
End-to-end Web Application Security

Úlfar Erlingsson Benjamin Livshits

Microsoft Research

Yinglian Xie

Abstract

Web applications are important, ubiquitous distributed
systems whose current security relies primarily on
server-side mechanisms. This paper makes the end-to-
end argument that the client and server must collaborate
to achieve security goals, to eliminate common security
exploits, and to secure the emerging class of rich, cross-
domain Web applications referred to as Web 2.0.

In order to support end-to-end security, Web clients
must be enhanced. We introduceMutation-Event Trans-
forms: an easy-to-use client-side mechanism that can
enforce even fine-grained, application-specific secu-
rity policies, and whose implementation requires only
straightforward changes to existing Web browsers. We
give numerous examples of attractive, new security poli-
cies that demonstrate the advantages of end-to-end Web
application security and of our proposed mechanism.

1 Introduction
Web applications provide end users with client access to
server functionality through a set of Web pages. These
pages often contain script code to be executed dynami-
cally within the client Web browser.

Most Web applications aim to enforce simple, intu-
itive security policies, such as, for Web-based email, dis-
allowing any scripts in untrusted email messages. Even
so, Web applications are currently subject to a plethora
of successful attacks, such as cross-site scripting, cookie
theft, session riding, browser hijacking, and the recent
self-propagating worms in Web-based email and social
networking sites [2, 17, 24]. Indeed, according to sur-
veys, security issues in Web applications are the most
commonly reported vulnerabilities on the Internet [16].

The problems of Web application security are only
becoming worse with the recent trends towards richer,
“Web 2.0” applications. These applications enable new
avenues of attacks by making use of complex, asyn-
chronous client-side scripts, and by combining services
across Web application domains [8]. However, the shift
towards Web 2.0 also presents an opportunity for en-
hanced security enforcement, since new mechanisms are
again being added to popular Web browsers.

Therefore, we believe it is time to rethink the funda-
mentals of Web application security. It is our position
that the client Web browsers must be given a greater role

in enforcing application security policies. In this pa-
per, we support our position with examples and a sim-
ple end-to-end argument: constraints on client behavior
are enforced most reliably at the client. We also propose
Mutation-Event Transforms: a novel, flexible mechanism
for client-side security policy enforcement.

1.1 Motivating Attacks

Of the current attacks on Web applications, those based
onscript injectionare by far the most prominent. For ex-
ample, script injection is used in cross-site scripting [1]
and Web application worms [2, 24].

A script injection vulnerability may be present when-
ever a Web application includes data of uncertain origin
in its Web pages; a third-party comment on a blog page
is an example of such untrusted data. In a typical attack,
malicious data with surreptitiously embedded scripts is
included in requests to a benign Web application server;
later, the server may include that data, and those scripts,
in Web pages it returns to unsuspecting users. Since Web
browsers execute scripts on a page with Web application
authority, these returned scripts can give attackers con-
trol over the users’ Web application activities [1, 22].

Script injection attacks typically affect non-malicious
users and succeed without compromising Web applica-
tion servers or networks. For example, in 2005, the self-
propagating Samy worm on MySpace used script injec-
tion to infect over a million users [24]. As a MySpace
user viewed the MySpace page of another, infected user,
the worm script would execute and send a page update
request to the server, causing the worm script to be in-
cluded also on the viewing user’s page.

In an attempt to prevent script injection, most Web ap-
plication servers try to carefully filter out scripts from
untrusted data. Unfortunately, such data sanitization is
highly error prone (see Section 2.1). For example, the
Samy worm evaded filtering, in part, by the unexpected
placement of a newline character [24].

Script injection is just one means of attack: there are
many ways to exploit Web applications by presenting
them with attacker-chosen data. As we demonstrate in
this paper, end-to-end Web application security is not
only a reliable means to prevent these attacks. Our
proposals for enhanced, client-side security enforcement
also form a simple, flexible foundation for the general se-
curity of Web applications, including future, more com-
plex Web 2.0 applications.

