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ABSTRACT 

The next round of planetary missions will require 

increased autonomy to enable exploration rovers to travel 

great distances with limited aid from a human operator. 

For autonomous operations at this scale, localization and 

terrain modeling become key aspects of onboard rover 

functionality. Previous Mars rover missions have relied 

on odometric sensors such as wheel encoders and inertial 

measurement units/gyros for on-board motion estimation. 

While these offer a simple solution, they are prone to 

wheel-slip in loose soil and drift of biases, respectively. 

Alternatively, the use of visual landmarks observed by 

stereo cameras to localize a rover offers a more robust 

solution but at the cost of increased complexity. 

Additionally rovers will need to create photo-realistic 

three-dimensional models of visited sites for autonomous 

operations on-site and mission planning on Earth. 

1. INTRODUCTION 

     The ExoMars Rover is a key element of the ExoMars 

mission, the first flagship mission of the Aurora 

Programme initiated by the European Space Agency 

(ESA). The aim of this programme is to characterize in 

detail the Mars biological environment in preparation for 

future missions, including human exploration. Carrying a 

large suite of exobiology instruments, the ExoMars 

Rover will be capable of operating autonomously, 

traveling several kilometers over rocky Martian terrain, 

and drilling to collect samples for analysis by the 

instruments. Planned for launch in 2011, the main 

purpose of the ExoMars mission is to search for signs of 

past and present life on Mars. In a Phase A study 

performed for ESA, MDA led an international industrial 

team to develop an optimized conceptual design of the 

Rover (see Figure 1), incorporating specialized electrical 

power generation, thermal control, navigation, 

telecommunications and vehicle control subsystems.   

     Absolute localization techniques such as radiolocation 

and horizon feature matching to elevation data provide 

updates too infrequently to be used throughout a sol [1].  

These techniques are more appropriate to making 

corrections at the end of a sol or every few sols.      

      To localize throughout a sol we typically require a 

relative localization system that tries to estimate the pose 

of a rover relative to a reference frame attached to the 

initial pose of the robot.  No attempt is made to find the 

correspondence between the initial reference frame and a 

global reference frame.  The frequency of updates from a 

relative localization system is typically much higher than 

an absolute localization system.   

 
Figure 1: Proposed rover design for the European Space 

Agency's 2011 ExoMars mission 

 

     Wheel odometry estimates the velocities of each 

wheel and since they are part of the motion control 

components, utilizing these sensor data is relatively 

simple and inexpensive. The velocities are integrated 

over time to produce a position estimate. However, wheel 

odometry is extremely prone to slip on natural terrains. 

Many studies have proven that localization relying on 

odometry alone can produce 20%-25% error of distance 

travel in position estimate [2].  The 2004 Mars 

Exploration Rovers experienced considerable slip on 

occasion, corrupting odometry measurements. 

     Inertial measurement units (IMU) can provide 

translation and attitude of a rover by using 3-axis 

accelerometers and 3-axis gyroscope rate sensors. Both 

accelerometers and gyros can however be influenced by 

bias errors which can lead to unbounded growth in error 

over time.  Bias fluctuations over an entire sol preclude 

using an IMU alone. 

    Improved orientation estimates can be obtained by 

employing a Sun sensor, which compares a detected sun 

vector with internal knowledge of Sun’s expected 

location based on ephemeris data.  The inclusion of a Sun 

sensor was one of the main recommendations after the 

1997 Mars Pathfinder mission [3].  On hard terrain, a Sun 

sensor in combination with odometry can provide a cheap 

relative positioning device [4].  For baseline operations, 

2004 Mars Exploration Rovers employed Sun sensors in 

combination with other sensors, but estimates of 

translation relied heavily on odometry for which slip was 

a problem on loose terrain.   
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Figure 2: System architecture for vision system 

 

     Stereo cameras have been present on planetary rovers 

for other purposes, namely obstacle detection and 

avoidance, and modeling.  However, only the recent Mars 

Exploration Rovers have used visual odometry as a 

technology demonstration (discussed below).  The slow 

acceptance of vision-based localization may be due to 

limited computational resources and power.   

