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Abstract. Many important applications require a continuous computation of statistics over data streams. Ac-
tivities monitoring, surveillance and fraud detections are some settings where it is crucial for the monitoring
applications to protect user’s sensitive information in addition to efficiently compute the required statistics. In
the last two decades, a broad range of techniques for time-series and stream data monitoring has been developed
to provide provable privacy guarantees employing the formal notion of differential privacy. Although these so-
lutions are well established, they are mostly limited to count based statistics (e.g. number of distinct elements,
heavy hitters) and do not apply in settings where more complex statistics are needed. In this paper, we con-
sider a more general problem of estimating the sortedness of a data stream by privately computing the length
of the longest increasing subsequence (LIS). This important statistic can be used to detect surprising trends in
time-series data (e.g. finance) and perform approximate string matching in computational biology domains.
Our proposed approaches employ the differential privacy notion which provides strong and provable privacy
guarantees. Our solutions estimate the length of the LIS using block decomposition and local approximation
techniques. We provide a rigorous analysis to bound the approximation error of our algorithms in terms of
privacy level and length of the stream. Furthermore, we extend our solutions to computing the length of the LIS
over sliding windows and we show the beneficial effects of this formulation on the final utility. An extensive
experimental evaluation of our proposed solutions on real-world data streams demonstrates the effectiveness of
our approaches for computing accurate statistics and detecting surprising trends.

1 Introduction
Sequential data are central in a broad range of domains and applications, such as biomedical, fi-
nancial and health-care setting where data are continuously collected for monitoring purpose or for
mining behavioral patterns. For example, individual household power consumption data may be
collected by smart meters to provide billing information or for monitoring purpose. Despite the
importance of these tasks, the release of the real data value may disclose sensitive user informa-
tion. Therefore privacy preserving solutions are employed to compute the required statistics while
providing privacy for users. Among the recent privacy models proposed in literature, the popular no-
tion of differential privacy [8] is widely used to construct privacy preserving algorithms becoming
the de facto standard of privacy in the database community. In this model, the privacy is achieved
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by bounding the adversary inference ability in determining the presence of any event in the data
stream [9, 12, 11, 5]. Despite the strength of such a privacy model, the current solutions are limited
to count based statistics.

In this paper, we study the problem of privately computing ordered statistics with the goal of en-
abling applications to monitor sequential data streams. Consider for example, a user who may wish
to be advised in his/her financial decisions without incurring the risk of disclosing his/her financial
information. In such a setting, it is crucial to design effective solutions that enable third-party to
detect user’s financial trends while protecting the sensitive information. To address this problem, we
propose to study the privacy preserving computation of the longest increasing subsequence (LIS) in
the stream model.

The computation of the LIS provides useful information about the sortedness of the data stream and
it can be used to detect trends in time-series data. In general, the task of computing the sortedness
of a data stream is receiving considerable attention from the computer science community [20, 15,
1, 16, 7, 24, 13]. The sortedness of data stream has important implications from both practical
and theoretical perspectives. Many applications rely on ranked data and the massive amount of
information dynamically generated cannot be processed in an off-line fashion requiring solutions to
have small update time and memory requirements.

The computation of the LIS in the data stream model raises new challenges compared to the tradi-
tional privacy setting. First of all, privacy requirements in protecting sensitive information for this
ordered statistic have a greater impact on the final utility. Count based statistics over a stream are
typically computed by decomposition which leads to a considerable reduction of perturbation noise
required by the privacy mechanism. However, ordered statistics are generally not easy to approxi-
mate via decomposition since they require a global view of the entire stream. Second, the LIS has
higher memory requirements compared to standard count based statistics (e.g. counts of distinct
elements, heavy hitters). In fact, it has been shown in [15] that there exists a space lower bound of
Ω(T ) for any randomized algorithm that computes the LIS exactly over a stream of length T . This
strong separation between count based functions and LIS impacts both efficiency and utility of the
solutions for this problem.

To address these challenges, we propose a series of solutions for privately computing the LIS while
minimizing the error introduced by the perturbation and approximation. The detailed contributions
are reported below.

Our Contributions. In this paper, we study the problem of privately computing the LIS in a time-
bounded stream of length T . Our contributions are listed below.

• Our proposed solutions compute the length of the LIS providing strong and provable privacy
guarantees based on the notion of differential privacy.

• We propose a decomposition framework for approximating the length of the LIS using local
information in the stream. This technique allows us to reduce the error due to perturbation
noise from the privacy mechanism. Using the Patience Sorting algorithm [17] as a black
box for locally computing the exact length of the LIS, we provide an error bound for our
framework.

• We conduct an output-sensitive utility analysis for two cases based on the length of the output
LIS. In particular, we assume LIS(σ) =

√
T/β, where T is the length of the input stream σ,

and β is a parameter in the range [1/
√
T ,
√
T ]. For each solution, we bound the approximation

error in the case of long and short LIS respectively depending on the value of β.

• We propose a new streaming approach which computes the LIS using a hierarchy structure of
the stream. Our algorithm achieves a (1− T−b

T+b )-approximation to the length of the LIS in the
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worst case, where the parameter b controls both the perturbation noise to achieve the desired
level of privacy and the accuracy.

• We provide a discussion about possible extensions of our solutions to address time-series
stream monitoring tasks. Furthermore, we extend our approaches to compute the length of the
LIS over sliding windows and we demonstrate the impact of the privacy mechanism on the
final utility in this formulation.

• We perform an extensive experimental evaluation of our proposed techniques on two real
data streams and show the effectiveness of our solutions in computing accurate statistics and
detecting surprising trends.

The rest of the paper is organized as follows. Section 2 summarizes the most relevant privacy
preserving works on data streams that are closely related to our techniques. Section 3 provides the
problem definition and presents the privacy model. Section 4 illustrates our decomposition schema
and Section 5 describes our hierarchy solution. In Section 6, we extend our approaches over sliding
windows, and in Section 7 we provide a summary of our results. Section 8 illustrates our experi-
mental results. In Section 9, we conclude the paper.

2 Related Work
In the last decade, a considerable amount of research has been devoted to designing differentially
private techniques to compute statistics over data stream. Here, we provide a brief overview of the
most related works to ours and we refer the readers to the cited references for a more detailed review
of these results. Below, we distinguish the literature in the stream setting in three categories: count
based statistics, aggregated statistics and distributed statistics.

Count Based Statistics. In the streaming setting, the data statistics are computed continuously over
the stream, that is, for each new incoming element in the stream a new output is generated. In this
setting, the item-level differential privacy is commonly adopted to protect the presence of individual
items in the stream. Therefore, any change in the input at the current time stamp will not only
affect the current computed statistic but it might also impact the future output. Hence, from a utility
perspective, privacy preserving algorithms should be able to carefully calibrate the amount of noise
injected such that the final utility is not compromised. For count based statistics, many techniques
have been proposed to limit the impact of the privacy mechanism. In the work of Chan et al. [5],
a binary stream is considered in input and the query task requires to count the number of 1’s seen
so far. To reduce the impact of the perturbation mechanism a decomposition of the stream based
on binary tree is proposed. The authors showed that with such a decomposition the additive error
grows only polylogarithmically with the size of the input stream. Independently, Dwork et al. [11],
they also construct a differentially private continual counter with similar error guarantees. Recently,
Bolot et al. [4] considered an extension of these aggregated statistics by focusing on monitoring the
recent past of the stream. Specifically, the authors proposed two differentially private solutions for
continual observations over sliding windows and decayed data. The solutions in [4] use a similar
tree decomposition of the stream as in [5, 11] where the nodes contributions in the tree are now
weighted according to the decay function. Furthermore, Bolot et al. [4] presented a new notion of
decayed privacy, where past data are not viewed as private anymore and, thus, they can be used
without incurring privacy cost. Recently, the authors in [22] proposed (pan-)privacy solutions using
sketches to compute the count of the heavy hitters. In this work, the authors assume that the counter
of an item can be increased or decreased arbitrarily, as long as the counter remains non-negative.
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Algorithm 1 Patience Sorting
1: procedure PATIENCE SORTING(σ)

Input: event stream σ
Output: LIS(σ) length of the longest increasing subsequence

2: P (j)← ∅ for j = 0, 1, . . . ,m− 1
3: for (any new element σ(i)) do
4: Find the largest P (j) such that P (j) ≤ σ(i)
5: P (j + 1) = σ(i)
6: Output the largest j such that P (j) 6= ∅
7: end for
8: end procedure

Aggregated Statistics. Apart from this counter based setting, Fan and Xiong [14] considered the
problem of reporting aggregated statistics over a finite stream. Specifically, aggregated time-series
data from multiple users are considered in input and at each time instant an aggregated count is
released with guarantees of user-level differential privacy. The impact of the noise on the final result
is mitigated using sampling techniques. Recently, Kellaris et al. [18] proposed the notion of w-event
privacy, which protects any event sequence occurring in w successive time instants. Furthermore,
they showed how the approach in [14] can be extended using this new privacy notion to handle
unbounded streams.

