Stata Tips
Volume I: Tips 1-119

Fourth Edition

NICHOLAS J. COX, Editor
Durham University
Department of Geography

T Press

A Stata Press Publication
StataCorp LLC
College Station, Texas

o~ I — g p—] Copyright © 2006, 2009, 2014, 2024 by StataCorp LLC
RN \} All rights reserved. First edition 2006

iy PreSS Second edition 2009

Third edition 2014

Fourth edition 2024

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in KTEX 2¢

Printed in the United States of America

109 87654321

Print ISBN-10: 1-59718-405-5 (volumes I and II)
Print ISBN-10: 1-59718-407-1 (volume I)

Print ISBN-10: 1-59718-409-8 (volume II)

Print ISBN-13: 978-1-59718-405-2 (volumes I and II)
Print ISBN-13: 978-1-59718-407-6 (volume I)

Print ISBN-13: 978-1-59718-409-0 (volume II)

ePub ISBN-10: 1-59718-406-3 (volumes I and II)
ePub ISBN-10: 1-59718-408-X (volumes I)

ePub ISBN-10: 1-59718-410-1 (volumes II)

ePub ISBN-13: 978-1-59718-406-9 (volumes I and II)
ePub ISBN-13: 978-1-59718-408-3 (volumes I)

ePub ISBN-13: 978-1-59718-410-6 (volumes II)

-~

N

Library of Congress Control Number: 2023948738

Copyright Statement: The Stata Journal and the contents of the supporting files (programs,
datasets, and help files) are copyright © by StataCorp LLC. The contents of the supporting files
(programs, datasets, and help files) may be copied or reproduced by any means whatsoever,
in whole or in part, as long as any copy or reproduction includes attribution to both (1) the
author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies,
in whole or in part, as long as any copy or reproduction includes attribution to both (1) the
author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies
of the insertions. This precludes placing electronic copies of the Stata Journal, in whole or
in part, on publicly accessible websites, fileservers, or other locations where the copy may be
accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or
the supporting files understand that such use is made without warranty of any kind, by either
the Stata Journal, the author, or StataCorp. In particular, there is no warranty of fitness of
purpose or merchantability, nor for special, incidental, or consequential damages such as loss
of profits. The purpose of the Stata Journal is to promote free communication among Stata
users.

The Stata Journal is a quarterly journal of Stata Press and is published by Sage Publishing
in association with StataCorp LLC. Stata, stara, Stata Press, Mata, mara, and NetCourse are
registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organi-
zation of the United Nations.

ITEX 2¢ is a trademark of the American Mathematical Society.

Stata Tips
Volume II: Tips 120-152

Fourth Edition

NICHOLAS J. COX, Editor
Durham University
Department of Geography

T Press

A Stata Press Publication
StataCorp LLC
College Station, Texas

o~ I — g p—] Copyright © 2006, 2009, 2014, 2024 by StataCorp LLC
RN \} All rights reserved. First edition 2006

iy PreSS Second edition 2009

Third edition 2014

Fourth edition 2024

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in KTEX 2¢

Printed in the United States of America

109 87654321

Print ISBN-10: 1-59718-405-5 (volumes I and II)
Print ISBN-10: 1-59718-407-1 (volume I)

Print ISBN-10: 1-59718-409-8 (volume II)

Print ISBN-13: 978-1-59718-405-2 (volumes I and II)
Print ISBN-13: 978-1-59718-407-6 (volume I)

Print ISBN-13: 978-1-59718-409-0 (volume II)

ePub ISBN-10: 1-59718-406-3 (volumes I and II)
ePub ISBN-10: 1-59718-408-X (volumes I)

ePub ISBN-10: 1-59718-410-1 (volumes II)

ePub ISBN-13: 978-1-59718-406-9 (volumes I and II)
ePub ISBN-13: 978-1-59718-408-3 (volumes I)

ePub ISBN-13: 978-1-59718-410-6 (volumes II)

-~

N

Library of Congress Control Number: 2023948738

Copyright Statement: The Stata Journal and the contents of the supporting files (programs,
datasets, and help files) are copyright © by StataCorp LLC. The contents of the supporting files
(programs, datasets, and help files) may be copied or reproduced by any means whatsoever,
in whole or in part, as long as any copy or reproduction includes attribution to both (1) the
author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies,
in whole or in part, as long as any copy or reproduction includes attribution to both (1) the
author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies
of the insertions. This precludes placing electronic copies of the Stata Journal, in whole or
in part, on publicly accessible websites, fileservers, or other locations where the copy may be
accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or
the supporting files understand that such use is made without warranty of any kind, by either
the Stata Journal, the author, or StataCorp. In particular, there is no warranty of fitness of
purpose or merchantability, nor for special, incidental, or consequential damages such as loss
of profits. The purpose of the Stata Journal is to promote free communication among Stata
users.

The Stata Journal is a quarterly journal of Stata Press and is published by Sage Publishing
in association with StataCorp LLC. Stata, stara, Stata Press, Mata, mara, and NetCourse are
registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organi-
zation of the United Nations.

ITEX 2¢ is a trademark of the American Mathematical Society.

Contents

Subject table of contents

Editor’s preface

Introducing
Stata tip 1:
Stata tip 2:
Stata tip 3:
Stata tip 4:
Stata tip 5:
Stata tip 6:
Stata tip 7:
Stata tip 8:

Stata tip 9:

Stata tiPS . ..t
The eform() option of regress..........ccooovviiiiiin.. R. Newson
Building with floors and ceilings................. N. J. Cox
How to be assertive ... W. Gould
Using display as an online calculator.................... ... P. Ryan
Ensuring programs preserve dataset sort order........... R. Newson
Inserting awkward characters in the plot.................. N. J. Cox
Copying and pasting under Windows. S. Driver and P. Royston
Splitting time-span records with categorical time-varying covariates
... B. Jann
Following special sequences.................cooiiiiii... N. J. Cox
: Fine control of axis title positions.......... P. Ryan and N. Winter

Stata tip 10
Stata tip 11

Stata tip 12:
Stata tip 13:
Stata tip 14:
Stata tip 15:
Stata tip 16:
Stata tip 17:
Stata tip 18:
Stata tip 19:
Stata tip 20:
Stata tip 21:
Stata tip 22:
Stata tip 23:
Stata tip 24:

: The nolog option with maximum-likelihood modeling commands . .

.. P. Royston
Tuning the plot region aspect ratio...................... N. J. Cox
generate and replace use the current sort order......... R. Newson
Using value labels in expressions........................ K. Higbee
Function graphsonthe fly oL N. J. Cox
Using input to generate variables........................ U. Kohler
Filling in the gaps........ccooiiiii i, N. J. Cox
Making keys functional i S. Driver
A way to leaner, faster graphs.......................... P. Royston
Generating histogram bin variables................. D. A. Harrison
The arrows of outrageous fortune........................ N. J. Cox
Variable name abbreviation..............o L P. Ryan
Regaining control over axis ranges N. Winter
Axis labels on two or more levels........................ N. J. Cox
Sequence index plots............... U. Kohler and C. Brzinsky-Fay

Stata tip 25:
Stata tip 26:

Maximizing compatibility between Macintosh and Windows.......
... M. S. Hanson

Hooepomsas BH

HEHHB

£ BEEBHEHEBEHEEHBEEHH

vi

Stata tip 27:
Stata tip 28:
Stata tip 29:
Stata tip 30:
Stata tip 31:
Stata tip 32:
Stata tip 33:

Stata tip 34:
Stata tip 35:
Stata tip 36:
Stata tip 37:
Stata tip 38:
Stata tip 39:
Stata tip 40:
Stata tip 41:
Stata tip 42:
Stata tip 43:

Stata tip 44:
Stata tip 45:
Stata tip 46:
Stata tip 47:
Stata tip 48:
Stata tip 49:
Stata tip 50:
Stata tip 51:
Stata tip 52:
Stata tip 53:
Stata tip 54:
Stata tip 55:
Stata tip 56:
Stata tip 57:
Stata tip 58:
Stata tip 59:
Stata tip 60:
Stata tip 61:
Stata tip 62:
Stata tip 63:

Contents

Classifying data points on scatter plots.................. N. J. Cox
Precise control of dataset sort order.................... P. Schumm
For all times and all places......................... C. H. Franklin
May the source be with you.............. N. J. Cox

Scalar or variable? The problem of ambiguous names .. G. I. Kolev
Domnot stop...ovoeee S. P. Jenkins
Sweet sixteen: Hexadecimal formats and precision problems.......