     Based on knowledge of past rover missions and the 

anticipated requirements for future rovers to travel longer 

distances per sol and to generally perform more 

autonomously, an improved relative localization system 

will be needed.  There are several possible avenues that 

might be pursued to provide such a system.  However, 

given that baseline rover operations already rely on stereo 

cameras for obstacle avoidance and modeling, it is logical 

to attempt to use these same sensors to help improve 

localization.   

     In this paper, we will describe our development of a 

vision-based localization system to allow a planetary 

rover to position itself with errors limited to a few 

percent of distance traveled over a several kilometer 

traverse across unknown terrain.  A consequence of 

solving this problem is that it facilitates the creation of a 

high-resolution three-dimensional terrain model of the 

environment for visualization and planning. 

2. SYSTEM OVERVIEW 

     In this section we present our approach to vision-

based localization and terrain modeling, as shown in 

Figure 2.  Stereo imagery is used for two purposes:  

localization and terrain modeling.  We can see that terrain 

modeling relies on the output of visual motion estimation.  

This is because we seek to create terrain models from a 

moving platform and so data from images taken in 

different locations must be merged.  The 3D terrain map 

can be used for situational awareness and it can be 

converted to a cost map for autonomous motion planning.  

     The Undistortion/Rectification block transforms the 

raw images into a rectified form that simplifies stereo 

processing.  This requires that the stereo camera undergo 

a calibration procedure in advance of use. 

      As our intended application is for a planetary rover, 

we will use images obtained by the Mars Exploration 

Rover, Spirit, as a running example.  They were obtained 

from the MER Analyst’s Notebook web repository [5].  

They were taken by Spirit’s Front HazCam on Sol 15 of 

the primary mission as it approached a rock feature called 

“Adirondack”. 

2.1 Feature Extraction 
     In our vision-based localization, we automatically 

identify and track a large number of visual landmarks, or 

features, as the rover moves.  We have chosen to use a 

high level set of natural visual features called Scale 

Invariant Feature Transform (SIFT) as the visual 

landmarks to compute the camera motion. SIFT was 

developed for image feature generation in object 

recognition applications [6]. The features are invariant to 

image translation, scaling, rotation, and partially invariant 

to illumination changes and affine or 3D projection. 

These characteristics make them suitable as landmarks 

for robust matching when the cameras are moving around 

in an environment.  Such natural landmarks are observed 

from different angles, distances or under different 

illumination. 

     Previous approaches to feature detection, such as the 

widely used Harris corner detector [7], are sensitive to 

the scale of an image and therefore are less suitable for 

building feature databases that can be matched from a 

range of camera positions. 

 

  
Figure 3: SIFT features extracted from a stereo pair from 

the Mars Exploration Rover Spirit 

 

 Figure 3 shows the hundreds of SIFT features that 

were identified in the left and right images in our 

example.  Each feature is marked with a white box.  The 

size of the box represents the scale of the feature while 

the rotation of the box represents the orientation of the 

feature.  It is worth noting that features were found at 



many scales and orientations both near the rover and out 

to the horizon.      

 Although SIFT features are reasonably unique in 

their description as compared to Harris corners, there is 

an added computational burden associated with their use.  

For this reason, we have implemented the Feature 

Extraction block on a Field Programmable Gate Array 

(FPGA), to be described in Section 3.2. 

2.2 Stereo Feature Matching 
     With known stereo camera geometry, the SIFT 

features in the left and right images are matched using the 

following criteria: epipolar constraint, disparity 

constraint, orientation constraint, scale constraint, local 

feature vector constraint and unique match constraint [8].  

All of these constraints are essentially inequality-type 

constraints with tunable thresholds.  By varying the 

thresholds we may trade off the number of features 

against the quality of matched features. 

 

  
Figure 4: Stereo matching of SIFT features for two 

consecutive stereo pairs 

 

     The quality of the matched features is typically very 

high coming out of the Stereo Feature Matching block.  

Figure 4 shows the hundreds of stereo-matched SIFT 

features for two consecutive stereo pairs in our example.  