Distributed Statistics. Recently, the research community started to study a fully-distributed formu-
lation of the continuous release of data statistics over data stream. Specifically, the computation of
data statistics is performed by an untrusted aggregator which combines multiple data streams gener-
ated by individual users. In this scenario, the required data statistics have to be computed with high
utility while providing differentially privacy guarantees for the individual users. Rastogi et al. [23]
and Shi et al. [25] proposed novel algorithms that allow an untrusted aggregator to periodically
estimate the sum of n users’ values achieving differential privacy guarantees for the individuals.
Furthermore, these solutions provide aggregator obliviousness, that is, the aggregator only learns
the noisy sum, but no intermediate results. Recently, Chan et al. [6] improved these approaches by
developing solutions that in addition to providing privacy guarantees are also robust to user’s failure
in the protocol.

3 Preliminaries
Given a sequence σ of elements σ(i) = ai defined over a finite alphabet Σ = {0, 1, . . . , N −
1}, an increasing sequence of length k in σ is a subsequence {i0, i1, . . . , ik−1} such that i0 <
i1 < · · · < ik−1 and ai0 < ai1 < · · · < aik−1

. Furthermore, let σ[i, j] denote the contiguous
sequence σ(i)σ(i+1) . . . σ(j) in the stream σ, and letLIS(σ) be the length of the longest increasing
subsequence in σ.

The problem of computing the LIS has received much attention in the streaming setting (see [3] for
a survey of results), where the sequence σ is given an element at a time. In such model, data arrive
continuously and at every time i algorithmic solutions are required to report LIS(σ[0, i]) by using a
small amount of memory and performing only few passes over the stream. In the rest of the section,
we briefly summarize the non-private techniques present in literature by categorizing them as exact
and approximate solutions.

Exact Solution. The study of LIS in the streaming setting was initiated by Liben-Nowell et al.
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Figure 1: Running example of the Patience Sorting algorithm over the stream σ = 3, 4, 1, 2, 5, 7, 6.

in [20], where the authors developed an exact one pass algorithm that requires O(k) space for de-
ciding if the length of longest increasing subsequence is at least k. In addition to this technique,
the classical algorithm for computing the LIS is based on the Patience Sorting procedure [17]. This
approach can be interpreted as a one pass streaming algorithm for computing the exact LIS in O(T )
space and it requires O(logLIS(σ)) update time where T represents the length of the stream. Since
we use this approach to build our solutions, we briefly describe this algorithm here.

In the Patience Sorting procedure, the length of the longest increasing subsequence is computed
using a set of sorted piles P (0) < P (1) < · · · < P (m) each storing an element of the stream σ.
For any new element σ(i) that appears in the stream, the algorithm places σ(i) in the leftmost pile
P (j) such that P (j) > σ(i). The number of non empty piles represents the length of the LIS at any
time point. An overview of the Patience Sorting algorithm is illustrated in Algorithm 1. Below, we
describe a running example of this algorithm.

Example 1. Let σ = 3, 4, 1, 2, 5, 7, 6 be a stream in input. The algorithm starts with a set of empty
piles P (j), where j = 0, . . . ,m − 1. When the first element arrives in the stream it is placed in
the first pile P (0). After the arrival of the second element, the situation in the piles is illustrated in
Figure 1 (a). The number of piles denotes the length of the longest increasing subsequence at each
time. Therefore, in this case the length of the LIS is two. When the third element σ(2) = 1 arrives
in the stream, the algorithm places this element in P (0) replacing the element 3 currently presents
in the pile, as shown in Figure 1 (b). Following the steps of the algorithm, the final set of piles is
reported in Figure 1 (c). At the end of the stream the length of the longest increasing subsequence is
four.

Despite the simplicity of this procedure, the Patience Sorting algorithm is optimal from the space
complexity perspective. In fact, Gopalan et al. [15] showed a space lower bound of Ω(T ) for any
randomized algorithm that computes the LIS exactly.

Approximate Solution. In [15], the authors proposed a (1 + ε)-approximation for the LIS compu-
tation using O(

√
T/ε) space. A series of works have been developed to estimate the length of the

LIS using the number of inverted elements in the stream. In this direction, Ajtai et al. [1] proposed a
(1+ε)-approximation which requiresO( 1

ε log log T ) space to estimate the number of inverted pairs.
Later this result has been improved by Gupta and Zane [16]. Cormode et al. [7] proposed a series
of algorithmic solutions based on distance preserving embeddings. Recently in [24], the authors
investigated the problem of computing the LIS in asymmetric edit distance setting.

3.1 Differential Privacy

Differential privacy [8] is a recent notion of privacy that aims to protect the disclosure of information
when data statistics are released. In the streaming setting, due to the dynamics of the data, the
classical differential privacy notion has been redefined such that the privacy is guaranteed at event-
level [9, 12, 11, 5]. In other words, the privacy goal is to protect the presence or absence of any
single event in the stream. The formal definition of the differential privacy notion adopted in our
work is reported below.
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Definition 2 (Differential Privacy [5, 11]). Two streams σ and σ′ of the same length are neighboring
streams if they differ exactly in one element at time t. A privacy mechanism M gives α-differential
privacy if for any two neighboring streams σ, σ′, and for any set of outcomes S ⊆ Range(M),

Pr[M(σ) ∈ S] ≤ eα × Pr[M(σ′) ∈ S] (1)

The parameter α is called the privacy parameter and it defines the privacy level of the mechanism.
Higher values of α lead to lower level of privacy, while smaller values pose a stronger privacy
guarantee. Intuitively, a mechanism is differentially private if an adversary is unable to determine
whether an event of interest took place or not by observing the output of the mechanism over the
stream.

Our goal consists in designing a mechanism that, at any time t in the stream, reports the length
of the longest increasing subsequence while achieving differential privacy. In addition, we would
like the mechanism to be useful, that is, its output well approximates the real length of the LIS. To
evaluate our solutions, we introduce the following utility notion.

Definition 3 ((ε, δ)-Useful). A streaming algorithm A is (ε, δ)-useful, if for any input stream σ and
query q, with probability at least 1 − δ, the relative distance between the approximate answer from
A and the real answer of q is within ε, formally P

[
‖A(σ)−q(σ)‖

q(σ) < ε
]
≥ 1− δ

To achieve differential privacy, one well established technique is the Laplace Mechanism [10].
Dwork et al. [10] showed that to obtain a α-differentially private solution it is sufficient to perturb
the real output of the function by adding a random variable (noise) from a Laplace distribution with
probability density function pdf(x|λ) = 1

2λe
−|x|/λ, where the parameter λ is determined by α and

the sensitivity of the function to compute. The sensitivity measures the contribution of any single
element on the final output. We will use the Laplace mechanism and some other statistical tools to
design our privacy preserving solutions.

Statistical tools. In our approaches, we make use of the Laplace Mechanism to achieve differential
privacy and sequential composition property of differential privacy. Furthermore, in our construction
the noise may not come from a single Laplace distribution, but rather is composed by a sum of in-
dependent Laplace distributions. Therefore, here we state two useful results for sum of independent
Laplace distributions.

Theorem 4 (Laplace Mechanism [10]). For a function f : DT → Rd, let GS(f) be the sensitivity
of f defined as

GS(f) = max
D,D′

‖f(D)− f(D′)‖1 (2)

whereD′ andD are neighbouring, then the algorithm that outputs: f̃(D) = f(D)+Lap(GS(f)/α)d

satisfies α-differential privacy.

Theorem 5 (Sequential Composition [21]). Let Mi be a non-interactive privacy mechanism which
provides αi-differential privacy. Then, a sequence ofMi(D) over the databaseD provides (

∑
i αi)-

differential privacy.