.. N. J. Cox
Tabulation by listing.................o.oiiiit. D. A. Harrison
Detecting whether data have changed W. Gould
Which observations? ..., N. J. Cox
And the last shall be first, C. F. Baum
Testing for groupwise heteroskedasticity............... C. F. Baum
In a list or out? In a range or out? N. J. Cox
Taking care of business............ ...l C. F. Baum
Monitoring loop iterations D. A. Harrison
The overlay problem: Offset for clarity...................... J. Cui

Remainders, selections, sequences, extractions: Uses of the modulus

.. N. J. Cox
Get a handle on your sample............ ...t B. Jann
Getting those data into shape.......... C. F. Baum and N. J. Cox
Step we gaily, on We g0t R. Williams
Quantile—quantile plots without programming........... N. J. Cox
Discrete uses for uniform()o L M. L. Buis
Range frame plots o i S. Merryman
Efficient use of summarize................ N. J. Cox
Events in intervals N. J. Cox
Generating composite categorical variables N. J. Cox
Where did my p-values go?...........ccooiiiiiiiiiiin M. L. Buis
Post your results. ... i P. Van Kerm

Better axis labeling for time points and time intervals ... N. J. Cox

Writing parameterized text files R. Gini
How to reinstall Stata............. oo W. Gould
nl is not just for nonlinear models........................ B. P. Poi
Plotting on any transformed scale....................... N. J. Cox
Making fast and easy changes to files with filefilter. A. R. Riley
Decimal commas in results output and data input....... N. J. Cox
Plotting on reversed scales......... N. J. Cox and N. L. M. Barlow

Modeling proportionst C. F. Baum

BEBBEH

BdENEEEREBEE

SElEEEEEEEEEEEEEEEEE::

1140

Contents

Stata tip 64:
Stata tip 65:
Stata tip 66:
Stata tip 67:
Stata tip 68:
Stata tip 69:

Stata tip 70:
Stata tip 71:
Stata tip 72:

Stata tip 73:
Stata tip 74:

Stata tip 75:
Stata tip 76:
Stata tip 77:
Stata tip 78:

strates

Stata tip 79:
Stata tip 80:

Stata tip 81:
Stata tip 82:
Stata tip 83:
Stata tip 84:
Stata tip 85:
Stata tip 86:
Stata tip 87:
Stata tip 88:

Stata tip 90:
Stata tip 91:
Stata tip 92:

Stata tip 93:

Stata tip 94

Cleaning up user-entered string variables. ...J. Herrin and E. Poen

Beware the backstabbing backslash...................... N. J. Cox
ds—A hidden gem. ...l M. Weiss
J() now has greater replicating powers................... N. J. Cox
Week assumptions. ... N. J. Cox

Producing log files based on successful interactive commands
A. R. Riley

Beware the evaluating equal sign........................
The problem of split identity, or how to group dyads N. J. Cox
Using the Graph Recorder to create a pseudograph scheme........
K. Crow

firstonly, a new option for tab2...........
R. G. Gutierrez and P. A. Lachenbruch

Setting up Stata for a presentation K. Crow
Separating seasonal time series.......................... N. J. Cox
(Re)using macros in multiple do-files..................... J. Herrin

Going gray gracefully: Highlighting subsets and downplaying sub-
N. J. Cox

Optional arguments to options

Constructing a group variable with specified group sizes...........

... M. Weiss
A table of graphs........................ M. L. Buis and M. Weiss
Grounds for grids on graphs............ L N. J. Cox
Merging multilingual datasets......................... D. L. Golbe
Summing missings.oovuiiiiiiiiiii N. J. Cox
Looping over nonintegers............. ... N. J. Cox
The missing() function.............cooooiiiiiii .. B. Rising
Interpretation of interactions in nonlinear models. M. L. Buis
Efficiently evaluating elasticities with the margins command
.. C. F. Baum

: Estimating means and percentiles following multiple imputation. ..

P. A. Lachenbruch

Displaying partial results L. M. Weiss
Putting unabbreviated varlists into local macros......... N. J. Cox
Manual implementation of permutations and bootstraps...........
.. L. Angquist
Handling multiple y axes on twoway graphs............ V. Wiggins

: Manipulation of prediction parameters for parametric survival re-

gression models............oie T. Boswell and R. G. Gutierrez

3.

4

—
NEN
| [

HEH HHE

=

H HHEE

]
O
OO

1189

1197

209

HEEEEHHEE

215

HE ERE B

H

viii

Stata tip 95:
Stata tip 96:
Stata tip 97:
Stata tip 98:
Stata tip 99:
Stata tip 100:

Stata tip 101:
Stata tip 102:
Stata tip 103:

Stata tip 104:
Stata tip 105:
Stata tip 106:
Stata tip 107:
Stata tip 108:
Stata tip 109:

Stata tip 110:
Stata tip 111:
Stata tip 112:
Stata tip 113:

Stata tip 114:
Stata tip 115:

Stata tip 116:

Contents

Estimation of error covariances in a linear model N. J. Horton
CUbe TOOtS . o v et e N. J. Cox
Getting at p’sand o’s...... ... i M. L. Buis
Counting substrings within strings N. J. Cox

Taking extra care with encode........................
Mata and the case of the missing macros.........................

Previous but different

Highlighting specific bars..................ooiiiiia N. J. Cox
Expressing confidence with gradations

Added text and title optionst N. J. Cox
Daily dates with missing days........ S. J. Samuels and N. J. Cox
With or without reference............................. M. L. Buis
The baseline is now reported.......................... M. L. Buis
On adding and constraining...................... M. L. Buis

How to combine variables with missing values....................

How to get the optimal k-means cluster solution A. Makles
More on working with weeks N. J. Cox
Where did my p-values go? (Part 2) M. L. Buis
Changing a variable’s format: What it does and does not mean . .
... N. J. Cox
Expand paired dates to pairs of dates.................. N. J. Cox

How to properly estimate the multinomial probit model with het-

eroskedastic €rrors. i M. Herrmann
Where did my p-values go? (Part 3) M. L. Buis
graph combine—Combining graphs L. Angquist

Stata tip 117:
Stata tip 118:

Orthogonalizing powered and product terms using residual center-
C. Sauer

N
=

HHEEH

HEH

23]

HEEHHEE

284
280

HEEE

58

302

1305)

HE HEE

Contents

Subject table of contents

Editor’s preface

Introducing Stata tips.

Stata tip 120:
Stata tip 121:
Stata tip 122:
Stata tip 123:
Stata tip 124:
Stata tip 125:

Certifying subroutines oLl M. L. Buis
Box plots side by side ... N. J. Cox
Variable bar widths in two-way graphs................... B. Jann
Spell boundariesoouiiiii N. J. Cox
Passing temporary variables to subprograms M. L. Buis

Binned residual plots for assessing the fit of regression models for

binary outComes.ttt e J. Kasza

Stata tip 126:

Stata tip 127:
Stata tip 128:

Stata tip 131:
Stata tip 132:
Stata tip 133:
Stata tip 134:

Stata tip 135:
Stata tip 136:

Stata tip 138:
Stata tip 139:

Stata tip 140:

Handling irregularly spaced high-frequency transactions data.....