The images shown are the right images for each stereo 

pair and each match is marked with a white arrow. The 

tail of the arrow is at the location of the feature in the 

right image and the head of the arrow is at the location of 

the feature in the left image.  Thus, the length of the 

arrow represents the disparity.  We can see that the lines 

are all horizontal as expected due to the epipolar 

constraint and disparity is larger close up and smaller far 

away.  

2.3 Temporal Feature Matching 
     Temporal feature matching is typically done in one of 

two ways:  single frame or multi-frame.  In single frame 

matching, a stereo pair is compared only with the 

previous frame.  In multi-frame matching a database is 

built up and the current frame is compared to the 

database.  A 28% reduction in rover navigation error has 

been reported [9] when multi-frame matching is used, 

rather than considering each pair of frames separately.  

Our preferred approach is to maintain a database, but for 

the planetary application a trade study would be 

necessary to balance performance against processing 

limitations.  This is because there is a cost in terms of the 

additional memory and computational cycles needed to 

maintain and search the database. 

     The Temporal Feature Matching block takes each of 

the stereo-matched features from the current frame and 

finds the best match in our growing database of features. 

If a feature cannot be found in the database, we add it and 

assign it an id number. To maintain fast access in our 

implementation, a kd-tree is built online and matching of 

observed features to the database (i.e., data association) is 

carried out by a best-bin-first search [10].  We have 

experimented with databases sizes up to 200,000 features. 

     Figure 5 shows some temporally-matched features 

between the two stereo frames.  The line connecting the 

previous position (tail) to the current position (head) is 

analogous to optical flow.  Roughly 100 temporal 

matches were found here and we can see the movement 

of these features is qualitatively correct as the rover 

moved forward. 

 
Figure 5: Temporal matching of SIFT features between 

frames 

 

2.4 Visual Motion Estimation 

     Once we have completed all of the feature extraction 

and feature matching steps, we estimate the full three-

dimensional motion of the camera from the temporally-

matched features.  To do this we employ a Simultaneous 

Localization And Mapping (SLAM) approach that has a 

few essential steps: 

1. Predict camera motion using odometric sensors. 

2. Correct this camera motion using the observations of 

SIFT features that have been temporally-matched to 

the database.  This is done using a weighted least 

squares technique that accounts for the feature 

uncertainty.  

3. Update the features in the database (our map) using 

the final camera motion. 

     In more detail, our estimation algorithm is derived 

from the FastSLAM 2.0 algorithm [11][12]. Some 

modifications were necessary to make the algorithm 

compatible with our scenario [13]. The biggest change to 

the original algorithm is that we observe a large number, 

K, of SIFT landmarks simultaneously (e.g., K = 500). We 



also needed to incorporate outlier detection as some of 

the visual landmarks are inevitably mismatched.  

     We seek to simultaneously estimate the trajectory of a 

vehicle as well as the states of L landmarks. 

Mathematically this is expressed as the joint probability 

density for the vehicle trajectory and landmarks 

positions, given all the observations: 

 
which can be factored into L landmark state-estimators 

and one vehicle trajectory estimator. The vehicle states, 

up to time t (a.k.a., its trajectory up to time t), is denoted 

s
t
.  The l

th landmark state is denoted xl (which is assumed 

to be stationary). The sensor observations, up to time t, 

are denoted zt. The control inputs (or odometry 

measurements), up to time t, are denoted u
t
. The data 

associations, which assign particular observations to 

particular landmarks, up to time t, are denoted α
t
. 

     As described in [11][12], a Rao-Blackwellized particle 

filter will be used to update the posterior as new 

observations are gathered. This type of particle filter uses 

samples to represent uncertainty in the vehicle trajectory. 

Within each particle (a.k.a., sample), an independent 

Kalman filter [14] is implemented for each landmark in 

the map. Thus for each landmark (in each particle) we are 

estimating a mean and covariance: 

 
where (m) is the particle index. This has the advantage of 

not requiring a monolithic filter to represent the joint 

density for the vehicle and all the landmarks.  In our real-

time implementation to date we have only been able to 

use a single particle to represent the vehicle trajectory.  

