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Some problems with multi�layered neural networks

� the learning algorithms are slow

� hard to understand the network

� hard to build in prior knowledge

� poor performance on non�stationary data

� not natural for some functions



Supervised learning �aka regression� classi�cation�

We assume that the learner is provided with a

training set�

X � f�x�t��y�t��gT�

where x is an input vector and y is an output

vector�

We will gauge performance on a test set�

Xs � f�x�t��y�t��gTs�



Decision trees

x  < 1.43

1x  < 0.5 7x  < -2.1

y n

yy nn
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� drop the data set down the tree

� at each node� try to �nd a split of the input

space �a half�plane� that yields the largest

gain in 	purity
 on left and right

� build a large tree and prune backward to cre�

ate a nested sequence of trees

� pick the best tree from the sequence using

cross�validation



Regression trees

x  < 1.43

1x  < 0.5 7x  < -2.1

y n

yy nn

y=     xαT
1 y=     xαT y=     xαT y=     xαT

2 3 4

� splitting is based on RSS



Some advantages�

� often much faster than neural networks

� often more interpretable

� allow operating points to be utilized

Some disadvantages�

� non�smooth regression surface

� coordinate dependent

� batch methods



Probabilistic Decision Trees

�Hierarchical mixtures of experts�HME�

�Jordan � Jacobs� �����

Why probabilities�

� smoother regression surface

� error bars from likelihood�Bayesian theory

�e�g�� SEM algorithm�

� convergence results from likelihood�Bayesian

theory

� can handle categorical variables and missing

data in principled ways

� better performance �e�g�� leverage issue�



Probabilistic Decision Trees

� drop inputs down the tree and use probabilis�

tic models for decisions

� at leaves of trees use probabilistic models to

generate outputs from inputs

� use a Bayes� rule recursion to compute pos�

terior credit for nonterminals in the tree

The basic idea is to convert the decision tree into

a mixture model
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Model the decisions in the decision tree using

categorical probability models

� let �i� �ij� �ijk� � � � represent multinomial de�

cision variables at the nonterminals



� these variables will be treated as 	missing


data �cf� states of an HMM�

� each path down the tree de�nes a component

of a mixture
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Decision models at the nonterminals�

P ��ijx� ��
P ��ijjx� �i� �i�

P ��ijkjx� �i� �ij�

Output models at the leaves�

P �yjx� �i� �ij� �ijk � � � � �ijk����



The total probability of an output y given an

input x is given by the sum across all paths from

the root to the leaves�

P �yjx�
� �
X
i
P ��ijx� ��X

j
P ��ijjx� �i� �i�

X
k
P ��ijkjx� �i� �ij� � � �

P �yjx� �i� �ij� �ijk � � � � �ijk����

This is a �conditional� mixture model�



Moments of this mixture distribution are read�

ily computed by tree traversal processes�

De�ne

� � E�yjx�
�i � E�yjx� �i�

�ij � E�yjx� �i� �ij�

� � �

�ijk��� � E�yjx� �i� �ij� �ijk� � � ��

and de�ne

gi � P ��ijx� ��
gjji � P ��ijjx� �i� �i�

gkjij � P ��ijkjx� �i� �ij�

� � �

�omitting the parameters for simplicity�



Then�

� �
X
i
gi�i

�i �
X
j
gjji�ij

�ij �
X
k
gkjij�ijk

�ijk � f��Tijkx�
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Component Models

