
Internal Report SUF–PFY/96–01
Stockholm, 11 December 1996

1st revision, 31 October 1998
last modification 10 September 2007

Hand-book on

STATISTICAL

DISTRIBUTIONS

for

experimentalists

by

Christian Walck

Particle Physics Group
Fysikum

University of Stockholm
(e-mail: walck@physto.se)





Contents

1 Introduction 1
1.1 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Probability Density Functions 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Errors of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Probability Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6.1 Cumulative Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6.2 Accept-Reject technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6.3 Composition Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Multivariate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7.1 Multivariate Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7.2 Errors of Bivariate Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7.3 Joint Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Bernoulli Distribution 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Relation to Other Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Beta distribution 13
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Derivation of the Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Probability Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Binomial Distribution 16
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Probability Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Cumulative Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7 Probability Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Binormal Distribution 20
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Conditional Probability Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.5 Box-Muller Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.6 Probability Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



6.7 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Cauchy Distribution 26
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.4 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.5 Location and Scale Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.6 Breit-Wigner Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.7 Comparison to Other Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.8 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.9 Sum and Average of Cauchy Variables . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.10 Estimation of the Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.11 Estimation of the HWHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.12 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.13 Physical Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.14 Ratio Between Two Standard Normal Variables . . . . . . . . . . . . . . . . . . . . 35

8 Chi-square Distribution 36
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.4 Cumulative Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.5 Origin of the Chi-square Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.6 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.7 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.8 Confidence Intervals for the Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.9 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.10 Probability Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.11 Even Number of Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.12 Odd Number of Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.13 Final Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.14 Chi Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Compound Poisson Distribution 45
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2 Branching Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.4 Probability Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10 Double-Exponential Distribution 47
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.3 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.4 Cumulative Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
10.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



11 Doubly Non-Central F -Distribution 49
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.3 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
11.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

12 Doubly Non-Central t-Distribution 51
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.3 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13 Error Function 53
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.2 Probability Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

14 Exponential Distribution 54
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
14.2 Cumulative Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
14.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
14.4 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
14.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

14.5.1 Method by von Neumann . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
14.5.2 Method by Marsaglia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
14.5.3 Method by Ahrens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

15 Extreme Value Distribution 57
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
15.2 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
15.3 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
15.4 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
15.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

16 F-distribution 61
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
16.2 Relations to Other Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
16.3 1/F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
16.4 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
16.5 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
16.6 F-ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
16.7 Variance Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
16.8 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
16.9 Calculation of Probability Content . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

16.9.1 The Incomplete Beta function . . . . . . . . . . . . . . . . . . . . . . . . . . 66
16.9.2 Final Formulæ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

16.10 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iii



17 Gamma Distribution 69
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
17.2 Derivation of the Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 69
17.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
17.4 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
17.5 Probability Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
17.6 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

17.6.1 Erlangian distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
17.6.2 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
17.6.3 Asymptotic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

18 Generalized Gamma Distribution 73
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
18.2 Cumulative Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
18.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
18.4 Relation to Other Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

19 Geometric Distribution 75
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
19.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
19.3 Probability Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
19.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

20 Hyperexponential Distribution 77
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
20.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
20.3 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
20.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

21 Hypergeometric Distribution 79
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
21.2 Probability Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
21.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
21.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

22 Logarithmic Distribution 81
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
22.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
22.3 Probability Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
22.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

23 Logistic Distribution 83
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
23.2 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
23.3 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
23.4 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
23.5 Random numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

iv



24 Log-normal Distribution 86
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
24.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
24.3 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
24.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

25 Maxwell Distribution 88
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
25.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
25.3 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
25.4 Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
25.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

26 Moyal Distribution 91
26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
26.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
26.3 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
26.4 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
26.5 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
26.6 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

27 Multinomial Distribution 95
27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
27.2 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
27.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
27.4 Probability Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
27.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
27.6 Significance Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
27.7 Equal Group Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

28 Multinormal Distribution 99
28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
28.2 Conditional Probability Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
28.3 Probability Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
28.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

29 Negative Binomial Distribution 102
29.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
29.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
29.3 Probability Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
29.4 Relations to Other Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

29.4.1 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
29.4.2 Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
29.4.3 Logarithmic Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
29.4.4 Branching Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
29.4.5 Poisson and Gamma Distributions . . . . . . . . . . . . . . . . . . . . . . . 106

29.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

v



30 Non-central Beta-distribution 108
30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
30.2 Derivation of distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
30.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
30.4 Cumulative distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
30.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

31 Non-central Chi-square Distribution 110
31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
31.2 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
31.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
31.4 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
31.5 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
31.6 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

32 Non-central F -Distribution 113
32.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
32.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
32.3 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
32.4 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
32.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

33 Non-central t-Distribution 116
33.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
33.2 Derivation of distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
33.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
33.4 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
33.5 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
33.6 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

34 Normal Distribution 119
34.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
34.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
34.3 Cumulative Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
34.4 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
34.5 Addition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
34.6 Independence of x and s2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
34.7 Probability Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
34.8 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

34.8.1 Central Limit Theory Approach . . . . . . . . . . . . . . . . . . . . . . . . 124
34.8.2 Exact Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
34.8.3 Polar Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
34.8.4 Trapezoidal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
34.8.5 Center-tail method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
34.8.6 Composition-rejection Methods . . . . . . . . . . . . . . . . . . . . . . . . . 126
34.8.7 Method by Marsaglia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
34.8.8 Histogram Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
34.8.9 Ratio of Uniform Deviates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
34.8.10Comparison of random number generators . . . . . . . . . . . . . . . . . . . 130

vi



34.9 Tests on Parameters of a Normal Distribution . . . . . . . . . . . . . . . . . . . . . 132

35 Pareto Distribution 133
35.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
35.2 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
35.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
35.4 Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

36 Poisson Distribution 134
36.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
36.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
36.3 Probability Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
36.4 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
36.5 Addition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
36.6 Derivation of the Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 136
36.7 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
36.8 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

37 Rayleigh Distribution 138
37.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
37.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
37.3 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
37.4 Two-dimensional Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
37.5 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

38 Student’s t-distribution 141
38.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
38.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
38.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
38.4 Cumulative Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
38.5 Relations to Other Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
38.6 t-ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
38.7 One Normal Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
38.8 Two Normal Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
38.9 Paired Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
38.10 Confidence Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
38.11 Testing Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
38.12 Calculation of Probability Content . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

38.12.1 Even number of degrees of freedom . . . . . . . . . . . . . . . . . . . . . . 147
38.12.2 Odd number of degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . 148
38.12.3 Final algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

38.13 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

39 Triangular Distribution 150
39.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
39.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
39.3 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

vii



40 Uniform Distribution 151
40.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
40.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
40.3 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

41 Weibull Distribution 152
41.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
41.2 Cumulative Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
41.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
41.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

42 Appendix A: The Gamma and Beta Functions 154
42.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
42.2 The Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

42.2.1 Numerical Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
42.2.2 Formulæ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

42.3 Digamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
42.4 Polygamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
42.5 The Incomplete Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

42.5.1 Numerical Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
42.5.2 Formulæ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
42.5.3 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

42.6 The Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
42.7 The Incomplete Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

42.7.1 Numerical Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
42.7.2 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

42.8 Relations to Probability Density Functions . . . . . . . . . . . . . . . . . . . . . . 163
42.8.1 The Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
42.8.2 The Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
42.8.3 The Chi-squared Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 163
42.8.4 The F -distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
42.8.5 The Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
42.8.6 The Negative Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . 164
42.8.7 The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
42.8.8 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
42.8.9 Student’s t-distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
42.8.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

43 Appendix B: Hypergeometric Functions 167
43.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
43.2 Hypergeometric Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
43.3 Confluent Hypergeometric Function . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Mathematical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Errata et Addenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

viii



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

List of Tables

1 Percentage points of the chi-square distribution . . . . . . . . . . . . . . . . . . . . 171
2 Extreme confidence levels for the chi-square distribution . . . . . . . . . . . . . . . 172
3 Extreme confidence levels for the chi-square distribution (as χ2/d.f. values) . . . . 173
4 Exact and approximate values for the Bernoulli numbers . . . . . . . . . . . . . . . 174
5 Percentage points of the F -distribution . . . . . . . . . . . . . . . . . . . . . . . . . 175
6 Probability content from −z to z of Gauss distribution in % . . . . . . . . . . . . . 176
7 Standard normal distribution z-values for a specific probability content . . . . . . . 177
8 Percentage points of the t-distribution . . . . . . . . . . . . . . . . . . . . . . . . . 178
9 Expressions for the Beta function B(m,n) for integer and half-integer arguments . 179

ix



x



1 Introduction

In experimental work e.g. in physics one often encounters problems where a standard
statistical probability density function is applicable. It is often of great help to be able
to handle these in different ways such as calculating probability contents or generating
random numbers.

For these purposes there are excellent text-books in statistics e.g. the classical work of
Maurice G. Kendall and Alan Stuart [1,2] or more modern text-books as [3] and others.
Some books are particularly aimed at experimental physics or even specifically at particle
physics [4,5,6,7,8]. Concerning numerical methods a valuable references worth mentioning
is [9] which has been surpassed by a new edition [10]. Also hand-books, especially [11], has
been of great help throughout.

However, when it comes to actual applications it often turns out to be hard to find de-
tailed explanations in the literature ready for implementation. This work has been collected
over many years in parallel with actual experimental work. In this way some material may
be “historical” and sometimes be näıve and have somewhat clumsy solutions not always
made in the mathematically most stringent may. We apologize for this but still hope that
it will be of interest and help for people who is struggling to find methods to solve their
statistical problems in making real applications and not only learning statistics as a course.
Even if one has the skill and may be able to find solutions it seems worthwhile to have
easy and fast access to formulæ ready for application. Similar books and reports exist e.g.
[12,13] but we hope the present work may compete in describing more distributions, being
more complete, and including more explanations on relations given.

The material could most probably have been divided in a more logical way but we
have chosen to present the distributions in alphabetic order. In this way it is more of a
hand-book than a proper text-book.

After the first release the report has been modestly changed. Minor changes to cor-
rect misprints is made whenever found. In a few cases subsections and tables have been
added. These alterations are described on page 182. In October 1998 the first somewhat
bigger revision was made where in particular a lot of material on the non-central sampling
distributions were added.

1.1 Random Number Generation

In modern computing Monte Carlo simulations are of vital importance and we give meth-
ods to achieve random numbers from the distributions. An earlier report dealt entirely
with these matters [14]. Not all text-books on statistics include information on this subject
which we find extremely useful. Large simulations are common in particle physics as well as
in other areas but often it is also useful to make small “toy Monte Carlo programs” to inves-
tigate and study analysis tools developed on ideal, but statistically sound, random samples.

A related and important field which we will only mention briefly here, is how to get
good basic generators for achieving random numbers uniformly distributed between zero
and one. Those are the basis for all the methods described in order to get random numbers
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from specific distributions in this document. For a review see e.g. [15].
From older methods often using so called multiplicative congruential method or shift-

generators G. Marsaglia et al [16] introduced in 1989 a new “universal generator” which
became the new standard in many fields. We implemented this in our experiments at
CERN and also made a package of routines for general use [17].

This method is still a very good choice but later alternatives, claimed to be even better,
have turned up. These are based on on the same type of lagged Fibonacci sequences as
is used in the universal generator and was originally proposed by the same authors [18].
An implementations of this method was proposed by F. James [15] and this version was
further developed by M. Lüscher [19]. A similar package of routine as was prepared for the
universal generator has been implemented for this method [20].
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2 Probability Density Functions

2.1 Introduction

Probability density functions in one, discrete or continuous, variable are denoted p(r) and
f(x), respectively. They are assumed to be properly normalized such that

∑
r

p(r) = 1 and

∞∫
−∞

f(x)dx = 1

where the sum or the integral are taken over all relevant values for which the probability
density function is defined.

Statisticians often use the distribution function or as physicists more often call it the
cumulative function which is defined as

P (r) =
r∑

i=−∞
p(i) and F (x) =

x∫
−∞

f(t)dt

2.2 Moments

Algebraic moments of order r are defined as the expectation value

µ′r = E(xr) =
∑
k

krp(k) or

∞∫
−∞

xrf(x)dx

Obviously µ′0 = 1 from the normalization condition and µ′1 is equal to the mean, sometimes
called the expectation value, of the distribution.