Lemma 6 (Sum Of Laplace Distributions [5]). Let Y =
∑n
i=1 li be the sum of l1, . . . , ln in-

dependent Laplace random variables with zero mean and parameter bi for i = 1, . . . , n, and
bmax = max{bi}. Let ν ≥

√∑n
i=1 b

2
i , and 0 < λ < 2ν2

bmax
. Then Pr[Y > λ] ≤ exp{− λ2

8ν2 }

Corollary 7 (Measure Concentration [5]). Let Y , {bi}i, λ and bmax defined as in Lemma 6. Suppose

0 < δ < 1 and ν > max{
√∑

i b
2
i , bmax

√
2 ln 2

δ }. Then Pr[|Y | > ν
√

8 ln 2
δ ] ≤ δ
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3.2 Differentially Private Computation of the LIS - A Baseline Approach
In the rest of the paper, we present our solutions for computing the length of the LIS in the stream.
Our approaches require the stream to be time-bounded, we assume in fact that the length of the
stream is T and it is given a priori.

Here we consider a baseline approach that solves the problem of privately computing the length
LIS by perturbing directly its real value at every time point. In particular, for every new element
σ(i) = ai in the stream, the algorithm first computes the real LIS(σ[0, i]) (e.g. using any non-
private solution, Patience Sorting in this case) and then it adds a perturbation noise ηi. Given the
privacy parameter α, due to the composition property of differential privacy, to obtain an overall
mechanism of α-differential privacy, the baseline approach applies the Laplace mechanism at each
time point with parameter α′ = α/T . For each new incoming element, it samples a Laplace variable
ηi ∼ Lap(1/α′) which will be used to perturb the real value of LIS(σ[0, i]). Therefore, at every
time i, the algorithm will answer the LIS query by returning l̃(σ[0, i]) = LIS(σ[0, i]) + ηi. We can
observe that the sensitivity for the LIS function is 1, since replacing an element from the stream may
change the length of the longest increasing subsequence by at most 1. Therefore, perturbing the real
value of LIS(σ[0, i]) with ηi is sufficient to achieve privacy. The utility of this approach is reported
in the following theorem.

Theorem 8 (Baseline utility). The baseline algorithm is (β
√
T

α ln 1
δ , δ)-useful for computing the

longest increasing subsequence.

Proof. The released length of the LIS at each time i is obtained by perturbing the real length of the
LIS with Laplace noise. Therefore, at every time step in the stream we have that the additive error
from the noise can be bounded as follows:

Pr[|ηi| > γ] ≤ 2

∫ ∞
γ

α

2T
e−xα/T dx = e−γα/T (3)

Hence, with probability at most δ the additive error is at least Tα ln 1
δ . The final result follows by

normalizing the error by the LIS(σ) =
√
T/β.

Space and Time Analysis. The memory and time complexity for this approach are the same as the
non-private algorithm used to compute the real length of the LIS. Therefore, using the Patience Sort-
ing algorithm for example, the space and update time required are O(LIS(σ)) and O(logLIS(σ))
respectively.

4 Decomposition Framework
The baseline approach introduces an additive error that grows linearly with the length of the stream.
Therefore, for small LIS this error could dramatically degenerate the utility of this solution. The
reason for this large perturbation noise is due to the fact that each individual element in the stream
could affect all the possible outputs of the algorithm over the entire stream. This phenomenon could
also occur for more sophisticated streaming algorithms that compute the LIS by using a small sketch
of the stream ([15, 24] for example). Although such solutions could reduce the space requirements,
the use of a sketch does not directly reduce the error due to the perturbation noise since an element
of the stream could still affect a large number of outputs (e.g. linear with the length of stream).

To overcome this problem, we decompose the computation of the LIS over segments of the stream.
This intuition follows the idea proposed by Chan et al. [5] where a linear and binary decomposi-
tion frameworks are employed to privately compute the number of non-zero elements in a binary
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Figure 2: Block Decomposition example at time i: expired blocks (solid lines), active blocks (gray) and the
future blocks (dashed lines).

stream. Despite the similarity in these decompositions, the computation of the longest increasing
subsequence presents new challenges due to the block composition. For this reason, we study the
utility loss in approximating the LIS inflicted by using the local information of the stream. In this
work, we consider only an extension of the binary decomposition since it provides better utility with
respect to the linear decomposition proposed in the original paper [5].

In our work, we investigate the implications of decomposing the LIS computation over blocks
(i.e. stream segments) both from the utility and complexity perspective. It is important to note
that the nature of the decomposition should be data-independent to avoid additional privacy cost.
In principle, any algorithm ALIS that computes the LIS (either exact or approximate way) can be
used as a building block to compute the LIS on each stream segment so that the perturbation noise
required by the privacy mechanism can be reduced with respect to the direct use of ALIS . On the
other hand, by limiting our computation on segments we introduce an approximation error.

In the rest of the section, we use the Patience Sorting algorithm [17] as a simple building block. We
focus on this particular algorithm because it allows us to have an internal procedure that computes
the exact length of the LIS over segments of the stream. In this way, we can directly measure how our
decomposition impacts the exact solution. Since the original Patience Sorting algorithm computes
not only the length of the LIS but also the elements forming the sequence, we use a modified version
that only keeps the top element of the piles in the data structure as illustrated in the Algorithm 1. In
this way, we can compute the length of the LIS but using only O(LIS(σ)) space.

Before presenting our technique, we illustrate some concepts that will be useful in explaining our
algorithm. A block B = σ[j, j + b − 1] of size b represents a continuous segment of b symbols in
the stream σ. Due to the dynamics of the data in the stream, a block assumes three different states
over the stream depending on the current time. At time i, the block B can be in one of the following
states: expired hence the new arrival does not affect the block B (i.e. j + b − 1 < i), active when
the new arrival is contained in the block B (i.e. j ≤ i ≤ j + b − 1) and future hence B contains
only upcoming elements (i.e. j > i). An example of block decomposition of the stream is illustrated
in Figure 2. The life cycle of a block B consists of starting as a future block, becoming active, and
finally the block expiration.

4.1 Binary Decomposition

We start observing that in general the decomposition of the LIS over blocks may incur large approxi-
mation error. In fact, by simply dividing the stream into blocks and combining the length of their LIS
as an answer could lead to an approximation error that is proportional to the number of blocks used
in the decomposition. To reduce this error, we develop a stream decomposition into variable length
blocks, where the number of blocks is bounded byO(log T ). We organize the blocks in a binary tree
where at time i the tree has log i levels. Each level l = 0, . . . , log i in the tree partitions the stream
into disjoint blocks of length i/2l. Figure 3 illustrates an example of binary decomposition of the
stream.

Using this representation, each node k in the tree is associated with a block Bk and it stores the
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Figure 3: Binary Decomposition example. At time 5 (six symbols), the algorithm updates the active blocks (in
gray). It computes the answer to the LIS query by summing the contributions of B2 and B4 containing the 2
and 4 most recent symbols respectively.

perturbed value of the LIS(Bk). At any time i the algorithm updates the noisy LIS of the active
blocks in the binary tree, and it answers the query LIS(σ[0, i]) as illustrated in Algorithm 2.

Algorithm Description. In the loop at lines 3-5, the algorithm updates the piles for the active blocks
associated with the time i. In particular, the procedure Update Piles implements the Patience
Sorting algorithm as in Algorithm 1, where in this case the update is performed independently on
each active block B for any new coming element σ(i). At lines 6-9, the noisy length of the LIS for
each block that will expire is computed. At line 10, we compute the binary representation of i + 1
and let i1 < i2 < · · · < im be the positions of non-zeros bits in such representation. Then the
answer for LIS(σ[0, i]) is computed by summing up the length of the LIS for the blocks containing
the most recent 2i1 , 2i2 , . . . , 2im elements respectively. Therefore at each time i, the output result is
obtained by adding the contributions of at most Θ(log i) blocks in the loop at lines 13-17.

Privacy Analysis. We can observe that each element affects at most log T blocks; therefore, per-
turbing the LIS of each block with a random variable from Lap(log T/α) is sufficient to satisfy the
privacy requirement.

Theorem 9 (Binary Decomposition Privacy). The Binary Decomposition achieves α-differential
privacy.

