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Outline

e decision trees

e probabilistic decision trees

e M algorithm and extensions

e model selection, Bayesian computations
e empirical results

— system identification
— classification
e theoretical results

— training set error

— test set error



Some problems with multi-layered neural networks

e the learning algorithms are slow

e hard to understand the network

e hard to build in prior knowledge
e poor performance on non-stationary data

e not natural for some functions



Supervised learning (aka regression, classification)

We assume that the learner is provided with a

training set:

X = {(x",y)}H

where x is an input vector and y is an output

vector.

We will gauge performance on a test set:

X, = {(x", y")



Decision trees

e drop the data set down the tree

e at each node, try to find a split of the input
space (a half-plane) that yields the largest
gain in “purity” on left and right

e build a large tree and prune backward to cre-

ate a nested sequence of trees

e pick the best tree from the sequence using

cross-validation



Regression trees

y=o/X| [y=ogx| |y=ogx| |y=oy,x

e splitting is based on RSS



Some advantages:

e often much faster than neural networks

e often more interpretable

e allow operating points to be utilized

Some disadvantages:
e non-smooth regression surface
e coordinate dependent

e batch methods



Probabilistic Decision Trees

(Hierarchical mixtures of experts—HME)

(Jordan & Jacobs, 1994)
Why probabilities?

e smoother regression surface

e error bars from likelihood/Bayesian theory

(e.g., SEM algorithm)

e convergence results from likelihood /Bayesian

theory

e can handle categorical variables and missing

data in principled ways

e better performance (e.g., leverage issue)



Probabilistic Decision Trees

e drop inputs down the tree and use probabilis-

tic models for decisions

e at leaves of trees use probabilistic models to

generate outputs from inputs

e use a Bayes’ rule recursion to compute pos-

terior credit for nonterminals in the tree

The basic idea is to convert the decision tree into
a mixture model
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Model the decisions in the decision tree using

categorical probability models

o let w;, wij, wijk, - .. represent multinomial de-

cision variables at the nonterminals



e these variables will be treated as “missing”
data (cf. states of an HMM)

e cach path down the tree defines a component

of a mixture



Decision models at the nonterminals:
P(wi|X7 77)
P(wij|X7 Wi, Vi)

P(Wijk|X>Wi> C@'j)

Output models at the leaves:

P(y|X, Wiy, Wiy Wik« -y Qljk)



The total probability of an output y given an
input x is given by the sum across all paths from

the root to the leaves:

P(Y|X7@) — Zp(wl’|X,77)ZP(WZ'AX,WZ',VZ')
i j
%P(%MX,W@',QJ') e

P(y|X, Wiy, Wijy Wijk - -« Qljk)

This is a (conditional) mixture model.



Moments of this mixture distribution are read-
ily computed by tree traversal processes.

Define
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and define
P(wi|X7 77)

gi

gji = Plwijlx,wi,v;)

Jrlij = P(Wijk|X>Wi><ij)

(omitting the parameters for simplicity)



Then,




Component Models

Decision models
o P(w;|x,n) is a classification model

e any parametric classification model is appropriate—

we use a multinomial logit model

e this yields “soft” linear discriminants—soft

version of a CART /C4.5 tree

Leaf models

e we use simple generalized linear models

e Regression—Ilinear regression

e Binary classification—Ilogistic regression

e Multiway classification—multinomial logit model

e (can also handle count estimates, failure es-

timates, etc.)



Multinomial logit model

e the deterministic component:

gi = ZJ' efj
where
& =0 x

soft linear discriminants

— the directions of the 6; determine the ori-

entations of the discriminant surfaces (i.e.,

splits)

— the magnitudes of the #; determine the

sharpness of the splits
e the probabilistic component:
P(ylx,0) = g{'g5*--- g

where y; € {0,1} and =, y;, = 1.



e the log likelihood:
16, X) = %Zy@(p) log g;""

which is the cross-entropy function.

e the gradient:

_ P ()
T %;(y@ gi )X

Computing the Hessian and substituting into the
Newton-Raphson formula yields a simple, quadratically-

convergent iterative algorithm known as IRLS

(Iteratively-Reweighted Least Squares).



The Log Likelihood

B %log@ g ?9%) %gl(ﬁl?j o P (y P [x )]

e Problem: The log is outside of the sums.
How can we optimize such a risk function ef-

ficiently?

e Solution: EM



The EM (Expectation-Maximization) Algorithm

(Baum, et al., 1971; Dempster, Laird, & Rubin, 1977)

Special cases:
e mixture likelihood clustering (soft K-means)

e many missing data algorithms

e Baum-Welch algorithm for HMM’s

Applications to supervised learning (regression,

classification)?