Central moments of order r are defined as

µr = E((k − E(k))r) or E((x− E(x))r)

of which the most commonly used is µ2 which is the variance of the distribution.
Instead of using the third and fourth central moments one often defines the coefficients

of skewness γ1 and kurtosis1 γ2 by

γ1 =
µ3

µ
3
2
2

and γ2 =
µ4

µ2
2

− 3

where the shift by 3 units in γ2 assures that both measures are zero for a normal distribution.
Distributions with positive kurtosis are called leptokurtic, those with kurtosis around zero
mesokurtic and those with negative kurtosis platykurtic. Leptokurtic distributions are
normally more peaked than the normal distribution while platykurtic distributions are
more flat topped.

1From greek kyrtosis = curvature from kyrt(ós) = curved, arched, round, swelling, bulging. Sometimes,
especially in older literature, γ2 is called the coefficient of excess.
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2.2.1 Errors of Moments

For a thorough presentation of how to estimate errors on moments we refer to the classical
books by M. G. Kendall and A. Stuart [1] (pp 228–245). Below only a brief description is
given. For a sample with n observations x1, x2, . . . , xn we define the moment-statistics for
the algebraic and central moments m′

r and mr as

m′
r =

1

n

n∑
r=0

xr and mr =
1

n

n∑
r=0

(x−m′
1)

r

The notation m′
r and mr are thus used for the statistics (sample values) while we denote

the true, population, values by µ′r and µr.
The mean value of the r:th and the sampling covariance between the q:th and r:th

moment-statistic are given by.

E(m′
r) = µ′r

Cov(m′
q,m

′
r) =

1

n

(
µ′q+r − µ′qµ

′
r

)
These formula are exact. Formulæ for moments about the mean are not as simple since
the mean itself is subject to sampling fluctuations.

E(mr) = µr

Cov(mq,mr) =
1

n
(µq+r − µqµr + rqµ2µr−1µq−1 − rµr−1µq+1 − qµr+1µq−1)

to order 1/
√
n and 1/n, respectively. The covariance between an algebraic and a central

moment is given by

Cov(mr,m
′
q) =

1

n
(µq+r − µqµr − rµq+1µr−1)

to order 1/n. Note especially that

V (m′
r) =

1

n

(
µ′2r − µ′2r

)
V (mr) =

1

n

(
µ2r − µ2

r + r2µ2µ
2
r−1 − 2rµr−1µr+1

)
Cov(m′

1,mr) =
1

n
(µr+1 − rµ2µr−1)

2.3 Characteristic Function

For a distribution in a continuous variable x the Fourier transform of the probability density
function

φ(t) = E(eıxt) =

∞∫
−∞

eıxtf(x)dx
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is called the characteristic function. It has the properties that φ(0) = 1 and |φ(t)| ≤ 1
for all t. If the cumulative, distribution, function F (x) is continuous everywhere and
dF (x) = f(x)dx then we reverse the transform such that

f(x) =
1

2π

∞∫
−∞

φ(t)e−ıxtdt

The characteristic function is related to the moments of the distribution by

φx(t) = E(eıtx) =
∞∑

n=0

(ıt)nE(xn)

n!
=

∞∑
n=0

(ıt)nµ′n
n!

e.g. algebraic moments may be found by

µ′r =
1

ır

(
d

dt

)r

φ(t)

∣∣∣∣∣
t=0

To find central moments (about the mean µ) use

φx−µ(t) = E
(
eıt(x−µ)

)
= e−ıtµφx(t)

and thus

µr =
1

ır

(
d

dt

)r

e−ıtµφ(t)

∣∣∣∣∣
t=0

A very useful property of the characteristic function is that for independent variables x
and y

φx+y(t) = φx(t) · φy(t)

As an example regard the sum
∑
aizi where the zi’s are distributed according to normal

distributions with means µi and variances σ2
i . Then the linear combination will also be

distributed according to the normal distribution with mean
∑
aiµi and variance

∑
a2

iσ
2
i .

To show that the characteristic function in two variables factorizes is the best way to
show independence between two variables. Remember that a vanishing correlation coeffi-
cient does not imply independence while the reversed is true.

2.4 Probability Generating Function

In the case of a distribution in a discrete variable r the characteristic function is given by

φ(t) = E(eıtr) =
∑

p(r)eıtr

In this case it is often convenient to write z = eıt and define the probability generating
function as

G(z) = E(zr) =
∑

p(r)zr
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Derivatives of G(z) evaluated at z = 1 are related to factorial moments of the distribu-
tion

G(1) = 1 (normalization)

G1(1) =
d

dz
G(z)

∣∣∣∣∣
z=1

= E(r)

G2(1) =
d2

dz2
G(z)

∣∣∣∣∣
z=1

= E(r(r − 1))

G3(1) =
d3

dz3
G(z)

∣∣∣∣∣
z=1

= E(r(r − 1)(r − 2))

Gk(1) =
dk

dzk
G(z)

∣∣∣∣∣
z=1

= E(r(r − 1)(r − 2) · · · (r − k + 1))

Lower order algebraic moments are then given by

µ′1 = G1(1)

µ′2 = G2(1) +G1(1)

µ′3 = G3(1) + 3G2(1) +G1(1)

µ′4 = G4(1) + 6G3(1) + 7G2(1) +G1(1)

while expression for central moments become more complicated.
A useful property of the probability generating function is for a branching process in n

steps where
G(z) = G1(G2(. . . Gn−1(Gn(z)) . . .))

with Gk(z) the probability generating function for the distribution in the k:th step. As an
example see section 29.4.4 on page 105.

2.5 Cumulants

Although not much used in physics the cumulants , κr, are of statistical interest. One
reason for this is that they have some useful properties such as being invariant for a shift
in scale (except the first cumulant which is equal to the mean and is shifted along with
the scale). Multiplying the x-scale by a constant a has the same effect as for algebraic
moments namely to multiply κr by ar.

As the algebraic moment µ′n is the coefficient of (ıt)n/n! in the expansion of φ(t) the cu-
mulant κn is the coefficient of (ıt)n/n! in the expansion of the logarithm of φ(t) (sometimes
called the cumulant generating function) i.e.

lnφ(t) =
∞∑

n=1

(ıt)n

n!
κn

and thus

κr =
1

ır

(
d

dt

)r

lnφ(t)

∣∣∣∣∣
t=0

Relations between cumulants and central moments for some lower orders are as follows
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κ1 = µ′1
κ2 = µ2 µ2 = κ2

κ3 = µ3 µ3 = κ3

κ4 = µ4 − 3µ2
2 µ4 = κ4 + 3κ2

2

κ5 = µ5 − 10µ3µ2 µ5 = κ5 + 10κ3κ2

κ6 = µ6 − 15µ4µ2 − 10µ2
3 + 30µ3

2 µ6 = κ6 + 15κ4κ2 + 10κ2
3 + 15κ3

2

κ7 = µ7 − 21µ5µ2 − 35µ4µ3 + 210µ3µ
2
2 µ7 = κ7 + 21κ5κ2 + 35κ4κ3 + 105κ3κ

2
2

κ8 = µ8 − 28µ6µ2 − 56µ5µ3 − 35µ2
4+ µ8 = κ8 + 28κ6κ2 + 56κ5κ3 + 35κ2

4+
+420µ4µ

2
2 + 560µ2

3µ2 − 630µ4
2 +210κ4κ

2
2 + 280κ2

3κ2 + 105κ4
2

2.6 Random Number Generation

When generating random numbers from different distribution it is assumed that a good
generator for uniform pseudorandom numbers between zero and one exist (normally the
end-points are excluded).

2.6.1 Cumulative Technique

The most direct technique to obtain random numbers from a continuous probability density
function f(x) with a limited range from xmin to xmax is to solve for x in the equation

ξ =
F (x)− F (xmin)

F (xmax)− F (xmin)

where ξ is uniformly distributed between zero and one and F (x) is the cumulative dis-
tribution (or as statisticians say the distribution function). For a properly normalized
probability density function thus

x = F−1(ξ)

The technique is sometimes also of use in the discrete case if the cumulative sum may
be expressed in analytical form as e.g. for the geometric distribution.

Also for general cases, discrete or continuous, e.g. from an arbitrary histogram the
cumulative method is convenient and often faster than more elaborate methods. In this
case the task is to construct a cumulative vector and assign a random number according to
the value of a uniform random number (interpolating within bins in the continuous case).

2.6.2 Accept-Reject technique

A useful technique is the acceptance-rejection, or hit-miss, method where we choose fmax to
be greater than or equal to f(x) in the entire interval between xmin and xmax and proceed
as follows

i Generate a pair of uniform pseudorandom numbers ξ1 and ξ2.

ii Determine x = xmin + ξ1 · (xmax − xmin).

iii Determine y = fmax · ξ2.

iv If y−f(x) > 0 reject and go to i else accept x as a pseudorandom number from f(x).

7



The efficiency of this method depends on the average value of f(x)/fmax over the in-
terval. If this value is close to one the method is efficient. On the other hand, if this
average is close to zero, the method is extremely inefficient. If α is the fraction of the area
fmax · (xmax−xmin) covered by the function the average number of rejects in step iv is 1

α
−1

and 2
α

uniform pseudorandom numbers are required on average.

The efficiency of this method can be increased if we are able to choose a function h(x),
from which random numbers are more easily obtained, such that f(x) ≤ αh(x) = g(x) over
the entire interval under consideration (where α is a constant). A random sample from
f(x) is obtained by

i Generate in x a random number from h(x).

ii Generate a uniform random number ξ.

iii If ξ ≥ f(x)/g(x) go back to i else accept x as a pseudorandom number from f(x).

Yet another situation is when a function g(x), from which fast generation may be
obtained, can be inscribed in such a way that a big proportion (f) of the area under the
function is covered (as an example see the trapezoidal method for the normal distribution).
Then proceed as follows:

i Generate a uniform random number ξ.

ii If ξ < f then generate a random number from g(x).

iii Else use the acceptance/rejection technique for h(x) = f(x)− g(x) (in subintervals if
more efficient).

2.6.3 Composition Techniques

If f(x) may be written in the form

f(x) =

∞∫
−∞

gz(x)dH(z)

where we know how to sample random numbers from the p.d.f. g(x) and the distribution
function H(z). A random number from f(x) is then obtained by

i Generate two uniform random numbers ξ1 and ξ2.

ii Determine z = H−1(ξ1).

iii Determine x = G−1
z (ξ2) where Gz is the distribution function corresponding to the

p.d.f. gz(x).

For more detailed information on the Composition technique see [21] or [22].
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A combination of the composition and the rejection method has been proposed by
J. C. Butcher [23]. If f(x) can be written

f(x) =
n∑

i=0

αifi(x)gi(x)

where αi are positive constants, fi(x) p.d.f.’s for which we know how to sample a random
number and gi(x) are functions taking values between zero and one. The method is then
as follows:

i Generate uniform random numbers ξ1 and ξ2.

ii Determine an integer k from the discrete distribution pi = αi/(α1 + α2 + ... + αn)
using ξ1.

iii Generate a random number x from fk(x).

iv Determine gk(x) and if ξ2 > gk(x) then go to i.

v Accept x as a random number from f(x).

2.7 Multivariate Distributions

Joint probability density functions in several variables are denoted by f(x1, x2, . . . , xn) and
p(r1, r2, . . . , rn) for continuous and discrete variables, respectively. It is assumed that they
are properly normalized i.e. integrated (or summed) over all variables the result is unity.

2.7.1 Multivariate Moments

The generalization of algebraic and central moments to multivariate distributions is straight-
forward. As an example we take a bivariate distribution f(x, y) in two continuous variables
x and y and define algebraic and central bivariate moments of order k, ` as

µ′k` ≡ E(xky`) =
∫∫

xky`f(x, y)dxdy

µk` ≡ E((x− µx)
k(y − µy)

`) =
∫∫

(x− µx)
k(y − µy)

`f(x, y)dxdy

where µx and µy are the mean values of x and y. The covariance is a central bivariate
moment of order 1, 1 i.e. Cov(x, y) = µ11. Similarly one easily defines multivariate moments
for distribution in discrete variables.

