
Security impact ratings considered harmful

Jeff Arnold, Tim Abbott, Waseem Daher, Gregory Price,
Nelson Elhage, Geoffrey Thomas, Anders Kaseorg

Massachusetts Institute of Technology

Abstract
In this paper, we question the common practice of as-
signing security impact ratings to OS updates. Specifi-
cally, we present evidence that ranking updates by their
perceived security importance, in order to defer applying
some updates, exposes systems to significant risk.

We argue that OS vendors and security groups should
not focus on security updates to the detriment of other
updates, but should instead seek update technologies that
make it feasible to distribute updates for all disclosed OS
bugs in a timely manner.

1 Introduction
Today, OS vendors and other computer security groups
track and publish security impact information to “pro-
vide a simple way to judge the severity of security up-
dates” [18]. OS vendors use this information internally in
order to determine which updates should be sent to cus-
tomers in a timely manner. System administrators rely
on this information “to better schedule upgrades to their
systems” [18]—in other words, to decide whether an up-
grade needs to happen immediately or whether it can be
delayed for weeks or even months until the next “impor-
tant” upgrade comes along.

In this paper, we argue that this general approach to
OS security—specifically, tracking security updates sep-
arately from other bug-fix updates so that security up-
dates can be applied long before the average update—is
counter-productive to OS security.

We show that the security implications of OS bugs
can easily elude developers, so that the true security
implications of bugs are commonly not discovered un-
til weeks or months after the bugs have been publicly
disclosed. During this period, the patch for correcting
a bug can remain widely unused since the bug has no
known security impact. We present evidence that finding
dangerous high-impact attacks for these disclosed “low-

impact” bugs is much easier than finding new previously-
unknown problems. Every disclosed1 bug that is classi-
fied as having low impact is therefore potentially an in-
valuable blueprint for attackers to achieve their goals.

Tracking, classifying, and prioritizing security updates
to the detriment of other updates is therefore a ma-
jor security liability for operating systems. We argue
that, counter-intuitively, the most security-conscious ap-
proach to OS security is for vendors to ignore the ex-
pected security impact of updates. In other words, se-
curity updates should not be regarded as a special kind
of bug-fix update; instead, in core OS software, security
bugs and normal bugs should be treated as indistinguish-
able for most practical purposes.

Instead of focusing on security updates, we argue that
OS vendors and security groups should seek update tech-
nologies that make it feasible to distribute updates for
all disclosed OS bugs in a timely manner. For example,
hot update technology allows a running software sys-
tem, such as an OS kernel, to be updated with a minimal
amount of disruption.

The rest of this paper is organized as follows: The next
section describes two notable historical events and what
they can teach us about security impact predictions. Sec-
tion 3 presents evidence that depending on security im-
pact predictions is risky. Section 4 discusses how hot up-
dates present a superior alternative to focusing on secu-
rity impact predictions. Section 5 discusses related work,
and Section 6 concludes.

2 Lessons from history

2.1 Exploits can require extremely little
The UNIX program sudo allows specified users to run
specified commands with elevated privileges, according

1Since exploits can be generated from binary updates alone [6], bug
disclosure has occurred even if only a binary update has been pub-
lished.

1



to a security policy defined in advance by the system ad-
ministrator. On February 19, 2001, version 1.6.3p6 of
sudo was released, correcting a bug in the program’s
do syslog function that could cause it to perform an
out-of-bounds read operation and thus crash with a seg-
mentation fault.

The bug causes sudo to send inappropriate areas of
the heap to the UNIX system log function, syslog.
This bug leads only to out-of-bounds read operations
from memory, apart from a single NUL byte written to
memory before each call to syslog—and immediately
thereafter restored to the byte’s previous value. The crash
occurs on a read operation when this process reaches the
end of the heap.

The narrow reach of this bug led many people to con-
clude that it did not threaten security. Surely if ever there
were a bug that could not be exploited, a bug that re-
places a single byte with NUL, only to immediately re-
store it, would be a leading candidate. Security expert
Florian Weimer called an exploit “highly unlikely” after
a detailed analysis of the bug [22].

