HTTP, NFS) are supported
to deliver system software. In all cases, the install
process follows directives listed in a file, ks.cfg. The
ks.cfg file lists key system configuration values (such
as the initial root password, timezone configuration,
etc.), any network parameters needed, the software
packages to be installed from the selected media, and
(optionally) a post-install script to execute before re-
booting from the OS installer.

In our environment, all server deployment takes
place over the network. Our PXE boot environment
will cause RedHat’s installer kernel (and initial filesys-
tem) to be loaded via TFTP. Linux command-line
options, as well as configuration directives in the
ks.cfg configuration file, are used to ensure that all sys-
tems use a random DHCP-provided address during the
install process. This lets us use a single configuration
to serve hundreds of clients with no customization. At
the end of the OS install process, systems are moved
to a fixed, production IP address (to correspond with
their location in an equipment rack). This process is
explained in detail in the machine identification sec-
tion.

All system software is provided by a local HTTP
server, and all RedHat packages to be installed on a
server are listed in the ks.cfg file. Since HTTP is a uni-
cast service, this does pose a bottleneck for bulk sys-
tem deployments. However, as this data is only read
(never written) during the installation process, it can
easily be replicated. Multiple HTTP servers can be
clustered to increase the overall bandwidth, provided
they are aggregated behind a single network name (to
simplify configuration and reduce the amount of cus-
tomization in ks.cfg). Our preferred choice for this is
an IPVS-based load balancing cluster (described fur-
ther in the IPVS discussion, though in practice even a
simple DNS record pointing to multiple addresses
would suffice.

Once RedHat’s KickStart system has loaded and
configured the base operating system, the post-install
script contained in the ks.cfg file is executed. We use this
script to properly identify the machine and set its final
network address, as described below, and install critical
pieces of our cfengine configuration (as described in the
configuration management section.
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Machine Identification
Without expending a great deal of effort to care-

fully catalog, place, and install each machine in a large
group, a machine’s final network address is often not
apparent until it has been physically installed. A com-
pute node’s identity is often based on its location in an
equipment rack – a property that is very difficult to
discern from a boxed machine on the back of a truck.

Some systems (e.g., IBM’s SP-2 [11]) are able to
discern their identity by automatically detecting their
location in a specially-wired management network.
Wi t h additional scripting, this can be translated into
node names, network addresses, and useful configura-
tion data. However, this method is usually not an option
when using today’s low-priced commodity hardware.

Other systems (e.g., OSCAR [1]) use a mecha-
nism to collect DHCP requests as machines are booted,
and thus identify systems in order. These systems
require machines to be booted serially, though, and
prevent increasing the deployment parallelism to the
level we would prefer. Instead, we have devised a sim-
ple mechanism to touch each machine in sequence, to
have each system confirm its proper network address.

In our environment, we extended the kickstart
configuration file to include an infinite sleep-wait-
probe cycle in the postinstall section before configur-
ing their production IP address. This allows us to start
the installation process on many nodes simultaneously
without regard to their final naming. The loop will
only break if the machine sees the insertion of a USB
thumbdrive, as shown in Listing 1, a kickstart script
excerpt.

%post
cd /tmp
/sbin/modprobe usb-storage
while (true); do

if [ dmesg | tail -n 3 | grep ’USB Mass Storage device found’ ]; then
wget http://install-server/cgi-bin/get_ip.rh.cgi
cp /tmp/get_ip.rh.cgi /etc/sysconfig/network-scripts/ifcfg-eth0
#
# configure any other network-related bits here
#
ifdown eth0
ifup eth0
break

fi
sleep 3
echo "Still waiting for USB thumbdrive..."

done

Listing 1: Thumbdrive detection.

Wi t h this in place, an administrator can assign net-
work addresses to a series of machines by simply mak-
ing a pass through the entire group, inserting a USB
thumbdrive into each machine. The thumbdrive itself is
not important – we are using the act of inserting this
USB device as a means of physically identifying one
machine out of hundreds of identical systems. Other
simple methods of quick, manual identification (e.g., a
key press, CD insertion, etc.) would be equivalent.