2 The Case for End-to-end Defenses
In general, it is often best to establish systems guarantees
at the point where they are needed, with an end-to-end
check, rather than with earlier, piecemeal checks [21].

This end-to-end argument applies directly to Web ap-
plication security. Although security policies should be
determined and specified at the server, enforcement of
policies about Web client behavior should be guaranteed
at the client. The corresponding server-side checks are
difficult to perform and, in practice, incomplete in ways
that enable attacks.

2.1 Server-side Defenses and their Limitations

Web applications must consider the possibility of mali-
cious attackers that craft arbitrary messages, and counter
this threat through server-side mechanisms.

However, to date, Web application development has
focused only on methodologies and tools for server-side
security enforcement (for instance, see [11, 13]). At
most, non-malicious Web clients have been assumed to
enforce a rudimentary “same origin” security policy [22].
Web clients are not even informed of simple Web appli-
cation invariants, such as “no scripts in the email mes-
sage portion of a page”, since clients are not trusted to
enforce security policies.

This focus on centralized server-side security mecha-
nisms is shortsighted: server-side enforcement has diffi-
culties constraining even simple client behavior. For ex-
ample, to enforce “no scripts”, the server must correctly
model complex, dynamic client activities such as string
manipulation, and take into account all possible client
features and bugs. This entails server consideration of a
myriad different tags, encodings, and operators for com-
ments and quoting [20].

Server-side removal of scripts is especially difficult for
Web applications that wish to allow visual formatting or
other data richer than simple text. As shown below, there
are many non-obvious means of causing code execution,
including within formatting tags:

<SCRIPT/chaff>code</S\0CRIPT>

<STYLE>li {list-style-image: url("code");}</STYLE>

<DIV STYLE="background-image:\0075\0072\006C...">

Furthermore, server-side enforcement is unsuitable for
Web 2.0 cross-domain mashups [25], which may access
third-party servers to load code and data. For instance,
Web clients perform such access whenever a Web appli-
cation embeds the Google Search AJAX API [5].

2.2 Client-side Defenses and their Benefits

As described above, many security policies are best en-
forced at the client. Web clients are the final authority on
client behavior—including where script code is found,
what that code is, and from where the code was loaded.
If informed of Web application security policies by the

HTMLDocument.prototype.__defineGetter__(

"cookie",

function(){ return null; }
);

Figure 1: A programmatic security policy that will reliably disallow
all script access to document cookies in many existing Web browsers,
if included at the top of pages returned by a Web application server [3].

server, properly enhanced clients could reliably enforce
those policies.

At the same time, the majority of users are not ma-
licious, and would enable client-side enforcement to
avoid exploits such as cross-site scripting and Web-based
worms. Even if only benign users with enhanced clients
might perform security enforcement, those users would
be protected, and all users would benefit from fewer at-
tacks on the Web application.

Unfortunately, there are many obstacles to the adop-
tion of new, enhanced security mechanisms in popular
Web browsers. Even when such enhancements are prac-
tical and easy to implement, they may not be deployed
widely. Therefore, to increase its chance of widespread
adoption, a Web client security mechanism should be
practical, simple, and flexible, and be able to enforce
multiple, attractive policies on client behavior.

3 New Client-side Security Mechanisms

In this paper we propose enhancing Web clients with
new security mechanisms that can not only prevent ex-
isting attacks, but are able to enforce all security policies
based on monitoring client behavior. In particular, our
new mechanisms support policies that range from disal-
lowing use of certain Web client features (e.g.,IFRAMEs
or OBJECTs) to fine-grained, application-specific invari-
ants such as taint-based policies that regulate the flow of
credit-card information input by the user.

Concretely, we propose that client-side enforcement
proceed through a new client mechanism:Mutation-
Event Transforms, or METs. METs are introduce here;
some details like how to prevent their subversion are in
Appendix A. METs allow Web application security poli-
cies to be specified at the server in a programmatic man-
ner, such that those specifications can be used directly for
enforcement at the client. In this, METs are similar to the
code in Figure 1, and recent proposals such as BEEP [9].