.. C. F. Baum and S. Bibo

R. B. Newson
Marginal effects in log-transformed models: A trade application. .

Use capture noisily groups

... L. J. Uberti
: Efficiently processing textual data with Stata’s new Unicode fea-
... A. Koplenig
106610 and all that: Date variables that need to be fixed.........
... N. J. Cox
Custom legends for graphs that use translucencyT. P. Morris
Tiny tricks and tips on ticks........... N. J. Cox and V. Wiggins
Box plots that show median and quartiles only......... N. J. Cox

Multiplicative and marginal interaction effects in nonlinear models

..................... W. H. Dow, E. C. Norton, and J. T. Donahoe

Leaps and bounds. ... M. L. Buis
Between-group comparisons in a scatterplot with weighted markers

: Interpreting constraints on slopes of rank-deficient design matrices

D. Christodoulou

Local macros have local scope..................... ... N. J. Cox
The by() option of graph can work better than graph combine . ..
... N. J. Cox
Shorter or fewer category labels with graph bar N. J. Cox

HEBesa HBE

=

I
BE

B B

SEHEBE

==

EE B8 B

vi Contents

Stata tip 141: Adding marginal spike histograms to quantile and cumulative dis-

tribution plots. N. J. Cox
Stata tip 142: joinby is the real merge mm D. Mazrekaj and J. Wursten
Stata tip 143: Creating donut charts in Stata.................. A. Musau
Stata tip 144: Adding variable text to graphs that use a by() option .. N. J. Cox
Stata tip 145: Numbering weeks within months.................... ... N. J. Cox

Stata tip 146: Using margins after a Poisson regression model to estimate the
number of events prevented by an intervention..............................
................................... M. Falcaro, R. B. Newson, and P. Sasieni

Erratum: Stata tip 145: Numbering weeks within months............. N. J. Cox

Stata tip 147: Porting downloaded packages between machines....R. B. Newson

Stata tip 148: Searching for words within strings...................... N. J. Cox

Stata tip 149: Weighted estimation of fixed-effects and first-differences models . .
.. J. Gardner

Stata tip 150: When is it appropriate to xtset a panel dataset with panelvar only?
C. Lazzaro

Stata tip 151: Puzzling out some logical operators N. J. Cox

Stata tip 152: if and if: When to use the if qualifier and when to use the if
comMMANd ..« ovvt e N. J. Cox and C. B. Schechter

HHHH EENEBE

=
g

HH

5

Editor’s preface

The book you are reading reprints the first 119 Stata Tips from the Stata Journal,
with thanks to their original authors. It is a reissue of One Hundred Nineteen Stata
Tips from 2014. The Journal began publishing tips in 2003, beginning with volume 3,
number 4. The Editors are now pleased to reprint this selection in this book. Among
past and present Editors, Nicholas J. Cox has overseen the production of these Tips from
the beginning, with continued support and encouragement from H. Joseph Newton and
Stephen P. Jenkins.

The Stata Journal publishes substantive and peer-reviewed articles ranging from
reports of original work to tutorials on statistical methods and models implemented
in Stata, and indeed on Stata itself. Other features include regular columns such as
“Speaking Stata”, book reviews, and announcements.

We are pleased by the external recognition that the Journal has achieved. The Stata
Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/So-
cial and Behavioral Sciences, RePEc: Research Papers in Economics, Science Citation
Index Expanded (also known as SciSearch), Scopus, and Social Sciences Citation Index.

But back to the Tips. There was little need for tips in the early days. Stata 1.0 was
released in 1985. The original program had 44 commands, and its documentation totaled
175 pages. The current version, on the other hand, has hundreds if not thousands of
commands—including an embedded matrix language called Mata—and Stata’s official
documentation now totals more than 18,000 pages. Beyond that, the user community
has added several hundred more commands and many more pages explaining them or
the official commands.

The pluses and the minuses of this growth are evident. As Stata expands, it is
increasingly likely that users’ needs can be met by available code. But at the same
time, learning how to use Stata and even learning what is available become larger and
larger tasks.

The Tips are intended to help. The ground rules for Stata Tips, as found in the
original 2003 statement, are laid out as the next item in this book. We have violated
one original rule in the letter, if not the spirit: some Stata Tips have been much longer
than three pages. However, the intention of producing concise tips that are easy to pick
up remains as it was.

The Tips grew from many discussions and postings on Statalist, at Stata conferences,
meetings, and workshops, and elsewhere, which underscores a simple fact: Stata is now
so big that it is easy to miss even simple features that can streamline and enhance your

xvi Editor’s preface

sessions with Stata. This applies not just to new users, who understandably may quake
nervously before the manual mountain, but also to longtime users, who too are faced
with a mass of new features in every release.

Tips have come from Stata users as well as from StataCorp employees. Many discuss
new features of Stata, or features not documented fully or even at all. We hope that you
enjoy the Stata Tips reprinted here and can share them with your fellow Stata users.
If you have tips that you would like to write, or comments on the kinds of tips that are
helpful, do get in touch with us, as we are eager to continue the series.

Among many complementary resources, and beyond the all-important help files and
manual volumes, I want to flag two features of the StataCorp website, https: // www.
stata.com, namely, the FAQs (“Frequently asked questions on using Stata”) and the
Stata Blog, Not Elsewhere Classified. Both share the primary aims of alerting you to
features of Stata and how to use them easily and effectively. They also include many
contributions from the user community.

Nicholas J. Cox, Editor
October 2023

https://www.stata.com
https://www.stata.com

Editor’s preface

The book you are reading reprints 33 Stata Tips from the Stata Journal from 2014 to
2023, with thanks to their original authors. It is a sequel to One Hundred Nineteen Stata
Tips from 2014, reissued together with this volume. The Journal began publishing tips
in 2003, beginning with volume 3, number 4. The Editors are now pleased to reprint
this selection in this book. Among past and present Editors, Nicholas J. Cox has
overseen the production of these Tips from the beginning, with continued support and
encouragement from H. Joseph Newton and Stephen P. Jenkins.

The Stata Journal publishes substantive and peer-reviewed articles ranging from
reports of original work to tutorials on statistical methods and models implemented
in Stata, and indeed on Stata itself. Other features include regular columns such as
“Speaking Stata”, book reviews, and announcements.

We are pleased by the external recognition that the Journal has achieved. The Stata
Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/So-
cial and Behavioral Sciences, RePEc: Research Papers in Economics, Science Citation
Index Expanded (also known as SciSearch), Scopus, and Social Sciences Citation Index.

But back to the Tips. There was little need for tips in the early days. Stata 1.0 was
released in 1985. The original program had 44 commands, and its documentation totaled
175 pages. The current version, on the other hand, has hundreds if not thousands of
commands—including an embedded matrix language called Mata—and Stata’s official
documentation now totals more than 18,000 pages. Beyond that, the user community
has added several hundred more commands and many more pages explaining them or
the official commands.

The pluses and the minuses of this growth are evident. As Stata expands, it is
increasingly likely that users’ needs can be met by available code. But at the same
time, learning how to use Stata and even learning what is available become larger and
larger tasks.

The Tips are intended to help. The ground rules for Stata Tips, as found in the
original 2003 statement, are laid out as the next item in this book. We have violated
one original rule in the letter, if not the spirit: some Stata Tips have been much longer
than three pages. However, the intention of producing concise tips that are easy to pick
up remains as it was.

The Tips grew from many discussions and postings on Statalist, at Stata conferences,
meetings, and workshops, and elsewhere, which underscores a simple fact: Stata is now
so big that it is easy to miss even simple features that can streamline and enhance your

xii Editor’s preface

sessions with Stata. This applies not just to new users, who understandably may quake
nervously before the manual mountain, but also to longtime users, who too are faced
with a mass of new features in every release.

Tips have come from Stata users as well as from StataCorp employees. Many discuss
new features of Stata, or features not documented fully or even at all. We hope that you
enjoy the Stata Tips reprinted here and can share them with your fellow Stata users.
If you have tips that you would like to write, or comments on the kinds of tips that are
helpful, do get in touch with us, as we are eager to continue the series.

Among many complementary resources, and beyond the all-important help files and
manual volumes, I want to flag two features of the StataCorp website, https: // www.
stata.com, namely, the FAQs (“Frequently asked questions on using Stata”) and the
Stata Blog, Not Elsewhere Classified. Both share the primary aims of alerting you to
features of Stata and how to use them easily and effectively. They also include many
contributions from the user community.