2.7.2 Errors of Bivariate Moments

Algebraic (m′
rs) and central (mrs) bivariate moments are defined by:

m′
rs =

1

n

n∑
i=1

xr
iy

s
i and mrs =

1

n

n∑
i=1

(xi −m′
10)

r(yi −m′
01)

s

When there is a risk of ambiguity we write mr,s instead of mrs.
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The notations m′
rs and mrs are used for the statistics (sample values) while we write

µ′rs and µrs for the population values. The errors of bivariate moments are given by

Cov(m′
rs,m

′
uv) =

1

n
(µ′r+u,s+v − µ′rsµ

′
uv)

Cov(mrs,muv) =
1

n
(µr+u,s+v − µrsµuv + ruµ20µr−1,sµu−1,v + svµ02µr,s−1µu,v−1

+rvµ11µr−1,sµu,v−1 + suµ11µr,s−1µu−1,v − uµr+1,sµu−1,v

−vµr,s+1µu,v−1 − rµr−1,sµu+1,v − sµr,s−1µu,v+1)

especially

V (m′
rs) =

1

n
(µ′2r,2s − µ′2rs)

V (mrs) =
1

n
(µ2r,2s − µ2

rs + r2µ20µ
2
r−1,s + s2µ02µ

2
r,s−1

+2rsµ11µr−1,sµr,s−1 − 2rµr+1,sµr−1,s − 2sµr,s+1µr,s−1)

For the covariance (m11) we get by error propagation

V (m11) =
1

n
(µ22 − µ2

11)

Cov(m11,m
′
10) =

µ21

n

Cov(m11,m20) =
1

n
(µ31 − µ20µ11)

For the correlation coefficient (denoted by ρ = µ11/
√
µ20µ02 for the population value and

by r for the sample value) we get

V (r) =
ρ2

n

{
µ22

µ2
11

+
1

4

[
µ40

µ2
20

+
µ04

µ2
02

+
2µ22

µ20µ02

]
− 1

µ11

[
µ31

µ20

+
µ13

µ02

]}

Beware, however, that the sampling distribution of r tends to normality very slowly.

2.7.3 Joint Characteristic Function

The joint characteristic function is defined by

φ(t1, t2, . . . , tn) = E(eıt1x1+ıt2x2+...tnxn) =

=

∞∫
−∞

∞∫
−∞

. . .

∞∫
−∞

eıt1x1+ıt2x2+...+ıtnxnf(x1, x2, . . . , xn)dx1dx2 . . . dxn

From this function multivariate moments may be obtained e.g. for a bivariate distribution
algebraic bivariate moments are given by

µ′rs = E(xr
1x

s
2) =

∂r+sφ(t1, t2)

∂(ıt1)r∂(ıt2)s

∣∣∣∣∣
t1=t2=0

10



2.7.4 Random Number Generation

Random sampling from a many dimensional distribution with a joint probability density
function f(x1, x2, ..., xn) can be made by the following method:

• Define the marginal distributions

gm(x1, x2, ..., xm) =
∫
f(x1, ..., xn)dxm+1dxm+2...dxn =

∫
gm+1(x1, ..., xm+1)dxm+1

• Consider the conditional density function hm given by

hm(xm|x1, x2, ...xm−1) ≡ gm(x1, x2, ..., xm)/gm−1(x1, x2, ..., xm−1)

• We see that gn = f and that∫
hm(xm|x1, x2, ..., xm−1)dxm = 1

from the definitions. Thus hm is the conditional distribution in xm given fixed values
for x1, x2, ..., xm−1.

• We can now factorize f as

f(x1, x2, ..., xn) = h1(x1)h2(x2|x1) . . . hn(xn|x1, x2, ..., xn−1)

• We sample values for x1, x2, ..., xn from the joint probability density function f by:

– Generate a value for x1 from h1(x1).

– Use x1 and sample x2 from h2(x2|x1).

– Proceed step by step and use previously sampled values for x1, x2, ..., xm to
obtain a value for xm+1 from hm+1(xm+1|x1, x2, ..., xm).

– Continue until all xi:s have been sampled.

• If all xi:s are independent the conditional densities will equal the marginal densities
and the variables can be sampled in any order.
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3 Bernoulli Distribution

3.1 Introduction

The Bernoulli distribution, named after the swiss mathematician Jacques Bernoulli (1654–
1705), describes a probabilistic experiment where a trial has two possible outcomes, a
success or a failure.

The parameter p is the probability for a success in a single trial, the probability for a
failure thus being 1− p (often denoted by q). Both p and q is limited to the interval from
zero to one. The distribution has the simple form

p(r; p) =
{

1− p = q if r = 0 (failure)
p if r = 1 (success)

and zero elsewhere. The work of J. Bernoulli, which constitutes a foundation of probability
theory, was published posthumously in Ars Conjectandi (1713) [24].

The probability generating function is G(z) = q+pz and the distribution function given
by P (0) = q and P (1) = 1. A random numbers are easily obtained by using a uniform
random number variate ξ and putting r = 1 (success) if ξ ≤ p and r = 0 else (failure).

3.2 Relation to Other Distributions

From the Bernoulli distribution we may deduce several probability density functions de-
scribed in this document all of which are based on series of independent Bernoulli trials:

• Binomial distribution: expresses the probability for r successes in an experiment
with n trials (0 ≤ r ≤ n).

• Geometric distribution: expresses the probability of having to wait exactly r trials
before the first successful event (r ≥ 1).

• Negative Binomial distribution: expresses the probability of having to wait ex-
actly r trials until k successes have occurred (r ≥ k). This form is sometimes referred
to as the Pascal distribution.

Sometimes this distribution is expressed as the number of failures n occurring while
waiting for k successes (n ≥ 0).
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4 Beta distribution

4.1 Introduction

The Beta distribution is given by

f(x; p, q) =
1

B(p, q)
xp−1(1− x)q−1

where the parameters p and q are positive real quantities and the variable x satisfies 0 ≤
x ≤ 1. The quantity B(p, q) is the Beta function defined in terms of the more common
Gamma function as

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)

For p = q = 1 the Beta distribution simply becomes a uniform distribution between
zero and one. For p = 1 and q = 2 or vise versa we get triangular shaped distributions,
f(x) = 2− 2x and f(x) = 2x. For p = q = 2 we obtain a distribution of parabolic shape,
f(x) = 6x(1−x). More generally, if p and q both are greater than one the distribution has
a unique mode at x = (p − 1)/(p + q − 2) and is zero at the end-points. If p and/or q is
less than one f(0) →∞ and/or f(1) →∞ and the distribution is said to be J-shaped. In
figure 1 below we show the Beta distribution for two cases: p = q = 2 and p = 6, q = 3.

Figure 1: Examples of Beta distributions

4.2 Derivation of the Beta Distribution

If ym and yn are two independent variables distributed according to the chi-squared distri-
bution with m and n degrees of freedom, respectively, then the ratio ym/(ym + yn) follows
a Beta distribution with parameters p = m

2
and q = n

2
.
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To show this we make a change of variables to x = ym/(ym +yn) and y = ym +yn which
implies that ym = xy and yn = y(1− x). We obtain

f(x, y) =

∣∣∣∣∣
∣∣∣∣∣

∂ym

∂x
∂ym

∂y
∂yn

∂x
∂yn

∂y

∣∣∣∣∣
∣∣∣∣∣ f(ym, yn) =

=
∣∣∣∣ y x
−y 1− x

∣∣∣∣

(

ym

2

)m
2
−1
e−

ym
2

2Γ
(

m
2

)


(

yn

2

)n
2
−1
e−

yn
2

2Γ
(

n
2

)
 =

=

 Γ
(

m+n
2

)
Γ
(

m
2

)
Γ
(

n
2

)xm
2
−1(1− x)

n
2
−1



(

y
2

)m
2

+n
2
−1
e−

y
2

2Γ
(

m+n
2

)


which we recognize as a product of a Beta distribution in the variable x and a chi-squared
distribution with m + n degrees of freedom in the variable y (as expected for the sum of
two independent chi-square variables).

4.3 Characteristic Function

The characteristic function of the Beta distribution may be expressed in terms of the
confluent hypergeometric function (see section 43.3) as

φ(t) = M(p, p+ q; ıt)

4.4 Moments

The expectation value, variance, third and fourth central moment are given by

E(x) =
p

p+ q

V (x) =
pq

(p+ q)2(p+ q + 1)

µ3 =
2pq(q − p)

(p+ q)3(p+ q + 1)(p+ q + 2)

µ4 =
3pq(2(p+ q)2 + pq(p+ q − 6))

(p+ q)4(p+ q + 1)(p+ q + 2)(p+ q + 3)

More generally algebraic moments are given in terms of the Beta function by

µ′k =
B(p+ k, q)

B(p, q)

4.5 Probability Content

In order to find the probability content for a Beta distribution we form the cumulative
distribution

F (x) =
1

B(p, q)

x∫
0

tp−1(1− t)q−1dt =
Bx(p, q)

B(p, q)
= Ix(p, q)
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where both Bx and Ix seems to be called the incomplete Beta function in the literature.
The incomplete Beta function Ix is connected to the binomial distribution for integer

values of a by

1− Ix(a, b) = I1−x(b, a) = (1− x)a+b−1
a−1∑
i=0

(
a+ b− 1

i

)(
x

1− x

)i

or expressed in the opposite direction

n∑
s=a

(
n

s

)
ps(1− p)n−s = Ip(a, n− a+ 1)

Also to the negative binomial distribution there is a connection by the relation

n∑
s=a

(
n+ s− 1

s

)
pnqs = Iq(a, n)

The incomplete Beta function is also connected to the probability content of Student’s
t-distribution and the F -distribution. See further section 42.7 for more information on Ix.

4.6 Random Number Generation

In order to obtain random numbers from a Beta distribution we first single out a few special
cases.

For p = 1 and/or q = 1 we may easily solve the equation F (x) = ξ where F (x) is the
cumulative function and ξ a uniform random number between zero and one. In these cases

p = 1 ⇒ x = 1− ξ1/q

q = 1 ⇒ x = ξ1/p

For p and q half-integers we may use the relation to the chi-square distribution by
forming the ratio

ym

ym + yn

with ym and yn two independent random numbers from chi-square distributions with m =
2p and n = 2q degrees of freedom, respectively.

Yet another way of obtaining random numbers from a Beta distribution valid when p
and q are both integers is to take the `:th out of k (1 ≤ ` ≤ k) independent uniform random
numbers between zero and one (sorted in ascending order). Doing this we obtain a Beta
distribution with parameters p = ` and q = k + 1 − `. Conversely, if we want to generate
random numbers from a Beta distribution with integer parameters p and q we could use
this technique with ` = p and k = p+q−1. This last technique implies that for low integer
values of p and q simple code may be used, e.g. for p = 2 and q = 1 we may simply take
max(ξ1, ξ2) i.e. the maximum of two uniform random numbers.
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5 Binomial Distribution

5.1 Introduction

The Binomial distribution is given by

p(r;N, p) =

(
N

r

)
pr(1− p)N−r

where the variable r with 0 ≤ r ≤ N and the parameter N (N > 0) are integers and the
parameter p (0 ≤ p ≤ 1) is a real quantity.

The distribution describes the probability of exactly r successes in N trials if the prob-
ability of a success in a single trial is p (we sometimes also use q = 1 − p, the probability
for a failure, for convenience). It was first presented by Jacques Bernoulli in a work which
was posthumously published [24].

5.2 Moments

The expectation value, variance, third and fourth moment are given by

E(r) = Np

V (r) = Np(1− p) = Npq

µ3 = Np(1− p)(1− 2p) = Npq(q − p)

µ4 = Np(1− p) [1 + 3p(1− p)(N − 2)] = Npq [1 + 3pq(N − 2)]

Central moments of higher orders may be obtained by the recursive formula

µr+1 = pq

{
Nrµr−1 +

∂µr

∂p

}

starting with µ0 = 1 and µ1 = 0.
The coefficients of skewness and kurtosis are given by

γ1 =
q − p√
Npq

and γ2 =
1− 6pq

Npq

5.3 Probability Generating Function

The probability generating function is given by

G(z) = E(zr) =
N∑

r=0

zr

(
N

r

)
pr(1− p)N−r = (pz + q)N

and the characteristic function thus by

φ(t) = G(eıt) =
(
q + peıt

)N
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5.4 Cumulative Function

For fixed N and p one may easily construct the cumulative function P (r) by a recursive
formula, see section on random numbers below.

However, an interesting and useful relation exist between P (r) and the incomplete Beta
function Ix namely

P (k) =
k∑

r=0

p(r;N, p) = I1−p(N − k, k + 1)

For further information on Ix see section 42.7.