In short, with METs, Web application servers spec-
ify security policies as JavaScript functions included at
the top of pages returned by the server, and run before
any other scripts. At runtime, and during initial load-
ing, these MET functions are invoked by the client on
each Web page modification to ensure the page always
conforms to the security policy. Before a mutation takes
effect, METs have the ability to transform that mutation,
and the code and data of the page, which gives METs
great flexibility in enforcement. In particular, METs can

be used to implement inlined reference monitors and edit
automata for security-relevant client events, which al-
lows METs to be used to specify and enforce any security
policy based on monitoring client behavior [4, 26].

METs are both simple and straightforward to adopt:
Web clients need only implement a single new primitive
for mutation-event callbacks, and expose already-present
events and data structures. Because policies are pro-
grammatic, they can readily account for browser varia-
tion and properly limit client-side enforcement on legacy
Web clients (indeed, JavaScript code is already com-
monly used for compatibility and debugging purposes).
Furthermore, security policy enforcement using METs
requires only reasonable assumptions about the attacker.

3.1 Assumptions about the Attacker

METs can reliably defend against powerful attackers that
are able to present Web clients with arbitrary code and
data. In particular, the attacker may be modeled as an
arbitrary, malicious script within Web application pages
that are subject to MET enforcement.

The correctness of MET enforcement is of concern
only to non-malicious users; it relies on network in-
tegrity and depends on assumptions about the server and
clients. We trust that the Web application server has not
been compromised, and properly includes METs at the
top of returned Web pages; however, we assume that
server code may have bugs such that the returned pages
may contain arbitrary attacker-chosen data. We trust the
Web clients to execute METs with proper semantics and
to correctly enforce the fundamental same-origin pol-
icy [22]. Finally, we trust the programmatic security
policies and that they correctly reflect the security goals
of the Web application developers.

4 Policy Specification and Enforcement

Web application developers must have freedom in choos-
ing security policies, and how they are derived. We
propose specifying security policies using programmatic
MET callback functions written in JavaScript. At run-
time, these MET callback functions operate on each new
(or updated) Web page and ensure that it conforms to the
security policy, either through validation or transforma-
tion of the code or data within the Web page.

As we demonstrate in this section, METs have the ap-
pealing property that simple policies are easy to specify
and enforce (much as in Figure 1). Even so, although
Web application developers may guide security enforce-
ment with Web page annotations, code for METs is likely
to come as pre-packaged libraries, or be determined au-
tomatically at the server.

In particular, METs can be used for client-side en-
forcement of application-specificdynamic security poli-
ciesdetermined automatically at the server from the nat-

ural constraints imposed by the structured composition
of client pages (e.g., using frameworks such as ASP.NET
AJAX [14] or GWT [6]). METs can also enforce other
rich policies, such as those that apply to Web 2.0 cross-
domain mashups [25], where application pages are com-
posed outside the scope of server enforcement.

4.1 Examples of General, Basic Security Policies

On the following page, Figure 2 describes examples of
general policies that apply to client Web pages, their
script code, and the nodes and attributes of document
data. On the same page, Figure 3 shows how these poli-
cies can be readily instantiated using MET callback func-
tions; this code should be read in conjunction with Ap-
pendix A. In what follows, these policies are referred to
by their number, in parentheses.

Policies (1), (3), and (6) are examples that restrict
potentially dangerous types of document nodes, allow
scripts only in certain portions of the document, or limit
scripts to a whitelist of trusted scripts (as in [9]).

Policies (2), (4), and (5) validate the structure of cer-
tain data structures and scripts in Web pages, which can
prevent many attacks (e.g., attacks that use malformed
SQL queries [23]). Without such validation, malicious
attacks may exploit may benign client-side code by pre-
senting it with malformed data. For instance, without
enforcement of policy (5), the Web client may at any
time execute new, unexpected code where only a data
return value was expected. (Client-side data validation
may also reduce the number of round trips to the server.)