Nicholas J. Cox, Editor
October 2023

https://www.stata.com
https://www.stata.com

(Pages omitted)

The Stata Journal (2003)
2 DOI: 10.1177/1536867X0400300412 3, Number 4, p. 445

Stata tip 1: The eform() option of regress

Roger Newson, King’s College London, UK
roger.newson@kcl.ac.uk

Did you know about the eform() option of regress? It is very useful for calculating
confidence intervals for geometric means and their ratios. These are frequently used
with skewed Y-variables, such as house prices and serum viral loads in HIV patients,
as approximations for medians and their ratios. In Stata, I usually do this by using
the regress command on the logs of the Y-values, with the eform() and noconstant
options. For instance, in the auto dataset, we might compare prices between non-US
and US cars as follows:

. sysuse auto, clear
(1978 Automobile Data)

. generate logprice = log(price)
. generate byte baseline =1

. regress logprice foreign baseline, noconstant eform(GM/Ratio) robust

Regression with robust standard errors Number of obs = 74
F(2, 72) =18043.56
Prob > F = 0.0000
R-squared = 0.9980
Root MSE = .39332

Robust
logprice GM/Ratio Std. Err. t P>t [95% Conf. Interval]
foreign 1.07697 .103165 0.77 0.441 .8897576 1.303573
baseline 5533.565 310.8747 153.41 0.000 4947 .289 6189.316

We see from the baseline parameter that US-made cars had a geometric mean
price of 5534 dollars (95% CI from 4947 to 6189 dollars), and we see from the foreign
parameter that non-US cars were 108% as expensive (95% CI, 89% to 130% as expensive).
An important point is that, if you want to see the baseline geometric mean, then you
must define the constant variable, here baseline, and enter it into the model with
the noconstant option. Stata usually suppresses the display of the intercept when we
specify the eform() option, and this trick will fool Stata into thinking that there is no
intercept for it to hide. The same trick can be used with logit using the or option, if
you want to see the baseline odds as well as the odds ratios.

My nonstatistical colleagues understand regression models for log-transformed data
a lot better this way than any other way. Continuous X-variables can also be included,
in which case the parameter for each X-variable is a ratio of Y-values per unit change
in X, assuming an exponential relationship—or assuming a power relationship, if X is
itself log-transformed.

The Stata Journal (2007)
86 DOI: 10.1177/1536867X0700700211 7, Number 2, pp. 268-271

Stata tip 45: Getting those data into shape!

Christopher F. Baum
Department of Economics
Boston College

Chestnut Hill, MA 02467
baum@bc.edu

Nicholas J. Cox
Department of Geography
Durham University
Durham City, UK
n.j.cox@durham.ac.uk

Are your data in shape? That is, are they in the structure that you need to conduct
the analysis you have in mind? Data sources often provide the data in a structure
that is suitable for presentation but clumsy for statistical analysis. One of the key
data management tools that Stata provides is reshape; see [D] reshape. If you need
to modify the structure of your data, you should be familiar with reshape and its
two functions: reshape wide and reshape long. In this tip, we discuss how two
applications of reshape may be the solution to some knotty data management problems.

As a first example, consider this question posted on Statalist by an individual who
has a dataset in the wide form:

country tradeflow Yr1990 Yri1991

Armenia imports 105 120
Armenia exports 90 100
Bolivia imports 200 230
Bolivia exports 80 115
Colombia imports 100 105
Colombia exports 70 71

He would like to reshape the data into long form:

country year imports exports

Armenia 1990 105 90
Armenia 1991 120 100
Bolivia 1990 200 80
Bolivia 1991 230 115
Colombia 1990 100 70
Colombia 1991 105 71

1. This tip was updated to use the new command import delimited rather than insheet.—Ed.

C. F. Baum and N. J. Cox 87

We must exchange the roles of years and tradeflows in the original data to arrive at
the desired structure, suitable for analysis as xt data. This exchange can be handled
by two successive applications of reshape:

. reshape long Yr, i(country tradeflow)
(note: j = 1990 1991)

Data wide -> long
Number of obs. 6 -> 12
Number of variables 4 -> 4
j variable (2 values) > _j

xij variables:
Yr1990 Yr1991 -> Yr

This transformation swings the data into long form with each observation identified by
country, tradeflow, and the new variable _j, taking on the values of year. We now
perform reshape wide to make imports and exports into separate variables:

. rename _j year

. reshape wide Yr, i(country year) j(tradeflow) string
(note: j = exports imports)

Data long -> wide
Number of obs. 12 > 6
Number of variables 4 > 4
j variable (2 values) tradeflow -> (dropped)

xij variables:
Yr -> Yrexports Yrimports

If we transform the data to wide form once again, the i() option contains country
and year, as those are the desired identifiers on each observation of the target dataset.
We specify that tradeflow is the j() variable for reshape, indicating that it is a
string variable. The data now have the desired structure. Although we have illustrated
this double-reshape transformation with only a few countries, years, and variables, the
technique generalizes to any number of each.

As a second example of successive applications of reshape, consider the World
Bank’s World Development Indicators (WDI) datasetﬂ Their extract program gen-
erates a comma-separated value (CSV) database extract, readable by Excel or Stata,
but the structure of those data hinders analysis as panel data. For a recent year, the
header line of the CSV file is

"Series code","Country Code","Country Name","1960","1961","1962","1963",
"1964" . n 1965" s "1966" . n 1967" , n 1968" . n 1969" , n 1970" s l|197lll . n 1972" s "1973" .
"1974","1975","1976" ,"1977","1978","1979","1980","1981","1982","1983"
"1984","1985","1986","1987","1988","1989","1990","1991","1992","1993",
"1994" . n 1995" s "1996" . n 1997" , n 1998" . n 1999" , "2000" s ll2001ll . II2002I| s "2003" . II2004II

2. See http://econ.worldbank.org.

88 Stata tip 45

That is, each row of the CSV file contains a variable and country combination, with the
columns representing the elements of the time Seriesﬂ

Our target dataset structure is that appropriate for panel-data modeling, with the
variables as columns and rows labeled by country and year. Two applications of reshape
will again be needed to reach the target format. We first import delimited (see
[D] import delimited) the data and transform the triliteral country code into a numeric
code with the country codes as labels:

. import delimited using wdiex
. encode countrycode, generate(cc)

. drop countrycode

We then must address that the time-series variables are named var4-var48, as the
header line provided invalid Stata variable names (numeric values) for those columns.
We use rename (see [D] rename) to change v4 to d1960, v5 to d1961, and so on:

forvalues i=4/48 {
rename v i~ d =1956+7i""

}

We now are ready to carry out the first reshape. We want to identify the rows of
the reshaped dataset by both country code (cc) and seriescode, the variable name.
The reshape long will transform a fragment of the WDI dataset containing two series
and four countries:

. reshape long d, i(cc seriescode) j(year)

(note: j = 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
> 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
> 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
> 2003 2004)

Data wide -> long
Number of obs. 7 -> 315
Number of variables 48 -> 5
j variable (45 values) -> year

xij variables:
d1960 d1961 ... d2004 -> d

3. A variation occasionally encountered will resemble this structure, but with periods in reverse chrono-
logical order. The solution here can be used to deal with that problem as well.

C. F. Baum and N. J. Cox

. list in 1/15

89

cc seriesc~e year countryname d
1 AFG adjnetsav 1960 Afghanistan
2. AFG adjnetsav 1961 Afghanistan
3. AFG adjnetsav 1962 Afghanistan
4 AFG adjnetsav 1963 Afghanistan
5 AFG adjnetsav 1964 Afghanistan
6 AFG adjnetsav 1965 Afghanistan
7. AFG adjnetsav 1966 Afghanistan
8. AFG adjnetsav 1967 Afghanistan
9 AFG adjnetsav 1968 Afghanistan
10. AFG adjnetsav 1969 Afghanistan
11. AFG adjnetsav 1970 Afghanistan -2.97129
12. AFG adjnetsav 1971 Afghanistan -5.54518
13. AFG adjnetsav 1972 Afghanistan -2.40726
14. AFG adjnetsav 1973 Afghanistan -.188281
15. AFG adjnetsav 1974 Afghanistan 1.39753

The rows of the data are now labeled by year, but one problem remains: all variables
for a given country are stacked vertically. To unstack the variables and put them in
shape for xtreg (see [XT] xtreg), we must carry out a second reshape that spreads the
variables across the columns, specifying cc and year as the ¢ variables and seriescode
as the j variable. Since that variable has string content, we use the string option.