However, having formulated the problem in this way 

allows more particles to be added later if computational 

resources permit. 

2.5 Disparity Map and 3D Points 

     To compute disparity maps offline, we use either 

Point Grey Research’s optimized Triclops library based 

on the Sum of Absolute Differences (SAD) or MDA 

normalised correlation-based dense stereo algorithm.   

     To compute disparity maps online for real-time 

applications, we use the 3DAware PCI card from Tyzx 

for dense stereo computation. It consists of a DeepSea2 

chip, which is an optimized hardware implementation of 

the Census stereo algorithm [15].  As with other stereo 

algorithms, texture is required for stereo matching, and 

hence there is no match for uniform regions.  The Tyzx 

system can compute dense stereo at 30Hz but is limited 

to 512x512 resolution.  

     Whether online or offline, a simple pinhole stereo 

camera model is used to reconstruct the dense 3D points 

from the disparity map.  As the rover moves around, 

dense 3D points are obtained relative to the camera 

position at each frame. All data sets must be transformed 

to the initial camera coordinate system using the camera 

pose estimated before they can be combined together.   

2.6 Voxel Map and 3D Terrain Map 

     Using all 3D points obtained from the stereo 

processing is not efficient as there are a lot of redundant 

measurements, and the data may contain noise and 

missing regions (due to incorrect matches or lack of 

texture). Representing 3D data as a triangular mesh 

reduces the amount of data when multiple sets of 3D 

points are combined and thus also reduces the amount of 

bandwidth needed to send the resulting models offboard 

(e.g., to Earth).  Furthermore, creating surface meshes 

fills up small holes and eliminates outliers, resulting in 

smoother and more realistic reconstructions. 

     To generate triangular meshes as 3D models, we 

employ a voxel-based method [16], which accumulates 

3D points with their associated normals. It creates a mesh 

using all the 3D points, fills up holes and works well for 

data with significant overlap. The 3D data is accumulated 

into voxels at each frame. Outliers are filtered out using 

their local orientation and by selecting the threshold of 

range measurements required per voxel for a valid vertex.  

     Photo-realistic appearance of the reconstructed scene 

is created by mapping camera images as texture. Such 

surfaces are more visually appealing and easier to 

interpret as they provide additional surface details. 

Colour images from the stereo camera are used for 

texture mapping. 

     As each triangle may be observed in multiple images, 

the algorithm selects the best texture image for each 

triangle. A texture image is considered to be better if it is 

captured when the camera is facing the triangle directly. 

If the camera is looking at the triangle at an angle, then 

its quality is lower due to the lower and non-uniform 

resolution caused by perspective distortion. To find the 

best texture, the algorithm analyses all the images and 

selects the one that gives the largest area upon 2D 

projection according to the camera pose. 

     Figure 6 shows a textured terrain map for the image 

pair in our running example.  The “Adirondack” rock 

feature is clearly visible in 3D when viewed from this 

perspective.  A three-dimensional model of the Spirit 

rover was inserted for visualization. 

 

 
Figure 6: Terrain map with Spirit rover model  



3. IMPLEMENTATION 

3.1 Rover Testbeds 

     To date we have used two different rover testbeds for 

hardware testing.  Initial testing of our methodology was 

conducted using the rover shown in Figure 7 (left).  This 

rover consists of a 4-wheel chassis developed by the 

University of Toronto Institute for Aerospace Studies 

(UTIAS). The limited computational power of this 

platform required that all images be uploaded to a ground 

station for processing [17]. 

 

  
Figure 7: (Left) Custom rover with Bumblebee stereo 

camera. (Right) ATRVJr rover with custom stereo 

camera. 

 
 Our second testbed is depicted in Figure 7 (right).  

The chassis of this rover is an iRobot ATRVJr with a 

custom vision system.  The stereo camera was 

constructed using a pair of Sony DFW-X700 cameras, 

mounted on a rigid aluminum bar, affixed to a pan-tilt 

unit.  The images we use are 8-bit 1024x768 resolution.  

