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In this paper a pair of wavelets are constructed on the basis of Hermite cubic splines. These
wavelets are in C1 and supported on [−1, 1]. Moreover, one wavelet is symmetric, and the
other is antisymmetric. These spline wavelets are then adapted to the interval [0, 1]. The
construction of boundary wavelets is remarkably simple. Furthermore, global stability of the
wavelet basis is established. The wavelet basis is used to solve the Sturm–Liouville equation
with the Dirichlet boundary condition. Numerical examples are provided. The computational
results demonstrate the advantage of the wavelet basis.
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1. Introduction

In this paper we shall construct wavelet bases of Hermite cubic splines on the in-
terval. These wavelet bases are suitable for numerical solutions of differential equations.

By L2(R) we denote the linear space of all square-integrable real-valued functions
on R. The inner product in L2(R) is defined as

〈u, v〉 :=
∫

R

u(x)v(x) dx, u, v ∈ L2(R).

If 〈u, v〉 = 0, then we say that u and v are orthogonal. The norm of a function f in
L2(R) is given by ‖f ‖2 := √〈f, f 〉.

Smooth orthogonal wavelets with compact support were constructed by Daubechies
(see [9]). The Daubechies orthogonal wavelets were adapted to the interval [0, 1] by Co-
hen et al. [7]. Semi-orthogonal spline wavelets were constructed by Chui and Wang [5].
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These spline wavelets were adapted to the interval [0, 1] by Chui and Quak [4]. In [14]
Wang constructed cubic spline wavelet bases for Sobolev spaces.

Orthogonal multi-wavelets were constructed by Donovan et al. [10]. In [11], Heil
et al. considered the possibility of construction of wavelets on the basis of Hermite cubic
splines.

Let φ1 and φ2 be the cubic splines given by

φ1(x) :=



(x + 1)2(1 − 2x) for x ∈ [−1, 0],
(1 − x)2(2x + 1) for x ∈ [0, 1],
0 for x ∈ R \ [−1, 1],

and

φ2(x) :=



x(x + 1)2 for x ∈ [−1, 0],
x(x − 1)2 for x ∈ [0, 1],
0 for x ∈ R \ [−1, 1].

In [8], Dahmen et al. constructed biorthogonal multi-wavelets on the basis of the
Hermite cubic splines φ1 and φ2. These wavelets were adapted to the interval [0, 1].
However, their construction for the wavelet basis on the interval [0, 1] was quite compli-
cated.

In this paper we take a new approach to the construction of wavelet bases of Her-
mite cubic splines. In contrast to the semi-orthogonal wavelets of Chui and Wang, the
wavelets at different levels are orthogonal with respect to the inner product 〈u′, v′〉,
rather than 〈u, v〉. This requirement of orthogonality is more pertinent to applications of
wavelets to numerical solutions of differential equations.

In section 2 we will give two wavelets ψ1 and ψ2 as follows:

ψ1(x) = −2φ1(2x + 1) + 4φ1(2x) − 2φ1(2x − 1)

− 21φ2(2x + 1) + 21φ2(2x − 1),

ψ2(x) = φ1(2x + 1) − φ1(2x − 1) + 9φ2(2x + 1) + 12φ2(2x) + 9φ2(2x − 1).

Clearly, ψ1 and ψ2 are supported on [−1, 1]; ψ1 is symmetric and ψ2 is antisymmetric.
Moreover, 〈

ψ ′
1, φ

′
m(· − j)

〉 = 〈ψ ′
2, φ

′
m(· − j)

〉 = 0, m = 1, 2, ∀j ∈ Z.

These wavelets can be easily adapted to the interval [0, 1].
By L2(0, 1) we denote the space of all square-integrable real-valued functions on

(0, 1). The inner product in L2(0, 1) is defined as

〈u, v〉 :=
∫ 1

0
u(x)v(x) dx, u, v ∈ L2(0, 1).

Let H 1(0, 1) be the space of all functions u in L2(0, 1) for which (the distributional
derivative) u′ ∈ L2(0, 1). Let H 1

0 (0, 1) be the closure of the set{
u ∈ C[0, 1] ∩ C1(0, 1): u(0) = u(1) = 0

}



R.-Q. Jia, S.-T. Liu / Wavelet bases of Hermite cubic splines 25

in the space H 1(0, 1), where C[0, 1] denotes the space of all continuous functions on
[0, 1], and C1(0, 1) denotes the space of those continuous functions on (0, 1) whose
derivatives are also continuous.