As shown in policies (7) through (9), the set of poli-
cies supported by METs are not restricted to actions that
change the document structure of Web pages. METs can
also support constraints on network access or access to
security-critical client variables, such as the Web browser
history, and enforce containment scopes between client-
side gadgets and modules.

Finally, as demonstrated by (10), security policies
based on METs may even include the code for a security-
enhanced JavaScript interpreter, and ensure that it is used
to execute all script code. Such a custom interpreter can
implement dynamic taint propagation or other complex
security policies.

For reasons of space, our example METs use several
support routines, that would naturally be defined by se-
curity policy code. For example, thematchURLDomain
function in (8) might match string URLs in a policy-
specific manner, while theoutmostAttr function in (9)
might recursively walk up the document tree in order to
find the attribute definition closest to the root. Similarly,
policy-specific variables may encode security-relevant
state such as in (1) for allowed ActiveX GUIDs (e.g., the
Flash player), and in (2) the identity of a particular node
in the document structure of a Web page.

(1) Disallow certain dangerous nodes or attributes.
For instance,<IFRAME> nodes might be disallowed,
and<OBJECT> nodes only permitted when instantiating
the Flash player with known content.

(2) Data invariants on certain document subtrees.
The Web page document is subject to invariants, even
when modified dynamically at the client; e.g., blog
comments must be a well-formed list of<DIV> nodes.

(3) Disallow scripts in certain parts of a Web page.
A special case of (2), for instance to disallow use of
<SCRIPT> nodes in untrusted blog comments.

(4) Scripts match valid, server-defined templates.
An application of (2) to scripts: new, client-defined
scripts may be allowed, but, for example, theonHover
script code for a dynamically-inserted list item might be
required to matchhighlight(identifier).

(5) Cross-domain scripts return only data, properly.
Instantiating (4) to prevent unexpected introduction of
new code by cross-domain client-mashup applications:
for instance, any script returned into a cross-domain
<SCRIPT> node must have a syntax tree that matches
ajaxCallback(jsonDataValue).

(6) Limit scripts to a static, server-defined set.
A static form of (4) that may simply match the hash of
the script source text against a fixed “whitelist”.

(7) Constrained access to object fields and methods.
For instance, giving partial access todocument.cookie,
or limiting arguments to network-access methods.

(8) Proper network access via (cross-domain) URLs.
URLs are subject to access control—both node-attribute
URLs (e.g., on) and the URLs used program-
matically in scripts, (e.g., in an XML request).

(9) Containment of script activity to certain subtrees.
Scripts can only modify certain document subtrees; thus,
a gadget (or client-side mashup) for Web search might
only be allowed to mutate a<DIV> for search results.

(10) Script execution by a secure interpreter.
Scripts are not executed directly, but through a spe-
cial, security-enhanced interpreter that may enforce (8),
above, or even more fine-grained policies, such as vari-
ants of stack inspection or data tainting [4, 13].

Figure 2: A selection of attractive client-side security policies that can
be readily enforced using programmatic MET callback functions. This
list emphasizes general, widely applicable policies, while application-
specific dynamic security policies are discussed further in the text (in
particular in Section 4.2).

Type signature for MET callback functions

ExtendedNode

MET_callback(in Node script, // source of mutation

in Node target, // target in Web page

in ExtendedNode oldValue,

in ExtendedNode newValue);

Example programmatic MET callback policies

(1) Limit OBJECT nodes (onOBJECT events):
var ok = (newValue.classid == theAllowedGUID);

return (ok) ? newValue : null;

(2) Data invariant on insertedDIVs (onDIV events):
if (target.id != insertionParentID) return null;

if (oldValue != null) return null;

var ok = ExtDOM.MatchStructure(newValue,

"<div></div>");

return (ok) ? newValue : null;

(3) Limit script placement (on SCRIPT events):
var ok = ! findParentAttr("no_scripts", target);

return (ok) ? newValue : null;

(4) Restrict the code in scripts (onSCRIPT events):
var ok = ExtDOM.MatchScriptStructure(newValue,

