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Incretins or Anti-Incretins? A New Model for the 
“Entero-Pancreatic Axis”

atic β-cells in a glucose-dependent way after 
ingestion of food.
In addition to a role in the secretion of insulin, 
the gut can also play an important role in the 
regulation of insulin sensitivity and energy 
homeostasis through a variety of mechanisms 
that have become the focus of intense research in 
recent years. For instance, the gut microbiota, a 
term used to collectively describe all the micro-
organisms that inhabit the human digestive tract, 
has been implicated in the development of obe-
sity, insulin resistance, and diabetes [6, 7].
Furthermore, bile acids can also influence glu-
cose and lipid metabolism and play a role in the 
overall regulation of energy homeostasis. Bile 
acids facilitate the absorption of fatty acids and 
lipid-soluble vitamins, contribute to cholesterol 
clearance, act as metabolic signaling molecules 
[8] and are also involved in incretin secretion 
[9, 10].

In the early 1900s, Bayliss et al. postulated that 
certain factors produced by the intestinal mucosa 
in response to nutrient ingestion could stimulate 
the release of substances from the endocrine 
pancreas, thereby reducing blood glucose levels 
[1]. In 1969, Unger and Eisentraut introduced the 
term “entero-insular-axis” to define the multiple 
stimulating and inhibiting interactions between 
the gut and the pancreatic islet cells [2].
The key functional connection between the small 
intestine and the endocrine pancreas was 
unmasked after it was shown that the insulin 
response to orally digested glucose is substan-
tially stronger than that which follows the intra-
venous administration of the same amount of 
glucose [3]. This observation was named “the 
incretin effect” and led to the discovery of “incre-
tins”, namely gastric inhibitory polypeptide (GIP) 
[4] and later glucose-dependent insulinotropic 
polypeptide-1 (GLP-1) [5]. These gut-hormones 
enhance the release of insulin from the pancre-
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Abstract
▼
The role of incretins in glucose homeostasis is 
well known. Yet, in recent years, the sustained 
weight loss and rapid glycemic control following 
bariatric surgery has challenged our understand-
ing of the intestinal-pancreatic interaction. This 
in turn led to the introduction of metabolic sur-
gery, an innovative medical discipline in which a 
surgical manipulation of the gastrointestinal 
tract (e. g., through a Roux-en-Y gastric bypass, 
RYGB, or Bilio-Pancreatic-Diversion, BPD) yields 
a sustained remission of diabetes mellitus. The 
pathophysiological background of this metabolic 
effect is, amongst other things, based on the anti-
incretin theory. This theory postulates that in 
addition to the well-known incretin effect, 
nutrient passage through the GI-tract could also 
activate negative feedback mechanisms (anti- 

incretins) to balance the effects of incretins and 
other postprandial glucose-lowering mecha-
nisms (i. e., suppression of ghrelin, glucagon, and 
hepatic glucose production via activation of 
nutrient sensing). This in turn prevents post-
prandial hyperinsulinemic hypoglycemia. The 
bypass of the duodenum, the entire jejunum and 
the first portion of the ileum by BPD induce nor-
malization of peripheral insulin sensitivity, while 
the bypass of a shorter intestinal tract by RYGB 
mainly improves the hepatic insulin sensitivity. 
In addition, RYGB greatly increases insulin secre-
tion. Therefore, metabolic surgery highlights the 
important role of the small intestine in glucose 
homeostasis, while until few years ago, it was 
only the pancreas and the liver that were thought 
to represent the regulatory organs for glucose 
disposal.
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The most compelling evidence for the importance of the role of 
the gastrointestinal (GI) tract in the regulation of energy homeo-
stasis however, derives from observations of the dramatic clini-
cal effects of gastrointestinal operations that go under the name 
of “bariatric” and now “metabolic” surgery [11].
These procedures in fact have been shown to induce long-term 
weight loss and sustained remission of type 2 diabetes mellitus 
(T2DM) [12, 13] as well as improvement of other metabolic con-
ditions including hypertension, sleep apnoea, and dyslipidemia 
[14, 15].