Proof. In this decomposition, each element σ(i) participates in the LIS of at most log T active
blocks. Therefore, for any two neighboring streams the difference in L1-norm of their outputs
can be bounded by log T . Therefore using Theorem 4, it is sufficient to add to each LIS of each
block a random variable from a Laplace distribution with parameter log T/α to satisfy the privacy
requirement.

Utility Analysis. This decomposition with variable length blocks allows us to reduce the perturba-
tion error due to the privacy mechanism. However, in this way we introduce an approximation error
that depends on the number of blocks. We can observe that at most O(log T ) blocks of variable
length are needed to answer a LIS query. The utility results for this decomposition are reported
below.

Lemma 10 (Binary Block Error Bound). Let σ be a stream of T symbols, and let LIS(σ) =
√
T
β ,

where β is positive. Without loss of generality we assume T = 2t−1, and we consider a partition of
the stream σ intoB0, B1, . . . , Bt−1 non-overlapping blocks, where each blockBk is of size 2k. Then
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Algorithm 2 Binary Decomposition
1: procedure BINARY DECOMPOSITION(T, α, σ)

Input: upper bound on the stream length T ; privacy parameter α; event stream σ
Output: l̃(σ) released longest increasing subsequence

2: for (i = 0, 1, . . . , T − 1) do
3: for (every active B at time i) do
4: UPDATE PILES(B, σ(i))
5: end for
6: for (every block B that will expire at time i+ 1) do
7: LIS(B)← number of piles for the block B
8: l̃(B)← LIS(B) + Lap(2 log T/α)
9: end for

10: Let i1 < i2 < · · · < im be the positions of non-zeros in the binary representation of i+ 1
11: l̃(σ)← 0
12: k ← i
13: for (j = i1, i2, . . . , im) do
14: B ← σ(k − 2j + 1) · · ·σ(k) . Retrieve the block to reconstruct the LIS
15: k ← k − 2j

16: l̃(σ)← l̃(σ) + l̃(B) . Sum the noisy contributions of the expired block B
17: end for
18: Output l̃(σ)
19: end for
20: end procedure

in reporting the sum of the longest increasing subsequence in each block, lis(σ) =
∑t−1
k=0 LIS(Bk),

we incur the following approximation error.

LIS(σ) ≤ lis(σ) ≤
{

log T · LIS(σ) β ≥ 1

(1 + log β
√
T ) · LIS(σ) β ∈ [1/

√
T , 1)

(4)

Proof. First, we start noticing the following lower-bound lis(σ) ≥ LIS(σ). In fact, the part of the
real longest increasing subsequence which is contained in each block is at most the length of the
longest increasing subsequence in the stream segment represented by the block. Second, we prove
the two cases separately. For short value of LIS(σ) (β ≥ 1), we consider the case where each
segment in each block is monotonic but none of them can be concatenated to form an increasing
sequence in the entire stream. Then, we have that LIS(σ) ≥ LIS(Bk), for k = 0, . . . , t − 1,
which leads to log T · LIS(σ) ≥

∑t−1
k=0 LIS(Bk) = lis(σ). For the case of long value of LIS

(β ∈ [1/
√
T , 1)), we proceed as follows. Let j be a positive integer such that 2j−1 <

√
T/β ≤ 2j .

Therefore, for all the blocks Bk with k ≥ j we have that LIS(Bk) ≤
√
T/β, otherwise there exists

a monotonic sequence which is longer than the longest increasing subsequence, hence we have a
contradiction. Furthermore, due to the binary tree decomposition the sum of the length of the LIS
for the blocks Bk with k = 0, . . . , j − 1 can be bounded as follows.

j−1∑
k=0

LIS(Bk) ≤
j−1∑
k=0

2k = 2j − 1 ≤ 2
√
T/β (5)
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Therefore, the reported lis(σ) can be upper bounded with the value below.

lis(σ) =

t−1∑
k=0

LIS(Bk) ≤
j−1∑
k=0

LIS(Bk) +

t−1∑
k=j

LIS(Bk)

≤ 2
√
T/β + (t− j)

√
T/β

≈
√
T/β(1 + log β

√
T ) (6)

This concludes the proof of the Lemma.

Theorem 11 (Binary Decomposition Utility). The binary decomposition algorithm for computing
the length of the longest increasing subsequence achieves the following utility results. ((log T − 1) + β log3/2 T

α
√
T

ln 1
δ , δ)-useful β ≥ 1

(log β
√
T + β log3/2 T

α
√
T

ln 1
δ , δ)-useful β ∈ [1/

√
T , 1)

Proof. This decomposition has the advantage that the number of blocks combined in estimating the
length of the LIS is only logarithmic which leads to an approximation error as shown in Lemma 10.
This decomposition introduces a perturbation noise which is a sum of at mostO(log T ) i.i.d. Laplace
random variables with parameter O(log T/α). Let ξ =

∑
k ηk denote the error due to the sum of

the Laplace random variables, we can use the result in Corollary 7 to bound this quantity. Choosing

ν =
√∑

k
log T
α

√
2 ln 2

δ with probability at least 1 − δ, the quantity ξ is at most O( log3/2 T
α ln 2

δ ).
Therefore, the final utility follows using the results from Lemma 10 and by normalizing this value
by the LIS(σ).

Space Analysis. The space requirement for this approach is related to the number of active blocks
that need to be updated and to the space complexity of the internal procedure. Due to the nature of
the binary decomposition at any time i there are Θ(log T ) blocks that are active. Using a similar
argument as in Theorem 11, we can show that the space complexity is O(LIS(σ) ln(β2LIS(σ))).

Theorem 12 (Binary Decomposition Space Comp.). Let LIS(σ) be the length of the longest in-
creasing subsequence in the stream σ, then the Binary decomposition framework has space com-
plexity O(LIS(σ) ln(β2LIS(σ))).

Proof. We begin by recalling that the internal procedure for computing the length of the LIS is the
Patience Sort algorithm, where we keep only the top of the piles. At any time i in the stream, log T
blocks are active, one in each level of the tree structure. Furthermore, let j be a positive integer such
that 2j−1 < LIS(σ) ≤ 2j . Therefore for the blocks in any level i > j in the tree, we can upper
bound their space requirements with LIS(σ)(log T − j + 1), since LIS(σ) is the current length of
the longest increasing subsequence. On the other hand, due to the nature of the binary tree the space
required by the blocks below the level i is 2j − 1. Therefore the space complexity for this approach
is O(LIS(σ)(log T − j + 1)). Using the notion that LIS(σ) =

√
T/β and j = log(LIS(σ)), the

previous requirements can be rewritten as O(LIS(σ) ln(β2LIS(σ))).

Time Analysis. The total update time for this solution is related to the updates of the active blocks.
Since at every time i there are Θ(log T ) active blocks, the update time isO(log T logLIS(σ)) using
Patience Sorting algorithm.
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Figure 4: Running example of the Hierarchy mechanism on the input stream 4, 5, 1, 6, 2, 3, 7, 8, b = 4 and
m = 2.

5 Hierarchy Mechanism
In the previous section, we showed that the binary decomposition considerably reduces the pertur-
bation noise in the final output compared to the baseline approach. However, such technique suffers
from the fact that the computation of the LIS generally does not decompose well and in some cases
this could lead to a large approximation error. To overcome this problem, we propose a new algo-
rithm which computes the LIS over the stream by simulating the behavior of the Patience Sorting
algorithm. In contrast to our previous approaches, this solution computes the length of the LIS by
smoothing the impact of each element with the purpose of reducing the perturbation noise while
achieving a good approximation ratio.

The main idea is to reduce the impact of those elements that stay too long in the LIS so that the
total noise required by the privacy mechanism is decreased. Given an integer b > 0, we construct
a series of m = Θ(ln T

b ) layers l0, l1, . . . , lm−1 with b buckets each, where at layer i each bucket
contains 2i elements. Given the series of elements with index {1, 2, . . . , T} in the stream, each
layer simulates the behavior of the Patience Sorting algorithm where in this case the original piles
are replaced with buckets that can contain multiple elements. In fact, at layer i the elements in the
range [(j− 1)2i + 1, j2i] can be placed into the same bucket j. Intuitively, each layer has a different
granularity, in fact l0 keeps the exact top elements in the most recent b piles in the Patience Sorting
algorithm, while l1 keeps an approximation of the next 2b piles and so forth for the other layers. As
the original algorithm, our procedure computes the length of the LIS by counting the number on non-
empty buckets. In our case multiple elements may fall in the same bucket; therefore, we use a scaling
factor equal to the length of the bucket to compute the contribution of each layer. Furthermore, in
addition to insertion and replacement moves allowed in the Patience Sorting algorithm, we introduce
an expiration move that forces elements that stay in a bucket at layer li for more than 2ib iterations
to be moved up to layer li+1. The algorithm computes the length of the LIS in the stream by adding
the contribution at each layer. The code for this procedure is reported in Algorithm 3.