"highlight(’identifier’);"

return (ok) ? newValue : null;

(5) Proper data in AJAX replies (on SCRIPT events):
if (! newValue instanceof ScriptBody) return null;

var ok = ExtDOM.MatchScriptStructure(newValue,

"callback({count: 1; sum: 5;});"
return (ok) ? newValue : null;

(6) Script whitelisting (on SCRIPT events):
var ok = whitelist[hash(newValue.toString())];

return (ok) ? newValue : null;

(7) Disallowhistory access (onSCRIPT events):
if (! newValue instanceof ScriptBody) return null;

return ExtDOM.ReplaceScriptLiteral(newValue,

"history", "fresh_unused_literal");

(8) Limit network access (onSCRIPT events):
var ok = matchURLDomain(newValue.src, "foo.com");

return (ok) ? newValue : null;

(9) Script containment (on any mutation event):
var src = outmostAttr("containment", script);

var dst = outmostAttr("containment", target);

return (src == dst) ? newValue : null;

(10) Secure interpreter (onSCRIPT events):
if (! newValue instanceof ScriptBody) return null;

var arg = ExtDOM.CreateScriptNode("Arguments",

newValue.ToJSON());

var func = "special_js_interpreter";

return ExtDOM.CreateScriptNode("Call", func, arg);

Figure 3: The type signature of MET callback functions and several
possible implementations for policies like those in Figure 2. The de-
tails in Appendix A are relevant to this code. Due to space constraints,
only terse, uncommented code is shown and the functionality of policy-
provided variables and methods is indicated by name.

<ul id=“top_rss”>

<li containment=“one” onclick=“rss1_code()”>An RSS item

<li containment=“two” onclick=“rss2_code()”>Another item

<div id=“rss_1” containment=“one”>
<script src=“http://foo.com”> </script>

</div>

<div id=“email_pane” no_scripts> Possibly bad content …</div>

<html> <body>

</body> </html>

<div id=“rss_2” containment=“two”>
<script src=“http://bar.com”> </script>

</div>

Figure 4: An outline of the document tree for an aggregation Web page
that contains both RSS news items and email messages.

4.2 Application-Specific, Dynamic Security Policies

Policies can also be highly application-specific. Such
policies can be either hand-written by the application de-
veloper or generated through static analysis of the Web
application. This is illustrated by the examples below.

Example 1. Access control within a page. Figure 4
shows an example of a DOM tree containing data from
two RSS sources:rss 1 and rss 2. We would like
to make sure thatrss2 code does not modify the first
<div> element so that it is impossible to have a rogue
RSS feed that changes the contents of another one. Us-
ing policy (9), we can restrict code to modify only DOM
elements declared within the same scope. This policy
allows isolation of code and data on a single page, and
refines the “same-origin” policy of existing Web clients.

Figure 4 also shows how security policy can be di-
rected by inline attributes on document nodes. In this
case, ano scripts attribute is used to direct MET en-
forcement of a policy such as (3) in Section 4.1.

Example 2. Google Web Toolkit (GWT). In GWT, the
developer writes his or her application in Java [6]; the
application is subsequently compiled by the GWT into
two parts: a Java part that resides on the server and a
JavaScript part that resides on the client. Unfortunately,
given a client-side attack, the assumptions of the original
Java application may not hold for the scripts at the client,

To prevent this, the server may generate policies that
enforce consistency properties of the client code. For
example, the server may wish to ensure that access con-
trol properties such as “a private method may only be in-
voked by methods in the same Java class” present in the
original Java source code are preserved in the JavaScript
code on the client side. Instantiation of such a policy
would be application-dependent and could be obtained
through static analysis of the original Java code.

Example 3. Server-generated content templates.Dy-
namic policy generation is also relevant to ASP.NET or
JSP pages. Both of these technologies allow servers to

mix static HTML and dynamic content. Using static
analysis (e.g., that in [15]), the computed parts of Web
pages can be approximated and, thereby, the structure
and contents of generated pages. For example, the analy-
sis may be directed to assume no permitted scripts in ap-
plication inputs. Such page “templates” are highly suit-
able for client-side enforcement.