Once a machine has been physically identified, it
contacts the web server and downloads its proper net-
work configuration. Obviously, the CGI program
get_ip.rh.cgi must return a valid network configuration
file, then increment the IP to the next production IP
address in sequence.

Configuration Management

Many configuration management systems are in
widespread use. Assuming that all configuration infor-
mation (beyond basic system parameters, such as par-
tition layout and operating system version) has been
expressed through a site’s preferred configuration sys-
tem, the remainder of a system’s deployment should
be a very simple exercise.

Purdue’s high-performance computing environ-
ment uses cfengine [12] heavily. The final step in our
customized kickstart configuration is to download a
custom shell script to initialize cfengine, and run it at
first boot. The script includes an in-line shar archive
containing the necessary binaries (and key configura-
tion files) for that architecture. This script is placed at
the end of the boot sequence for the new host.

When the newly deployed system first boots, the
script will run cfengine twice (first with special options
to mitigate site-specific dependencies and ordering
problems, then with default options). This configures
the system, installs any missing site-specific software,
ensures various cfengine-related processes are started
at boot time, and applies any outstanding security
errata not a part of the initial OS install. Finally, the
script removes itself from the boot process and reboots
the host. Once rebooted, the system is a production-
ready server.

Limitations/Acceleration

IPVS

We felt the throughput capacity of our file serving
infrastructure for both kickstart and cfengine initializa-
tion needed to be upgraded for massively parallel
deployments. Our existing machine for these functions

22nd Large Installation System Administration Conference (LISA ’08) 51



Rapid Parallel Systems Deployment: Techniques for Overnight Clustering Cumberland, et al.

was an older dual-processor system, and we were con-
cerned that disk I/O limitations of its aging RAID
array would be exceeded during the installation.

By utilizing a load balancing cluster with a round
robin distribution algorithm, we segmented the de-
mand down to equal parts for each real server. By
placing the cluster behind a single IP address, we
avoided having to change any other part of our auto-
mated installation infrastructure. We chose to use Lin-
ux’s IPVS kernel module [8] and a set of freely avail-
able tools [13] to create this load balanced cluster and
to give it high availability as well.

Purdue’s configuration required additional mach-
ines for this purpose, so we re-purposed a few existing
LDAP authentication servers. As such, in addition to
the kickstart and cfengine file sharing responsibilities,
the IPVS cluster also now handles LDAP authentica-
tion. We ended up with two cluster front ends and four
real servers, all newer dual-processor dual-core ser-
vers. This gave us theoretically 4 gigabits per second
of file transfer rates for the cluster node installations
and also gave each node in the cluster only a quarter
of the load.

We could have simply used a single larger ma-
chine. However, by leveraging the existing LDAP
authentication hardware (which was not being overly
taxed) and using open source software, our solution
required no monetary investment. Since all IPVS-re-
lated configuration changes were merged into cfengine
while building out the initial server setup, the IPVS
cluster itself was rapidly deployed. We simply treated it
like any other cluster – PXE boot a new system, auto-
matically install the OS and run cfengine, then manu-
ally add it to the IPVS cluster routing table on the front
ends.

In addition, if we had determined during a mass
deployment that the load was too high for the IPVS
cluster, we had the option of utilizing several of the
new cluster machines being deployed as additional
kickstart/cfengine file transfer nodes. We could have
simply installed them as generic servers, labeled them
as IPVS real servers in cfengine, and set them to work.
The initial cfengine on an IPVS real server does take a
little while due to the large repository of install data
that must be copied over, but it still was quick enough
to have been an option during the install day exercise.

This solution to our increased file transfer needs
was cheap, easy, and a very reliable means to scale out
our deployment bandwidth.