Algorithm Description. The algorithm starts initializing a set of m layers containing b buckets
each, at lines 2-3. Within a layer i, each bucket is denoted with Pi(j), for j = 1, . . . , b and it has
size 2ib. In the main loop, lines 4-21, each new element coming in the stream is inserted in the first
layer using the same rule as the Patience Sorting algorithm, lines 5-7. In the inner loop at lines 9-13,
the algorithm checks layer by layer to find the expired elements. When an expired element p in a
pile Pi(j) is found, the algorithm removes p and inserts it in the next layer. At line 14, the number
of non-empty buckets for each layer is computed by normalizing the number of elements within
each bucket with the corresponding bucket’s size. In the loop at lines 16-19, the perturbation noise
is applied to each count and finally the length of the LIS is returned. We illustrate our hierarchy
mechanism in the example below.

Example 13. Consider the situation in Figure 4. When the first element arrives in the stream it is
placed in the first bucket at l0 as shown in (a). The second element that arrives is 5, since it is larger
than 4 it is placed in the next bucket (b). The third element in the stream is 1. Since the insertion
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Algorithm 3 Hierarchy Mechanism
1: procedure HIERARCHY MECHANISM(T, α, σ, b)

Input: upper bound on the stream length T ; privacy parameter α; event stream σ; accuracy parameter b
Output: l̃(σ) released longest increasing subsequence

2: m = Θ(ln T
b

)
3: Initialize each layer li = [Pi(1), . . . , Pi(b)] i = 0, . . . ,m− 1 with b empty buckets
4: for (i = 0, 1, . . . , T − 1) do
5: Insert σ(i) in l1
6: Find the largest P1(j) such that P1(j) ≤ σ(i)
7: P1(j + 1) = σ(i)
8: for (i = 0, . . . ,m− 1) do
9: Let p be the element that expires at li

10: Remove p from li and insert it in li+1

11: Find the largest element in Pi+1(j) such that Pi+1(j) ≤ p
12: Pi+1(j + 1) = p
13: end for
14: Let Nei be the number of non-empty buckets at layer li
15: l̃(σ)← 0
16: for (i = 0, 1, . . . ,m− 1) do
17: N̂ei ← Nei + Lap(mb/α)

18: l̃(σ)← l̃(σ) + N̂ei . Sum the noisy contribution of each layer
19: end for
20: Output l̃(σ)
21: end for
22: end procedure

of the elements in the buckets follows the same rules as the Patience Sorting algorithm, we find
the bucket that contains the smallest element larger than 1 and insert this element in that bucket.
Therefore, in our case, the element 1 overwrites the element 4 in the first bucket (c). At this point
the length of the LIS is 2, as represented by the number of non empty buckets in l0. The algorithm
proceeds in a similar manner for the next three incoming elements (d),(e) and (f). After these new
elements are processed, the element 1 in l0 is moved up to l1 since it has been in l0 for more than b
steps and the new incoming element 7 is inserted in l0 (g). In the next step, the element 2 is moved
up, and it is inserted in the same bucket with the element 1. At the same time the new element 8 is
inserted in l0 (e). The reported length of the LIS is obtained by summing the contribution of each
layer. Layer l0 contributes with Ne0 = 3 and l1 contributes with Ne1 = 1. Hence the algorithm
reports a length of the LIS of 4 while the exact length is 5.

Privacy Analysis. In this algorithm the contribution of each element on the LIS is progressively
decreased according to the layer in which the element appears. The privacy result for our hierarchy
mechanism is reported in the following theorem.

Theorem 14 (Hierarchy Mechanism Privacy). The Hierarchy Mechanism achieves α-differential
privacy.

Proof. Given any two neighboring streams, we can observe that each element can affect at most
m layers over the entire stream. In particular, at l0 an element contributes to the LIS with a factor
1 for b times, at l1 contributes with factor 1/2 for 2b and at the general level li contributes with
factor 1/2i for 2ib times. Let Ne be the vector of contributions for each layer for the input stream

TRANSACTIONS ON DATA PRIVACY 9 (2016)



86 Luca Bonomi, Li Xiong

σ = a1, . . . , ai . . . , aT . Then, ∀i ∈ [1, T ] and σ′ = a1, . . . , a
′
i . . . , aT we have that

‖Ne(σ)−Ne(σ′)‖ ≤ mb (7)

Then adding a random Laplace noise with parameter mb/α to the contribution of each layer i, is
sufficient to satisfies α-differential privacy. Furthermore, using Corollary 7 we can see that the
additive error introduced by noise is only O( bα log3/2(Tb ) log(2

δ )).

Approximation Error. Our algorithm smooths the contribution of each element in the stream ac-
cording to its layer leading to an underestimated value for the length of the LIS. The following
Theorem summarizes the approximation ratio in the worst case.

Theorem 15 (Hierarchy Approximation Error). Let σ be a stream of length T , and b be the number
of buckets in each layer of our algorithm. Then, the hierarchy mechanism returns a (1 − T−b

T+b )-
approximation of the length of LIS.

Proof. Let k be the length of the LIS over the entire stream. We begin by showing that this algorithm
never overestimates the length of the LIS and then proceed by showing the error in the underestimate.
To understand why this algorithm always reports a length of the LIS less or equal to the real length
we consider the following case. Let us assume that there exists an element σ(j) in a bucket at level
i > 0 in our algorithm that differs from the Patience Sort. Since this element is extra in our algorithm
it means that there is an element σ(j′), j′ > j that replaces σ(j) in the exact Patience Sort. Since
σ(j′) < σ(j), we have that in our structure σ(j′) has replaced another element σ(j′′). Due to the
nature of our algorithm this operation could only occur in a layer i′ < i, hence in replacing σ(j′′)
with σ(j′) in our algorithm we have a larger loss of contribution than replacing σ(j). Therefore we
cannot have an overestimate length of the LIS.

Now, we examine the error in underestimating the length of the LIS. Consider a worst case scenario
where only the first k symbols in σ contribute to the LIS, while the rest of the stream does not
increase the length of the LIS. In this situation, as the stream proceeds the elements of the LIS that
initially are in layer 0 are progressively moved up introducing a small additive error. Below, we
quantify this error. Let m = log(Tb + 1) − 1 be the number of layers in our structure, then the
maximum additive errors on the LIS is achieved when all the elements forming the LIS are in layer
m. This quantity is computed as follows.

m∑
i=1

k

2i
= k

(
T − b
T + b

)
(8)

Hence the returned value from our algorithm is lower bounded by LIS(σ)(1 − T−b
T+b ). This shows

that our returned length l̃(σ) satisfies the following inequality.

LIS(σ)

(
1− T − b

T + b

)
≤ l̃(σ) ≤ LIS(σ) (9)

Therefore, our algorithm provides a (1− T−b
T+b )-approximation of the length of LIS.

Space Analysis. Since this algorithm simulates the Patience Sorting algorithm by keeping only the
top of the piles forming the LIS, it follows that the space complexity is linear with the length of the
LIS in the stream O(LIS(σ)).

Time Analysis. For any new incoming element in the stream, the total running time is given by
the cost required for updating each pile. There are at most m − 1 buckets, one for each level, that
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Figure 5: The query on the window W is answered by combining the LIS from the blocks in grey that belong
to the binary decompositions of the windows Wi and Wi+1.

need update, where each operation requires O(log b) time. Since m = Θ(log T
b ), the update time is

O(log b log T
b ).

This solution points out a strong connection between the approximation ratio and the noise required
to achieve privacy. We can see that increasing b has a beneficial effect on the approximation ratio
but on the other hand increases the privacy cost. In fact, as an extreme case using b = T the
algorithm returns the exact length of the LIS but incurs a large perturbation noise. Compared with our
decomposition framework, this algorithm provides the user with a way to balance the approximation
ratio and the noise due to the privacy mechanism.