For a nonnegative integer k, we denote by �k the set of all polynomials of degree
at most k. For n � 1, let Vn be the space of those cubic splines v ∈ C1(0, 1) ∩ C[0, 1]
for which v(0) = v(1) = 0 and

v|(j/2n,(j+1)/2n) ∈ �3|(j/2n,(j+1)/2n) for j = 0, . . . , 2n − 1.

The dimension of Vn is 2n+1. It is easily seen that the set

�n := {φ1
(
2n · −j

)
: j = 1, . . . , 2n − 1

} ∪ {φ2
(
2n · −j

)∣∣
(0,1)

: j = 0, . . . , 2n
}

(1.1)

is a basis for Vn. We label the elements in �n as {v1, v2, . . . , v2n+1}.
Let �n be the set of wavelets given by

�n := {ψ1
(
2n · −j

)
: j = 1, . . . , 2n − 1

} ∪ {ψ2
(
2n · −j

)∣∣
(0,1)

: j = 0, . . . , 2n
}
. (1.2)

Let Wn be the linear span of �n. It is easily seen that �n is a basis for Wn. Consequently,
the dimension of Wn is 2n+1. In section 3 we shall show that∫ 1

0
w′(x)v′(x) dx = 0 ∀w ∈ �n and v ∈ �n.

It follows that Vn ∩ Wn = {0}. Moreover, we have Vn+1 ⊇ Vn + Wn and

dim(Vn+1) = dim(Vn) + dim(Wn).

This shows that Vn+1 is the direct sum of Vn and Wn. Therefore, we have the following
decomposition of H 1

0 (0, 1):

H 1
0 (0, 1) = V1 + W1 + W2 + · · · .

Recall that �1 = {v1, v2, v3, v4}. For n = 1, 2, . . . , we label the elements in �n as
follows:

�n = {w2n+1+1, . . . , w2n+2}.
Let gk := vk/‖v′

k‖2 for k = 1, 2, 3, 4 and gk := wk/‖w′
k‖2 for k > 4. Thus, ‖g′

k‖2 = 1
for k = 1, 2, . . . . In section 3 we will show that (g′

k)k=1,2... is a Riesz sequence in
L2(0, 1).

In section 4 we shall apply the wavelets constructed in section 3 to numerical solu-
tions of the Sturm–Liouville equation of the form

− d

dx

(
p(x)

du

dx

)
+ q(x)u(x) = f (x), x ∈ (0, 1), (1.3)

with the Dirichlet boundary condition u(0) = u(1) = 0. We assume that p and q are
continuous functions on [0, 1] and p(x) > 0, q(x) � 0 for all x ∈ [0, 1]. Let

a(u, v) :=
∫ 1

0
p(x)u′(x)v′(x) dx +

∫ 1

0
q(x)u(x)v(x) dx, u, v ∈ H 1

0 (0, 1). (1.4)
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Then the variational form of the above equation with the Dirichlet boundary condition is

a(u, v) = 〈f, v〉 ∀v ∈ H 1
0 (0, 1).

Wavelets have been used to discretize differential equations. In particular, Xu
and Shann [15] successfully applied the wavelet method to numerical solutions of the
Sturm–Liouville equation (1.3). The wavelet bases in their paper are anti-derivatives of
the Daubechies orthogonal wavelets. Consequently, their basis functions are not locally
supportd and, in general, the corresponding stiffness matrix is full (not sparse). Further-
more, the condition number of the stiffness matrix is not uniformly bounded.

In application of the wavelet method one often encounters the difficuly that the
boundary conditions are hard to impose on wavelets. In our construction, only two
wavelets in �n, ψ2(2n·) and ψ2(2n · −2n), needed to be adapted to the interval (0, 1) by
means of restriction. This is in sharp contrast to the complexity of the construction of
boundary wavelets given in [8].

Recall that {gk : k = 1, . . . , 2n+1} is a wavelet basis for Vn. Let An denote the
stiffness matrix (a(gj , gk))j,k=1,...,2n+1 . In section 4 we will prove that the condition
number of An is uniformly bounded (independent of n). In particular, for the case p = 1
and q = 1, numerical computation suggests that the condition number of An be less than
3.75 for all n. By comparison, the condition number of the stiffness matrix with respect
to the wavelet basis constructed in [8] is very large.

At the end of this paper, we shall provide two numerical examples using the above
wavelet basis. The computational results demonstrate the advantage of our wavelet basis.

2. Spline wavelets

In this section we construct wavelets on the basis of Hermite cubic splines.
Let φ1 and φ2 be the cubic splines given in section 1. The graphs of φ1 and φ2 are

depicted in figure 1. Clearly, both φ1 and φ2 belong to C1(R). Moreover, we have

φ1(0) = 1, φ′
1(0) = 0, φ2(0) = 0, φ′

2(0) = 1.