5.5 Random Number Generation

In order to achieve random numbers from a binomial distribution we may either

• Generate N uniform random numbers and accumulate the number of such that are
less or equal to p, or

• Use the cumulative technique, i.e. construct the cumulative, distribution, function
and by use of this and one uniform random number obtain the required random
number, or

• for larger values of N , say N > 100, use an approximation to the normal distribution
with mean Np and variance Npq.

Except for very small values of N and very high values of p the cumulative technique is the
fastest for numerical calculations. This is especially true if we proceed by constructing the
cumulative vector once for all2 (as opposed to making this at each call) using the recursive
formula

p(i) = p(i− 1)
p

q

N + 1− i

i

for i = 1, 2, . . . , N starting with p(0) = qN .

However, using the relation given in the previous section with a well optimized code
for the incomplete Beta function (see [10] or section 42.7) turns out to be a numerically
more stable way of creating the cumulative distribution than a simple loop adding up the
individual probabilities.

5.6 Estimation of Parameters

Experimentally the quantity r
N

, the relative number of successes in N trials, often is of more
interest than r itself. This variable has expectation E( r

N
) = p and variance V ( r

N
) = pq

N
.

The estimated value for p in an experiment giving r successes in N trials is p̂ = r
N

.
If p is unknown a unbiased estimate of the variance of a binomial distribution is given

by

V (r) =
N

N − 1
N
(
r

N

)(
1− r

N

)
=

N

N − 1
Np̂(1− p̂)

2This is possible only if we require random numbers from one and the same binomial distribution with
fixed values of N and p.
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To find lower and upper confidence levels for p we proceed as follows.

• For lower limits find a plow such that

N∑
r=k

(
N

r

)
pr

low(1− plow)N−r = 1− α

or expressed in terms of the incomplete Beta function 1− I1−p(N − k+ 1, k) = 1−α

• for upper limits find a pup such that

k∑
r=0

(
N

r

)
pr

up(1− pup)
N−r = 1− α

which is equivalent to I1−p(N − k, k + 1) = 1− α i.e. Ip(k + 1, N − k) = α.

As an example we take an experiment with N = 10 where a certain number of successes
0 ≤ k ≤ N have been observed. The confidence levels corresponding to 90%, 95%, 99%
as well as the levels corresponding to one, two and three standard deviations for a normal
distribution (84.13%, 97.72% and 99.87% probability content) are given below.

Lower confidence levels Upper confidence levels
k −3σ 99% −2σ 95% 90% −σ p̂ −σ 90% 95% −2σ 99% −3σ
0 0.00 0.17 0.21 0.26 0.31 0.37 0.48
1 0.00 0.00 0.00 0.01 0.01 0.02 0.10 0.29 0.34 0.39 0.45 0.50 0.61
2 0.01 0.02 0.02 0.04 0.05 0.07 0.20 0.41 0.45 0.51 0.56 0.61 0.71
3 0.02 0.05 0.06 0.09 0.12 0.14 0.30 0.51 0.55 0.61 0.66 0.70 0.79
4 0.05 0.09 0.12 0.15 0.19 0.22 0.40 0.60 0.65 0.70 0.74 0.78 0.85
5 0.10 0.15 0.18 0.22 0.27 0.30 0.50 0.70 0.73 0.78 0.82 0.85 0.90
6 0.15 0.22 0.26 0.30 0.35 0.40 0.60 0.78 0.81 0.85 0.88 0.91 0.95
7 0.21 0.30 0.34 0.39 0.45 0.49 0.70 0.86 0.88 0.91 0.94 0.95 0.98
8 0.29 0.39 0.44 0.49 0.55 0.59 0.80 0.93 0.95 0.96 0.98 0.98 0.99
9 0.39 0.50 0.55 0.61 0.66 0.71 0.90 0.98 0.99 0.99 1.00 1.00 1.00

10 0.52 0.63 0.69 0.74 0.79 0.83 1.00

5.7 Probability Content

It is sometimes of interest to judge the significance level of a certain outcome given the
hypothesis that p = 1

2
. If N trials are made and we find k successes (let’s say k < N/2 else

use N − k instead of k) we want to estimate the probability to have k or fewer successes
plus the probability for N − k or more successes. Since the assumption is that p = 1

2
we

want the two-tailed probability content.
To calculate this either sum the individual probabilities or use the relation to the in-

complete beta function. The former may seem more straightforward but the latter may be
computationally easier given a routine for the incomplete beta function. If k = N/2 we
watch up not to add the central term twice (in this case the requested probability is 100%
anyway). In the table below we show such confidence levels in % for values of N ranging
from 1 to 20. E.g. the probability to observe 3 successes (or failures) or less and 12 failures
(or successes) or more for n = 15 is 3.52%.
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k
N 0 1 2 3 4 5 6 7 8 9 10
1 100.00
2 50.00 100.00

3 25.00 100.00

4 12.50 62.50 100.00

5 6.25 37.50 100.00

6 3.13 21.88 68.75 100.00

7 1.56 12.50 45.31 100.00

8 0.78 7.03 28.91 72.66 100.00
9 0.39 3.91 17.97 50.78 100.00

10 0.20 2.15 10.94 34.38 75.39 100.00
11 0.10 1.17 6.54 22.66 54.88 100.00
12 0.05 0.63 3.86 14.60 38.77 77.44 100.00
13 0.02 0.34 2.25 9.23 26.68 58.11 100.00
14 0.01 0.18 1.29 5.74 17.96 42.40 79.05 100.00
15 0.01 0.10 0.74 3.52 11.85 30.18 60.72 100.00
16 0.00 0.05 0.42 2.13 7.68 21.01 45.45 80.36 100.00
17 0.00 0.03 0.23 1.27 4.90 14.35 33.23 62.91 100.00
18 0.00 0.01 0.13 0.75 3.09 9.63 23.79 48.07 81.45 100.00
19 0.00 0.01 0.07 0.44 1.92 6.36 16.71 35.93 64.76 100.00
20 0.00 0.00 0.04 0.26 1.18 4.14 11.53 26.32 50.34 82.38 100.00
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6 Binormal Distribution

6.1 Introduction

As a generalization of the normal or Gauss distribution to two dimensions we define the
binormal distribution as

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

· e
− 1

2(1−ρ2)

((
x1−µ1

σ1

)2

+

(
x2−µ2

σ2

)2

−2ρ·x1−µ1
σ1

·x2−µ2
σ2

)

where µ1 and µ2 are the expectation values of x1 and x2, σ1 and σ2 their standard deviations
and ρ the correlation coefficient between them. Putting ρ = 0 we see that the distribution
becomes the product of two one-dimensional Gauss distributions.

x1

x2

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

p p pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp


ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp


ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp


pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

Figure 2: Binormal distribution

In figure 2 we show contours for a standardized Binormal distribution i.e putting µ1 =
µ2 = 0 and σ1 = σ2 = 1 (these parameters are anyway shift- and scale-parameters only).
In the example shown ρ = 0.5. Using standardized variables the contours range from a
perfect circle for ρ = 0 to gradually thinner ellipses in the ±45◦ direction as ρ → ±1.
The contours shown correspond to the one, two, and three standard deviation levels. See
section on probability content below for details.
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6.2 Conditional Probability Density

The conditional density of the binormal distribution is given by

f(x|y) = f(x, y)/f(y) =

=
1√

2πσx

√
1− ρ2

exp

− 1

2σ2
x(1− ρ2)

[
x−

(
µx +

ρσx

σy

(y − µy)

)]2
 =

= N

(
µx + ρ

σx

σy

(y − µy), σ
2
x(1− ρ2)

)

which is seen to be a normal distribution which for ρ = 0 is, as expected, given by N(µx, σ
2
x)

but generally has a mean shifted from µx and a variance which is smaller than σ2
x.

6.3 Characteristic Function

The characteristic function of the binormal distribution is given by

φ(t1, t2) = E(eıt1x1+ıt2x2) =

∞∫
−∞

∞∫
−∞

eıt1x1+ıt2x2f(x1, x2)dx1dx2 =

= exp
{
ıt1µ1 + ıt2µ2 + 1

2

[
(ıt1)

2σ2
1 + (ıt2)

2σ2
2 + 2(ıt1)(ıt2)ρσ1σ2

]}
which shows that if the correlation coefficient ρ is zero then the characteristic function
factorizes i.e. the variables are independent. This is a unique property of the normal
distribution since in general ρ = 0 does not imply independence.

6.4 Moments

To find bivariate moments of the binormal distribution the simplest, but still quite tedious,
way is to use the characteristic function given above (see section 2.7.3).

Algebraic bivariate moments for the binormal distribution becomes somewhat compli-
cated but normally they are of less interest than the central ones. Algebraic moments of
the type µ′0k and µ′k0 are, of course, equal to moments of the marginal one-dimensional
normal distribution e.g. µ′10 = µ1, µ

′
20 = µ2

1 + σ2
1, and µ′30 = µ1(2σ

2
1 + µ2

1) (for µ′0k simply
exchange the subscripts on µ and σ). Some other lower order algebraic bivariate moments
are given by

µ′11 = µ1µ2 + ρσ1σ2

µ′12 = 2ρσ1σ2µ2 + σ2
2µ1 + µ2

2µ1

µ′22 = σ2
1σ

2
2 + σ2

1µ
2
2 + σ2

2µ
2
1 + µ2

1µ
2
2 + 2ρ2σ2

1σ
2
2 + 4ρσ1σ2µ1µ2

Beware of the somewhat confusing notation where µ with two subscripts denotes bivariate
moments while µ with one subscript denotes expectation values.

Lower order central bivariate moments µk`, arranged in matrix form, are given by
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` = 0 ` = 1 ` = 2 ` = 3 ` = 4
k = 0 1 0 σ2

2 0 3σ4
2

k = 1 0 ρσ1σ2 0 3ρσ1σ
3
2 0

k = 2 σ2
1 0 σ2

1σ
2
2(2ρ

2 + 1) 0 3σ2
1σ

4
2(4ρ

2 + 1)
k = 3 0 3ρσ3

1σ2 0 3ρσ3
1σ

3
2(2ρ

2 + 3) 0
k = 4 3σ4

1 0 3σ4
1σ

2
2(4ρ

2 + 1) 0 3σ4
1σ

4
2(8ρ

4 + 24ρ2 + 3)

6.5 Box-Muller Transformation

Recall that if we have a distribution in one set of variables {x1, x2, ..., xn} and want to
change variables to another set {y1, y2, ..., yn} the distribution in the new variables are
given by

f(y1, y2, ..., yn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yn

... ... . . . ...
∂xn
∂y1

∂xn
∂y2

. . . ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
f(x1, x2, ..., xn)

where the symbol ||J || denotes the absolute value of the determinant of the Jacobian J .
Let x1 and x2 be two independent stochastic variables from a uniform distribution

between zero and one and define

y1 =
√
−2 ln x1 sin 2πx2

y2 =
√
−2 ln x1 cos 2πx2

Note that with the definition above −∞ < y1 < ∞ and −∞ < y2 < ∞. In order to
obtain the joint probability density function in y1 and y2 we need to calculate the Jacobian
matrix

∂(x1, x2)

∂(y1, y2)
=

( ∂x1

∂y1

∂x1

∂y2
∂x2

∂y1

∂x2

∂y2

)
In order to obtain these partial derivatives we express x1 and x2 in y1 and y2 by rewriting
the original equations.

y2
1 + y2

2 = −2 ln x1

y1

y2

= tan 2πx2

which implies

x1 = e−
1
2
(y2

1+y2
2)

x2 =
1

2π
arctan

(
y1

y2

)

Then the Jacobian matrix becomes

∂(x1, x2)

∂(y1, y2)
=

(
−y1e

− 1
2
(y2

1+y2
2) −y2e

− 1
2
(y2

1+y2
2)

1
2πy2

cos2 arctan
(

y1

y2

)
− y1

2πy2
2
cos2 arctan

(
y1

y2

))
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The distribution f(y1, y2) is given by

f(y1, y2) =

∣∣∣∣∣
∣∣∣∣∣∂(x1, x2)

∂(y1, y2)

∣∣∣∣∣
∣∣∣∣∣ f(x1, x2)

where f(x1, x2) is the uniform distribution in x1 and x2. Now f(x1, x2) = 1 in the interval
0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1 and zero outside this region. and the absolute value of the
determinant of the Jacobian is∣∣∣∣∣

∣∣∣∣∣∂(x1, x2)

∂(y1, y2)

∣∣∣∣∣
∣∣∣∣∣ = 1

2π
e−

1
2
(y2

1+y2
2)

(
y2

1

y2
2

+ 1

)
cos2 arctan

(
y1

y2

)

but (
y2

1

y2
2

+ 1

)
cos2 arctan

(
y1

y2

)
= (tan2 2πx2 + 1) cos2 2πx2 = 1

and thus

f(y1, y2) =
1

2π
e−

1
2
(y2

1+y2
2) =

1√
2π
e−

y2
1
2

1√
2π
e−

y2
2
2

i.e. the product of two standard normal distributions.
Thus the result is that y1 and y2 are distributed as two independent standard normal

variables. This is a well known method, often called the Box-Muller transformation, used
in order to achieve pseudorandom numbers from the standard normal distribution given
a uniform pseudorandom number generator (see below). The method was introduced by
G. E. P. Box and M. E. Muller [25].