6 Extension: Query over Sliding Windows
In the previous sections, we illustrated two solutions for computing the length of the longest increas-
ing subsequence over the entire stream. However, in some applications the most recent part of the
stream is more important than the past in answering queries. In fact, a complete view of the stream
may obfuscate transitional phenomena that recently occur in the stream. Consider for example a
traffic monitoring setting, where the traffic data arrives in a streaming manner from sensors placed
along the highway. Knowing the current traffic situation may help to understand the presence of con-
gested areas along the highway and finally help drivers to select alternative routes. Therefore, in this
section we study the problem of computing the longest increasing subsequence on the recent past
which is modeled by considering a sliding windowW containing the most recent |W | symbols in the
stream. In this setting, our goal consists in reporting an estimate of the LIS(σ(i−|W |+1) · · ·σ(i))
at every time i limiting our focus on the last |W | symbols rather than considering the whole stream.

6.1 Binary Tree Extension

We first propose an extension of the binary decomposition of the stream to solve this problem, where
now the binary tree indexes the blocks in the part of the stream contained in the window W . It is
important to notice that if we keep a binary decomposition for every window we will incur a large
privacy and computational cost. In fact, removing any element in the stream σ(i) affects O(|W |)
binary trees that are overlapping on that element. Hence at most O(|W | log |W |) computations can
be affected for all the blocks of the binary decompositions in the sliding windows.

To reduce this privacy cost we use the technique proposed by Bolot et al. [4] to answer count-
ing query over sliding windows. In our case, we partition the stream into non-overlapping regions
Wi = σ(i|W |), · · · , σ((i+ 1)|W |−1) of length |W |, where for each Wi we use a binary decompo-
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Algorithm 4 Sliding Windows
1: procedure SLIDING WINDOWS(W,α, σ)

Input: window length W ; privacy parameter α; event stream σ
Output: l̃(W ) released longest increasing subsequence over the window

2: for (i = 0, 1, . . . ) do
3: Determine the range Wi+1 containing σ(i)
4: Update the current active blocks
5: k ← bi/|W |c|W |+ i mod |W |
6: Wpref = σ(i− |W |+ 1) · · ·σ(k)
7: Wsuff = σ(k + 1) · · ·σ(i)
8: Combine the noisy LIS from Wpref and Wsuff in l̃(W )
9: return l̃(W )

10: end for
11: end procedure

sition. For those windows that span between two regionsWi andWi+1, the answer can be computed
combining the blocks shared in those regions. An example is reported in Figure 5.

In particular, for any window query W = σ(i − |W | + 1) · · ·σ(i) at time i in the stream, the
answer for W is obtained by combining the length of the LIS from multiple blocks in two binary
decompositions. Let Wpref and Wsuff denote the prefix and suffix part of W respectively, where
Wpref = σ(i − |W | + 1) · · ·σ(k) and Wsuff = σ(k + 1) · · ·σ(i) with k = bi/|W |c|W | + i
mod |W |. Furthermore, let Wi+1 be the range containing the element σ(i). Then the answer for the
query windowW is obtained by combining the LIS computed forWpref andWsuff using the binary
decompositions Wi and Wi+1 respectively. An overview of the procedure for the query window is
reported in Algorithm 4.

Example 16. Consider the situation as illustrated in Figure 5, where we report the LIS for the
window W . The window query W = 4, 1, 5, 3, 6, 8, 10, 14 is divided into two parts Wpref =
4, 1, 5, 3, 6, 8 and Wsuff = 10, 14 that belong to Wi and Wi+1 respectively. The length of the
LIS over the window W is obtained by combining the longest increasing subsequence in the binary
block decomposition for Wpref and Wsuff . The prefix part is decomposed into block B1 = 4, 1
and B2 = 5, 3, 6, 8, while the suffix part is represented with the block B3 = 10, 14.

Privacy Analysis. We can observe that removing any element in the stream affects only O(log |W |)
values of LIS in the binary decomposition of the window range W . Therefore, it is sufficient to add
noise proportional to Lap( log |W |

α ) to each LIS in the blocks to satisfy the privacy requirement.

Utility Analysis. The utility analysis is similar to the binary decomposition approach. Notice that
in this case there could be at most two blocks with the same length that are combined. Although this
differs from the case we saw in the previous section, the worst case guarantee does not change.

Theorem 17 (Window Query utility). The window query decomposition algorithm for computing
the longest increasing subsequence over a sliding windowW is (log |W |+ log3/2 |W |

LIS(W )α ln 1
δ , δ)-useful.

Proof. At every time step i, for a window query W the number of blocks involved in reporting the
LIS is at most O(log |W |). The additive error due to the privacy mechanism is computed using
Corollary 7, where the total error is due to the sum of O(log |W |) i.i.d. Laplace random variables
of parameter log |W |/α. Therefore, with probability at least 1 − δ the error due to the privacy

mechanism is O( log3/2 |W |
α ln 1

δ ). Furthermore, using Lemma 10 the error due to combining the
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Figure 6: Example for the input stream σ = 257368491 as in [2], with sliding window W of length 6.

LIS from the blocks in the binary decompositions is bounded by O(log |W | · LIS(W )). Therefore
combining these two errors and normalizing by LIS(W ) we obtain the final utility guarantees.

Space Analysis. To analyze the space requirements for this approach we can observe that at every
time we need to store only the information related to two binary decompositions. Therefore, the total
memory requirements for this technique is O(|W |).

Time Analysis. The update time for this approach follows directly from the time analysis for the
binary decomposition. Therefore, the time for each update is O(log |W | logLIS(W )).

In restricting the focus of the LIS query on the most recent |W | symbols, we can observe that the
impact of the perturbation noise can be reduced to a quantity that only depends on the length of the
window W .

6.2 Hierarchy Extension
The hierarchy mechanism can be adapted to compute the length of the LIS over a sliding windowW
by introducing two modifications in the original algorithm. First, we restrict the number of layers
m to a quantity that is Θ(ln |W |b ), so that the maximum length of the LIS is bounded within each
window W . Second, for any position i in the stream, we need to keep track of all the LIS for the
suffixes starting at positions: i− |W |+ 1, i− |W |+ 2, ..., i. In fact, when a window is shifted from
position i to position i+1, we can compute the new LIS by extending some of the LIS for the previous
suffixes. A naive implementation of this observation requires to keep multiple hierarchy structures,
one for each suffix yielding to an overall space requirement of O(|W |LIS(W )). In [2], the authors
proposed a compact representation for storing the information regarding the length of the LIS for all
the suffixes in the sliding window. In their representation, the information for the Patience Sorting
algorithm is implicitly preserved in a structure (row tower) where only the principal row tower (i.e.
LIS for the longest suffix) is preserved while the LIS for the other suffixes can be computed by
constructing the respective rows from the principal one. In fact, it can be shown that each row other
than the first one in the row tower is either the same as the one above, or can be obtained from it by
deleting a single element. Therefore, the duplicate rows can be removed and record the multiplicity
of the original rows.

Example 18. Consider the situation in Figure 6, where |W | = 6. On the left, we report the full
Patience Sorting representation for all the subsequences associated with the suffixes in the sliding
windowW . The duplicated rows are removed and only a single copy is preserved together with their
multiplicity. The principal row tower (circled in red) is on the top of the structure and it is used to
keep track of the length of the LIS in the current window.

In our solution, we adapt this structure where each row is kept by using our hierarchy representa-
tion. In this way, we can preserve the information of the LIS for all the subsequences in the window
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Table 1: Summary of results for LIS query over entire stream.

Method Error Memory Update Time
Baseline O( β

√
T
α ln 1

δ ) O(LIS(σ)) O(log
√
T
β )

Binary
O((log T − 1) + β log3/2 T

α
√
T

ln 1
δ ) where β ≥ 1

O(log β
√
T + β log3/2 T

α
√
T

ln 1
δ ) where β ∈ [1/

√
T , 1)

O(LIS(σ) ln(β2LIS(σ))) O(log T log
√
T
β )

Hierarchy O((1− T−b
T+b ) +

bβ√
Tα

log3/2(Tb ) log(
2
δ )) O(LIS(σ)) O(log b log Tb )

Binary Extension O(log |W |+ log3/2 |W |
LIS(W )α

ln 1
δ ) O(|W |) O(log |W | logLIS(W ))

and perturb the length of the principal row tower in reporting the current length of the LIS. This pre-
liminary investigation for extending our approach to sliding windows queries provide us with useful
insights about the compact representation of the stream that will be further investigated in future
works.