. reshape wide d, i(cc year) j(seriescode) string

(note: j = adjnetsav adjsavC02)
Data long -> wide
Number of obs. 315 -> 180
Number of variables 5 -> 5
j variable (2 values) seriescode -> (dropped)
xij variables:
d -> dadjnetsav dadjsavC02

. order cc countryname

. tsset cc year
panel variable:
time variable:

year,

cc (strongly balanced)
1960 to 2004

After this transformation, the data are now in shape for xt modeling, tabulation, or

graphics.

As illustrated here, the reshape command can transform even the most inconvenient
data structure into the structure needed for your research. It may take more than one
application of reshape to get there from here, but it can do the job.

The Stata Journal (2014)
14, Number 1, pp. 221-225 DOLI: 10.1177/1536867X1401400115 313

Stata tip 117: graph combine—Combining graphs

Lars Angquist

Institute of Preventive Medicine

Bispebjerg and Frederiksberg Hospitals—The Capital Region
Copenhagen, Denmark

lars.henrik.angquist@regionh.dk

1 Introduction

There are many different reasons for wanting to create multipanel graphs, presented
in 7 > 1 rows and ¢ > 1 columns: these reasons include making efficient use of re-
stricted display space and enhancing the presentation of results. In basic Stata, the
flexible approach to confidently handle these tasks is given by using the graph combine
functionality (see help graph combine). For related discussions and examples, see the
stimulating books An Introduction to Stata for Health Researchers (Juul and Fryden-
berg [2010) and A Visual Guide to Stata Graphics (Mitchell |2012]).

2 Basic usage

First, we start with setting up seven simple, but quite artificial, linear relations disturbed
by normally distributed noise based on simulated = and y variables (interpreted in the
standard sense).

set obs 100
generate xvar=10*runiform()

forvalues i=1/7 {
generate y i =xvar* i +runiform()*(i"*3)

label variable y i~ "Outcome variable “i~""

}

Second, we simply fit linear regressions that correspond to these relations and then save
the seven corresponding graphs in memory.

foreach yvar of varlist y* {

local 1bl: variable label “yvar~
sort xvar

reg “yvar®~ xvar

local b : display %3.2f _bl[xvar]
predict p, xb

twoway (scatter “yvar” xvar) (line p xvar), 11/
ytitle(""1bl"") xtitle("Explanatory covariate") /17
yscale(range(0 80)) /17
legend(off) note("{&beta}="b"", position(4) ring(0)) ///
name ("graph_"yvar"", replace)

drop p

314 Stata tip 117

(Here we use the name (string) option—unless we want to actually save the separate
graphs to disk. In that case, we would replace this option with saving(string).)

Finally, we intend to combine the graphs into a multipanel setup. Assuming that
the graphs belong to two distinct groups—graphs 1-3 and 47, respectively—they are
mirrored in the construction. This is achieved by the following:

1. Combine graphs 1-3 into panel 1.
2. Combine graphs 4-7 into panel 2.

3. Combine the resulting 1-row panels, panel 1 (r x ¢ = 1 x 3) and panel 2
(r x ¢=1x4), into a final 2-row panel (r = 2; see figure [1f).

graph combine graph_yl graph_y2 graph_y3, ///
name ("firstset", replace) ycommon cols(3) title("First set of graphs")

graph combine graph_y4 graph_y5 graph_y6 graph_y7, ///
name ("secondset", replace) ycommon cols(4) title("Second set of graphs")

graph combine firstset secondset, ///

saving("sevenpanelgraph.gph", replace) ycommon cols(1)
graph export sevenpanelgraph.eps, replace

First set of graphs

80
80
80

60
60
60

Outcome variable 1
40
Outcome variable 2
40
Outcome variable 3
40

“g%
K 4

20
20

B=1.00

p=201 o1 ® B=2.99
10

10] 10

£
| epmmarmemn I 3

2 4 é 8 2 4 6 8
Explanatory covariate Explanatory covariate

2 4
Explanatory covariate

Second set of graphs

60 80
60
80
60 . 0
=

60
&

Outcome variable 4
40

20

n

Outcome variable 5
40
o
%
.
Outcome variable 6
40
Outcome variable 7
40
.
o

20

gd‘g?'
3 ¢

p=3.94 ° p=5.03 ° p=5.82 o p-7.28

%

6 2 46 8 10 6 24 6 & 10 6 24 6 & 10 6 246 & 10
Explanatory covariate Explanatory covariate Explanatory covariate Explanatory covariate

Figure 1. Multipanel graph—a combination of combined graphs

3 Some notes on options

The basic functionality facilitates an easy-to-use combination of graphs. A well-suited
set of selected options might improve the display.

L. Angquist 315

3.1 Axes

In many cases, keeping scales constant over panels might enhance the interpretability
of the jointly graphed relations. Generally, this might prove to be a valid argument;
however, it is imperative for the = axis and y axis when comparing vertically (the
xcommon option) and horizontally (the ycommon option), respectively.

3.2 Margins

To keep the panels as tightly linked as possible—to increase overall comparability—it
might be suitable to reduce margins through imargin(zero); for other margin choices,
see help marginstyle.

3.3 Panel pattern

The final number of panels to use is implicitly given by the stated list of panels in
the actual program call. (Remember that each panel might in itself be a previously
constructed multipanel. In the above example, a single column, ¢ = 1, was used at the
combination stage.) To define which r x ¢ panel-matrix shape will be used, one may
choose any of the following options (one is enough): rows(integer) or cols (integer).
To make the graph (distribution of panels) unique, select the colfirst option (or not).
If the required number of panels is less than the available number r-c, it may be useful
to explicitly—given the unique order—tell Stata which panels should be left empty
(instead of the default) by using holes (numlist).

3.4 Scaling

Each panel is downscaled when using multipanels, text and markers, etc. It is possible
to rescale the downscaling through the iscale(scale) option, where scale is either an
absolute (positive) or a relative value. For example, the absolute value 1 means the
original size, and the relative value *1 implies the same size as the default selection;
0.75 and *0.75 will adjust the size to the three-quarter size counterparts.

4 A second example

For our second example, we will play around with the individual panel sizes. For this,
we will use one of the seven graphs (the sixth) from figure 1, which is inspired by the
informative help file (see the end of the help graph combine post), to complement it
with the two corresponding underlying histograms (see result in figure .

316

histogram xvar,
percent start(0) width(1)
xscale(range(0 10) off)
fxsize(100) fysize(25)
yscale(range(0 15)) ytitle("")
ylabel(0(5)15, angle(horizontal))
kdensity kdenopts(lpattern(dash))
plotregion(margin(zero))
note("N (%)", ring(0) position(10))
name ("hist_xvar", replace)

histogram y6,
percent start(0) width(10) horizontal
xtitle("") x1abel(0(10)20) xscale(rev)
fxsize(25) fysize(100)
yscale(range(0 80) off)
ylabel(10(20)70, angle(horizontal))
kdensity kdenopts(lpattern(dash))
plotregion(margin(zero))
note("N (%)", ring(0) position(4))
name ("hist_y6", replace)

/17
/17
/17
/17
/17
/17
/17
/17
11/

/17
11/
11/
/17
/17
11/
/17
/17
/17

Stata tip 117

In the next step, these three panels are combined (note that we use some of the op-
tions just discussed). The main point here is that the options fxsize (number) and
fysize(number) govern the widths and heights of the panels; that is, in the example
above, the thin sides are left at 25% of the original sizes.

graph combine hist_y6 graph_y6 hist_xvar,
holes(3) rows(2)
imargin(0 2 0 0)
title("
saving(graphwithhistograms.gph, replace)
graph export graphwithhistograms.eps, replace

Twoway graph with histograms", ring(0))

1Twoway graph with histograms

11/
11/
11/
11/

o4
N (%) u é ¥
20 10

Figure 2. Multipanel graph—a scatterplot with a prediction line and two complemen-
tary histograms

L. Angquist 317

5 Discussion and alternatives

In many situations where the subgraphs combine corresponding true data subsets of
the present loaded data, a similarly performing alternative would be to use the by ()
option (see help by_option). Here the syntax by(varlist[s options]) allows combined
graphing of the corresponding defined graph with respect to all present categories spec-
ified by the categorical variables given in warlist. In this setting, the options total and
missing add panels based on the total dataset (over nonmissing groups) and missing
data for individuals, respectively.