Decision models

� P ��ijx� �� is a classi�cation model

� any parametric classi�cation model is appropriate�

we use a multinomial logit model

� this yields 	soft
 linear discriminants�soft

version of a CART�C��� tree

Leaf models

� we use simple generalized linear models

� Regression�linear regression

� Binary classi�cation�logistic regression

� Multiway classi�cation�multinomial logit model

� �can also handle count estimates� failure es�

timates� etc��



Multinomial logit model

� the deterministic component�

gi �
e�i

P
j e

�j

where

�i � �Ti x

soft linear discriminants

� the directions of the �i determine the ori�

entations of the discriminant surfaces �i�e��

splits�

� the magnitudes of the �i determine the

sharpness of the splits

� the probabilistic component�

P �yjx� �� � gy�� g
y�
� � � � gynn

where yi � f�� �g and P
i yi � ��



� the log likelihood�

l���X � �
X
p

X
i
y
�p�
i log g

�p�
i

which is the cross�entropy function�

� the gradient�

	l

	�i
�

X
p

X
i
�y

�p�
i � g

�p�
i �x�p�

Computing the Hessian and substituting into the

Newton�Raphson formula yields a simple� quadratically�

convergent iterative algorithm known as IRLS

�Iteratively�Reweighted Least Squares��



The Log Likelihood

E �
X
p
log�

X
i
g
�p�
i

X
j
g
�p�
jji

X
k
g
�p�
kjij � � �Pijk����y

�p�jx�p���

� Problem� The log is outside of the sums�

How can we optimize such a risk function ef�

�ciently�

� Solution� EM



The EM �Expectation�Maximization� Algorithm

�Baum� et al�� ����� Dempster� Laird� � Rubin� �����

Special cases�

� mixture likelihood clustering �soft K�means�

� many missing data algorithms

� Baum�Welch algorithm for HMM�s

Applications to supervised learning �regression�

classi�cation��



EM�Tutorial

� Suppose that the problem of maximizing a

likelihood would be simpli�ed if the values

of some additional variables�called 	missing

variables
�were known

� These values are not known� but given the

current values of the parameters� they can

be estimated �the E step��

� Treat the estimated values as provisionally

correct and maximize the likelihood in the

usual way �the M step��

�We now have better parameter values� so the

E step can be repeated� Iterate�



EM�Tutorial �cont��

�missing� data� Z

�complete� data� Y � fX �Zg

�complete� likelihood� lc�
�Y�

The complete likelihood is a random variable� so

average out the randomness�

E step�

Q�
�
�t�� � E�lc�
�Y�jX �
�t���

This yields a �xed function Q� which can be op�

timized�

M step�


�t��� � argmax



Q�
�
�t���



Applying EM to the HME architecture

The missing data are the unknown values of

the decisions in the decision tree�

De�ne indicator variables zi� zjji� zkjij� � � �

Complete likelihood�

lc�
�Y� � X
p

X
i
z
�p�
i

X
j
z
�p�
jji � � � log�g�p�i g

�p�
jji � � �Pijk����y

�p�jx�p���

Incomplete likelihood�

l�
�X � �
X
p
log�

X
i
g
�p�
i

X
j
g
�p�
jji � � �Pijk����y

�p�jx�p���



We need to compute the expected values of the

missing indicator variables�

Note that� e�g��

E�z
�p�
i jx�p��y�p�� � P ��

�p�
i jx�p��y�p��



Example

� one�level tree
� at each leaf� linear regression with Gaussian

errors

For the ith leaf and the tth data point�

h
�t�
i �

g
�t�
i e�

�
�ky�t����t�

i k�

P
j g

�t�
j e�

�
�ky�t����t�

j k�

where �
�t�
i � �Ti x

�t��

This posterior is a normalized distance mea�

sure that re�ects the relative magnitudes of the

residuals y�t� � �
�t�
i �



Posterior probabilities

hi � P ��ijx�y�
hjji � P ��ijjx�y� �i�

hkjij � P ��ijkjx�y� �i� �ij�

� � �

�cf� prior probabilities�

gi � P ��ijx�
gjji � P ��ijjx� �i�

gkjij � P ��ijkjx� �i� �ij�

� � �



Bayes� rule yields�

hi �
gi

P
j gjji

P
k gkjijPijk�yjx�P

i gi
P
j
P
j gjji

P
k gkjijPijk�yjx�
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P
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j gjji
P
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Bayes� rule yields�
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Posterior propagation
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The E step

� compute the posterior probabilities �	up�down


algorithm�

The M step

� The Q function decouples into a set of sepa�

rate maximum likelihood problems

� At the nonterminals� �t multinomial logit mod�

els� with the posteriors h
�t�
i � h

�t�
jji� etc�� serving

as the targets

� At the leaves� obtain weighted likelihoods where

the weights are the product of the posteriors

from root to leaf



The M step �in more detail�

The maximization of Q�
�
�t�� decouples into

a set of weighted MLE problems�

�
�t���
i � argmax

�i

X
p

X
i
h
�p�
i log g

�p�
i �

�a cross�entropy cost�

�
�t���
ij � argmax

�ij

X
p

X
i
h
�p�
i

X
j
h
�p�
jji log g

�p�
jji �

�a weighted cross�entropy cost�

�
�t���
ij � argmax

�ij

X
p

X
i
h
�p�
i

X
j
h
�p�
jji logPijk����y

�p�jx�p��

�a general weighted log likelihood�

Each of these are weighted ML problems for

generalized linear models �GLIM�s�� They can

be solved e�ciently using iteratively�reweighted

least squares �IRLS��



HME Parameter Estimation
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� drop the data set down the tree

� for each data point� compute the posterior

probabilities for every branch of the tree

� at each nonterminal� use the posterior prob�

abilities as �soft� classi�cation targets

� at each leaf� �t a local model� where each

data point is weighted by the product of the

posterior probabilities from the root to that

leaf



Model selection

How do we choose the structure of the tree�

� initialize with CART or C��� �cf� K�means�

� can preserve local variable selection

� ridge regression

� cross�validation stopping within a �xed deep

hierarchy �EM iterations 	grow
 the e�ective

degrees of freedom�



Bayesian issues

� Dirichlet priors

� Gibbs� sampling is straightforward

� Gaussian approximation of posterior via SEM

calculation of Hessian

� Mean��eld approximation of posterior



Regression� A System Identi�cation Problem

� Forward dynamics of a four�joint� three�dimensional

arm

� Twelve input variables� four output variables

� ������ points in the training set

� ����� points in the test set

� Four�level tree� with binary branches

� Compare to backpropagation in an MLP� with

�� hidden units

� Compare to CART� MARS



Batch algorithms
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Backpropagation
HME (Algorithm 2)