6.6 Probability Content

In figure 2 contours corresponding to one, two, and three standard deviations were shown.
The projection on each axis for e.g. the one standard deviation contour covers the range
−1 ≤ xi ≤ 1 and contains a probability content of 68.3% which is well known from the
one-dimensional case.

More generally, for a contour corresponding to z standard deviations the contour has
the equation

(x1 + x2)
2

1 + ρ
+

(x1 − x2)
2

1− ρ
= 2z2

i.e. the major and minor semi-axes are z
√

1 + ρ and z
√

1− ρ, respectively. The function
value at the contour is given by

f(x1, x2) =
1

2π
√

1− ρ2
exp

{
−z

2

2

}

Expressed in polar coordinates (r, φ) the contour is described by

r2 =
z2(1− ρ2)

1− 2ρ sinφ cosφ

While the projected probability contents follow the usual figures for one-dimensional
normal distributions the joint probability content within each ellipse is smaller. For the
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one, two, and three standard deviation contours the probability content, regardless of the
correlation coefficient ρ, inside the ellipse is approximately 39.3%, 86.5%, and 98.9%. If
we would like to find the ellipse with a joint probability content of 68.3% we must chose
z ≈ 1.5 (for a content of 95.5% use z ≈ 2.5 and for 99.7% use z ≈ 3.4). Se further discussion
on probability content for a multinormal distribution in section 28.3.

6.7 Random Number Generation

The joint distribution of y1 and y2 in section 6.5 above is a binormal distribution having
ρ = 0. For arbitrary correlation coefficients ρ the binormal distribution is given by

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

· e
− 1

2(1−ρ2)

((
x1−µ1

σ1

)2

+

(
x2−µ2

σ2

)2

−2ρ·x1−µ1
σ1

·x2−µ2
σ2

)

where µ1 and µ2 are the expectation values of x1 and x2, σ1 and σ2 their standard deviations
and ρ the correlation coefficient between them.

Variables distributed according to the binormal distribution may be obtained by trans-
forming the two independent numbers y1 and y2 found in the section 6.5 either as

z1 = µ1 + σ1

(
y1

√
1− ρ2 + y2ρ

)
z2 = µ2 + σ2y2

or as

z1 = µ1 +
σ1√
2
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√
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√
1− ρ

)
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σ2√
2

(
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√
1 + ρ− y2

√
1− ρ

)

which can be proved by expressing y1 and y2 as functions of z1 and z2 and evaluate

f(z1, z2) =

∣∣∣∣∣
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In the first case

y1 =
1√

1− ρ2

(
z1 − µ1

σ1

− ρ
z2 − µ2

σ2

)
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z2 − µ2

σ2

and in the second case
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In both cases the absolute value of the determinant of the Jacobian is 1/σ1σ2

√
1− ρ2 and

we get

f(z1, z2) =
1

σ1σ2

√
1− ρ2

· 1√
2π
e−

y2
1
2 · 1√

2π
e−

y2
2
2 =

1

2πσ1σ2

√
1− ρ2

· e−
1
2
(y2

1+y2
2)

Inserting the relations expressing y1 and y2 in z1 and z2 in the exponent we finally obtain
the binormal distribution in both cases.

Thus we have found methods which given two independent uniform pseudorandom num-
bers between zero and one supplies us with a pair of numbers from a binormal distribution
with arbitrary means, standard deviations and correlation coefficient.
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7 Cauchy Distribution

7.1 Introduction

The Cauchy distribution is given by

f(x) =
1

π
· 1

1 + x2

and is defined for −∞ < x < ∞. It is a symmetric unimodal distribution as is shown in
figure 3.

Figure 3: Graph of the Cauchy distribution

The distribution is named after the famous french mathematician Augustin Louis Cauchy
(1789-1857) who was a professor at École Polytechnique in Paris from 1816. He was one of
the most productive mathematicians which have ever existed.

7.2 Moments

This probability density function is peculiar inasmuch as it has undefined expectation value
and all higher moments diverge. For the expectation value the integral

E(x) =
1

π

∞∫
−∞

x

1 + x2
dx

is not completely convergent, i.e.

lim
a→∞,b→∞

1

π

b∫
−a

x

1 + x2
dx
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does not exist. However, the principal value

lim
a→∞

1

π

a∫
−a

x

1 + x2
dx

does exist and is equal to zero. Anyway the convention is to regard the expectation value
of the Cauchy distribution as undefined.

Other measures of location and dispersion which are useful in the case of the Cauchy
distribution is the median and the mode which are at x = 0 and the half-width at half-
maximum which is 1 (half-maxima at x = ±1).

7.3 Normalization

In spite of the somewhat awkward property of not having any moments the distribution at
least fulfil the normalization requirement for a proper probability density function i.e.

N =

∞∫
−∞

f(x)dx =
1

π

∞∫
−∞

1

1 + x2
dx =

1

π

π/2∫
−π/2

1

1 + tan2 φ
· dφ

cos2 φ
= 1

where we have made the substitution tanφ = x in order to simplify the integration.

7.4 Characteristic Function

The characteristic function for the Cauchy distribution is given by

φ(t) =

∞∫
−∞

eıtxf(x)dx =
1

π

∞∫
−∞

cos tx+ ı sin tx

1 + x2
dx =

=
1

π

 ∞∫
0

cos tx

1 + x2
dx+

0∫
−∞

cos tx

1 + x2
dx+

∞∫
0

ı sin tx

1 + x2
dx+

0∫
−∞

ı sin tx

1 + x2
dx

 =

=
2

π

∞∫
0

cos tx

1 + x2
dx = e−|t|

where we have used that the two sine integrals are equal but with opposite sign whereas
the two cosine integrals are equal. The final integral we have taken from standard integral
tables. Note that the characteristic function has no derivatives at t = 0 once again telling
us that the distribution has no moments.

7.5 Location and Scale Parameters

In the form given above the Cauchy distribution has no parameters. It is useful, however,
to introduce location (x0) and scale (Γ > 0) parameters writing

f(x;x0,Γ) =
1

π
· Γ

Γ2 + (x− x0)2
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where x0 is the mode of the distribution and Γ the half-width at half-maximum (HWHM).
Including these two parameters the characteristic function is modified to

φ(t) = eitx0−Γ|t|

7.6 Breit-Wigner Distribution

In this last form we recognize the Breit-Wigner formula, named after the two physicists
Gregory Breit and Eugene Wigner, which arises in physics e.g. in the description of the
cross section dependence on energy (mass) for two-body resonance scattering. Resonances
like e.g. the ∆++ in π+p scattering or the ρ in ππ scattering can be quite well described
in terms of the Cauchy distribution. This is the reason why the Cauchy distribution in
physics often is referred to as the Breit-Wigner distribution. However, in more elaborate
physics calculations the width may be energy-dependent in which case things become more
complicated.

7.7 Comparison to Other Distributions

The Cauchy distribution is often compared to the normal (or Gaussian) distribution with
mean µ and standard deviation σ > 0

f(x;µ, σ) =
1

σ
√

2π
e−

1
2(

x−µ
σ )

2

and the double-exponential distribution with mean µ and slope parameter λ > 0

f(x;µ, λ) =
λ

2
e−λ|x−µ|

These are also examples of symmetric unimodal distributions. The Cauchy distribution has
longer tails than the double-exponential distribution which in turn has longer tails than
the normal distribution. In figure 4 we compare the Cauchy distribution with the standard
normal (µ = 0 and σ = 1) and the double-exponential distributions (λ = 1) for x > 0.

The normal and double-exponential distributions have well defined moments. Since
they are symmetric all central moments of odd order vanish while central moments of even
order are given by µ2n = (2n)!σ2n/2nn! (for n ≥ 0) for the normal and by µn = n!/λn (for
even n) for the double-exponential distribution. E.g. the variances are σ2 and 2/λ2 and the
fourth central moments 3σ4 and 24/λ4, respectively.

The Cauchy distribution is related to Student’s t-distribution with n degrees of freedom
(with n a positive integer)

f(t;n) =
Γ
(

n+1
2

)
√
nπΓ

(
n
2

) (1 +
t2

n

)−n+1
2

=

(
1 + t2

n

)−n+1
2

√
nB

(
1
2
, n

2

)
where Γ(x) is the Euler gamma-function not no be mixed up with the width parameter for
the Cauchy distribution used elsewhere in this section. B is the beta-function defined in
terms of the Γ-function as B(p, q) = Γ(p)Γ(q)

Γ(p+q)
. As can be seen the Cauchy distribution arises
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Figure 4: Comparison between the Cauchy distribution, the standard normal distribution,
and the double-exponential distribution

as the special case where n = 1. If we change variable to x = t/
√
n and put m = n+1

2
the

Student’s t-distribution becomes

f(x;m) =
k

(1 + x2)m
with k =

Γ(m)

Γ
(

1
2

)
Γ
(
m− 1

2

) =
1

B
(
m− 1

2
, 1

2

)
where k is simply a normalization constant. Here it is easier to see the more general form
of this distribution which for m = 1 gives the Cauchy distribution. The requirement n ≥ 1
corresponds to m being a half-integer ≥ 1 but we could even allow for m being a real
number.

As for the Cauchy distribution the Student’s t-distribution have problems with divergent
moments and moments of order ≥ n does not exist. Below this limit odd central moments
are zero (the distribution is symmetric) and even central moments are given by

µ2r = nr
Γ
(
r + 1

2

)
Γ
(

n
2
− r

)
Γ
(

1
2

)
Γ
(

n
2

) = nr
B
(
r + 1

2
, n

2
− r

)
B
(

1
2
, n

2

)
for r a positive integer (2r < n). More specifically the expectation value is E(t) = 0, the
variance V (t) = n

n−2
and the fourth central moment is given by µ4 = 3n2

(n−2)(n−4)
when they

exist. As n→∞ the Student’s t-distribution approaches a standard normal distribution.

7.8 Truncation

In order to avoid the long tails of the distribution one sometimes introduces a truncation.
This, of course, also cures the problem with the undefined mean and divergent higher
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moments. For a symmetric truncation−X ≤ x ≤ X we obtain the renormalized probability
density function

f(x) =
1

2 arctanX
· 1

1 + x2

which has expectation value E(x) = 0, variance V (x) = X
arctan X

− 1, third central moment

µ3 = 0 and fourth central moment µ4 = X
arctan X

(
X2

3
− 1

)
+ 1. The fraction of the original

Cauchy distribution within the symmetric interval is f = 2
π

arctanX. We will, however,
not make any truncation of the Cauchy distribution in the considerations made in this
note.

7.9 Sum and Average of Cauchy Variables

In most cases one would expect the sum and average of many variables drawn from the
same population to approach a normal distribution. This follows from the famous Central
Limit Theorem. However, due to the divergent variance of the Cauchy distribution the
requirements for this theorem to hold is not fulfilled and thus this is not the case here. We
define

Sn =
n∑

i=1

xi and Sn =
1

n
Sn

with xi independent variables from a Cauchy distribution.
The characteristic function of a sum of independent random variables is equal to the

product of the individual characteristic functions and hence

Φ(t) = φ(t)n = e−n|t|

for Sn. Turning this into a probability density function we get (putting x=Sn for conve-
nience)

f(x) =
1

2π

∞∫
−∞

Φ(t)e−ıxtdt =
1

2π

∞∫
−∞

e−(ıxt+n|t|)dt =
1

2π

 0∫
−∞

ent−ıxtdt+

∞∫
0

e−ıxt−ntdt

 =

=
1

2π

[et(n−ıx)

n− ıx

]0

−∞
+

[
e−t(ıx+n)

−n− ıx

]∞
0

 =
1

2π

(
1

n− ıx
+

1

n+ ıx

)
=

1

π
· n

n2 + x2

This we recognize as a Cauchy distribution with scale parameter Γ =n and thus for each
additional Cauchy variable the HWHM increases by one unit.