There are several surgical procedures used for the treatment of 
morbid obesity. Roux-en-Y gastric bypass (RYGB) and the Bilio-
Pancreatic Diversion (BPD) appear to evoke the greatest effect on 
the regulation of metabolism. From an anatomical point of view, 
RYGB involves the creation of a small stomach pouch and an 
exclusion of the proximal small intestine (all of duodenum and a 
large segment of jejunum), while BPD involves a gastric resec-
tion and diversion of the biliopancreatic juice to the terminal 
ileum that significantly reduces the absorption of nutrients [16].
Other bariatric procedures include gastric banding and vertical 
sleeve gastrectomy, which both reduce the volume of the stom-
ach without bypass of the small intestine. While all procedures 
reduce body weight and result in variable degree of improve-
ment of T2DM, results of randomized clinical trials suggest that 
procedures involving intestinal rerouting, like BPD and RYGB, 
have the greatest effect on diabetes [17, 18] and that longer 
intestinal bypass (such as in BPD) is associated with greater rates 
of remission of hyperglycemia [12]. Long term control of glyce-
mia and improved levels of glycosylated hemoglobin have been 
observed in obese diabetic patients in series for up to 14 years 
follow-up [19] along with long-term reduction of micro- and 
macrovascular complications of diabetes [20].
Examining the mechanisms by which surgery can improve dia-
betes may help understand the physiology and pathophysiology 
of diabetes [21]. There is evidence that various GI procedures 
change the pattern of secretion of various gastrointestinal hor-
mones, including GLP-1, PYY-3-36, glucagon, GIP, and ghrelin 
[22–24], which may provide a relatively straightforward expla-
nation for the effects of surgery on insulin secretion and appe-
tite suppression.
In particular, the “hindgut hypothesis” holds that the mecha-
nism by which RYGB improves diabetes would be through an 
enhancement of GLP-1 secretion due to the accelerated delivery 
of nutrient to the L-cell-rich distal small bowel [25, 26]. Increased 
postprandial GLP-1 levels would in turn enhance the incretin 
effect and result in greater insulin secretion and improved glu-
cose tolerance [27]. Lindqvist et al. recently reported a doubling 
of β-cell mass and islet number in 4 RYGB-treated pigs suggest-
ing that this surgery can influence both secretion of insulin and 
β-cell growth [28]. This effect has been also attributed to the 
enhancement of endogenous GLP-1.
The “hindgut hypothesis” and the role of GLP-1, however, have 
recently come into question owing to evidence from both human 
and animal studies showing that blockage of GLP-1 action only 
modestly reduces the effect of surgery on glucose tolerance and 
diabetes control. For instance, the effects of RYGB on body 
weight and glucose metabolism are not substantially reduced 
when the operation is performed in genetic mice models with 
attenuated GLP-1 secretion and in GLP-1-receptor deficient mice 
[29]. Furthermore, suppression of glucose production and stim-
ulation of glucose disappearance were unaltered in RYGB sub-
jects after administration of exendin-9,39, a competitive 

antagonist of GLP-1 at its receptor [30], therefore questioning 
the hindgut hypothesis and the role of incretins as the sole 
explanation to the improvement of diabetes after surgery [31–33].
An alternative hypothesis for the effect GI surgery has on diabe-
tes is that alterations of the physiologic mix of bile and nutrients 
and their contact with intestinal mucosa, typical for procedures 
that involve duodenal-jejunal exclusion, may reduce production 
of diabetogenic signals (“foregut hypothesis”) [34–36].
The foregut hypothesis is one of the predictions made by the 
anti-incretin theory. This theory was developed by one of us 
(FR), originally reported in 2002 [37] and progressively refined 
[38–40] to provide a theoretical model that is coherent with 
observations of physiologic response to nutrient ingestion as 
well as with the effects of gastric bypass surgery. This theory 
postulates that in addition to the well-known incretin effect, 
nutrient passage through the GI-tract could also activate nega-
tive feedback mechanisms (anti-incretins) to balance the effects 
of incretins and other postprandial glucose-lowering mecha-
nisms (i. e., suppression of ghrelin, glucagon, and hepatic glucose 
production via activation of nutrient sensing), thus preventing 
postprandial hyperinsulinemic hypoglycemia.
In fact, incretins enhance insulin secretion, insulin action, as 
well as β-cell function and growth. If there were no control 
mechanisms, these effects would expose to the risk of postpran-
dial hyperinsulinemic hypoglycemia and uncontrolled β-cell 
proliferation (i. e., nesidioblastosis and insulinomas). These are, 
in fact, quite uncommon, suggesting that the action of incretins 
must be physiologically balanced by hormonal, metabolic, and/
or neural mechanisms [anti-incretin(s)] to maintain normal glu-
cose homeostasis.