Nevertheless, the bug can be exploited to achieve ar-
bitrary execution. In November 2001, an exploit became
public [12]. With a thorough understanding of the inter-
nal operation of malloc memory allocation, even this
most narrowly circumscribed bug can be successfully ex-
ploited to gain full administrator privileges.

This case exemplifies the difficulty of accurately dis-
missing any bug in core OS software, even a seemingly
mild one, as not posing a security issue.

2.2 Bad impact predictions cause problems
Debian is one of the oldest and largest Linux distribu-
tions; it was started in August 1993, and leading esti-
mates indicate that roughly 35% [14] of Linux machines
run Debian or one of the distributions built on top of De-
bian, such as Ubuntu. The Debian project has had two
security compromises of its server infrastructure in its
15-year history, on November 19, 2003 [9] and July 12,
2006 [10]. The 2003 incident was only possible because
of a false reliance on security impact predictions.

The 2003 compromise took advantage of a bug for
which a patch was available on September 24, eight
weeks before the attack [20]. The bug had not been
widely fixed by the time of the attack because no one
knew that it could be exploited; it was not classified as a
security bug.

The attack was only discovered because the attackers
left behind unusual log messages, which were noticed by
a Debian system administrator [5]. The Debian security
team was then able to shut down the machines, locate
the exploit code, disassemble it, and identify the nature
of the exploit. Had the attackers’ rootkit been more sub-

tle, had they removed the exploit code before the ma-
chines were shut down, or had Debian not possessed the
expertise required to disassemble and reverse-engineer
the exploit, the attackers could have gone on to the next
compromise without having alerted anyone to the bug’s
security implications. The attackers quite likely did so
with softer targets during the previous eight weeks.

If the Debian system administrators had applied all
Linux kernel bug fixes promptly, instead of only the bug
fixes known to have security implications, then the at-
tackers would have failed. With hot update technology,
described in Section 4, this update policy can potentially
be practiced with minimal disruption.

3 Evaluation
We examine two aspects of contemporary security im-
pact information. We use the Linux kernel for this eval-
uation due to its transparent development processes and
widespread use.

In Section 3.1, we look at how commonly bugs are
discovered to have security implications long after the
bug and its corresponding patch have been publicly dis-
closed.

In Section 3.2, we look at how commonly the security
consequences of bugs are never known to those individu-
als and organizations who track security impact informa-
tion. In particular, we look at whether it is advisable to
treat the leading security vulnerability list, the Common
Vulnerabilities and Exposures (CVE) [8] list, as a com-
plete list of the disclosed bugs that have severe security
implications.

3.1 Delays before true impact is known
The purpose of this study was to investigate how often
initially-inaccurate security impact information results in
bugs with security consequences being overlooked.

3.1.1 Methodology

We define the impact delay of a bug to be the period of
time between when the bug was disclosed (in this study,
via a Linux patch) and when its security implications
were identified (i.e., the bug was assigned a CVE num-
ber).

In this study, we identified instances of Linux kernel
vulnerabilities with large impact delay. We generated our
impact delay data using the following process:

First, we created a list of all of the Linux kernel vulner-
abilities added to the Common Vulnerabilities and Expo-
sures list during a three year period, from January 2006
to December 2008. We then found the Linux kernel patch
corresponding to each of these vulnerabilities and looked

2



Figure 1: Number of bugs discovered to be security
bugs long after bug disclosure, from January 2006 to

December 2008

at the date that each patch was finalized for inclusion into
the Linux kernel2.

By comparing the date of the bug patch with the date
that the bug CVE was assigned, we found bugs whose
security consequences were not recognized until many
weeks after the bugs were initially disclosed.

Requesting a CVE number for a new vulnerability nor-
mally takes less than one business day, but we ignore vul-
nerabilities with less than two weeks of impact delay in
our analysis, in order to be conservative.