Moreover, the probability density function of Sn is given by

f(Sn) =
dSn

dSn

f(Sn) =
1

π
· 1

1 + S
2

n

i.e. the somewhat amazing result is that the average of any number of independent random
variables from a Cauchy distribution is also distributed according to the Cauchy distribu-
tion.
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7.10 Estimation of the Median

For the Cauchy distribution the sample mean is not a consistent estimator of the median
of the distribution. In fact, as we saw in the previous section, the sample mean is itself
distributed according to the Cauchy distribution and therefore has divergent variance.
However, the sample median for a sample of n independent observations from a Cauchy
distribution is a consistent estimator of the true median.

In the table below we give the expectations and variances of the sample mean and
sample median estimators for the normal, double-exponential and Cauchy distributions
(see above for definitions of distributions). Sorting all the observations the median is taken
as the value for the central observation for odd n and as the average of the two central
values for even n. The variance of the sample mean is simply the variance of the distribution
divided by the sample size n. For large n the variance of the sample median m is given by
V (m) = 1/4nf2 where f is the function value at the median.

Distribution E(x) V (x) E(m) V (m)

Normal µ σ2

n µ πσ2

2n

Double-exponential µ 2
nλ2 µ 1

nλ2

Cauchy undef. ∞ x0
π2Γ2

4n

For a normal distribution the sample mean is superior to the median as an estimator of
the mean (i.e. it has the smaller variance). However, the double-exponential distribution
is an example of a distribution where the sample median is the best estimator of the mean
of the distribution. In the case of the Cauchy distribution only the median works of the
above alternatives but even better is a proper Maximum Likelihood estimator. In the case
of the normal and double-exponential the mean and median, respectively, are identical to
the maximum likelihood estimators but for the Cauchy distribution such an estimator may
not be expressed in a simple way.

The large n approximation for the variance of the sample median gives conservative
estimates for lower values of n in the case of the normal distribution. Beware, however,
that for the Cauchy and the double-exponential distributions it is not conservative but
gives too small values. Calculating the standard deviation this is within 10% of the true
value already at n = 5 for the normal distribution whereas for the Cauchy distribution this
is true at about n = 20 and for the double-exponential distribution only at about n = 60.

7.11 Estimation of the HWHM

To find an estimator for the half-width at half-maximum is not trivial. It implies binning
the data, finding the maximum and then locating the positions where the curve is at half-
maximum. Often it is preferable to fit the probability density function to the observations
in such a case.
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However, it turns out that another measure of dispersion the so called semi-interquar-
tile range can be used as an estimator. The semi-interquartile range is defined as half the
difference between the upper and the lower quartiles. The quartiles are the values which
divide the probability density function into four parts with equal probability content, i.e.
25% each. The second quartile is thus identical to the median. The definition is thus

S =
1

2
(Q3 −Q1) = Γ

where Q1 is the lower and Q3 the upper quartile which for the Cauchy distribution is equal
to x0 − Γ and x0 + Γ, respectively. As is seen S = HWHM = Γ and thus this estimator
may be used in order to estimate Γ.

We gave above the large n approximation for the variance of the median. The median
and the quartiles are examples of the more general concept quantiles. Generally the large
n approximation for the variance of a quantile Q is given by V (Q) = pq/nf2 where f is the
ordinate at the quantile and p and q = 1− p are the probability contents above and below
the quantile, respectively. The covariance between two quantiles Q1 and Q2 is, with similar
notations, given by Cov(Q1,Q2) = p2q1/nf1f2 where Q1 should be the leftmost quantile.

For large n the variance of the semi-interquartile range for a sample of size n is thus
found by error propagation inserting the formulæ above

V (S) =
1

4
(V (Q1) + V (Q3)− 2Cov(Q1, Q3)) =

1

64n

(
3

f 2
1

+
3

f 2
3

− 2

f1f3

)
=

1

16nf2
1

=
π2Γ2

4n

where f1 and f3 are the function values at the lower and upper quartile which are both
equal to 1/2πΓ. This turns out to be exactly the same as the variance we found for the
median in the previous section.

After sorting the sample the quartiles are determined by extrapolation between the two
observations closest to the quartile. In the case where n+2 is a multiple of 4 i.e. the series
n = 2, 6, 10... the lower quartile is exactly at the n+2

4
:th observation and the upper quartile

at the 3n+2
4

:th observation. In the table below we give the expectations and variances of
the estimator of S as well as the variance estimator s2 for the normal, double-exponential
and Cauchy distributions. The variance estimator s2 and its variance are given by

s2 =
1

n− 1

n∑
i=1

(xi − x)2 and V (s2) =
µ4 − µ2

2

n
+

2µ2
2

n(n− 1)

with µ2 and µ4 the second and fourth central moments. The expectation value of s2 is
equal to the variance and thus it is a unbiased estimator.

Distribution HWHM E(s2) V (s2) E(S) V (S)

Normal σ
√

2 ln 2 σ2 2σ4

n−1 0.6745σ 1
16nf(Q1)2

Double-exponential ln 2
λ

2
λ2

20
nλ4α

ln 2
λ

1
nλ2

Cauchy Γ ∞ ∞ Γ π2Γ2

4n
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In this table α = 1 + 0.4
n−1

if we include the second term in the expression of V (s2) above
and α = 1 otherwise. It can be seen that the double-exponential distribution also has
HWHM = S but for the normal distribution HWHM ≈ 1.1774σ as compared to S ≈
0.6745σ.

For the three distributions tested the semi-interquartile range estimator is biased. In
the case of the normal distribution the values are approaching the true value from below
while for the Cauchy and double-exponential distributions from above. The large n ap-
proximation for V (S) is conservative for the normal and double-exponential distribution
but not conservative for the Cauchy distribution. In the latter case the standard deviation
of S is within 10% of the true value for n > 50 but for small values of n it is substantially
larger than given by the formula. The estimated value for Γ is less than 10% too big for
n > 25.

7.12 Random Number Generation

In order to generate pseudorandom numbers from a Cauchy distribution we may solve the
equation F (x) = ξ where F (x) is the cumulative distribution function and ξ is a uniform
pseudorandom number between 0 and 1. This means solving for x in the equation

F (x) =
Γ

π

x∫
−∞

1

Γ2 + (t− x0)2
dt = ξ

If we make the substitution tanφ = (t− x0)/Γ using that dφ/ cos2 φ = dt/Γ we obtain

1

π
arctan

(
x− x0

Γ

)
+ 1

2
= ξ

which finally gives
x = x0 + Γ tan

(
π
(
ξ − 1

2

))
as a pseudorandom number from a Cauchy distribution. One may easily see that it is
equivalent to use

x = x0 + Γ tan(2πξ)

which is a somewhat simpler expression.
An alternative method (see also below) to achieve random numbers from a Cauchy

distribution would be to use
x = x0 + Γ

z1

z2

where z1 and z2 are two independent random numbers from a standard normal distribution.
However, if the standard normal random numbers are achieved through the Box-Muller
transformation then z1/z2 = tan 2πξ and we are back to the previous method.

In generating pseudorandom numbers one may, if profitable, avoid the tangent by

a Generate in u and v two random numbers from a uniform distribution between -1
and 1.

b If u2 + v2 > 1 (outside circle with radius one in uv-plane) go back to a.

c Obtain x = x0 + Γu
v

as a random number from a Cauchy distribution.

33



7.13 Physical Picture

A physical picture giving rise to the Cauchy distribution is as follows: Regard a plane in
which there is a point source which emits particles isotropically in the plane (either in the
full 2π region or in one hemisphere π radians wide). The source is at the x-coordinate x0

and the particles are detected in a detector extending along a line Γ length units from the
source. This scenario is depicted in figure 5
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Figure 5: Physical scenario leading to a Cauchy distribution

The distribution in the variable x along the detector will then follow the Cauchy distri-
bution. As can be seen by pure geometrical considerations this is in accordance with the
result above where pseudorandom numbers from a Cauchy distribution could be obtained
by x = x0 + Γ tanφ, i.e. tanφ = x−x0

Γ
, with φ uniformly distributed between −π

2
and π

2
.

To prove this let us start with the distribution in φ

f(φ) =
1

π
for − π

2
≤ φ ≤ π

2

To change variables from φ to x requires the derivative dφ/dx which is given by

dφ

dx
=

cos2 φ

Γ
=

1

Γ
cos2 arctan

(
x− x0

Γ

)
Note that the interval from −π

2
to π

2
in φ maps onto the interval −∞ < x <∞. We get

f(x) =

∣∣∣∣∣dφdx
∣∣∣∣∣ f(φ) =

1

πΓ
cos2 arctan

(
x− x0

Γ

)
=

1

πΓ
cos2 φ =

=
1

πΓ
· Γ2

Γ2 + (x− x0)2
=

1

π
· Γ

Γ2 + (x− x0)2

i.e. the Cauchy distribution.
It is just as easy to make the proof in the reversed direction, i.e. given a Cauchy

distribution in x one may show that the φ-distribution is uniform between −π
2

and π
2
.
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7.14 Ratio Between Two Standard Normal Variables

As mentioned above the Cauchy distribution also arises if we take the ratio between two
standard normal variables z1 and z2, viz.

x = x0 + Γ
z1

z2

.

In order to deduce the distribution in x we first introduce a dummy variable y which we
simply take as z2 itself. We then make a change of variables from z1 and z2 to x and y.
The transformation is given by

x = x0 + Γ
z1

z2
y = z2

or if we express z1 and z2 in x and y

z1 = y(x− x0)/Γ

z2 = y

The distribution in x and y is given by

f(x, y) =

∣∣∣∣∣
∣∣∣∣∣∂(z1, z2)

∂(x, y)

∣∣∣∣∣
∣∣∣∣∣ f(z1, z2)

where the absolute value of the determinant of the Jacobian is equal to y/Γ and f(z1, z2)
is the product of two independent standard normal distributions. We get

f(x, y) =
y

Γ
· 1

2π
e−

1
2
(z2

1+z2
2) =

y

2πΓ
e
− 1

2

(
y2(x−x0)2

Γ2 +y2

)
In order to obtain the marginal distribution in x we integrate over y

f(x) =

∞∫
−∞

f(x, y)dy =
1

2πΓ

∞∫
−∞

ye−αy2

dy

where we have put

α =
1

2

((
x− x0

Γ

)2

+ 1

)
for convenience. If we make the substitution z = y2 we get

f(x) = 2
1

2πΓ

∞∫
0

e−αz dz

2
=

1

2πΓα

Note that the first factor of 2 comes from the fact that the region −∞ < y < ∞ maps
twice onto the region 0 < z <∞. Finally

f(x) =
1

2πΓα
=

1

2πΓ
· 2(

x−x0

Γ

)2
+ 1

=
1

π
· Γ

(x− x0)2 + Γ2

i.e. a Cauchy distribution.
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8 Chi-square Distribution

8.1 Introduction

The chi-square distribution is given by

f(x;n) =

(
x
2

)n
2
−1
e−

x
2

2Γ
(

n
2

)
where the variable x ≥ 0 and the parameter n, the number of degrees of freedom, is a
positive integer. In figure 6 the distribution is shown for n-values of 1, 2, 5 and 10. For
n ≥ 2 the distribution has a maximum at n−2.