The field of view of the cameras is approximately 45 

degrees horizontal and 35 degrees vertical.  There are 

currently two computers on board, a dual Pentium III 1 

GHz with 1 Gb of RAM (inside the red box) and a 

dedicated vision computer consisting of a Pentium M 1.8 

GHz with 1 Gb of RAM.  The vision computer also 

houses our hardware accelerated vision processing 

boards, a Tyzx DeepSea2 for dense stereo calculations 

and an AlphaData ADM-XRC board with a Virtex II 

Xilinx FPGA running our implementation of SIFT 

feature extraction.  There are various other sensors 

onboard as well:  sonar rangefinders, SICK laser 

rangefinder, DGPS, compass, inertial measurement unit, 

and inclinometer. 

 

3.2 FPGA Implementation 
     The high computational requirements of vision 

algorithms often limit the distance and science 

investigation that can be safely achieved by rovers 

equipped with radiation hardened processors.  In order to 

speed up performance, we used dedicated hardware such 

as Field Programmable Gate Arrays (FPGA) for some 

intensive image processing to offload the processor. 

     For this work, we have implemented the SIFT 

extraction on a Virtex II Xilinx FPGA (computationally 

intensive).  The fixed point hardware implementation of 

SIFT was developed based on the floating point software 

version.  To implement the complex SIFT algorithm 

directly using Very High-Level Design Language 

(VHDL) would have been a lengthy and time consuming 

task.  An alternative high level environment was needed. 

     We chose System Generator, which is a software tool 

for modeling and designing FPGA-based signal 

processing systems in the Matlab-Simulink environment.  

Simulink provides a graphical environment for creating 

and modeling dynamical systems.  System Generator 

consists of a Simulink library called a Xilinx Blockset, 

and software to translate a Simulink model into an 

equivalent faithful hardware realization of the model. 

     Even though the majority of the design was created 

with System Generator, there was coding in VHDL for 

low level processes that were not efficient to do with the 

Xilinx Block sets (such as DMA transfers, memory 

access routines and wrapper files).  The System 

Generator design, low level VHDL coding and wrapper 

files were all brought into the Xilinx Integrated Synthesis 

Environment (ISE) software tool.  The final bit file was 

generated within the ISE environment which then could 

be uploaded to the FPGA for execution. 

     To extract SIFT features from a 640x480 image, it 

takes 600 ms for a Pentium III 700MHz processor, while 

the FPGA can do so within 60 ms and leaving the 

processor available for other tasks. 

4. EXPERIMENTAL RESULTS 

     A set of field trials was conducted on a sandy surface 

(10 traverses total).  Figure 8 shows the results of an 

approximately 40 m traverse at maximum speed of 5 

cm/s on loose sand.  During this run, the motion planning 

software chose to go left around an obstacle (8 m into the 

traverse).  While executing this turn, a considerable 

amount of slip occurred, causing a significant error in the 

odometric-based orientation estimate.  Our visual 

technique did a much better job of estimating the robot 

path, as can be seen by comparison to GPS.  

 Using a tape measure, the final position of the rover 

was 37.8 m from the start. Visual motion estimation 

found 39.4 m and GPS found 38.8 m. The tape measure 

was taken as ground truth, indicating the visual motion 

estimation over-predicted the position by 4% of distance 

travelled.  However, it should be noted that most of this 

positioning error was in the longitudinal direction (along 

the line joining the start and final positions). Visually, the 

lateral error was extremely small, indicating that 

orientation was likely estimated very well throughout the 

traverse.  Similar results were found for all the traverses.  

The repeatability of the system was found to be quite 

high across trials.      

 A second set of field trials was conducted on a large 

gravel area (5 traverses total).  Figure 9 shows the results 

of an approximately 120 m traverse at maximum speed of 



10 cm/s on gravel.  Here we found that odometry did not 

experience isolated positioning errors, as was the case on 

sand, but did experience a systematic error (gradual curve 

to the left).  All of the trials at this site had similar errors, 

likely due to a slightly higher tire pressure on one side of 

the rover than the other. This systematic error was not 

observed prior to the field test; it was attributed to 

changes in tire pressure on the test day and hence 

miscalibration of odometry. 