5.1 by() options

As noted above, the option by () allows for suboptions. Some suboptions are similar
to the ones available for graph combine—for example, colfirst, cols(), rows(Q),
holes(), iscale(), and imargin(). Similar functionality, but with different names
and adapted settings, is given by compact (reduces margins between panels), norescale
(uses the same scales over panels), and noedgelabel (restricts the number of displayed
labels). Note that an option with no, such as norescale, generally has a counterpart,
such as rescale, with a quite obvious implication.

Usually, this type of solution might be convenient in different cases; however, in most
situations, this solution is less flexible and more restrictive by nature. Furthermore,
graphing several subgroups within a single panel (together but separately marked) is an
alternative solution that allows the smaller number of subgroups to be totally displayed
while applying distinct colors and markers. For other cases, the multipanel design may
be the best choice because one (or several) background groups can be added to each
panel to enhance overall comparability. For example, see the discussion of overlaid
graphs in [Cox| (2010)), where subgroups are plotted against completely complementary
data while using discrete gray-scaled backdrop markers for the background group. This
is referred to as adopting a substrate, or subset, graphing design.

References

Cox, N. J. 2010. Speaking Stata: Graphing subsets. Stata Journal 10: 670-681. https:
//doi.org /10.1177 / 1536867X1101000408.

Juul, S.; and M. Frydenberg. 2010. An Introduction to Stata for Health Researchers.
3rd ed. College Station, TX: Stata Press.

Mitchell, M. N. 2012. A Visual Guide to Stata Graphics. 3rd ed. College Station, TX:
Stata Press.

https://doi.org/10.1177/1536867X1101000408
https://doi.org/10.1177/1536867X1101000408

The Stata Journal (2022)
150 DOI: 10.1177/1536867X221141068 22, Number 4, pp. 998-1003

Stata tip 148: Searching for words within strings

Nicholas J. Cox
Department of Geography
Durham University
Durham, U.K.
n.j.cox@durham.ac.uk

1 The problem: Looking for words

Searching for particular text within strings is a common data management problem.
One frequent context is whenever various possible answers to a question are bundled
together in values of a string variable. Suppose people are asked which sports they enjoy
or something more interesting, like which statistical software they use routinely. To keep
the matter simple, we will first imagine just lists of one or more numbers that are concise
codes for distinct answers, say, "42" for "cricket" or "1" for "Stata". Nonnumeric
codes will also be considered in due course. For more on handling such questions,
sometimes called multiple response, see |(Cox and Kohler| (2003)) or |Jann| (2005)).

The precise problem discussed in this tip is finding text in strings whenever such text
is a word in Stata’s sense, or something close to that. This needs a little explanation.

Here is a tiny sandbox dataset that will be enough to show the problem and some
devices that can yield solutions. By way of example, we will focus mainly on a goal of
generating indicator variables, sometimes known as dummy variables. For one overview
of generating such variables, see |Cox and Schechter| (2019). We will also touch on the
problem of counting instances of a word.

. input str8 mytext

mytext
ll1ll
ny om
"1 2 11"
"11 12 13"
"11 12 13 111"
end

OGP WN -

Searching for "1" or "2", say, starts with looking for either character with a string
function. The function strpos() is useful for that. For a rapid personal survey of
especially useful functions, see |Cox| (2011a)).

Finding such single characters is easy and unproblematic if the possible answers are
one character long at most. More generally, searches are easy if there is no ambiguity.
Consider

. generate byte isl = strpos(mytext, "1") > 0

The function strpos() looks for particular text within other text. It returns O if that
particular text is not found and a positive number, the position of that particular text,
if that text is found. Thus, the position of "1" in "1 2" is 1, the position of "2" in

N. J. Cox 151

"1 2" is 3, and so on. Hence, an indicator variable like is1 will be returned as 1 if there
are observations in which strpos() returns a positive result. Otherwise, the indicator
variable will be returned as 0. If you are new to the idea that an expression like

strpos(mytext, "1") > 0

returns 1 if true and 0 if false, see |Cox and Schechter| (2019) or, more directly, [Cox
(2005}, 2016)).

If you look again at the sandbox, you should see what is coming next. Looking for
"1" with

strpos("1 2 11", "1i")
will still work, fortunately, but looking for "1" with
strpos("11 12 13", "1")

will yield a false positive. The problem is that we want to find "1" only if it occurs by
itself, namely, as a separate word. Stata’s primary sense of a word within a string is
that words are separated by spaces.

In some Stata contexts, double quotation marks bind together more strongly than
spaces separate, so "Stata is subtle" would be treated as a single word if the quota-
tion marks were explicit. For present purposes, we will leave that complication aside.

2 A solution: Looking for spaces too

Let’s carry forward the idea that we need to look for spaces too. At first sight, this is a
beautiful idea that just does not work very well because there are too many possibilities
to catch. Thus, looking for "1 " catches "1"—as part of "1 "—and not "11" within
"1 2 11", which is as intended. But it catches the first "1 "—as part of "11 "—within
"11 12 13", which is not what we want. Other way round, looking for " 1" catches
correctly sometimes and incorrectly other times. Looking for " 1 "—with spaces before
and after—will not work if "1" is the first word or the last word, so without a previous
space or a following space, respectively.

But that last idea can be made to work with a simple twist. Congratulations if you
thought of this directly!

. generate byte isl = strpos(" " + mytext + " ", " 1 ")
. list

mytext is1

1

12
1211
11 12 13
11 12 13

g wN -
COoORr KRR

152 Stata tip 148

So we solve the problem of initial and following spaces by supplying them on the fly.
Note that we do not need to generate a new variable or replace an existing variable;
we just get Stata to work with a version of the variable with extra spaces. Extra spaces
that go beyond our need are harmless, because " 1 ", in which “1” has two spaces
before it and two after it, is treated the same way as " 1 ", in which “1” has one space
before it and one after it.

3 What about other separators?

Suppose our string variable used another separator, say, commas, which could just be a
different convention or a good idea anyway if spaces occur naturally. Someone’s favorite
sport might be "water polo" or "debugging code". Then whatever the commas sep-
arate are not words in Stata’s technical sense, but they are still words for us or atoms
we wish to seek as such.

We could still use a similar idea of looking for ",1," within "," + mytext + ",".
We just need to watch for gratuitous extra spaces so that "1 ," is not missed. If strings
could be moderately complicated, we might need a different method. More positively,
if spaces have no meaning and we have values like "1,2 ,3", then changing all commas
to spaces allows the method of the previous section to be used.

4 A solution: What would change if we deleted words?
Here is another solution. This time around, an example comes before the explanation.

. generate byte IS1 = strlen(mytext) > strlen(subinword(mytext, "1", "", 1))
. list

mytext isl IS1

1. 1 1 1
2. 12 1 1
3. 1211 1 1
4. 11 12 13 0 0
5. 11 12 13 0 0

We get the same answer, so how did that work?

The function strlen() measures the length of strings by counting characters. Al-
though no longer documented, the older name length() still works if you remember or
prefer that.

The function subinword() replaces text with other text if and only if that text
occurs as a word in Stata’s primary sense. The function knows how to handle words
at the beginning and end of strings. However, subinword() does not follow Stata’s
extended sense that a word can be defined (meaning, delimited) by explicit double
quotation marks.

N. J. Cox 153

But how does replacing text help? We do not want to change text; we are just
searching for it. Yet, if the result of replacing text by an empty string (deleting it, to
put it plainly) would be to reduce the length of the string, then evidently we did find
that text.

Notice “would be”. As before, we do not have to generate a new variable or replace
an existing variable. We just get Stata to tell us what the result would be if the text
existed and so would be deleted.

Whether the length of the string is greater than the length of the string with the
word removed is a true or false question. Either the first length is greater because there
is at least one instance of the word or the two lengths are the same because there is no
such instance. If the expression is true, 1 is returned; and if it is false, 0 is returned,
giving us an indicator variable.

This method is of interest for another reason: you may want to count instances of a
word. We could have written

. generate byte IS1 = strlen(mytext) > strlen(subinword(mytext, "1", "", .))