Figure 6: Graph of chi-square distribution for some values of n

8.2 Moments

Algebraic moments of order k are given by

µ′k = E(xk) =
1

2Γ
(

n
2

) ∞∫
0

xk
(
x

n

)n
2
−1

e−
x2

2 dx =
2k

Γ
(

n
2

) ∞∫
0

y
n
2
−1+ke−ydy =

2kΓ
(

n
2

+ k
)

Γ
(

n
2

) =

= 2k · n
2
(
n

2
+ 1) · · · (n

2
+ k − 2)(

n

2
+ k − 1) = n(n+ 2)(n+ 4) · · · (n+ 2k − 2)

e.g. the first algebraic moment which is the expectation value is equal to n. A recursive
formula to calculate algebraic moments is thus given by

µ′k = µ′k−1 · (n+ 2k − 2)

where we may start with µ′0 = 1 to find the expectation value µ′1 = n, µ′2 = n(n+ 1) etc.
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From this we may calculate the central moments which for the lowest orders become
µ2 = 2n, µ3 = 8n, µ4 = 12n(n + 4), µ5 = 32n(5n + 12) and µ6 = 40n(3n2 + 52n + 96).

The coefficients of skewness and kurtosis thus becomes γ1 = 2
√

2/n and γ2 = 12/n.

The fact that the expectation value of a chi-square distribution equals the number of
degrees of freedom has led to a bad habit to give the ratio between a found chi-square
value and the number of degrees of freedom. This is, however, not a very good variable
and it may be misleading. We strongly recommend that one always should give both the
chi-square value and degrees of freedom e.g. as χ2/n.d.f.=9.7/5.

To judge the quality of the fit we want a better measure. Since the exact sampling
distribution is known one should stick to the chi-square probability as calculated from an
integral of the tail i.e. given a specific chi-square value for a certain number of degrees of
freedom we integrate from this value to infinity (see below).

As an illustration we show in figure 7 the chi-square probability for constant ratios of
χ2/n.d.f.

Figure 7: Chi-square probability for constant ratios of χ2/n.d.f.

Note e.g. that for few degrees of freedom we may have an acceptable chi-square value
even for larger ratios.

8.3 Characteristic Function

The characteristic function for a chi-square distribution with n degrees of freedom is given
by

φ(t) = E(eıtx) =
1

2Γ
(

n
2

) ∞∫
0

(
x

2

)n
2
−1

e−( 1
2
−ıt)xdx =

1

2Γ
(

n
2

) ∞∫
0

(
y

1− 2ıt

)n
2
−1

e−y dy
1
2
− ıt

=
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=
1

Γ
(

n
2

)
(1− 2ıt)

n
2

∞∫
0

y
n
2
−1e−ydy = (1− 2ıt)−

n
2

8.4 Cumulative Function

The cumulative, or distribution, function for a chi-square distribution with n degrees of
freedom is given by

F (x) =
1

2Γ
(

n
2

) x∫
0

(
x

2

)n
2
−1

e−
x
2 dx =

1

2Γ
(

n
2

)
x
2∫

0

y
n
2
−1e−y2dy =

=
γ
(

n
2
, x

2

)
Γ
(

n
2

) = P
(
n

2
,
x

2

)

where P
(

n
2
, x

2

)
is the incomplete Gamma function (see section 42.5). In this calculation

we have made the simple substitution y = x/2 in simplifying the integral.

8.5 Origin of the Chi-square Distribution

If z1, z2, ..., zn are n independent standard normal random variables then
n∑

i=1
z2

i is distributed

as a chi-square variable with n degrees of freedom.
In order to prove this first regard the characteristic function for the square of a standard

normal variable

E(eıtz2

) =
1√
2π

∞∫
−∞

e−
z2

2
(1−2ıt)dz =

1√
2π

∞∫
−∞

e−
y2

2
dy√

1− 2ıt
=

1√
1− 2ıt

where we made the substitution y = z
√

1− 2ıt.
For a sum of n such independent variables the characteristic function is then given by

φ(t) = (1− 2it)−
n
2

which we recognize as the characteristic function for a chi-square distribution with n degrees
of freedom.

This property implies that if x and y are independently distributed according to the chi-
square distribution with n and m degrees of freedom, respectively, then x+y is distributed
as a chi-square variable with m+ n degrees of freedom.

Indeed the requirement that all z’s come from a standard normal distribution is more
than what is needed. The result is the same if all observations xi come from different normal
populations with means µi and variance σ2

i if we in each case calculate a standardized
variable by subtracting the mean and dividing with the standard deviation i.e. taking
zi = (xi − µi)/σi.
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8.6 Approximations

For large number of degrees of freedom n the chi-square distribution may be approximated
by a normal distribution. There are at least three different approximations. Firstly we
may näıvely construct a standardized variable

z1 =
x− E(x)√

V (x)
=
x− n√

2n

which would tend to normality as n increases. Secondly an approximation, due to R. A. Fisher,
is that the quantity

z2 =
√

2x−
√

2n− 1

approaches a standard normal distribution faster than the standardized variable. Thirdly
a transformation, due to E. B. Wilson and M. M. Hilferty, is that the cubic root of x/n is
closely distributed as a standard normal distribution using

z3 =

(
x
n

) 1
3 −

(
1− 2

9n

)
√

2
9n

The second approximation is probably the most well known but the latter is approaching
normality even faster. In fact there are even correction factors which may be applied to z3

to give an even more accurate approximation (see e.g. [26])

z4 = z3 + hn = z3 +
60

n
h60

with h60 given for values of z2 from –3.5 to 3.5 in steps of 0.5 (in this order the values of
h60 are –0.0118, –0.0067, –0.0033, –0.0010, 0.0001, 0.0006, 0.0006, 0.0002, –0.0003, –0.0006,
–0.0005, 0.0002, 0.0017, 0.0043, and 0.0082).

To compare the quality of all these approximations we calculate the maximum deviation
between the cumulative function for the true chi-square distribution and each of these
approximations for n=30 and n=100. The results are shown in the table below. Normally
one accepts z2 for n > 100 while z3, and certainly z4, are even better already for n > 30.

Approximation n = 30 n = 100
z1 0.034 0.019
z2 0.0085 0.0047
z3 0.00039 0.00011
z4 0.000044 0.000035

8.7 Random Number Generation

As we saw above the sum of n independent standard normal random variables gave a
chi-square distribution with n degrees of freedom. This may be used as a technique to
produce pseudorandom numbers from a chi-square distribution. This required a generator
for standard normal random numbers and may be quite slow. However, if we make use of
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the Box-Muller transformation in order to obtain the standard normal random numbers
we may simplify the calculations.

First we recall the Box-Muller transformation which given two pseudorandom numbers
uniformly distributed between zero and one through the transformation

z1 =
√
−2 ln ξ1 cos 2πξ2

z2 =
√
−2 ln ξ1 sin 2πξ2

gives, in z1 and z2, two independent pseudorandom numbers from a standard normal dis-
tribution.

Adding n such squared random numbers implies that

y2k = −2 ln(ξ1 · ξ2 · · · ξk)
y2k+1 = −2 ln(ξ1 · ξ2 · · · ξk)− 2 ln ξk+1 cos2 2πξk+2

for k a positive integer will be distributed as chi-square variable with even or odd number
of degrees of freedom. In this manner a lot of unnecessary operations are avoided.

Since the chi-square distribution is a special case of the Gamma distribution we may
also use a generator for this distribution.

8.8 Confidence Intervals for the Variance

If x1, x2, ..., xn are independent normal random variables from a N(µ, σ2) distribution then
(n−1)s2

σ2 is distributed according to the chi-square distribution with n−1 degrees of freedom.
A 1− α confidence interval for the variance is then given by

(n− 1)s2

χ2
1−α/2,n−1

≤ σ2 ≤ (n− 1)s2

χ2
α/2,n−1

where χα,n is the chi-square value for a distribution with n degrees of freedom for which the
probability to be greater or equal to this value is given by α. See also below for calculations
of the probability content of the chi-square distribution.

8.9 Hypothesis Testing

Let x1, x2, ..., xn be n independent normal random variables distributed according to a
N(µ, σ2) distribution. To test the null hypothesis H0: σ

2 = σ2
0 versus H1: σ

2 6= σ2
0 at the α

level of significance, we would reject the null hypothesis if (n−1)s2/σ2
0 is less than χ2

α/2,n−1

or greater than χ2
1−α/2,n−1.

8.10 Probability Content

In testing hypotheses using the chi-square distribution we define xα = χ2
α,n from

F (xα) =

xα∫
0

f(x;n)dx = 1− α

40



i.e. α is the probability that a variable distributed according to the chi-square distribution
with n degrees of freedom exceeds xα.

This formula can be used in order to determine confidence levels for certain values of α.
This is what is done in producing the tables which is common in all statistics text-books.
However, more often the equation is used in order to calculate the confidence level α given
an experimentally determined chi-square value xα.

In calculating the probability content of a chi-square distribution we differ between the
case with even and odd number of degrees of freedom. This is described in the two following
subsections.

Note that one may argue that it is as unlikely to obtain a very small chi-square value
as a very big one. It is customary, however, to use only the upper tail in calculation of
significance levels. A too small chi-square value is regarded as not a big problem. However,
in such a case one should be somewhat critical since it indicates that one either is cheating,
are using selected (biased) data or has (undeliberately) overestimated measurement errors
(e.g. included systematic errors).

To proceed in calculating the cumulative function we write

1− α = F (xα) =
1

2Γ
(

n
2

) xα∫
0

(
x

2

)n
2
−1

e−
x
2 dx =

1

Γ
(

n
2

) xα/2∫
0

z
n
2
−1e−zdz = P

(
n

2
,
xα

2

)

where we have made the substitution z = x/2. From this we see that we may use the
incomplete Gamma function P (see section 42.5) in evaluating probability contents but for
historical reasons we have solved the problem by considering the cases with even and odd
degrees of freedom separately as is shown in the next two subsections.

Although we prefer exact routines to calculate the probability in each specific case a
classical table may sometimes be useful. In table 1 on page 171 we show percentage points,
i.e. points where the cumulative probability is 1−α, for different degrees of freedom.

It is sometimes of interest e.g. when rejecting a hypothesis using a chi-square test to
scrutinize extremely small confidence levels. In table 2 on page 172 we show this for
confidence levels down to 10−12 as chi-square values. In table 3 on page 173 we show the
same thing in terms of chi-square over degrees of freedom ratios (reluctantly since we do
not like such ratios). As discussed in section 8.2 we see, perhaps even more clearly, that
for few degrees of freedom the ratios may be very high while for large number of degrees
of freedom this is not the case for the same confidence level.
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8.11 Even Number of Degrees of Freedom

With even n the power of z in the last integral in the formula for F (xα) above is an integer.
From standard integral tables we find∫

xmeaxdx = eax
m∑

r=0

(−1)r m!xm−r

(m− r)!ar+1

where, in our case, a = −1. Putting m = n
2
− 1 and using this integral we obtain

1− α =
1

Γ
(

n
2

) xα/2∫
0

z
n
2
−1e−zdz =

[
1

m!
e−z

m∑
r=0

(−1)r m!zm−r

(m− r)!(−1)r+1

]xα
2

0

= 1− e−
xα
2

m∑
r=0

xm−r
α

2m−r(m− r)!
= 1− e−

xα
2

n
2
−1∑

r=0

xr
α

2rr!

a result which indeed is identical to the formula for P (n, x) for integer n given on page 160.

8.12 Odd Number of Degrees of Freedom

In the case of odd number of degrees of freedom we make the substitution z2 = x yielding

1− α = F (xα) =
1

2Γ
(

n
2

) xα∫
0

(
x

2

)n
2
−1

e−
x
2 dx =

1

2
n
2 Γ
(

n
2

)
√

xα∫
0

(
z2
)n

2
−1
e−

z2

2 2zdz =

=
1

2
n
2
−1Γ

(
n
2

)
√

xα∫
0

(
z2
)n−1

2 e−
z2

2 dz =
1

2m− 1
2 Γ
(
m+ 1

2

)
√

xα∫
0

z2me−
z2

2 dz

where we have put m = n−1
2

which for odd n is an integer. By partial integration in m
steps ∫

z2me−
z2

2 dz =
∫
z2m−1ze−

z2

2 dz = −z2m−1e−
z2

2 + (2m− 1)
∫
z2m−2e−

z2

2 dz∫
z2m−2e−

z2

2 dz = −z2m−3e−
z2

2 + (2m− 3)
∫
z2m−4e−

z2

2 dz

...∫
z4e−

z2

2 dz = −z3e−
z2

2 + 3
∫
z2e−

z2

2 dz∫
z2e−

z2

2 dz = −ze−
z2

2 +
∫
e−

z2

2 dz

we obtain ∫
z2me−

z2

2 = (2m− 1)!!
∫
e−

z2

2 dz −
m−1∑
r=0

(2m− 1)!!