3.1.2 Results

Of the 218 Linux kernel CVEs from the studied interval,
25.7% (56) had more than two weeks of impact delay.
17.4% (38) of the CVEs had more than four weeks of im-
pact delay, and 14.2% (31) had more than eight weeks of
impact delay. See Figure 1 for the distribution of CVEs
with more than two weeks of impact delay. The raw data
is available online [2].

These results indicate that many Linux bugs that pose
a security risk are only denoted as having security im-
pact several weeks after the bugs have been publicly dis-
closed.

To demonstrate that OS vendors commonly delay fix-
ing bugs not identified as having security impact, we
studied the response of a leading vendor, Red Hat, to the
30 bugs with the longest impact delays, eight weeks or
more. Of these 30 bugs, 24 affected kernels distributed
by Red Hat. We confirmed that none of these 24 bugs

2Specifically, we used the date that the patch was added to either
the mainline Linux kernel [21] or one of the -stable [13] branches.

Figure 2: The number of bugs with hidden impact on
each day between January 2006 and December 2008

were fixed by Red Hat until after their security conse-
quences had been discovered.

We also considered how many bugs, at any given time,
had hidden impact—that is, had been disclosed as of that
time, had no known security impact at that time, but were
found to have security impact sometime before the end of
2008.

On each day in 2006, there were between 4 and 11
bugs with hidden impact. On each day in 2007, there
were between 6 and 16 bugs with hidden impact. See
Figure 2. Note that, by our definition of hidden impact,
the number of bugs with hidden impact must go to zero
by the end of 2008; if we had CVE data for 2009, this
strong downward trend would presumably not occur.

Together these results show that bug disclosures, as
commonly found in the form of OS bug-fix updates, pro-
vide a rich vein of vulnerabilities not publicly identified
as such and consequently not widely patched. In the next
subsection, we explore how difficult it would be for an
attacker to tap this vein.

3.2 Completeness of vulnerability lists

The purpose of this study was to investigate how easy it is
to find serious security bugs which have been disclosed,
but not fixed even on “fully-updated” end-user machines,
because of incorrect security impact predictions.

3.2.1 Methodology

We reviewed bug-fix patches affecting Linux kernel ver-
sion 2.6.24. We selected this version simply because it
was the first Linux kernel release of 2008.

3



We looked at patches with no known security conse-
quences to determine whether any of them actually have
severe security consequences—in particular, whether
any of them enable an attacker to achieve arbitrary code
execution with administrator privileges.

3.2.2 Results

Within a few hours of review of the bug-fix patches
affecting Linux kernel version 2.6.24, we identified
a commit from February 2008 with serious security
consequences (Git ID 7e3c396, commit subject
“sys remap file pages: fix ->vm file
accounting”). At the time that we conducted
this review, this bug and its corresponding patch had
been disclosed for more than 10 months, yet it had
no associated CVE number or record of any security
consequences.

We developed a privilege escalation exploit for this
bug in a few hours; doing so did not require any innova-
tive techniques or extensive expertise. The exploit allows
any user on a vulnerable system to gain full administrator
privileges on the system.

Since vendors use security impact predictions to de-
termine which bug-fix patches to distribute, the patch for
this bug was not widely distributed, even though other
bug-fix patches from the same period were widely de-
ployed. Fedora 7, for example, is affected by this bug
but never received an update for it, which means that
all Fedora 7 systems remained vulnerable to this exploit
through Fedora 7’s end-of-life in June 2008.

We reported the security consequences of this bug in
January 2009, and it was assigned CVE-2009-0024 at
that time.

We studied nearly year-old bug fixes to make our
task more difficult; as Figure 1 shows, many more bugs
have impact delays of two weeks or four weeks than ten
months. Yet even on bugs where no vulnerability had
been identified nearly a year after disclosure, we suc-
ceeded with little effort in identifying and exploiting a
vulnerability. An attacker seeking to exploit unidentified
vulnerabilities in Linux bug-fix disclosures would have,
as Figure 2 shows, between 4 and 16 bugs with hidden
impact waiting for him or her at any time in the last three
years.