Squid Cache and RH Proxy
Our compute cluster nodes generally use Red-

hat’s Enterprise Linux [22]. Purdue has a university-
wide Redhat Network [23] proxy server that handles
registering new OS installs and caches updated soft-
ware downloads. The existing server was an older
dual-processor system, with relatively slow disk array
(as compared to current technology). We’ve seen this

system become overloaded when any Purdue IT group
would attempt to update more than a couple dozen
machines at once.

For the installation day, we felt this system
needed to be upgraded as well. We installed a new
dual-processor, dual-core server with twice the mem-
ory of the old machine, from four to eight gigabytes,
in order to handle the heavier I/O traffic. Linux makes
aggressive use of unallocated memory to cache stor-
age I/O, so we were hoping this system would yield
significant performance improvements.

We briefly looked at putting the squid [14] web
cache portion of the RHN proxy server behind the
IPVS cluster, but it appeared that the squid server
needed to be local to the registered RHN proxy server.
In additional, the actual RHN proxy software was
licensed for a single machine. As such could not
legally be put on each real server, it had to run on a
single machine. After testing, we determined that
additional proxy servers, or further work integrating
the RHN proxy server with our IPVS cluster, would
not be necessary for the size of deployments we typi-
cally encounter. However, this may be a limiting fac-
tor for much larger installations (with thousands of
machines).

The larger proxy machine was more than capable
of handling the load generated by installing the sizable
‘‘Steele’’ cluster at Purdue. Had it not been able to, we
would have simply not run so many initial operating
system installs in parallel. We wanted to have every
node installed and running by the end of the day, but
we were realistic in expecting the possibility of some
machines finishing their installs and cfengine configu-
rations overnight. As it turns out, the proxy server
never came close to heavy load. We estimate that the
system could have easily handled two to three times
more load.

Subdivide Networks, Conquer DHCP
One shortcoming of this method is the serial

nature of using the USB thumbdrive to number ma-
chines. It can quickly become the bottleneck and
increasing the number of machines installed via this
method only worsens the problem. One method to par-
allelize is to divide the machines up onto multiple net-
work subnets and give them separate DHCP/PXE
entries. Each entry can then use a separate source to
obtain the IP address, and can have its addresses
assigned independently. During previous large system
deployments, we have spanned three subnets and have
been able to identify three machines at once. We see
no reason why this could not be trivially increased for
larger installs, allowing for wider deployment parallel-
ism.

TFTP and PXE Performance
After the infrastructure improvements described

above, TFTP remains a single point of contention.
Mass machine deployment efforts may direct hundreds
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of clients to a single TFTP server as each machine
loads its operating system installer. In practice, how-
ever, this service sees insignificant load – even during
our large deployments.

The operating system installer we use, provided
with RedHat Enterprise Linux, consists of 6.4 MB of
software. On a gigabit ethernet network, that amount
of data takes less than a second to transfer – less time
than it takes to physically turn on a new machine. If
several dozen systems were to start the PXE process at
the exact same second, it is conceivable that we might
have some contention at the TFTP server’s network
port. For our purposes, though, that was deemed an
acceptable risk.

Case Study: Purdue’s ‘‘Steele’’ Cluster

Much of our work to streamline, parallelize, and
accelerate system deployment came about as a result
of the diminishing quantity of available data center
capacity, coupled with the rising pressure to effectively
use the remaining space as quickly as possible (as
mentioned above). In the spring of 2008, we saw an
opportunity to push the infrastructural improvements
we describe to the limit of our facilities’ capacity.

As mentioned above, Purdue’s ‘‘Steele’’ cluster
could not be supported in our facilities without the
removal of a large number of existing production com-
puting systems. To better accommodate our research
community, we opted to deploy as many systems as
possible ahead of time, leaving the remainder to be
installed in one large batch on May 5th, 2008. To pro-
vide more labor during the install day, we recruited
volunteers from positions throughout the university,
none of whom were familiar with the deployment
process. The details behind this installation day, and
its successful reception by some of our researchers,
are described in the following sections.