Summary�batch algorithms

Architecture Relative Error � Epochs

linear ��� NA
backprop ��� �����
HME �Algorithm �� ��� ��
HME �Algorithm �� ��� ��
CART ��� NA
CART �linear� ��� NA
MARS ��� NA



An On�Line Variant of HME

Use techniques from recursive estimation theory

�Ljung � S oderstr om� ��!�� to obtain the fol�

lowing on�line algorithm�

Expert networks�

U
�t���
ij � U

�t�
ij " h

�t�
i h

�t�
jji�y

�t� � �
�t�
ij �x

�t�TR
�t�
ij �

where Rij is updated as follows�

R
�t�
ij � R

�t���
ij � 
��

R
�t���
ij x�t�x�t�TR

�t���
ij


�h
�t�
ij ��� " x�t�TR

�t���
ij x�t�

�

and 
 is a decay parameter�



Top�level gating networks�

v
�t���
i � v

�t�
i " S

�t�
i �lnh

�t�
i � �

�t�
i �x�t��

S
�t�
i � S

�t���
i � 
��

S
�t���
i x�t�x�t�TS

�t���
i


" x�t�TS
�t���
i x�t�

�

Lower�level gating networks�

v
�t���
ij � v

�t�
ij " S

�t�
ij h

�t�
i �ln h

�t�
jji � �

�t�
ij �x

�t��

S
�t�
ij � S

�t���
ij � 
��

S
�t���
ij x�t�x�t�TS

�t���
ij


�h
�t�
i ��� " x�t�TS

�t���
ij x�t�

�



Classi�cation

Task Baseline CART HME Bayes

Heart ��� ��� ��! ��!
Pima ��� ��� ��� ���
Orbitals ��! ��� ��� ���

�Error rates are computed using ���fold cross�

validation�



Convergence results

�Jordan � Xu� �����

Theorem 	 Assume that the training set X is

generated by the mixture model ��realizable� case�

Let us denote

P � diag�P �k�
g � P�� � � � � PK� P��� � � � � P�K

�

H�
� �
	�l�
�

	
	
T

where Pi are covariance matrices of the compo�

nent models	



Then with probability one


��� Letting �M��m � hereM � m � �� be the

minimum and maximum eigenvalues of the neg�

ative de�nite matrix �P
�
��TH�
��P

�
��
 we have

l�
��� l�
�k�� � rk�l�
��� l�
���� ���

kP��
��
�k� �
��k � jrjk��

vuuuut �

m
�l�
��� l�
����

���

where r � � � �� � M
� �

m�

M � �	 We also have

� � jrj � � when M � �	

��� For any initial point 
� � D

 limk��
�k� �


� when M � �	



Test Set Error

�Saul � Jordan� �����

Hard split model

y�x� �
�p
N
�w��x�#�v�x� " �p

N
�w��x�#��v�x�

Consider a structurally identically teacher with

weight vectors w�
��w

�
��v

��

Order parameters

R �

�
BBBBBB�

Rv X� X�

Y� R� C�

Y� C� R�

�
CCCCCCA �

�

N

�
BBBBBB�

v��v w�
��v w�

��v
v��w� w

�
��w� w

�
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v��w� w
�
��w� w

�
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�
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Loss


�v�w��w��x� �
�

�

�
�y��x��w��x��#�v�x�"

�y��x��w��x��#��v�x�
�

Empirical risk �training energy�

E �
PX
p��


�v�w��w��x
�p��

Test set error �under a Gibbs
 distribution�
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�
���� cos���Rv�

�

�
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�
q
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High temperature limit

� � � � �where � � ��T in the Gibbs� distri�

bution�

� ��� �� � P�N�

� $� remains �nite �$� � ��� a signal�to�noise

ratio�

Results

� 
g � �
�� �cf� perceptron�

� A continuous phase transition at

$�c � �
r
� " ���! 	 �����
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A Histogram Tree

Epoch 0 Epoch 9

Epoch 19 Epoch 29



A Deviance Tree



Hidden Markov Decision Trees

x

θ

y yy

θθij1 ijk ijn

ω

ω1
ωi

ωn

ωi1

ω in

ωij

ij1
ωijk

ω ijn

� Each decision at a node is dependent on the

decision at the previous moment at that node

� This yields a Markov model at each node

� An EM algorithm can be derived� treating

the Markov states as hidden variables

� It combines a forward�backward pass with

an up�down pass



Conclusions

� A probabilistic approach to decision tree mod�

eling

� ridge function splits

� smooth regression functions

� any GLIM can be used as a leaf model

� EM algorithm �and SEM�

� Bayesian methods

� Gibbs� sampling

� mean��eld methods