Hence, for a function f ∈ C1(R),

u =
∑
j∈Z

f (j)φ1(· − j) +
∑
j∈Z

f ′(j)φ2(· − j)

is a Hermite interpolant to f on Z, that is, u(j) = f (j) and u′(j) = f ′(j) for all j ∈ Z.
Let � := (φ1, φ2)

T, the transpose of the 1 × 2 vector (φ1, φ2). Then � satisfies the
following vector refinement equation (see [11]):

�(x) =
1∑

j=−1

a(j)�(2x − j), x ∈ R,
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Figure 1. Hermit cubic splines on R.

where

a(−1) =



1

2
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4

−1
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8


 , a(0) =

[
1 0

0
1

2

]
, and a(1) =




1

2
−3

4
1

8
−1

8


 .

Let S be the shift-invariant space generated by φ1 and φ2. A function g belongs to
S if and only if there are two sequences b1 and b2 on Z such that

g =
∑
j∈Z

[
b1(j)φ1(· − j) + b2(j)φ2(· − j)

]
.

Let S1 := {g(2·): g ∈ S}. Then S ⊂ S1, since � is refinable. We look for a wavelet
space W such that S1 is the direct sum of S and W . We wish to find two wavelets ψ1

and ψ2 such that their shifts generate W . Moreover, we require〈
ψ ′

1, φ
′
m(· − j)

〉 = 〈ψ ′
2, φ

′
m(· − j)

〉 = 0, m = 1, 2, ∀j ∈ Z. (2.1)

For this purpose we need to calculate the inner product of the derivatives of shifts of φ1

and φ2. Note that

φ′
1(x) :=




−6x2 − 6x for x ∈ [−1, 0],
6x2 − 6x for x ∈ [0, 1],
0 otherwise,

and

φ′
2(x) :=

{
3x2 + 4x + 1 for x ∈ [−1, 0],
3x2 − 4x + 1 for x ∈ [0, 1],
0 otherwise.

Suppose

ψ(x) =
∑
k∈Z

[
b1(k)φ1(2x − k) + b2(k)φ2(2x − k)

]
, x ∈ R.
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Then for j ∈ Z we have

〈
ψ ′, φ′

1(· − j)
〉= 1

20

[−21b1(2j − 2) + 42b1(2j) − 21b1(2j + 2)

− 3b2(2j − 2) + 4b2(2j − 1) − 4b2(2j + 1) + 3b2(2j + 2)
]

and

〈
ψ ′, φ′

2(· − j)
〉= 1

120

[
33b1(2j − 2) − 60b1(2j − 1) + 60b1(2j + 1)

− 33b1(2j + 2) + 4b2(2j − 2) − 12b2(2j − 1)

+ 28b2(2j) − 12b2(2j + 1) + 4b2(2j + 2)
]
.

For z ∈ C \ {0}, let

q11(z) :=
∑
j∈Z

b1(2j + 1)z2j+1, q12(z) :=
∑
j∈Z

b1(2j)z2j ,

q21(z) :=
∑
j∈Z

b2(2j + 1)z2j+1, q22(z) :=
∑
j∈Z

b2(2j)z2j .

Then 〈ψ ′, φ′
m(· − j)〉 = 0 for m = 1, 2 and all j ∈ Z if and only if

B(z)
(
q11(z), q12(z), q21(z), q22(z)

)T = 0 ∀z ∈ C \ {0},
where

B(z) :=
[

0 −21z2 + 42 − 21z−2 4z − 4z−1 −3z2 + 3z−2

−60z + 60z−1 33z2 − 33z−2 −12z − 12z−1 4z2 + 28 + 4z−2

]
.

We find two independent solutions as follows:


q11(z)

q12(z)

q21(z)

q22(z)


 =




−2z−1 − 2z

4
−21z−1 + 21z

0


 and




q11(z)

q12(z)

q21(z)

q22(z)


 =




z−1 − z

0
9z−1 + 9z

12


 .

These two solutions induce two wavelets ψ1 and ψ2 given by

ψ1(x) = −2φ1(2x + 1) + 4φ1(2x) − 2φ1(2x − 1) − 21φ2(2x + 1) + 21φ2(2x − 1),

ψ2(x) = φ1(2x + 1) − φ1(2x − 1) + 9φ2(2x + 1) + 12φ2(2x) + 9φ2(2x − 1).