EM—Tutorial

e Suppose that the problem of maximizing a
likelihood would be simplified if the values
of some additional variables—called “missing

variables” —were known

e These values are not known, but given the
current values of the parameters, they can

be estimated (the E step).

e Treat the estimated values as provisionally

correct and maximize the likelihood in the

usual way (the M step).

e We now have better parameter values, so the

E step can be repeated. Iterate.



EM—Tutorial (cont.)

“missing” data: Z
“complete” data: Y ={X,Z}
“complete” likelihood: 1.(©,))

The complete likelihood is a random variable, so

average out the randomness:

E step:

Q(0,0") = E[l.(0,))|x,0")],

This yields a fixed tfunction (), which can be op-

timized:

M step:

O+l = arg max Q(e,0W).



Applying EM to the HME architecture

The missing data are the unknown values of

the decisions in the decision tree.

Define indicator variables z;, z;j;, 2pij, - - -

Complete hikelihood:

1.(0,Y) =52 s log[gi” g%) -+ P (y ) 1x )]

P jjl

Incomplete likelihood:

(0, ) =Slog[L g Sgjfl -+ P (v x")]

Jli



We need to compute the expected values of the

missing indicator variables.

Note that, e.g.,

(=" x, y?) = Pl [x?, y)



Example

e one-level tree

e at each leaf, linear regression with Gaussian
errors

For the " leaf and the t* data point:

(1) =311y = pi P

Bl — gi €
5 g\ De Y-y 1P

where ,ul(-t) =67 x®.

1

This posterior is a normalized distance mea-

sure that reflects the relative magnitudes of the

residuals y(*) — ,ul(-t).



Posterior probabilities

S
I

— P(wi|X7 Y)

P(Wij|X> Yy, wz)

th = P(Wijk|X>Y>wi>wij)

(cf. prior probabilities)

9; = P(wilx)
gili = Plwijlx,w;)

grlij = P(Wijk|X>Wi>Wij)



Bayes’ rule yields:

9i 25 9j|i =k gk|z’jPijk(Y|X)

h, =
Ez’gizjngj|izkgk|ijpijk(Y|X)
[ 9j|¢2k9k|z‘jpijk(}’|x)
= P
ZJ g]|zzkgk|z] l]k(Y|X)
3 . gk|z’jPijk(Y|X)
klij =

1. 9rli; Pijr (¥ %)



Bayes’ rule yields:

9i 25 9j|i =k gk|z’jPijk(Y|X)

h, =
Ez’gizjngj|izkgk|ijpijk(Y|X)
[ 9j|¢2k9k|z‘jpijk(}’|x)
= P
ZJ g]|zzkgk|z] l]k(Y|X)
3 . gk|z’jPijk(Y|X)
klij =

1. 9rli; Pijr (¥ %)



Posterior propagation




The E step

e compute the posterior probabilities (“up-down”

algorithm )

The M step

e The () function decouples into a set of sepa-

rate maximum likelihood problems

e At the nonterminals, fit multinomial logit mod-

(7)

els, with the posteriors hl(-t), hj|l-, etc., serving

as the targets
e At the leaves, obtain weighted likelihoods where

the weights are the product of the posteriors

from root to leaf



The M step (in more detail)

The maximization of Q(0, ©") decouples into
a set of weighted MLE problems:

0" = argmaxy © bl log g,

(a cross-entropy cost)

(1+1)

1) — arg maxs v AP 5 h® log g
Nij P ]

i Jlio

(a weighted cross-entropy cost)

il

0" = argmax > £ b S hiflog Pijp..(y[x")
ij i J

(a general weighted log likelihood)

Each of these are weighted ML problems for
generalized linear models (GLIM’s). They can
be solved efficiently using iteratively-reweighted

least squares (IRLS).