 

 
Figure 8: (Above) Sand test site with arrows indicating 

path taken by rover. (Below) Path estimated by 

FastSLAM (blue), odometry (red), and GPS (green) on 

loose sand. 

 

 

Figure 9: (Above) Gravel test site. (Below) Path 

estimated by FastSLAM (blue), odometry (red) and GPS 

(green) on gravel. 

 Using a tape measure, the final position of the rover 

was 117.4 m from the start.  Visual motion estimation 

found 116.8 m and DGPS found 117.6 m.  The tape 

measure was taken as ground truth, indicated the visual 

motion estimation under-predicted the position by 0.5% 

of distance travelled.  Again, most of this positioning 

error was in the longitudinal direction (along the line 

joining the start and final positions). Visually, the lateral 

error was extremely small, indicating that orientation was 

estimated very well throughout the traverse. 

     The results of other trials at this site were mixed as we 

tried to push the system to move more quickly and use 

fewer images.  Increasing the vehicle speed to 20 cm/s, or 

decreasing the frame-rate to 1.5 Hz, resulted in decreased 

performance. 

     Figure 10 shows a model we created from a moving 

rover that captured a sequence of 101 stereo pairs.  A 

three dimensional model of the rover has also been 

inserted into the resulting terrain model for visualization. 

 
Figure 10 Terrain model with rover model inserted 

5. DISCUSSIONS 

5.1 Related Work 

     There have been various works on visual motion 

estimation for planetary rovers with promising results. 

Semi-sparse terrain maps were constructed and matched 

successively to obtain a vision-based state estimate in 

[18]. An extended Kalman Filter was then applied to fuse 

with wheel odometry. Experiments at JPL’s rover pit 

showed that the results had more than double the 

accuracy of the dead reckoning estimate.  

    A maximum likelihood estimation technique for rover 

localization in natural terrain was presented in [19] by 

matching range maps. Stereo vision generated local 

terrain range map which was matched to a previously 

generated 3D occupancy map to estimate rover pose. 

Good qualitative results were obtained when tested with 

Sojourner data, running on-board Rocky 7 Mars rover 

prototype.  

     Pixel tracking in stereo image sequences was 

proposed in [20] to estimate visual odometry in outdoor 

unstructured terrain, with around 4% error over 25 

metres. [21] evaluated a similar algorithm on the 

Marsokhod robot on many runs totaling several hundreds 

of metres and achieved about 2% translation error. [22] 

proposed that a set of concurrent and complementary 

algorithms are required for rover localization, as no 



single localization algorithm is robust enough to fulfill 

various localization needs during long range navigation.  

   In addition to stereo vision, [23] discussed the use of 

inertial sensors to estimate camera ego-motion and to 

augment stereo tracking on rough terrain. [9][24] showed 

that even with a robust stereo ego-motion method, the 

system accumulated super-linear error due to increasing 

orientation error. Therefore, they proposed incorporating 

an absolute orientation sensor to reduce the error growth 

to linear. They achieved 1.2% error in experiments 

carried out with a prototype Mars rover.   

 This same technique was also used to perform rover 

path tracking [25].  The Mars Exploration Rovers, Spirit 

and Opportunity, have been using a derivative of this 

visual odometry technology on Mars.  Initial 

demonstrations were conducted on Spirit during Sols 

175-178 with positive results.  The technique was also 

used to improve odometry when Spirit was forced to 

drive using only five of its six wheels, although some 

problems were reported during Sols 416-421.  An official 

report of the results is pending. 

     Real-time visual odometry results for terrestrial 

applications have been reported by [26], which uses 

Harris corners for features.  Our technique differs in that 

we are actually building a database of landmarks.  Real-

time SLAM results using SIFT features have recently 

been demonstrated indoors by [27] with a monocular 

camera and much smaller images than ours.    