By our construction, ψ1 and ψ2 are supported on [−1, 1], they satisfy the conditions
in (2.1), and their shifts generate the wavelet space W such that S1 is the direct sum of S

and W . Moreover, ψ1 is symmetric and ψ2 is antisymmetric (see figure 2).
Let us take a look at ψ ′

1 and ψ ′
2. For 0 � x � 1/2 we have

ψ ′
1(x) = 792x2 − 312x, ψ ′

1(x − 1) = −408x2 + 120x,

ψ ′
2(x) = 552x2 − 288x + 24, ψ ′

2(x − 1) = 168x2 − 48x.
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Figure 2. Wavelets ψ1 and ψ2.

For 1/2 � x � 1 we have

ψ ′
1(x) = 408x2 − 696x + 288, ψ ′

1(x − 1) = −792x2 + 1272x − 480,

ψ ′
2(x) = 168x2 − 288x + 120, ψ ′

2(x − 1) = 552x2 − 816x + 288.

Hence, the shifts of ψ ′
1 and ψ ′

2 are linearly independent on the interval (0, 1). Because of
shift invariance, the shifts of ψ ′

1 and ψ ′
2 are linear independent on the interval (k, k + 1)

for every k ∈ Z. Suppose b1 and b2 are two square summable sequences on Z. Let

u :=
∑
j∈Z

[
b1(j)ψ ′

1(· − j) + b2(j)ψ ′
2(· − j)

]
.

For j < k or j > k + 1, ψ ′
1(· − j) and ψ ′

2(· − j) vanish on (k, k + 1). Since the shifts
of ψ ′

1 and ψ ′
2 are linearly independent on (k, k+1), there exist two positive constants C1

and C2 independent of k, b1, and b2 such that

C2
1

k+1∑
j=k

[∣∣b1(j)
∣∣2 + ∣∣b2(j)

∣∣2] �
∫ k+1

k

∣∣u(x)
∣∣2 dx � C2

2

k+1∑
j=k

[∣∣b1(j)
∣∣2 + ∣∣b2(j)

∣∣2].

It follows that

2C2
1

∑
j∈Z

[∣∣b1(j)
∣∣2 + ∣∣b2(j)

∣∣2] �
∫

R

∣∣u(x)
∣∣2 dx � 2C2

2

∑
j∈Z

[∣∣b1(j)
∣∣2 + ∣∣b2(j)

∣∣2].

In other words, the shifts of ψ ′
1 and ψ ′

2 are stable. See [12] for a study of stability of
shifts of several functions.

3. Wavelets on the interval

In this section we use the spline wavelets in the previous section to construct a
wavelet basis for the space H 1

0 (0, 1).



30 R.-Q. Jia, S.-T. Liu / Wavelet bases of Hermite cubic splines

Recall that Vn is the linear space of those cubic splines v ∈ C1(0, 1) ∩ C[0, 1] for
which v(0) = v(1) = 0 and

v|(j/2n,(j+1)/2n) ∈ �3|(j/2n,(j+1)/2n) for j = 0, . . . , 2n − 1.

The dimension of Vn is 2n+1. Moreover,

(a) V1 ⊂ V2 ⊂ · · · ⊂ H 1
0 (0, 1);

(b)
⋃∞

n=1 Vn is dense in H 1
0 (0, 1).

Let �n and �n be the sets defined in (1.1) and (1.2), respectively. Then �n is a basis
for Vn. Let Wn be the linear span of �n. Clearly, �n is a basis for Wn. Consequently, the
dimension of Wn is 2n+1.

We claim that ∫ 1

0
w′(x)v′(x) dx = 0 ∀w ∈ �n and v ∈ �n. (3.1)

Suppose w = ψr(2n ·−j) for some r ∈ {1, 2} and j ∈ {1, . . . , 2n −1}. Then ψ ′
r (2

n ·−j)

is supported in the interval [0, 1]. Hence, for s = 1, 2 and k ∈ Z, we have
∫ 1

0
ψ ′

r

(
2nx − j

)
φ′

s

(
2nx − k

)
dx =

∫
R

ψ ′
r

(
2nx − j

)
φ′

s

(
2nx − k

)
dx = 0,

where (2.1) has been used to derive the second equality. For the same reason, (3.1) is
valid if v = φs(2n · −k) for some s ∈ {1, 2} and k ∈ {1, . . . , 2n − 1}. Thus, in order
to complete the proof of (3.1), it remains to deal with the case w = ψ2(2n · −j)|(0,1)

and v = φ2(2n · −k)|(0,1) for j, k ∈ {0, 2n}. We have v′(x)w′(x) = 0 for x ∈ (0, 1) if
j = 0 and k = 2n, or if j = 2n and k = 0. Hence (3.1) is valid in this case. Suppose
j = k = 0. Since ψ2 and φ2 are antisymmetric, ψ ′

2 and φ′
2 are symmetric. Hence, ψ ′

2φ
′
2

is symmetric. It follows that
∫ 0

−1
ψ ′

2(x)φ′
2(x) dx =

∫ 1

0
ψ ′

2(x)φ′
2(x) dx.