7 Summary of Results
Table 1 summarizes the utility results of our proposed solutions. The first three entries refer to our
solutions for computing the length of the LIS over the entire stream, while the last entry represents
our extension for sliding windows.

Regarding the whole stream, we observe that both our binary and hierarchy solutions outperform
the baseline approach in many perspectives. We notice that the baseline approach incurs a large
perturbation error which could dramatically compromise the utility. Specifically, the additive error
in the baseline strategy grows linearly with the length of the stream. For the binary decomposition
instead, we provide output-sensitive utility results showing the benefits of this technique for different
lengths of LIS. Due to the use of disjoint blocks, this approach incurs a considerably smaller pertur-
bation error with respect to the baseline solution. In fact, the dependency of the error with respect
to the perturbation noise is only polylogarithmic in this case. Furthermore, we can observe that the
decomposition framework has small space requirements and update time. In principle, the space and
time complexity of this solution could be further improved by using more sophisticated algorithms
(e.g. [15, 24]) as an internal procedure instead of relying on the Patience Sorting. For count based
statistic the binary decomposition has been shown very effective; however due to the nature of the
LIS, this strategy incurs an approximation error. Our hierarchy approach specifically addresses the
LIS problem by directly simulating the Patience Sorting algorithm. This procedure incurs a small
running time and it has small memory requirements. Comparing the worst case performance of this
technique with the binary decomposition, we can observe that the decomposition framework is still
superior leading to a smaller additive error with the same approximation ratio. This result is due to
the fact that the hierarchy strategy suffers when the LIS constitutes the initial part of the stream. In
fact, as the execution proceeds the elements in the sketch are moved in higher level increasing the
approximation error over the stream. However, we can notice that in real scenarios such situation is
unlikely to occur because in many applications the stream presents trends over time.

In the case of sliding windows, we have a considerable improvement in the performances. Com-
paring the binary solution on the whole stream with its extension on sliding windows, we observe an
error reduction for the computed LIS. In fact, the error dependency is only on the size of the window
W rather than the length of the stream T . We have as well a reduction in the memory complexity
and update time. These advantages are due to the use of bounded windows that limits the impact of
the privacy mechanism on the output statistics. In fact, in this case the sensitivity of the output is
only proportional to W rather than the whole stream. This reduces the perturbation noise, hence we
achieve higher utility.
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Table 2: Data Streams Characteristics

Data Stream Length lmax lavg
finance 365 0.027 0.075
gasoline 1315 0.127 0.14

Table 3: Default Algorithmic Parameter Values

Parameter Description Value
α Privacy Parameter 1
γ Number of buckets in HM 0.01
|W | Window size 32

8 Experiments
In this section, we report the empirical evaluation of our proposed solutions for privately computing
the length of the LIS on two real-world data streams. In each setting, we evaluate the performance of
the baseline approach (base), Binary decomposition framework (binary) and Hierarchy mecha-
nism (HM) described in Section 3.2, Section 4 and Section 5 respectively. Furthermore, we compare
these solutions with the non-private approach based on the Patience Sorting algorithm to understand
the impact of the privacy and approximation on the final utility.

Data Stream Description. In our experiments, we use two real-world data streams: finance and
gasoline. The first data stream represents the unit price variation for the stock labeled with the
symbol C in the TRACE database over a period of one year. The complete dataset contains a set of
financial transactions ordered by time reporting the unit stock price and the quantity purchased. This
data stream is available from the Wharton Research Data Services (WRDS) 1 for academic use. In
our settings, we extracted the daily price changes of the stock over a fixed year; therefore, the overall
selected stream contains 365 data points. The second stream represents the weekly retail gasoline
price (dollar per gallon) in U.S. from August 1990 to October 2015 2. Figure 7 illustrates the data
streams considered in our experiments.

From the graphs is Figure 7, we observe that these two data streams have different characteristics.
In the finance stream, the are many price fluctuations that indicate the high variability in the
stock price. On the other hand, in the gasoline case, the gas price shows a constant increment
over the last 6 years (excluding the economic downturn in December 2008-January 2009, where the
gas price had a considerable drop). These differences are reflected also in the lengths of the LISs
in these streams. In Table 2, we report for each dataset, the overall length of the stream T , the
relative maximum length of the LIS (lmax = LISmax

T ), and the relative average length of the LIS
(lavg = 1

T

∑T
i=1

LIS(σ[0,i])
i ). Intuitively, lmax measures the longest LIS in the stream compared to

overall length of the time-series. On the other hand, the quantity lavg measures the average length
of the LIS at each time stamp in the stream. From these values, we observe that the gasoline
stream has considerably longer LISs compared to the finance stream confirming the differences
in behavior of these streams.

Algorithm Setup. The default parameter values for our algorithms are reported in Table 3. Note
that the number of layers for the HM approach are computed as log T

b , where b = γ ·T is the number

1https://wrds-web.wharton.upenn.edu/wrds/
2http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMM_EPMR_PTE_NUS_DPG&

f=W
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Figure 7: Data Streams

of buckets and T is the length of the overall stream. Since the absolute length of the LIS in these
data stream is quite small, we use a default privacy budget α = 1 to obtain meaningful results.

8.1 Metrics

Mean Relative Error. In our evaluations to measure the utility of the released statistics we consider
the Mean Relative Error (MRE) between the released perturbed length of the LIS series and the
original series computed by the non-private Patience Sorting algorithm. In particular, let l̂i be the
privately computed length of the LIS up to time i in the data stream and let li denote the real length
of the LIS till this time. Then, the MRE metric provides an indication on how well the released
sequence {l̂i}Ti=1 follows the original sequence {li}Ti=1. The MRE is a generic metric to evaluate
data accuracy, disregarding the actual, domain-specific applications. More formally, we define the
MRE error as follows:

MRE =
1

T

T∑
i=1

|li − l̂i|
li

(10)

From the definition above, we observe that smaller values of MRE imply higher similarity between
the released and the original series, hence higher utility.

Mean Absolute Error. In addition to the previous metric, we also measure the Mean Absolute Error
(MAE) between the released perturbed length of the LIS series and the original series computed by
the non-private Patience Sorting algorithm. Using the notation introduced in the previous section,
we define the MAE error as follows:

MAE =
1

T

T∑
i=1

|li − l̂i| (11)

Similarly to the the MRE, smaller values of MAE imply higher similarity between the released and
the original series, hence higher utility.

Both these utility metrics have been extensively used to measure the quality of the released statistic
over time in many privacy preserving works, such as in [18].
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Figure 8: Impact of the number of buckets in HM mechanism.

8.2 Evaluation on the Entire Stream
8.2.1 Utility Evaluation

In this section, we study the utility of our privacy preserving solutions in releasing the length of the
LIS over the entire data streams. We provide experimental results to understand the ability of our
approaches in preserving the length of the LIS in terms of mean relative error and mean absolute
error.

Impact of the number of buckets. We evaluate the impact of the number of buckets b used in the
hierarchy mechanism on the quality of the length of the LIS returned by the hierarchy solution in
terms of MRE (Figure 8). Specifically, we consider b as a fraction of the original length of the stream
b = γ · T , where γ is a parameter in the range [0.01, 0.4].

For each data stream, we report the MRE obtained by the sketching approach without considering
the privacy perturbation mechanism, denoted as sketch only, and the overall MRE obtained by
perturbing the length of the LIS in each layer, denoted as overall.

We observe that in both data streams the error obtained by the overall mechanism is consid-
erably higher than the one produced by the only use of the hierarchy data structure. In fact, as b
increases a more accurate length of the LIS can be computed since more elements can be maintained
in the lower level of the sketch. This points out that our proposed data structure is effective in sum-
marizing the stream leading to low MRE. On the other hand, the overall performance is dominated
by the perturbation noise introduced by the privacy mechanism which leads to an increment of the
MRE in our final solutions. The overall performances of HM approach are superior in the gasoline
stream since in this case the LIS tends to be relatively longer compared to the finance stream. In
fact, in the finance stream we observe several price fluctuations and no monotonic subsequences
are evident. In general the length of the LIS is relatively small compared to the length of the streams
considered in input, hence even a small amount of noise may introduce a large relative error in the
returned statistics.