4 Implications: Hot updates
In this paper, we argue that OS vendors should not at-
tempt to treat security updates differently from other bug
fix updates. Unfortunately, distributing all updates with
equal priority increases the quantity of updates that sys-
tem administrators are expected to apply in a timely man-
ner.

Applying more OS updates is problematic because
of a long-standing problem with how software updates
are typically performed: currently, a program must be
restarted in order for it to be updated, which is disruptive.
This problem is particularly severe for core OS software,
such as the kernel itself, that cannot normally be updated
without rebooting the operating system.

Frequent OS reboots are costly since, in addition to
any service availability concerns, many system adminis-
trators want to monitor their systems during the disrup-
tive reboot process, in order to deal with any complica-
tions that arise.

Hot update techniques [1, 3, 4, 7, 15, 17] make it possi-
ble to correct bugs in a running program without restart-
ing the program or interfering with its operation. The
Ksplice hot update system [3] has recently shown that it
is possible to transform many historical security patches
into hot updates with little or no programmer involve-
ment.

If this progress can be extended, a hot update sys-
tem could potentially generate hot updates for all core
OS bug-fix patches with little programmer involvement.
Achieving this goal would make it possible to stop rely-
ing on security impact predictions, which would, as we
have argued, improve security.

5 Related Work
Security researchers have surveyed known vulnerabili-
ties, computing statistics involving various dates, such
as dates of first disclosure and of exploit availability.
Rescorla [19] analyzed vulnerability disclosure rates to
suggest that popular software contains many more vul-
nerabilities than have been discovered so far.

Frei et al. [11] found that about 90% of vulnerabili-
ties have exploits available within days after disclosure,
while fewer than 20% have exploits available before dis-
closure.

These results are consistent with our argument that hot
update technology—or more generally, the ability to ap-
ply updates for newly-discovered bugs promptly—is im-
portant for improving security.

Like Linux vendors, Microsoft’s Windows Update ser-
vice [16] classifies updates into categories based on the
perceived impact of the updates, in order to encour-
age end-users and system administrators to install high-
priority updates more rapidly than low-priority updates.

6 Conclusions
We have shown that, following the disclosure of many
core OS bugs, weeks or months lapse before they are
identified as security bugs. Based on historical lessons

4



and our own exploit investigation, we conclude that dis-
closed bugs present a significant security risk until they
are fixed with an update, regardless of their perceived se-
curity impact.

Treating some disclosed bugs as being the only bugs
with high security impact, without conclusive proof,
weakens OS security by engendering a false sense of se-
curity while providing attackers with the information and
time that they need to compromise systems.

Research into improved update technology, such as
hot updates, has the potential to eliminate reliance on
security impact predictions, which would be a notable
security improvement.

Acknowledgments
We thank Frans Kaashoek for helpful comments.

References
[1] Altekar, G., Bagrak, I., Burstein, P., and Schultz, A.

OPUS: Online Patches and Updates for Security. In Pro-
ceedings of the 14th USENIX Security Symposium. Au-
gust 2005.

[2] Arnold, J., Abbott, T., Daher, W., Price, G., Elhage, N.,
Thomas, G., and Kaseorg, A. Raw data for impact de-
lay study. http://web.mit.edu/tabbott/www/
cve-data.

[3] Arnold, J., and Kaashoek, F. Ksplice: Automatic reboot-
less kernel updates. In Proceedings of the EuroSys Con-
ference. April 2009.

[4] Baumann, A., Appavoo, J., Wisniewski, R. W., Da Silva,
D., Krieger, O., and Heiser, G. Reboots are for hardware:
Challenges and solutions to updating an operating system
on the fly. In Proceedings of the 2007 USENIX Annual
Technical Conference. June 2007.

[5] Bernier, R. Lessons from the Debian compromise. Linux
Weekly News. http://lwn.net/Articles/
62517/. December 2003.

[6] Brumley, D., Poosankam, P., Song, D., and Zheng, J.
Automatic Patch-Based Exploit Generation is Possible:
Techniques and Implications. In Proceedings of the IEEE
Security and Privacy Symposium. May 2008.