But (2.1) tells us that ∫ 1

−1
ψ ′

2(x)φ′
2(x) dx = 0.

Therefore, ∫ 1

0
ψ ′

2(x)φ′
2(x) dx = 0.

Consequently,
∫ 1

0
ψ ′

2

(
2nx
)
φ′

2

(
2nx
)

dx = 2−n

∫ 2n

0
ψ ′

2(x)φ′
2(x) dx = 0.
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This verifies (3.1) for w = ψ2(2n·)|(0,1) and v = φ2(2n·)|(0,1). An analogous argument
shows that (3.1) is valid for w = ψ2(2n · −2n)|(0,1) and v = φ2(2n · −2n)|(0,1). The proof
of (3.1) is complete.

It follows from (3.1) that
∫ 1

0
w′(x)v′(x) dx = 0 ∀w ∈ Wn and v ∈ Vn.

In particular, Vn ∩ Wn = {0}. We have Vn+1 ⊇ Vn + Wn and

dim(Vn + Wn) = dim(Vn) + dim(Wn) = 2n+1 + 2n+1 = dim(Vn+1).

This shows that Vn+1 is the direct sum of Vn and Wn. Consequently,

Vn+1 = V1 + W1 + · · · + Wn.

Therefore, we have the following decomposition of H 1
0 (0, 1):

H 1
0 (0, 1) = V1 + W1 + W2 + · · · .

Suppose v ∈ V1 and wn ∈ Wn for n = 1, 2, . . . . The preceding discussion tells us
that 〈v′, w′

n〉 = 0 for all n and 〈w′
m, w′

n〉 = 0 for m 
= n. Hence,
∥∥∥∥∥v′ +

∞∑
n=1

w′
n

∥∥∥∥∥
2

L2(0,1)

= ‖v′‖2
L2(0,1) +

∞∑
n=1

‖w′
n‖2

L2(0,1). (3.2)

For n = 1, 2, . . . and x ∈ (0, 1), let

ψn,j (x) := 2−n/2

√
729.6

ψ1

(
2nx − j

2

)
for j = 2, 4, . . . , 2n+1 − 2,

ψn,j (x) := 2−n/2

√
153.6

ψ2

(
2nx − j − 1

2

)
for j = 3, 5, . . . , 2n+1 − 1,

and

ψn,1(x) := 2−n/2

√
76.8

ψ2
(
2nx
)
, ψn,2n+1(x) := 2−n/2

√
76.8

ψ2
(
2nx − 2n

)
.

Note that ψn,j are so normalized that ‖ψ ′
n,j‖L2(0,1) = 1 for j = 1, . . . , 2n+1.

Theorem 1. The sequence (ψ ′
n,j )n=1,2,...,1�j�2n+1 is a Riesz sequence in L2(0, 1). In

other words, there exist two positive constants A and B such that

A

( ∞∑
n=1

2n+1∑
j=1

|bn,j |2
)1/2

�
∥∥∥∥∥

∞∑
n=1

2n+1∑
j=1

bn,jψ
′
n,j

∥∥∥∥∥
L2(0,1)

� B

( ∞∑
n=1

2n+1∑
j=1

|bn,j |2
)1/2

for every sequence (bn,j )n=1,2,...,1�j�2n+1 .
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Proof. By (3.2) we have
∥∥∥∥∥

∞∑
n=1

2n+1∑
j=1

bn,jψ
′
n,j

∥∥∥∥∥
2

L2(0,1)

=
∞∑

n=1

∥∥∥∥∥
2n+1∑
j=1

bn,jψ
′
n,j

∥∥∥∥∥
2

L2(0,1)

.

In light of the discussion at the end of section 3, we assert that the shifts of ψ ′
1 and ψ ′

2
are linearly independent on (k, k + 1) for every k ∈ Z. Hence, there exist two positive
constants A and B (independent of n) such that

A2
2n+1∑
j=1

|bn,j |2 �
∥∥∥∥∥

2n+1∑
j=1

bn,jψ
′
n,j

∥∥∥∥∥
2

L2(0,1)

� B2
2n+1∑
j=1

|bn,j |2.

This completes the proof of the theorem. �

For x ∈ (0, 1), let

φ1,1(x) :=
√

5

24
φ1(2x − 1), φ1,2(x) :=

√
15

4
φ2(2x),

φ1,3(x) :=
√

15

8
φ2(2x − 1), φ1,4(x) :=

√
15

4
φ2(2x − 2).