The anti-incretin theory may provide a rational theoretic model 
to explain physiology and pathophysiology of glucose metabo-
lism as well as the effects of various interventions, including 
gastrointestinal surgery and diet.
In fact, according to the anti-incretin theory, an excess of anti-
incretin signals, possibly stimulated by specific macronutrient 
composition of modern diet or chemical additives, could cause 
insulin resistance, reduced insulin secretion, and β-cell deple-
tion, leading to T2DM. Conversely, reduction of anti-incretin sig-
nals below thresholds necessary to control incretin-driven 
responses might result in postprandial hypoglycemia and 
uncontrolled β-cell proliferation [40].
Reduction of nutrient stimuli on the gut by drastic decrease in 
food intake (i. e., very low calorie diet), expedited gastro-intesti-
nal transit (i. e., such as after sleeve gastrectomy), or, more radi-
cally, through the exclusion of large portions of the upper small 
bowel from nutrient transit (i. e., RYGB, duodenal-jejunal bypass, 
biliopancreatic diversion) could reduce excess anti-incretin and 
restore appropriate incretins/anti-incretins balance, thus 
explaining improvement and remission of T2DM.
Disruption of GI continuity, however, (i. e., RYGB and certain ana-
tomic reconstructions after gastrectomy for ulcer/cancer) may 
reduce anti-incretin signals below minimal thresholds to com-
pensate for incretin actions and result in postprandial hypogly-
cemia or alterations of β-cell proliferation, which have both been 
reported as rare but possible complications of RYGB.
A number of recent studies provide preliminary evidence in sup-
port of the various predictions made by the anti-incretin theory 
and the foregut hypothesis.
Salinari et al. performed resection or bypass of different intesti-
nal segments in diabetic Goto-Kakizaki and normal control ani-
mals followed by an oral glucose tolerance test 2 weeks after 
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surgery [41]. Baseline and post stimulation levels of glucose, 
insulin, GLP-1, GIP, and insulin sensitivity were measured. In 
this study, stomach-sparing duodenal-jejunal bypass (DJB) and 
jejunectomy (which bypass/remove a segment of proximal small 
intestine) did not change GIP or GLP-1 levels, but were able to 
improve glucose tolerance more than ileectomy, a procedure 
that is associated with expedited nutrient delivery to areas rich 
in L-cells but does not involve duodenal exclusion. These find-
ings support the hypothesis that excluding duodenum and jeju-
num from nutrient transit has specific antidiabetes effects 
[37, 42, 43] and that this is not due to changes in GLP-1, but pos-
sibly due to the reduction of factors with negative influence on 
insulin sensitivity.
In another study by the same group, protein extracts from the 
duodenum and/or jejunum of diabetic rodents and humans 
were found to be able to induce insulin resistance in cell-based 
assays and in vivo [44]. This observation supports the hypothe-
sis that the proximal small bowel of subjects with type 2 diabe-
tes may produce diabetogenic factor(s), consistent with one of 
the predictions made by the anti-incretin theory.
A recent study by Lindqvist et al. [28] found increased β-cell 
mass in pigs that had undergone RYGB. In this study, however, 
the experiments with RYGB were performed in pigs with normal 
glucose homeostasis at baseline, suggesting that the effect of 
this surgery is not due to an enhancement of defective incretin 
mechanisms but rather the consequence of the disruption of 
physiologic mechanisms that control β-cell proliferation and 
maintain normal β-cell mass. This is consistent with the predic-
tions made by “the anti-incretin-theory” [36] suggesting the 
existence of factor(s) in the small proximal intestine that act as 
regulators of β-cell growth along with incretins, but in the oppo-
site direction.
The current model of the entero-pancreatic axis is insufficient to 
explain a number of observations about the physiology of glu-
cose homeostasis and the effects of gastrointestinal surgery. 
Although the anti-incretin theory remains to be demonstrated 
at a molecular level, it provides an alternative theoretical frame-
work for the link between diet, insulin resistance, diabetes, and 
its reversal after gastrointestinal surgery. The anti-incretin the-
ory may inspire new research approaches aimed at a deeper 
understanding of the physiology and pathophysiology of glu-
cose homeostasis.
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