Machine Description
The ‘‘Steele’’ cluster consists of 806 dual-pro-

cessor, quad-core compute nodes, in four different
memory and network configurations. Configurations
break down as follows:

• 24 nodes, 32 GB memory and both gigabit eth-
ernet and Infiniband network connections

• 41 nodes, 32 GB memory and only gigabit eth-
ernet networking

• 180 nodes, 16 GB memory and both gigabit
ethernet and Infiniband network connections

• 561 nodes, 16 GB memory and only gigabit
ethernet networking

The three smaller configurations are housed in
one room of Purdue’s research datacenter, while the
largest configuration (with 561 nodes total) is housed
in a separate room.

The configuration is connected with a single
large ethernet switch, with over 600 available ports of
gigabit ethernet. Other configurations are connected to

smaller gigabit ethernet switches, which then link to
the larger switch via 10 gigabit ethernet connections.

Pre-Deployment Steps
To lessen the service impact to University re-

searchers, we opted to install as many compute systems
as possible leading up to the May 5th install day. Unfor-
tunately, due to facilities limitations, this amounted to
about 12% of the system’s total capacity. In addition,
we were able to unbox, rack, and install a number of
systems (roughly another 12% of the compute nodes)
prior to the general installation – though these systems
were not fully deployed, and in many cases had little
or no power or network wiring.

In the week prior to the main install day, large
sections of our facilities were cleared. Network com-
ponents were installed and configured, equipment
racks and electrical connections were set in place, and
ethernet wiring was run from most switch gear to
patch panels in each equipment rack.

The Human Factor
Simply put, there were too many systems for our

usual systems administration team to handle in a sin-
gle business day. Without additional help, our lack of
manpower alone would force us to prolong this de-
ployment over at least a week, possibly two. However,
with the deployment procedure fully automated, we
were able to solicit assistance from the rest of the Uni-
versity.

In addition to the obvious need for aid in wiring
systems and initiating PXE-based OS installs, we also
sought volunteers for a number of easily overlooked,
but practically indispensable tasks:

• Truck drivers – needed to drive trucks to and
from our storage facility to deliver machines to
the data center. These volunteers also helped
unload machines from the trucks and move
them to the unboxing area.

• Unboxers – responsible for unboxing machines
and the rack mount equipment, and loading
them on the carts to send into the data center.

• Machine movers – responsible for transporting
equipment from the nearby delivery point into
the data center.

• Recycling team/clean-up crew – responsible for
sorting all materials into appropriate recycling
bins and cleaning shipping areas and the data
center of any debris.
As word of this initiative spread through campus,

and the number of volunteers rose, we also added two
other unlikely groups of volunteers:

• Check-in assistants – responsible for handing
out nametags and directing volunteers to areas
in need of assistance.

• Food area help – responsible for serving break-
fast and lunch for volunteers, as well as clean-up.
In all, some 120 volunteers helped deploy the

remainder of the cluster.
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Waste Removal

Figure 1: ‘‘Steele’’ cluster during deployment.

Figure 2: IPVS cluster network use.

Every single compute node was provided by the
vendor in an individual box. In addition to the server,
and rack mounting equipment, each box also con-
tained product manuals, a CD of firmware and diag-
nostic programs, a power cord, and two cable manage-
ment trays. None of this extra material was used.2

Given the number of systems involved in this cluster,
managing the waste was a substantial task.

We recycled or reused nearly all of the extra mate-
rials we processed at the install site. Power cords and
cable management trays were returned to the vendor for
reuse. The shipping pallets were similarly collected, for
reuse by Purdue’s shipping and receiving group.

We arranged for recycling services to remove the
large amounts of foam and cardboard generated as we
unboxed these machines. This was all planned in
advance and recycling services placed dumpsters at
our location before the event started. Recycling ser-
vices removed full dumpsters of foam and cardboard

2The vendor-supplied power cord was approximately 6 feet
(2 meters) in length. Its use, or the use of the provided cable
trays, would have caused airflow obstructions and would
have presented a thermal hazard in our environment. How-
ever, it was more costly to have the vendor change the pack-
ing procedure for these systems than to just purchase shorter
power cords ourselves.

several times during our install. In total, some 660 lbs
of packing foam, 6000 lbs of cardboard, as well as
additional manuals and CDs, were recycled during the
main installation.