Note that each φ1,j is so normalized that ‖φ′
1,j‖L2(0,1) = 1, j = 1, . . . , 4. Clearly, V1 is

spanned by φ1,j , j = 1, . . . , 4. Consequently, H 1
0 (0, 1) is spanned by φ1,j , j = 1, . . . , 4,

together with ψn,j , n = 1, 2, . . . , j = 1, . . . , 2n+1. We relabel these functions as fol-
lows. Let gj := φ1,j for j = 1, . . . , 4, and let g2n+1+j := ψn,j for n = 1, 2, . . . and
j = 1, . . . , 2n+1. With the same reasoning as in the proof of theorem 1, we see that
the sequence (g′

k)k=1,2,... is a Riesz sequence in L2(0, 1). In other words, there exist two
positive constants A and B such that

A

( ∞∑
k=1

|bk|2
)1/2

�
∥∥∥∥∥

∞∑
k=1

bkg
′
k

∥∥∥∥∥
L2(0,1)

� B

( ∞∑
k=1

|bk|2
)1/2

(3.3)

for every square summable sequence (bk)k=1,2,....

4. Applications

In this section the wavelets constructed in the previous section are used to solve
differential equations. We shall confine ourselves to the Sturm–Liouville equation of the
form (1.3) with the Dirichlet boundary condition u(0) = u(1) = 0. We assume that p

and q are continuous functions on [0, 1] and p(x) > 0, q(x) � 0 for all x ∈ [0, 1].
For u, v ∈ H 1

0 (0, 1), let a(u, v) be the bilinear form given in (1.4). Then the
variational form of equation (1.3) with the Dirichlet boundary condition is

a(u, v) = 〈f, v〉 ∀v ∈ H 1
0 (0, 1). (4.1)
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The corresponding Galerkin approximation problem is the following: find un ∈ Vn such
that

a(un, v) = 〈f, v〉 ∀v ∈ Vn. (4.2)

By the Lax–Milgram lemma (see, e.g., [2, p. 60]), the approximation problem (4.2) has
a unique solution.

We propose to use the wavelet set Gn := {g1, . . . , g2n+1} as a basis for Vn. Recall
that gj := φ1,j for j = 1, . . . , 4, and g2n+1+j := ψn,j for n = 1, 2, . . . and j = 1,

. . . , 2n+1, where φ1,j (j = 1, . . . , 4) and ψn,j (j = 1, . . . , 2n+1) are the functions con-
structed in the previous section. With this basis for Vn, the Galerkin approximation
problem (4.2) can be discretized as follows:

2n+1∑
k=1

a(gj , gk)ηk = 〈gj , f 〉, j = 1, . . . , 2n+1.

The stiffness matrix
(
a(gj , gk)

)
1�j,k�2n+1

is denoted by An. We will prove that the condition number of An is uniformly bounded
(independent of n). Therefore, the wavelet basis Gn is a good tool for preconditioning.

Let us recall that the condition number of an invertible square matrix A is defined
by

cond(A) := ‖A‖∥∥A−1
∥∥,

where ‖ · ‖ is a matrix norm. The spectral condition number of A is defined as

maxi |λi(A)|
mini |λi(A)| ,

where the numbers λi(A) are eigenvalues of A. If A is a (real) symmetric matrix, then
its condition number with respect to the 2-norm is equal to its spectral condition number
(see [6, p. 51]).

Theorem 2. The condition number of the stiffness matrix An is uniformly bounded (in-
dependent of n).

Proof. It suffices to show that there exist two positive constants B and C independent
of n such that

B

(
4∑

j=1

|cj |2 +
n−1∑
m=1

2m+1∑
j=1

|bm,j |2
)

� a(u, u) � C

(
4∑

j=1

|cj |2 +
n−1∑
m=1

2m+1∑
j=1

|bm,j |2
)

(4.3)
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for any

u =
4∑

j=1

cjφ1,j +
n−1∑
m=1

2m+1∑
j=1

bm,jψm,j .

By (3.3) there exists a positive constant C1 independent of n such that

‖u′‖L2(0,1) =
∥∥∥∥∥

4∑
j=1

cjφ
′
1,j +

n−1∑
m=1

2m+1∑
j=1

bm,jψ
′
m,j

∥∥∥∥∥
L2(0,1)

� C1

(
4∑

j=1

|cj |2 +
n−1∑
m=1

2m+1∑
j=1

|bm,j |2
)1/2

.