HME Parameter Estimation

e drop the data set down the tree

e for each data point, compute the posterior

probabilities for every branch of the tree

e at each nonterminal, use the posterior prob-

abilities as (soft) classification targets

e at each leaf, fit a local model, where each
data point is weighted by the product of the
posterior probabilities from the root to that
leaf



Model selection

How do we choose the structure of the tree?

e initialize with CART or C4.5 (cf. K-means)

— can preserve local variable selection
e ridge regression

e cross-validation stopping within a fixed deep
hierarchy (EM iterations “grow” the effective

degrees of freedom)



Bayesian issues

e Dirichlet priors
e Gibbs’ sampling is straightforward

e Gaussian approximation of posterior via SEM

calculation of Hessian

e Mean-field approximation of posterior



Regression: A System Identification Problem

e Forward dynamics of a four-joint, three-dimensional
arm

e Twelve input variables, four output variables
e 15,000 points in the training set

e 5.000 points in the test set

e Four-level tree, with binary branches

e Compare to backpropagation in an MLP, with
60 hidden units

e Compare to CART, MARS



Relative error
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Batch algorithms

Backpropagation
HME (Algorithm 2)




Summary—batch algorithms

Architecture Relative Error | # Epochs
linear 31 NA
backprop .09 5,500
HME (Algorithm 1) .10 35
HME (Algorithm 2) 12 39
CART A7 NA
CART (linear) 13 NA
MARS 16 NA




An On-Line Variant of HME

Use techniques from recursive estimation theory
(Ljung & Soderstrom, 1986) to obtain the fol-

lowing on-line algorithm:

Expert networks:

vyt = Ul 4+ nRli" — xR

1] 17
where R;; is updated as follows:

R _ pl-1) _ \-1 R x50 Rit=D
iJ iJ )\[h(f,)]—l 4 X(t)TR(t_l)X(tV

and A\ is a decay parameter.



Top-level gating networks:

V(t‘"l) ( ) 4+ S( )(hl hl('t) . &(t))x(t)7

S(t D (1) (t)TS(t—l)

Si(t) — Si(t_l) AT : t—1 ’
A 4 x(OT ST Dy (1)

Lower-level gating networks:

Vit — D 4 gltp )( J|l flj )x"),

tJ tJ tJ

Q0 _ e _ o Sy xUxTs

] ] )\[h(t)]—l + X(t)TSZ.(;_l)X(t) .

1



Classification

Task Baseline | CART | HME | Bayes
Heart 44 22 18 18
Pima .35 .26 22 21
Orbitals 48 .29 23 21

(Error rates are computed using 10-fold cross-

validation)



Convergence results

(Jordan & Xu, 1994)

Theorem 1 Assume that the training set X 1s
generated by the mizture model (“realizable” case)

Let us denote

P:diag[P(k),Pb'”7P[(7P217°”7P2K]

9

_ 0U(O)
90067

where P; are covariance matrices of the compo-

H(©)

nent models.



Then with probability one,
(1) Letting —M,—m ( here M > m > 0) be the

minimum and mazximum eigenvalues of the neg-

ative definite matriz (P%)TH(@)(P%), we have

1(©") —1(0') < r*I(0%) = 1(8y)], (1)

[P e o) < 2, 2 o) ~ i@y
2)

where r = 1 — (1 — %)mﬁz < 1. We also have

0<|rl <1 when M < 2.
(2) For any initial point ©y € D, lim;_. O —
O©* when M < 2.



Test Set Error
(Saul & Jordan, 1995)

Hard split model

1 1

y(x) = T (Wrx)@(v-x) + s (wox) &(—v-x)

Consider a structurally identically teacher with

weight vectors wi, ws, v*.

Order parameters

R, X1 Xy 1 ViV W'V W3V
R=|YH R C)|=—=]|V' W] W["W| WyW]

Yo Cs Ry ViWy WW2 Wi Wo



Loss

Empirical risk (training enerqgy)

~

E = Zl G(V,Wl,Wg;X(p))
p:

Test set error (under a Gibbs’ distribution)

T 2 T 2

e,(R) = 1— {1 _ Cosl(Rv)] (R1 +R2) B

cosl(Rv)] (01 + CQ)

(X1 — Xp)(Y1 = V5)
2m\/1 — R:




High temperature limit
e 3 — 0 (where f§=1/T in the Gibbs’ distri-
bution)
e — o0 (a= P/N)
e & remains finite (& = af; a signal-to-noise

ratio)

Results
(cf. perceptron)

e A continuous phase transition at

&, = m/l+72/8 ~ 4.695
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A Histogram Tree
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Hidden Markov Decision Trees

e Each decision at a node is dependent on the

decision at the previous moment at that node

— This yields a Markov model at each node

e An EM algorithm can be derived, treating

the Markov states as hidden variables

— It combines a forward-backward pass with

an up-down pass



Conclusions

e A probabilistic approach to decision tree mod-
eling
— ridge function splits
— smooth regression functions

— any GLIM can be used as a leatf model
e EM algorithm (and SEM)
e Bayesian methods

— Gibbs’ sampling

— mean-field methods