Infrastructure Performance

May 5th installation activities started at 8:00 am,
Eastern Daylight Time (EDT). By 11:45 AM, when a
general lunch recess was called, only 80 compute sys-
tems remained to be mounted in equipment racks.
Over two hundred systems had been deployed, the
effects of which can be seen in Figure 1. Following a
one-hour break, work resumed. By 1:30 pm, all sys-
tems had been racked and wired. By 3:00 pm, all sys-
tems had at least begun the OS deployment process,
requiring no further human intervention. At that time
750 systems (out of 806 total) were reporting as avail-
able, and 1400 user-submitted batch jobs had already
begun running on the compute cluster.

By noon the following day, all but six machines
had been made available to the University research
community. By 4:00 pm on May 6th, all available sys-
tems had been connected to the Open Science Grid
[15], and had begun processing additional interna-
tional work.

By moving the bulk of the software installs into
the kickstart configuration (which was served by the
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IPVS cluster), our RedHat proxy server wasn’t overly
strained – its load average ranged from 0.1-3.0 through-
out the day. For larger deployments, however, we may
consider either increasing the install time or, more
likely, adding additional proxy servers.

As seen in Figure 2, our IPVS cluster was sus-
taining data rates of about 57 MB/sec during the
installation. While we did see traffic bursts as high as
390 MB/sec, these were very short-lived and did not
adversely impact the deployment. We feel this infra-
structure could sustain simultaneous installation to
two to four times the number of machines, though if it
did become a serious bottleneck we could simply add
additional IPVS backend servers to the cluster.

We also knew a fair number of machines might
be dead on arrival. We merely skipped those IP
addresses in the deployment procedure, by running the
CGI program to increment to the next available ad-
dress. By the end of the day 56 had been skipped,
mostly due to minor wiring problems or having been
passed over for the command to boot via PXE, and
never beginning the install process. These were easily
corrected the following morning.

We did encounter one unexpected failure: the
cluster monitoring suite we use, Ganglia [16], was ini-
tially unable to cope with the amount of memory in the
‘‘ S t e e l e ’’ cluster. This issue had since been corrected
in a later software release, so we elected to upgrade
immediately to the newest version. As a side effect,
cluster monitoring was briefly unavailable, as evi-
denced by the brief discontinuities in Figures 1 and 2.

Customer Acceptance and Benchmarking
One of the key groups behind the acquisition of

the ‘‘Steele’’ cluster is Purdue’s Network for Compu-
tational Nanotechnology (NCN), a community of re-
searchers focused on simulation of nano-scale semi-
conductor devices. We began to study the performance
of the fledgling cluster for this type of simulation the
evening of May 5th, a matter of hours after the last of
the compute nodes had been unboxed.

To evaluate the performances of the ‘‘Steele’’
cluster, a benchmark example was run on 16 to 6272
cores. For that purpose we used the quantum-mechani-
cal nanoelectronic device simulator OMEN [17, 18].
This massively parallel software computes the current
characteristics of nanotransistors as function of the
input source, drain, and gate voltages. It has four lev-
els of parallelism3 and in its most inner loop two ei-
genvalue problems and a sparse linear system are
solved. In a typical device simulation this happens
more than hundred thousand times enabling the use of
large computer clusters as ‘‘Steele.’’

Figure 3 shows the scaling properties of OMEN on
the ‘‘Steele’’ cluster for the simulation of a silicon dou-
ble-gate ultra-thin-body field-effect transistor designed

3OMEN parallelizes across bias points, momentum points,
energy points, and decomposition of the simulation domain.

according to the ITRS specifications for the 22nm tech-
nology node [19]. Only one bias point is computed
with different parallelism schemes. The blue curve
with crosses represents the case where the paralleliza-
tion of OMEN is achieved with MPI only an no
domain decomposition is applied to the transistor
structure. Hence, the momentum and energy points are
parallelized. To obtain the green curve with triangles
we decompose the simulation domain on two cores
with the help of a distributed memory sparse linear
solver. Both these approaches require to launch as
many MPI tasks as available cores.