But

a(u, u) � 〈pu′, u′〉 � µ〈u′, u′〉 = µ‖u′‖2
L2(0,1),

where µ := minx∈[0,1] p(x) > 0. This establishes the first inequality in (4.3). Further-
more, we observe that

a(u, u) � ν
(‖u‖2

L2(0,1) + ‖u′‖2
L2(0,1)

)
,

where ν := max0�x�1{p(x), q(x)} < ∞. By (3.3) there exists a positive constant C2

independent of n such that

‖u′‖L2(0,1) � C2

(
4∑

j=1

|cj |2 +
n−1∑
m=1

2m+1∑
j=1

|bm,j |2
)1/2

.

Moreover,

‖u‖L2(0,1) �
∥∥∥∥∥

4∑
j=1

cjφ1,j

∥∥∥∥∥
L2(0,1)

+
n−1∑
m=1

∥∥∥∥∥
2m+1∑
j=1

bm,jψm,j

∥∥∥∥∥
L2(0,1)

.

Note that ‖ψm,j‖L2(0,1) = O(2−m) as m → ∞. Hence, there exists a positive constant C3

independent of n such that

‖u‖L2(0,1) � C3

[(
4∑

j=1

|cj |2
)1/2

+
n−1∑
m=1

2−m

(
2m+1∑
j=1

|bm,j |2
)1/2]

.

With the help of the Schwarz inequality we see that there exists a positive constant C4

independent of n such that

‖u‖2
L2(0,1) � C4

(
4∑

j=1

|cj |2 +
n−1∑
m=1

2m+1∑
j=1

|bm,j |2
)

.

The second inequality in (4.3) follows. The proof of the theorem is complete. �
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In what follows we apply the wavelet basis Gn to two numerical examples.

Example 1. Consider the Dirichlet problem:{−u′′ = f on (0, 1),

u(0) = u(1) = 0,

where f is given by
f (x) = (53.7π)2 sin(53.7πx) + (2.3π)2 sin(2.3πx), x ∈ (0, 1).

The exact solution of the problem is

u(x) = sin(53.7πx) + sin(2.3πx), x ∈ (0, 1), (4.4)

which could be regarded as the sum of a high-frequency component and a low-frequency
component.

Let us use the wavelet basis Gn := {g1, . . . , g2n+1} to solve the Dirichlet problem.

With un =∑2n+1

k=1 ηkgk, the Galerkin approximation problem (4.2) is discretized as

2n+1∑
k=1

〈g′
j , g

′
k〉ηk = 〈gj , f 〉, j = 1, . . . , 2n+1. (4.5)

The stiffness matrix An := (〈g′
j , g

′
k〉)1�j,k�2n+1 is block diagonal. Moreover, each block

is a banded matrix. By theorem 2, the condition number of the matrix An is uniformly
bounded (independent of n). This assertion is confirmed by numerical computation of
the maximal eigenvalue λmax, the minimal eigenvalue λmin, and the condition number
κ = λmax/λmin of the matrix An for n = 6, . . . , 12 (see table 1).

We use the CG (conjugate gradient) method to solve the system (4.5) of linear
equations. The convergence of CG method will be judged by the threshold ε = 10−10.
More precisely, the process of iteration will terminate if the difference of two consec-
utive iterations is less than 10−10. Since the stiffness matrix An is well conditioned,
the CG method converges very fast. Up to n = 12, only 21 iterations are needed for
convergence to the solution of the system of linear equations. For n = 1, 2, . . . , let
en := ‖un − u‖L2(0,1), where u is the exact solution given in (4.4). For n = 6, . . . , 12,
table 2 lists the error en and the rate of convergence log2 en−1/en.

It is well known from approximation theory that the Hermite cubic splines provide
approximation of order 4. The preceding computation confirms this assertion.

Table 1
Condition number of the matrix An.

n 6 7 8 9 10 11 12

λmax 1.5780 1.5787 1.5789 1.5789 1.5789 1.5789 1.5789
λmin 0.4220 0.4213 0.4211 0.4211 0.4211 0.4211 0.4211
κ 3.7397 3.7474 3.7494 3.7498 3.7498 3.7498 3.7498
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Table 2
Error en and its convergence rate.

n 6 7 8 9 10 11 12

en 1.210 E−2 1.326 E−3 1.082 E−4 7.358 E−6 4.705 E−7 2.9584 E−8 1.852 E−9

log2

(
en−1
en

)
4.10 3.19 3.62 3.88 3.97 3.99 4.00

Figure 3. The error against the number of iterations without preconditioning.