Impact of the privacy level on MRE. In Figure 9, for all three methods, we vary the privacy budget
(α) and we report their MRE values in computing the length of the LIS. We observe that for every
approach the MRE drops as the privacy budget increases (i.e. less privacy). In fact, as the privacy
budget α increases a smaller perturbation error is introduced by the differential privacy mechanism
leading to higher utility. The baseline approach base which directly releases perturbed length of
the LIS incurs the highest MRE error in every privacy setting. Both binary and HM provide higher
utility results than the baseline solution. In fact, despite the approximation introduce in binary
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Figure 9: Impact of the privacy parameter on the MRE.
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Figure 10: Impact of the privacy parameter on the MAE.

and HM, these approaches benefit from the perturbation noise reduction.

Impact of the privacy level on MAE. In Figure 10, we report the MAE error of all three approaches
for different values of privacy budget α. Similarly, for the case of MRE, as privacy level decreases
(i.e. higher values of α), a smaller amount of noise is injected leading to smaller MAE value, hence
higher utility. Also in this case, the binary and hierarchy solutions provide superior results compared
to the baseline solution.

8.2.2 Running Time Evaluation

In this section, we evaluate the running time of the three proposed algorithms. Such a time is
measured as the overall running time normalized by the stream length. Intuitively, this represents
the average update time required each time a new element appears in the stream. We first study
the impact of the number of buckets b on the performance of our HM approach and successively we
provide an overview of the performance of our solutions.

Impact of the number of buckets on the running time. Figure 11 illustrates the average running
time of the HM approach on both data streams for different values of b = γ · T . We observe as the
number of buckets increases in the data structure the running time tends to decrease in both streams.
In fact, by using more buckets we considerably reduce the number layers in the data structure leading
to a smaller number of operations required to update the layers when elements expire. Although a
finer granularity could help both from the running time and utility perspective, the privacy cost for
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Figure 12: Update time.

protecting the elements reduces the overall utility of our approach as we showed in Figure 8. Hence,
as default setup for this approach we use γ = 0.01.

Running time comparison. In Figure 12, we report the average update time required by all the
three approaches. The baseline approach base incurs the smallest update time due to the fact that
only one pile of the Patience Sorting algorithm may be updated each time a new element arrives
in the stream. Also the binary decomposition approach binary has a small update time since at
each time only a logarithmic number of blocks are active. On the other hand, HM incurs the highest
update time since all the buckets in all the layers are tested for expiration. Contrary to the other
two approaches, in this case the computational cost of these operations is the same regardless of
the current length of the LIS but it rather depends on the size of the data structures (i.e. number
of buckets and number of layers). Therefore, this approach may not take advantage of short LIS in
terms of running time. This phenomenon is more evident when comparing the running time in the
two data streams (Figure 12a and Figure 12b) over in the gasoline stream. In this case, the HM
has a considerably higher increment of running time due to the larger data structure size compared
to the other two approaches.

8.3 Evaluation on Sliding Windows
In this section, we focus on evaluating the extension of the binary approach for computing the
length of the LIS over sliding windows. We chose this approach for two main reasons: (1) from the
previous section it provides slightly superior performance than the HM solution and (2) the whole
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Figure 14: Impact of the window size on the MAE.

stream solution can be easily extended to handle the computation of the LIS over windows as we
discussed in Section 6.1.

8.3.1 Utility Evaluation

In this setting, we fix the privacy parameter α = 1.0 and we vary the length of the sliding window
W to understand how this parameter impacts the utility of our solution.

Impact of the window size on the MRE. In Figure 13, we report the MRE values for increasing
window size. We observe that as |W | increases the MRE increases in both settings. When we
increase the window W , the impact of each element on the final output increases and since the
privacy parameter is fixed, we incur a larger perturbation noise, hence lower utility. Nevertheless, in
comparison with the results in Figure 9, where the entire stream is considered, we observe a great
improvement in the performance due to the beneficial effect of introducing a sliding window which
limits the privacy perturbation noise.

Impact of the window size on the MAE. Similarly to the behavior observed for the MRE, the MAE
increases as the window is enlarged. Also in this case larger window sizes incur a larger perturbation
noise as shown in Figure 14.

8.3.2 Running Time Evaluation

Here we measure the average running time of our solution with respect to different window sizes.
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Figure 15: Time vs window sizes |W |.

Impact of the window size on the running time. Figure 15 reports the running time for increasing
window sizes. As more elements are considered in the window a larger binary structure is con-
structed, hence we observe an increasing update time. In this case, the LIS is computed over sliding
windows of length |W | and it is sufficient to divide the stream into non-overlapping regions of size
|W | (i.e. roughly Θ(|T |/|W |) binary structures) to answer all the sliding windows query. There-
fore, the overall time grows linearly with the size of the stream, while for the solution that handle the
whole stream this dependency is only logarithmic. Nevertheless, the update time is only logarithmic
with the window size.

8.3.3 Detecting Surprising Trends

As we mentioned before, the computation of the length of the LIS over a data stream can be often
associated to time-series monitoring activities. Therefore, the ability of privately computing such
statistics in an online manner is an important indication of the usability of our solutions. In our case,
we monitor the length of the LIS to detect surprising trends over sliding windows. Specifically, we
adapt the definition of surprising patterns introduced in [19] to our setting. In our evaluation, we say
that a surprising trend occurs at time i in the input stream σ if and only ifLIS(σ[i−|W |+1, i]) ≥ th,
where th is a user specified threshold that indicates the level of “surpriseness”. In our case, this
definition allows us to detect windows of the original stream containing unexpected long increasing
subsequence indicating unusual price increments, for example.

To measure the ability of our solution in privately detecting such surprising trends we report the
precision (PPV) and recall (TPR). More formally, these quantities are defined as follows:

PPV =
TP

TP + FP
(12)

TPR =
TP

TP + FN
(13)

where TP represents the true positive (i.e. the number of position i correctly detected), FP repre-
sents the false positive (i.e. the number of position i incorrectly detected) and FN denotes the false
negative (i.e. the number of position i incorrectly missed). From the definition above, higher values
of precision indicate the ability of the solution in reporting a high fraction of the detected position
that are associated to surprising trends. On the other hand, higher values of recall imply the ability
of retrieving a high percentage of all relevant positions that are associated to surprising trends.
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Figure 17: Precision and Recall vs privacy parameter α.

Impact of the threshold. We first examine the accuracy in detecting trends by considering different
window lengths. Specifically, we define a threshold value th(W ) = θ · |W | which is window
dependent. We proceed in this way because using a threshold that depends on the window allows
us to treat all the LIS in the same way regardless of the specific length of the window considered.
Our results are reported in Figure 16. As |W | increases we observe similar utility performance
on the two data streams. As the window sizes increase the precision PPV of our approach tends
to decrease. We notice that in the gasoline data stream, the precision is considerably higher
than in the finance data stream. We believe that this is due to the fact that the former stream
contains longer LISs than the latter which facilitates the detection of surprising trends. In terms
of recall TPR, we observe that its value tends to increase after an initial drop. For the successive
experiments, we select a window size |W | of 32 symbols which, from Figure 16, yields a good
trade-off between precision and recall.

Impact of the privacy level. Figure 17 reports the precision and recall of our privacy solution
varying privacy levels. As the privacy level increases, less perturbation noise is injected and we
observe a reduction of false negative FN and an increment of true positive TP . Overall, we have
an improvement on the recall as the privacy level decreases while the precision remains stable.

TRANSACTIONS ON DATA PRIVACY 9 (2016)



On Differentially Private Longest Increasing Subsequence Computation in Data Stream 99

9 Conclusions

In this paper, we considered the problem of privately detecting trends in stream data. Specifically,
we addressed the problem of computing the length of the LIS while protecting the presence of single
event in the stream. We developed two different solutions that provide formal guarantee of privacy.
The first approach approximates the length of the LIS by assembling local information computed on
segments of the stream. The second approach constructs a small sketch of the stream by exploiting
the structure of the problem. Using a rigorous analysis, we showed that these strategies provided
significant benefits over the baseline approach. Furthermore, we demonstrated the ability of our
solutions in computing the length of the LIS and detecting surprising patterns on real-world data
streams.

For the future, we consider to broaden the range of applications (e.g. activity monitoring) that can
benefit from our solutions as well as developing enhanced and small-memory impact algorithms.
We also aim to further improve our hierarchy solution to solve sliding window query by using some
of the techniques in [2].
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