Figure 3: Application scaling on the ‘‘Steele’’ cluster.

An alternative is the implementation of a MPI-
OpenMP hybrid where a single MPI task is started per
node and eight threads are created within each node.
The red curve with circles in Figure 3 illustrates this
approach. Domain decomposition is realized on two
cores using a shared memory sparse linear solver. For
example, 784 MPI tasks are necessary to obtain the
results on 6,272 cores. Note that the intra-node com-
munication implied by the hybrid model helps reduc-
ing the overhead caused by MPI collective operations
like MPI_Allreduce. Consequently, the red curve with
circles exhibit almost no saturation of its scaling prop-
erties as compared to the two others.

Following these benchmarks, every research com-
munity involved in the acquisition of the ‘‘Steele’’ clus-
ter resumed their normal usage patterns, after a total
service outage of under nine days.4 By May 8th, four
days after 88% of the system was deployed, over four
thousand batch jobs have been submitted to the new
system. This has been both the largest single computer
system in Purdue’s history and the shortest delivery
time for a high-performance scientific resource the
University has seen.

4This counts both the time needed to remove older com-
pute resources and to deploy all components of the new sys-
tem.
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Further Work

While we originally developed this deployment
process to deploy large cluster systems, we have since
begun to use it for nearly all system installations
within our environment. During normal operation, the
PXE boot system will bring up a menu by default,
containing a list of all our common machine configu-
rations (each of which load a custom ks.cfg configura-
tion file into the appropriate OS installer). Several ver-
sions of RedHat Linux are supported, as is Debian
Linux (through their FAI [20], or Fully Automatic
Installation, system).

Our network deployment infrastructure is used
daily to deploy individual machines. For such small
quantities, we slightly modify our PXE configuration to
provide the correct network configuration for the ma-
chine. A slight modification to our ks.cfg post-install
script bypasses the USB-driven address assignment
procedures if DHCP is not in use during system instal-
lation, so machines will proceed directly to cfengine
configuration. Once this process is initiated, new ser-
vers are fully customized and ready for production
work in approximately fifteen minutes.

The availability of this rapid deployment frame-
work has also changed our response to problem miti-
gation. Rather than painstakingly correcting an instal-
lation issue on hundreds of systems (for example,
changing the partition table on production compute
servers), we merely schedule a brief downtime and
reinstall the entire group of affected machines. We
have reinstalled over 160 machines in under an hour
using this process, and have been able to successfully
return these systems to full service with a minimum of
user-visible downtime.

Conclusions

The ‘‘Steele’’ installation was a huge success.
We had planned for a full day for all of the physical
labor and were expecting the OS installation and con-
figuration pieces to run overnight. Considering that
200 nodes were online and processing jobs by lunch,
with the rest of the functional systems available for
cluster users by 3:00 pm, it’s safe to say we met our
target business-day turnaround time for this deploy-
ment.

Of particular concern was the handling of the
large amounts of recycling materials. We had arranged
for empty dumpsters for recycled goods to be deliv-
ered several times throughout the day. Thanks to the
number of people that showed up to help, loading
empty boxes and other debris was trivial. However,
this just serves to underscore the need for proper site
planning and coordination (in addition to the technical
measures necessary) to prepare for a rapid deployment
of this scale.

We believe mass server deployments, with hun-
dreds of servers deployed in under a business day, are

very achievable. Scaling the backend infrastructure to
support these deployments can be done at low cost,
using commonly-available (and largely open-source)
technology, as we have demonstrated. With equivalent
preparation, other institutions should be able to see
similar rates of system installation. Eventually, we see
this practice moving from the realm of IT ‘‘stunt’’ [21]
to an accepted business process.
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