The difference is in the last argument fed to subinword (), namely, system missing .
rather than 1. That different syntax instructs Stata to delete all instances of the word
"1" rather than the first only. For detecting whether the word exists, you need know
only that it exists at least once.

If the problem is counting instances instead of checking for existence, then the dif-
ference in lengths

. generate countl = strlen(mytext) - strlen(subinword(mytext, "1", "", .))

is precisely the number of times "1" occurs as a word. If you are looking for instances
of "11" or "111", remember to divide by 2 or 3—the lengths of the words in ques-
tion, respectively—or you will get the number of characters notionally deleted, not the
number of words.

For more on counting substrings, see |Cox| (2011b)).

5 Nonnumeric words

Datasets may include one or more nonnumeric words bundled in a string variable.
Suppose there was a survey question about which programming languages are routine
for Stata users, with possible answers such as one or more of Python, Julia, C++, and C.

Handling such nonnumeric words can be both easier and more difficult than handling
numeric words. The possibility of ambiguity is less but still present, as witness checking
for mentions of C and finding them within mentions of C++. Hence, insisting on searching
for a word, and not just a substring, can be necessary using one of the devices just
explained.

154 Stata tip 148

Greater difficulty can arise because of variations in spelling and punctuation, de-
pending sensitively on how such data were entered and collated. Suppose that none
was expected as an answer when true but that there are also instances of None, NONE,
and so forth. This particular variability is easily handled by looking for none within
strlower () or—according to taste—looking for NONE within strupper(). The older
function names lower () and upper () are equivalent and still work. Other variations in
spelling may be harder to handle, but the first step is always to find out exactly which
names were used.

6 A list of tricks

We have covered two main ideas:

e Words are separated by spaces, so look for a word together with previous and
following spaces, remembering how to catch words at the beginning or the end of
a string (sections 2 and 3).

o If we ask Stata to tell us whether and how the length of a string would change
if we were to delete a word, we have ways to detect the occurrence of that word,
either yes or no, or the number of occurrences if that is what we seek (section 4).

That is not a complete treatise, even on this small topic. A longer account might
mention other possibilities, complications that may arise, or possible solutions.
First, I will mention other problems:
e I have focused on plain ASCII characters, but searching for Unicode needs more
care and different functions.

e I have mentioned but not fully solved the complication of “words” that include
spaces. But the more complicated the string we are searching for, the less likely
ambiguity is to bite.

e I have focused on simple searching of string variables, but string manipulation
is needed in other contexts, such as parsing user input if you are writing Stata
programs.

Now, I will signal other solutions:

e Many readers will already know about regular expression syntax.

e Sometimes, we cannot solve a problem with one command line. We may need
to use the gettoken (see [P] gettoken) command or the split (see [D] split)
command. We may need to loop over words with a construct like foreach or
forvalues (see [P] foreach or [P] forvalues).

All of these matters deserve detailed treatment, which is left to other accounts.

N. J. Cox 155

7 Acknowledgment

William Lisowski made helpful comments on a draft.

References

Cox, N. J. 2005. FAQ: What is true or false in Stata? |https: //www.stata.com /support /
fags / data-management / true-and-false /|

. 2011a. Speaking Stata: Fun and fluency with functions. Stata Journal 11:
460-471. https: //doi.org /10.1177 /1536867X1101100308.

. 2011b. Stata tip 98: Counting substrings within strings. Stata Journal 11:
318-320. https: //doi.org /10.1177 / 1536867X1101100212.

. 2016. Speaking Stata: Truth, falsity, indication, and negation. Stata Journal
16: 229-236. https: //doi.org /10.1177 / 1536867X1601600117.

Cox, N. J., and U. Kohler. 2003. Speaking Stata: On structure and shape: The
case of multiple responses. Stata Journal 3: 81-99. https: // doi.org / 10.1177 /
1536867X0300300106.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indi-
cator or dummy variables. Stata Journal 19: 246-259. https: // doi.org / 10.1177 /
1536867X19830921.

Jann, B. 2005. Tabulation of multiple responses. Stata Journal 5: 92-122. https:
//doi.org /10.1177 / 1536867X0500500113.

https://www.stata.com/support/faqs/data-management/true-and-false/
https://www.stata.com/support/faqs/data-management/true-and-false/
https://doi.org/10.1177/1536867X1101100308
https://doi.org/10.1177/1536867X1101100212
https://doi.org/10.1177/1536867X1601600117
https://doi.org/10.1177/1536867X0300300106
https://doi.org/10.1177/1536867X0300300106
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X0500500113
https://doi.org/10.1177/1536867X0500500113

The Stata Journal (2023)
178 DOI: 10.1177/1536867X231175349 23, Number 2, pp. 589-594

Stata tip 152: if and if: When to use the if qualifier and
when to use the if command

Nicholas J. Cox Clyde B. Schechter

Department of Geography Albert Einstein College of Medicine
Durham University Bronx, NY

Durham, U.K. clyde.schechter@einsteinmed.edu

n.j.cox@durham.ac.uk

1 Introduction

Stata has an if qualifier and an if command. Here we discuss generally when you
should use either and specifically flag a common pitfall in using the if command. In a
nutshell, the pitfall arises from confusing the two constructs: the if command does not
loop over the data but, at most, looks in the first observation of a dataset. There has
long been a StataCorp FAQ on this topic (Wernow|2005), but we and others have usually
tried to explain matters otherwise. This tip is intended as a more durable version of
the story that should be easier to find than occasional Statalist postings that are vivid
when read but hard to find later.

2 The if qualifier

The if qualifier is met by most users early in their Stata experience. Its purpose is to
select observations (cases, records, or rows in the dataset) for some action. Thus, you
could run the following commands to read in a dataset and first summarize a variable
and then summarize that variable again for a subset of observations. Here we suppress
the results, but if you are new to Stata and unfamiliar with summarize, it would be
worth your time to run the code yourself to find out about a valuable command.

. sysuse auto
. summarize mpg
. summarize mpg if foreign ==

When the if qualifier is used (or, in other words, when an if condition is speci-
fied), Stata tests the expression given—here foreign == 1—in each observation to see
whether it is satisfied (is true) in that observation. Observations for which the expres-
sion is true are selected for the action. In this example, foreign is an indicator variable
that is 1 if a car is foreign (made outside the United States) and 0 if a car is domestic
(made inside the United States). The operator == tests for equality, noting that in Stata
the = operator typically indicates assignment of a value or values, say, to a variable. Out
of 74 cars, 22 qualify as being foreign, so their observations will be summarized for the
variable mpg.

N. J. Cox and C. B. Schechter 179

Stata follows a very widely used convention, running across statistics, mathematics,
and computing, that in logical tests, a value of 1 means true and a value of 0 means
false. In fact, Stata’s rule is more general: Any numeric value that is not 0 means true,
while only the numeric value 0 means false. Watch out with missing values because any
numeric value that represents missing (whether system missing, ., or extended missing
values from .a to .z) is certainly not 0 and so yields true in a logical test.

Logical tests in Stata take two forms. First, and more commonly, some logical
operator is used in an expression. Tests for equality, using the == operator, may be
what you need; otherwise, some test for inequality may be needed. See the help for
operators to see the complete list. Thus, in auto.dta you could select cars with high
mpg by, say, mpg > 25. Logical tests can combine two or more conditions, but even so
the keyword if appears only once in any comparison.

Second, you can ask Stata to look inside a numeric variable and check whether its
values are 0 or not. In auto.dta, foreign is only ever 1 or 0 and never missing. So the
test if foreign is precisely the same test in practice as if foreign == 1. Presented
with if foreign, Stata looks inside the variable and selects those observations for
which it is not 0, which in practice is the same subset of observations as those for which
the condition if foreign == 1 is true.

There are positive and negative sides to this flexibility. The positive side is that
we can write Stata code that may appeal to readers as idiomatic in their own language
and in Stata too. “Let’s focus on the cars that are foreign” becomes the condition
if foreign. Such coding works best if you follow a convention, which we strongly
recommend, of naming an indicator variable for the condition coded as 1. That is
precisely what the developers of Stata did at the very beginning when coding up the
auto data.