5 Discussion

End-to-end Web application security entails preventing
client behavior and server interaction that should be im-
possible, by construction, or has otherwise been deter-
mined to be illegal. Whether policies are driven by au-
tomatic analysis, or by manual setting of policy, there is
much to gain from this form of security. In particular, it
is a necessary foundation for securing Web 2.0 applica-
tions like cross-domain mashups, which are often outside
the scope of existing mechanisms.

Mutation-event transforms, or METs, are an attractive
option for client-side security. METs are flexible enough
to enforce any security policy based on execution mon-
itoring [4, 26]. In particular, METs readily allow pre-
cise enforcement of policies on both code and data (e.g.,
such as those in [23]). At the same time, METs, and
their supporting code, should be straightforward to im-
plement, since they rely only on existing browser events
and data structures.

In comparison, the servers can leverage the “same ori-
gin” security policy [22] to enforce some client-side poli-
cies, as done in SessionSafe [10]. Such schemes require
multiple, elaborate server domains that may be cumber-
some to manage. Even so, they can provide only limited,
coarse protection such as disallowing access to Web ap-
plication cookies—as in policy (7) in Section 4.1.

Some previous proposals enforce client-side security
policies by making use of separate proxies to rewrite
server requests from the Web client. Noxes [12] places
simple restrictions on the URLs of requests. Browser-
Shield [19] and CoreScript [26] use elaborate script
rewriting techniques to enforce policies such as disallow-
ing cookie access and dangerous tags—as in policies (1)
and (7) in Section 4.1. Although they are useful (e.g.,
for legacy support), such proxy-based mechanisms must
correctly parse data and code in requests, which can be
a near-intractable problem, even using structured, formal
methods (see Section 2.1 and [26, Section 6]).

Indeed, like METs, reliable mechanisms for client-
side security policies must necessarily build on the final
parsing of code and data performed at the Web client.
This approach has been taken in previous mechanisms,
most notably in BEEP [9], but also in [7]. However,
these proposed mechanisms have provided little flexibil-
ity in security policy specification and enforcement, only
supporting policies like (3), (6), and (7) in Section 4.1.

The enforcement of end-to-end security policies of-
fers benefits to all Web application users, but requires
changes to existing Web browsers. The inclusion of
our proposed METs mechanisms in Web clients can re-
liably prevent existing attacks and provide a flexible,
fine-grained foundation for the enforcement of future
application-specific security policies

References
[1] CGI Security. The cross-site scripting FAQ.http://www.

cgisecurity.net/articles/xss-faq.shtml .
[2] E. Chien. Malicious Yahooligans. http://www.

symantec.com/avcenter/reference/malicious.
yahooligans.pdf , 2006.

[3] S. Di Paola. Wisec security. http://www.wisec.it/
sectou.php?id=44c7949f6de03 , 2006.

[4] Ú. Erlingsson and F. B. Schneider. IRM enforcement of Java
stack inspection. InProc. IEEE Security and Privacy, 2000.

[5] Google AJAX search API. http://code.google.com/
apis/ajaxsearch .

[6] Google Web toolkit. http://code.google.com/
webtoolkit .

[7] O. Hallaraker and G. Vigna. Detecting malicious JavaScript code
in Mozilla. In Proc. IEEE Conf. on Engineering of Complex Com-
puter Systems, 2005.

[8] B. Hoffman. Ajax security. http://www.spidynamics.
com/assets/documents/AJAXdangers.pdf , 2006.

[9] T. Jim, N. Swamy, and M. Hicks. Defeating script injection at-
tacks with browser-enforced embedded policies. InWWW, 2007.

[10] M. Johns. SessionSafe: Implementing XSS immune session han-
dling. In Proc. ESORICS, 2006.

[11] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis
tool for detecting Web application vulnerabilities. InProc. IEEE
Symp. on Security and Privacy, 2006.