If we use the finite elements in �n given in (1.1) to discretize equation (4.2), then
the resulting stiffness matrix is ill conditioned. For n = 12, the system of linear equa-
tions has 8192 unknowns. Without preconditioning, it takes more than 2000 iterations
for the CG method to converge. The graph in figure 3 depicts the error against the num-
ber of iterations.

In [1], Bramble et al. proposed the so-called BPX method for preconditioning. This
method was developed on the nodal basis (piecewise linear functions). We observe that
piecewise linear functions only provide approximation of order 2. In order to achieve
convergence of order 4, one may extend the BPX method to Hermite cubic splines. For
n = 6, . . . , 12, table 3 gives the maximal eigenvalue λmax, the minimal eigenvalue λmin,
and the spectral condition number of the corresponding matrix after preconditioning.

We see that the condition number induced by our wavelet basis is smaller than that
given by the BPX method. For n = 12, after preconditioning by the BPX method, it
takes 26 iterations for the PCG (preconditioned conjugate gradient) method to converge.
Hence, the preconditioning method induced by our wavelet basis is competitive.
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Table 3
BPX preconditioning for Hermite cubic splines.

n 6 7 8 9 10 11 12

λmax 3.562 3.632 3.682 3.718 3.743 3.763 3.777
λmin 0.7693 0.7696 0.7696 0.7696 0.7696 0.7696 0.7696
κ 4.630 4.719 4.784 4.831 4.864 4.890 4.907

Table 4
Condition number of the matrix An.

n 6 7 8 9 10 11 12

λmax 1.5780 1.5787 1.5789 1.5789 1.5789 1.5789 1.5789
λmin 0.4220 0.4213 0.4211 0.4211 0.4211 0.4211 0.4211
κ 3.7396 3.7474 3.7494 3.7498 3.7498 3.7498 3.7498

Example 2. Consider the Dirichlet problem{−u′′ + u = f on (0, 1),

u(0) = u(1) = 0,

where

f (x) = [(53.7π)2 + 1
]

sin(53.7πx) + [(2.3π)2 + 1
]

sin(2.3πx), x ∈ (0, 1).

The function u given in (4.4) is the exact solution of the problem.

In this case, the bilinear form a(u, v) is given by

a(u, v) = 〈u′, v′〉 + 〈u, v〉, u, v ∈ H 1
0 (0, 1).

With the wavelet basis Gn the Galerkin approximation problem (4.2) is discretized as

2n+1∑
k=1

(〈g′
j , g

′
k〉 + 〈gj , gk〉

)
ηk = 〈gj , f 〉, j = 1, . . . , 2n+1. (4.6)

The stiffness matrix

An := (〈g′
j , g

′
k〉 + 〈gj , gk〉

)
1�j,k�2n+1

is still a sparse matrix. By theorem 2, the condition number of the matrix An is uniformly
bounded (independent of n). This assertion is confirmed by numerical computation of
the maximal eigenvalue λmax, the minimal eigenvalue λmin, and the condition number κ

of An for n = 6, . . . , 12 (see table 4).
For n = 6, . . . , 12, table 5 gives the maximal eigenvalue λmax, the minimal eigen-

value λmin, and the spectral condition number of the corresponding matrix after pre-
conditioning by using the BPX method. By comparsion, the condition number of our
wavelet basis is smaller than that of the BPX method.
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Table 5
BPX preconditioning for Hermite cubic splines.

n 6 7 8 9 10 11 12

λmax 3.562 3.632 3.682 3.718 3.743 3.763 3.777
λmin 0.7696 0.7696 0.7696 0.7696 0.7696 0.7696 0.7696
κ 4.628 4.719 4.784 4.831 4.864 4.890 4.907

Table 6
Error en and its convergence rate.

n 6 7 8 9 10 11 12

en 1.210 E−2 1.326 E−3 1.082 E−4 7.359 E−6 4.706 E−7 2.967 E−8 1.918 E−9

log2

(
en−1
en

)
4.10 3.19 3.62 3.88 3.97 3.99 3.95

We use the CG method to solve the system (4.6) of linear equations. The com-
putational results are similar to those in example 1. Up to n = 12, only 19 itera-
tions are needed for convergence to the solution of the system of linear equations. For
n = 6, . . . , 12, table 6 lists the error en and the rate of convergence log2 en−1/en.

Finally, we remark that our wavelet basis can also be used to solve integral equa-
tions numerically. A discrete wavelet Petrov–Galerkin method was developed by Chen
et al. [3] for numerical solutions of integral equations of the second kind with weakly
singular kernels. Recently, Shen and Lin [13] used the wavelet basis Gn constructed in
this paper to find numerical solutions of integral equations on the upper half-plane.
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