The negative side is that the inclusiveness here could bite if there are nonzero values
that the condition if foreign would catch too, even though that is not what you
intend. As said, nonzero values include any numeric missing values. So you might well
prefer to be safe rather than succinct and always spell out, say, if foreign ==

For more on truth and falsity in Stata, see Cox (2005, |2016|). For more on indicator
variables, see|Cox and Schechter| (2019)), especially if you have been thinking “Don’t you
mean dummy variables?” (Yes, we do.)

180 Stata tip 152

3 The if command

The previous section may have strengthened your understanding of the if qualifier,
say, by spelling out some nuances. At this point in the story, the most important
detail about the if command is that it is emphatically not a way to do the same thing
differently. Oddly, or otherwise, a misunderstanding that the two are equivalent (or at
least overlap in what they do) seems to arise most often with people new to Stata who
are accustomed to programming in some other language. Such programmers may guess
or hope that Stata’s if command is similar to, or an extension of, what they know
already.

Whatever the explanation, constructs using if or some equivalent keyword have
been present in many programming languages over several decades. Examples can be
found in [Sammet| (1969)), [Kernighan and Plauger| (1978), and |Bal and Grune| (1994]).

We will pursue this negative theme before turning to when and why the if command
is appropriate or useful. Otherwise, there would be no point to including it within Stata.

Any puzzlement is intensified whenever Stata allows use of the if command in a way
that seems equivalent to use of the if qualifier. It then gives results that occasionally
are what you want but more often just seem bizarre. As examples, consider these two
statements and their results:

. if foreign == 1 summarize mpg

. if foreign == 0 summarize mpg
Variable ‘ Obs Mean Std. dev. Min Max
mpg ‘ 74 21.2973 5.785503 12 41

Stata complains about neither statement, so each is perfectly legal. But you might
even wonder whether you have unearthed a bug. The first statement yields no results,
whereas we already know that there are observations for which foreign == 1. Other
way round, the second statement yields results, but if you look carefully, you will see
that the results are for the entire dataset and so include both foreign and domestic cars.

The explanation is immediate given one extra piece of information. When an if
command refers to a variable (or variables) in the dataset, Stata looks only in the first
observation. It is exactly as if you wrote if foreign[1] == 1 or if foreign[1] ==
0. It so happens that the first statement is false and the second statement is true, as
can be checked independently by looking at the data with, say, list in 1 or edit in
1 or display foreign[1]. Because the first statement was false, Stata did not execute
the next command, summarize mpg. Because the second statement was true, Stata did
execute the (same) next command. In both cases, the subset of observations specified
was not part of the syntax for the next command.

N. J. Cox and C. B. Schechter 181

We could make that plainer by writing the same syntax using curly brackets or
braces:

if foreign[1] == 0 {
summarize mpg

}

Backing up slightly: Here a so-called subscript such as [1] attached to a variable
name indicates an observation number, so in another example foreign [42] would be the
value of foreign in observation 42. We say “subscript” as an allusion to mathematical
notation such as y; or y42, but naturally writing sub scriptum, below the line, is not
strictly possible in Stata.

A more general point to emphasize is that there is no sense in Stata in which the if
command iterates or loops over the observations in the dataset. (Here we are assuming
that there are data in memory; it is perfectly possible to use Stata with no variables in
memory, and you may wish to think through what could be done depending on what
else is allowed.) Positively put, the if command makes one and only one decision,
depending on whether the condition specified is true.

The if command is very widely used within do-files and within programs, including
within programs that define other commands.

There are many examples within Stata programs. Options are typically implemented
in this way. In many commands, there are optional choices, either for extra actions or
to vary some action from the default. Inside the command code, there is typically a
switch for each option whereby different code is executed. The summarize command has
options, such as meanonly (to do less than the default) or detail (to do more). That
command is built in, so users may not see the internal code, but very many commands
are implemented through ado-code, so much of or all the code is visible. If you are
curious, you can look inside ado-code with, say,

. viewsource tabstat.ado

and you will immediately see a series of switches all using the if command to set up
calculations according to whatever a user did (or did not) specify when issuing the
tabstat command.

Another common sequence within ado-code is something like this.

. marksample touse

. count if “touse~
74

. if r(N) == 0 error 2000

Here marksample has the job of creating a temporary indicator variable “touse'
that is 1 when observations are to be used and 0 otherwise. (If the name touse looks
odd to you, think “to use”.) Exclusions arise for one of two reasons: whenever missing
values make the use of observations impossible or whenever an if qualifier (there it
is again) or an in qualifier excludes observations by implication. We then count the

182 Stata tip 152

observations to be used. The result is left in r(N). If that result is 0, then there are no
observations to use, which here and usually is regarded as an error. If, as it were, no
news is good news, such as when we are checking for something bad but fail to find it,
then the syntax would be different. We might well condition on, say, r(N) > 0.

There are other vital differences between the if qualifier and the if command,
beyond the cosmetic (but still crucial) difference that the first follows and the second
precedes associated code.

The if command can be associated with code following else to indicate what should
be done if the condition specified is false. Indeed, a more or less complicated series of
branching decisions may be needed depending on a menu of possible choices. Again, if
you are curious, look at the results of

. viewsource duplicates.ado

which show a series of branches aimed at identifying the subcommand that a user
specified after the command itself, such as duplicates report or duplicates list.

Lest you think that the if command is primarily of interest to Stata programmers,
let’s look at an example of its use in a common situation that arises in data analysis.
Suppose you want to analyze some panel data, performing some specific calculations
separately in each panel but only in those panels that offer a minimum sample size.
Here we assume for simplicity that firms have distinct numeric identifiers. The code in
your do-file might look like this:

generate abnormal_return = .
levelsof firm, local(firms)
foreach f of local firms {

count if firm == “f° // N.B. if qualifier
if r(N) >= 30 { // N.B. if command
regress return market_return if firm == “f~ // if qualifier
predict resid, resid
replace abnormal_return = resid if firm == “f° // if qualifier

drop resid

}

Notice that both the if command and the if qualifier are used in this code, with
very different effects. The if qualifier applies only to the single command in which
it appears, and it restricts those commands to the observations for which firm ==
“f'. The if command appears only once in the code, but it controls execution of the
following four commands; they are executed only if the result of the preceding count
command is at least 30. Note, in particular, that this if command does not examine
any observations in the data in memory: it refers only to the result returned by the
preceding count command. Note also the use of curly braces to apply the single if
command to an entire block of commands. Those four commands are all executed, or
none are, depending on the available sample size for the firm.

You may be thinking of refinements, such as counting observations with nonmissing
values, because observations with missing values are of no use for any regression. You

N. J. Cox and C. B. Schechter 183

may also know of community-contributed commands in this area, but discussing those
is beyond our scope here. Even if you have access to such commands, understanding
the principles in this last example is valuable in many contexts.

References

Bal, H. E.,; and D. Grune. 1994. Programming Language Essentials. Wokingham:
Addison—Wesley.

Cox, N. J. 2005. FAQ: What is true or false in Stata? https: //www.stata.com /support /
faqs / data-management / true-and-false /|

. 2016. Speaking Stata: Truth, falsity, indication, and negation. Stata Journal
16: 229-236. https: //doi.org /10.1177 / 1536867X1601600117.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indi-
cator or dummy variables. Stata Journal 19: 246-259. https: // doi.org / 10.1177 /
1536867X19830921.

Kernighan, B. W., and P. J. Plauger. 1978. The Elements of Programming Style. New
York: McGraw—Hill.

Sammet, J. E. 1969. Programming Languages: History and Fundamentals. Englewood
Cliffs, NJ: Prentice-Hall.

Wernow, J. 2005. FAQ: I have an if or while command in my program that only seems
to evaluate the first observation. What’s going on? http: //www.stata.com /support /
faqs / programming / if-command-versus-if-qualifier /.

https://www.stata.com/support/faqs/data-management/true-and-false/
https://www.stata.com/support/faqs/data-management/true-and-false/
https://doi.org/10.1177/1536867X1601600117
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X19830921
http://www.stata.com/support/faqs/programming/if-command-versus-if-qualifier/
http://www.stata.com/support/faqs/programming/if-command-versus-if-qualifier/