[7] Chen, H., Chen, R., Zhang, F., Zang, B., and Yew, P. Live
updating operating systems using virtualization. In Pro-
ceedings of the 2nd ACM Conference on Virtual Execu-
tion Environments. June 2006.

[8] Common Vulnerabilities and Exposures List. http://
cve.mitre.org/cve.

[9] Debian News: Some Debian Project machines compro-
mised. http://www.debian.org/News/2003/
20031121. November 2003.

[10] Debian News: Debian Server restored after Com-
promise. http://www.debian.org/News/2006/
20060713. July 2006.

[11] Frei, S., May, M., Fiedler, U., and Plattner, B. Large-
scale vulnerability analysis. In LSAD ’06: Proceedings
of the 2006 SIGCOMM workshop on Large-scale attack
defense.

[12] Kaempf, M. Vudo: An object superstitiously believed
to embody magical powers. Phrack Magazine 57(8).
November 2001.

[13] Kroah-Hartman, G. Linux kernel unified stable trees.
git://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux-2.6-stable.
git.

[14] Linux Counter Machine Report. http://counter.
li.org/reports/machines.php. December
2008.

[15] Makris, K. and Ryu, K. D. Dynamic and adaptive updates
of non-quiescent subsystems in commodity operating sys-
tem kernels. In Proceedings of the EuroSys Conference.
March 2007.

[16] Microsoft Update Management TechCenter.
http://technet.microsoft.com/en-us/
updatemanagement/default.aspx.

[17] Neamtiu, I., Hicks, M., Stoyle, G., and Oriol, M. Practi-
cal Dynamic Software Updating for C. In Proceedings of
ACM PLDI. June 2006.

[18] Red Hat Security Response Team. Classification
of Security Issues. http://www.redhat.com/
security/updates/classification/. January
2005.

[19] Rescorla, E. Is finding security holes a good idea? IEEE
Security & Privacy 3(1), 14–19. January 2005. http:
//dx.doi.org/10.1109/MSP.2005.17

[20] Schulze, M. Debian investigation report after
server compromises. Debian-announce. http:
//lists.debian.org/debian-announce/
2003/msg00003.html. December 2003.

[21] Torvalds, L. Linux kernel tree. git://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/
linux-2.6.git.

[22] Weimer, F. Re: Sudo version 1.6.3p6 now avail-
able. Bugtraq. http://seclists.org/bugtraq/
2001/Feb/0325.html. February 2001.

5

http://web.mit.edu/tabbott/www/cve-data
http://web.mit.edu/tabbott/www/cve-data
http://lwn.net/Articles/62517/
http://lwn.net/Articles/62517/
http://cve.mitre.org/cve
http://cve.mitre.org/cve
http://www.debian.org/News/2003/20031121
http://www.debian.org/News/2003/20031121
http://www.debian.org/News/2006/20060713
http://www.debian.org/News/2006/20060713
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6-stable.git
http://counter.li.org/reports/machines.php
http://counter.li.org/reports/machines.php
http://technet.microsoft.com/en-us/updatemanagement/default.aspx
http://technet.microsoft.com/en-us/updatemanagement/default.aspx
http://www.redhat.com/security/updates/classification/
http://www.redhat.com/security/updates/classification/
http://dx.doi.org/10.1109/MSP.2005.17
http://dx.doi.org/10.1109/MSP.2005.17
http://lists.debian.org/debian-announce/2003/msg00003.html
http://lists.debian.org/debian-announce/2003/msg00003.html
http://lists.debian.org/debian-announce/2003/msg00003.html
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
http://seclists.org/bugtraq/2001/Feb/0325.html
http://seclists.org/bugtraq/2001/Feb/0325.html

	Introduction
	Lessons from history
	Exploits can require extremely little
	Bad impact predictions cause problems

	Evaluation
	Delays before true impact is known
	Methodology
	Results

	Completeness of vulnerability lists
	Methodology
	Results


	Implications: Hot updates
	Related Work
	Conclusions