   Most of the previous work used vision systems for 

localization only, whereas we also use the vision system 

for 3D modeling. Recently, [28] proposed using stereo 

images for recalibration and also for reconstructing 3D 

terrain models which were texture mapped with the 

original images. They have carried out preliminary 

experiments to create digital elevation maps at the ESA 

planetary terrain testbed.  The model was then used to 

plan a trajectory for the Nanokhod rover. However, their 

vision system was part of the lander, not on-board of the 

rover. Therefore, the terrain map generated will be 

limited to the surroundings of the landing site only. 

 

5.2 Advantages/Disadvantages of Our Approach 

    The key advantages of our localization approach are: 

• No new sensors needed as stereo cameras are already 

baselined on most future rovers. 

• Does not rely on any artificial infrastructure to 

localize and hence can be used far away from a 

lander for long-range science missions.  

• Highly distinctive SIFT features are used as visual 

landmarks, enabling the repeated identification of 

landmarks to be quite robust. 

• A SLAM approach is used for motion estimation (as 

opposed to single-frame odometry).  This allows 

landmarks to be tracked over frames and thereby 

helps reduce accumulation of error. 

• A probabilistic algorithm is used to estimate the 

rover’s pose based on a large number of landmarks 

taking into account their respective quality. 

     The current disadvantages of our localization 

approach are: 

• SIFT extraction requires considerable computational 

effort.  We have addressed this through 

implementation of vision components on FPGAs in 

preparation for flight. 

• Although our vision-based localization was based on 

the FastSLAM 2.0 algorithm, we found the use of 

more than a single particle to represent rover 

trajectory to be computational too expensive.  Our 

experimental results have shown with a single 

particle we may still achieve reasonable results. 

     The key advantages of our terrain mapping approach 

are: 

• It can be seamlessly integrated with our vision-based 

localization technique and hence terrain models can 

be created while the rover is in motion. 

• Through the use of a voxel representation of the 

models, terrain maps for both visualization by 

ground operators and cost maps for autonomous 

operations can be generated. 

• The resulting visualization models (with texture 

mapping) can be transmitted over a communication 

channel at a greatly reduced bandwidth than all of 

the raw images. 

     The key disadvantages of our terrain mapping 

approach are: 

• The computational burden of generating disparity 

maps, voxel maps, and texturing is reasonably high 

and may require implemention in hardware for flight 

operations. 

6. CONCLUSIONS 
     We have demonstrated the ability for a rover to use a 

stereo camera and SIFT features as the landmarks for 

efficient localization and terrain mapping. The resulting 

online visual motion estimation was used for autonomous 

outdoor rover traverses up to 120 m long on loose terrain. 

The final positioning errors were 0.5% to 4% of distance 

travelled, a major improvement over using odometry 

alone.  We have reconstructed terrain models in many 

environments, both artificial and natural including 

underground mines and buildings.  We have also begun 

to address the computational requirements of our 

approach by implementing one of the core vision blocks 

on FPGA.  All of these preliminary findings have shown 

promise and hence we continue to develop our vision 

technologies for planetary rovers.   

     In terms of our estimation algorithm, a future step in 

our work is to incorporate loop-closure detection and 

possibly backwards correction [29]. This could be 

incorporated in our outlier detection scheme as the 

number of outliers tends to spike when loops are closed. 

This is because a large number of SIFT matches are made 



but not in the expected locations. If loop closure can be 

robustly detected, we could switch to a `kidnapped robot' 

scenario to reset the localization and make corrections 

backwards in time. Work must also be done to prune and 

rebalance the kd-tree to allow significantly longer 

operation of the algorithm. We also seek to make our 

approach more robust to the translation and rotation that 

can occur between consecutive images. Currently, we can 

tolerate only small translations and rotations.  For 

practical applications we would like to be able to move 1 

m in translation and 20 degrees in rotation. This would 

make the algorithm efficient enough for planetary 

exploration, where computational resources are scarce. 

     We are also currently building a prototype of the 

ExoMars rover design shown in Figure 1 that will be 

used to further test our vision-based localization and 

terrain modeling.  We plan to conduct long-range (i.e., 

traverses of kilometers) field trials with this new rover 

during the summer of 2006 in a Mars-like environment 

(possibly Haughton Crater in the Canadian High Arctic). 
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