[12] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: A
client-side solution for mitigating cross-site scripting attacks. In
ACM Symp. on Applied Computing, 2006.

[13] B. Livshits and M. S. Lam. Finding security errors in Java pro-
grams with static analysis. InProc. Usenix Security Symp., 2005.

[14] Microsoft ASP.NET AJAX.http://ajax.asp.net .
[15] Y. Minamide. Static approximation of dynamically generated

Web pages. InProc. WWW, 2005.
[16] MITRE. Common vulnerabilities and exposures.http://

cve.mitre.org/cve/ , 2007.
[17] Open Web Application Security Project. The ten

most critical Web application security vulnerabilities.
http://umn.dl.sourceforge.net/sourceforge/
owasp/OWASPTopTen2004.pdf , 2004.

[18] T. Pixley. DOM level 2 events specification.http://www.
w3.org/TR/DOM-Level-2-Events , 2000.

[19] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir.
BrowserShield: Vulnerability-driven filtering of dynamic HTML.
In Proc. OSDI, 2006.

[20] RSnake. XSS (Cross Site Scripting) cheat sheet.http://ha.
ckers.org/xss.html , 2006.

[21] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end argu-
ments in system design.ACM Transactions on Computer Sys-
tems, 2(4):277–288, Nov. 1984.

[22] Same origin policy.http://en.wikipedia.org/wiki/
Same origin policy , 2007.

[23] Z. Su and G. Wassermann. The essence of command injection
attacks in Web applications. InProc. POPL, 2006.

[24] The Samy worm.http://namb.la/popular .
[25] Web Mashup.http://www.webmashup.com .
[26] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instru-

mentation for browser security. InPOPL, 2007.

A Mutation-Event Transforms
Here, we present some details on METs, our proposed
new mechanism for flexible client-side enforcement.

Mutation eventsare defined in the proposed Document
Object Model (orDOM), level-2, as events caused by any
action that modifies the document structure [18]. METs
are similar to, but simpler than, these standards propos-
als. METs are also more expressive since they operate
on extended data that include both the standard DOM
tree model [18] and the abstract syntax trees (ASTs) of
executable scripts. Both mutation events and the ASTs
of scripts are abstractions already implemented in Web
clients; thus, support for the METs primitive should not
require substantial client additions or changes.

Importantly, METs provide two mutation events for
<SCRIPT> nodes: first, an event when the script node
is inserted in the DOM, and another event when that in-
serted node is populated with the AST for its script code.
This separation allows METs to enforce security policies
that limit network access caused bySRC host URL at-
tributes in script nodes. Other nodes, such as<STYLE>,
are also handled in this manner.

The type signature of MET callback functions is given
at the start of Figure 3. Both thescript andtarget
are regular DOM nodes in the document tree. The
script refers to the node containing the script that is
attempting the document mutation (e.g., by writing to
an innerHTML field). The target refers to the par-
ent node wherenewValue is about to be inserted to re-
placeoldValue. BotholdValue and thenewValue are
well-formed, properly nested subtrees of our extended
DOM that includes ASTs; either may benull to denote
empty subtrees. The callback functions return an ex-
tended DOM subtree to be used (instead ofnewValue).

MET callback functions may be registered for DOM
elements of particular types, e.g., as follows :

add_MET_callback(nodeType, policy)

In the above,policy would be invoked whenever a
DOM element of typenodeType is affected (i.e. in-
serted, replaced, or deleted). This would happen at run-
time, right before the mutation, but after the Web client
has parsed the new, proposed extended DOM values.

All programmatic security policy variables and func-
tions, and MET callback registration, may naturally oc-
cur in the first<SCRIPT> tag of Web pages. To pre-
vent subversion of security enforcement, the script lan-
guage scoping rules (or other means) should prevent ac-
cess to security policy code and further MET callback
registration might be disabled, e.g., by simply setting
document.prototype.add MET callback to null in
the code. More flexibly, Web clients might allow other
scripts to register MET callback functions, if they care-
fully ensure security policy always takes precedence.