(2r + 1)!!
z2r+1e−

z2

2

Applying this to our case gives

1− α =
1

2m− 1
2 Γ
(
m+ 1

2

)
(2m− 1)!!

√
xα∫

0

e−
z2

2 dz −
[

m−1∑
r=0

(2m− 1)!!

(2r + 1)!!
z2r+1e−

z2

2

]√xα

0

 =
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=

√
2

π


√

xα∫
0

e−
z2

2 dz −
[

m−1∑
r=0

1

(2r + 1)!!
z2r+1e−

z2

2

]√xα

0

 =

= 2G(
√
xα)− 1−

√
2xα

π
e−

xα
2

m−1∑
r=0

xr
α

(2r + 1)!!

where G(z) is the integral of the standard normal distribution from −∞ to z. Here we

have used Γ
(
m+ 1

2

)
= (2m−1)!!

2m

√
π in order to simplify the coefficient. This result may be

compared to the formula given on page 160 for the incomplete Gamma function when the
first argument is a half-integer.

8.13 Final Algorithm

The final algorithm to evaluate the probability content from −∞ to x for a chi-square
distribution with n degrees of freedom is

• For n even:

◦ Put m = n
2
− 1.

◦ Set u0 = 1, s = 0 and i = 0.

◦ For i = 0, 1, ...,m set s = s+ ui, i = i+ 1 and ui = ui−1 · x
2i

.

◦ α = s · e−x
2 .

• For n odd:

◦ Put m = n−1
2

.

◦ Set u0 = 1, s = 0 and i = 0.

◦ For i = 0, 1, ...,m− 1 set s = s+ ui, i = i+ 1 and ui = ui−1 · x
2i+1

.

◦ α = 2− 2G(
√
x) +

√
2x
π
e−

x
2 · s.

8.14 Chi Distribution

Sometimes, but less often, the chi distribution i.e. the distribution of y =
√
x is used. By

a simple change of variables this distribution is given by

f(y) =

∣∣∣∣∣dxdy
∣∣∣∣∣ f(y2) = 2y · 1

2

(
y2

2

)n
2
−1

e−
y2

2

Γ
(

n
2

) = yn−1
(

1
2

)n
2
−1 e−

y2

2

Γ
(

n
2

)
In figure 8 the chi distribution is shown for n-values of 1, 2, 5, and 10. The mode of the
distribution is at

√
n− 1.

The cumulative function for the chi distribution becomes

F (y) =

(
1
2

)n
2
−1

Γ
(

n
2

) y∫
0

xn−1e−
x2

2 dx = P

(
n

2
,
y2

2

)
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Figure 8: Graph of chi distribution for some values of n

and algebraic moments are given by

µ′k =

(
1
2

)n
2
−1

Γ
(

n
2

) ∞∫
0

ykyn−1e−
y2

2 dy =
2

k
2 Γ
(

n
2

+ k
2

)
Γ
(

n
2

)
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9 Compound Poisson Distribution

9.1 Introduction

The compound Poisson distribution describes the branching process for Poisson variables
and is given by

p(r;µ, λ) =
∞∑

n=0

(nµ)re−nµ

r!

λne−λ

n!

where the integer variable r ≥ 0 and the parameters µ and λ are positive real quantities.

9.2 Branching Process

The distribution describes the branching of n Poisson variables ni all with mean µ where
n is also distributed according to the Poisson distribution with mean λ i.e.

r =
n∑

i=1

ni with p(ni) =
µnie−µ

ni!
and p(n) =

λne−λ

n!

and thus

p(r) =
∞∑

n=0

p(r|n)p(n)

Due to the so called addition theorem (see page 121) for Poisson variables with mean µ the
sum of n such variables are distributed as a Poisson variable with mean nµ and thus the
distribution given above results.

9.3 Moments

The expectation value and variance of the Compound Poisson distribution are given by

E(r) = λµ and V (r) = λµ(1 + µ)

while higher moments gets slightly more complicated:

µ3 = µλ
{
µ+ (µ+ 1)2

}
µ4 = µλ

{
µ3 + 6µ2 + 7µ+ 1 + 3µλ(1 + µ)2

}
µ5 = µλ

{
µ4 + 10µ3 + 25µ2 + 15µ+ 1 + 10µλ(µ+ 1)(µ+ (1 + µ)2)

}
µ6 = µλ

{
µ5 + 15µ4 + 65µ3 + 90µ2 + 31µ+ 1

+ 5µλ
(
5µ4 + 33µ3 + 61µ2 + 36µ+ 5

)
+ 15µ2λ2(µ+ 1)3

}
9.4 Probability Generating Function

The probability generating function of the compound Poisson distribution is given by

G(z) = exp
{
−λ+ λe−µ+µz

}
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This is easily found by using the rules for branching processes where the probability
generating function (p.g.f.) is given by

G(z) = GP (GP (z))

where GP (z) is the p.g.f. for the Poisson distribution.

9.5 Random Number Generation

Using the basic definition we may proceed by first generate a random number n from a
Poisson distribution with mean λ and then another one with mean nµ.

For fixed µ and λ it is, however, normally much faster to prepare a cumulative vector
for values ranging from zero up to the point where computer precision gives unity and then
use this vector for random number generation. Using a binary search technique one may
allow for quite long vectors giving good precision without much loss in efficiency.
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10 Double-Exponential Distribution

10.1 Introduction

The Double-exponential distribution is given by

f(x;µ, λ) =
λ

2
e−λ|x−µ|

where the variable x is a real number as is the location parameter µ while the parameter
λ is a real positive number.

The distribution is sometimes called the Laplace distribution after the french astronomer,
mathematician and physicist marquis Pierre Simon de Laplace (1749–1827). It is a sym-
metric distribution whose tails fall off less sharply than the Gaussian distribution but faster
than the Cauchy distribution. It has a cusp, discontinuous first derivative, at x = µ.

The distribution has an interesting feature inasmuch as the best estimator for the mean
µ is the median and not the sample mean. See further the discussion in section 7 on the
Cauchy distribution where the Double-exponential distribution is discussed in some detail.

10.2 Moments

For the Double-exponential distribution central moments are more easy to determine than
algebraic moments (the mean is µ′1 = µ). They are given by

µn =

∞∫
−∞

(x− µ)nf(x)dx =
λ

2


µ∫

−∞

(x− µ)ne−λ(µ−x) +

∞∫
µ

(x− µ)ne−λ(x−µ)

 =

=
1

2


0∫

−∞

(
−y
λ

)n

e−ydy +

∞∫
0

(
y

λ

)n

e−ydy

 =
n!

2λn
+ (−1)n n!

2λn

i.e. odd moments vanish as they should due to the symmetry of the distribution and even
moments are given by the simple relation µn = n!/λn. From this one easily finds that the
coefficient of skewness is zero and the coefficient of kurtosis 3.

If required algebraic moments may be calculated from the central moments especially
the lowest order algebraic moments become

µ′1 = µ, µ′2 =
2

λ2
+ µ2, µ′3 =

6µ

λ2
+ µ3, and µ′4 =

24

λ4
+

12µ2

λ2
+ µ4

but more generally

µ′n =
n∑

r=0

(
n

r

)
µrµn−r

10.3 Characteristic Function

The characteristic function which generates central moments is given by

φx−µ(t) =
λ2

λ2 + t2
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from which we may find the characteristic function which generates algebraic moments

φx(t) = E(eıtx) = eıtµE(eıt(x−µ)) = eıtµφx−µ(t) = eıtµ λ2

λ2 + t2

Sometimes an alternative which generates the sequence µ′1, µ2, µ3, . . . is given as

φ(t) = ıtµ+
λ2

λ2 + t2

10.4 Cumulative Function

The cumulative function, or distribution function, for the Double-exponential distribution
is given by

F (x) =

{
1
2
e−λ(µ−x) if x ≤ µ

1− 1
2
e−λ(x−µ) if x > µ

From this we see not only the obvious that the median is at x = µ but also that the lower
and upper quartile is located at µ∓ ln 2/λ.

10.5 Random Number Generation

Given a uniform random number between zero and one in ξ a random number from a
Double-exponential distribution is given by solving the equation F (x) = ξ for x giving

For ξ ≤ 1
2

x = µ+ ln(2ξ)/λ

for ξ > 1
2

x = µ− ln(2− 2ξ)/λ
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11 Doubly Non-Central F -Distribution

11.1 Introduction

If x1 and x2 are independently distributed according to two non-central chi-square distribu-
tions with n1 and n2 degrees of freedom and non-central parameters λ1 and λ2, respectively,
then the variable

F ′ =
x1/n1

x2/n2

is said to have a doubly non-central F -distribution with n1, n2 degrees of freedom (positive
integers) and non-centrality parameters λ1, λ2 (both ≥ 0).

This distribution may be written as

f(x;n1, n2, λ1, λ2) =
n1

n2

e−
λ
2

∞∑
r=0

∞∑
s=0

(
λ1

2

)r

r!

(
λ2

2

)s

s!

(
n1x
n2

)n1
2

+r−1

(
1 + n1x

n2

)n
2
+r+s

1

B
(

n1

2
+ r, n2

2
+ s

)
where we have put n = n1 + n2 and λ = λ1 + λ2. For λ2 = 0 we obtain the (singly)
non-central F -distribution (see section 32) and if also λ1 = 0 we are back to the ordinary
variance ratio, or F -, distribution (see section 16).

With four parameters a variety of shapes are possible. As an example figure 9 shows the
doubly non-central F -distribution for the case with n1 = 10, n2 = 5 and λ1 = 10 varying
λ2 from zero (an ordinary non-central F -distribution) to five.

Figure 9: Examples of doubly non-central F -distributions

11.2 Moments

Algebraic moments of this distributions become

E(xk) =
(
n2

n1

)k

e−
λ
2

∞∑
r=0

(
λ1

2

)r

r!

Γ
(

n1

2
+ r + k

)
Γ
(

n1

2
+ r

) ∞∑
s=0

(
λ2

2

)s

s!

Γ
(

n2

2
+ s− k

)
Γ
(

n2

2
+ s

) =

=
(
n2

n1

)k

e−
λ
2

∞∑
r=0

(
λ1

2

)r

r!

(
n1

2
+ r + k − 1

)
· · ·

(
n1

2
+ r

)
·
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·
∞∑

s=0

(
λ2

2

)s

s!

(
n2

2
+ s− 1

)−1
· · ·

(
n2

2
+ s− k

)−1

The r-sum involved, with a polynomial in the numerator, is quite easily solvable giv-
ing similar expressions as for the (singly) non-central F -distribution. The s-sums, how-
ever, with polynomials in the denominator give rise to confluent hypergeometric functions
M(a, b;x) (see appendix B). Lower order algebraic moments are given by

E(x) = e−
λ2
2
n

m
· m+ λ

n− 2
M
(

n−2
2
, n

2
; λ2

2

)
E(x2) = e−

λ2
2

(
n

m

)2 λ2 + (2λ+m)(m+ 2)

(n− 2)(n− 4)
M
(

n−4
2
, n

2
; λ2

2

)
E(x3) = e−

λ2
2

(
n

m

)3 λ3 + 3(m+ 4)λ2 + (3λ+m)(m+ 2)(m+ 4)

(n− 2)(n− 4)(n− 6)
M
(

n−6
2
, n

2
; λ2

2

)
E(x4) = e−

λ2
2

(
n

m

)4 λ4 + (m+ 6) {4λ3 + (m+ 4) [6λ2 + (4λ+m)(m+ 2)]}
(n− 2)(n− 4)(n− 6)(n− 8)

·

·M
(

n−8
2
, n

2
; λ2

2

)
11.3 Cumulative Distribution

The cumulative, or distribution, function may be deduced by simple integration

F (x) =
n1

n2

e−
λ
2

∞∑
r=0

∞∑
s=0

(
λ1

2

)r

r!

(
λ2

2

)s

s!

1

B
(

n1

2
+ r, n2

2
+ s

) x∫
0

(
n1u
n2

)n1
2

+r−1

(
1 + n1u

n2

)n
2
+r+s

du =

= e−
λ
2

∞∑
r=0

∞∑
s=0

(
λ1

2

)r

r!

(
λ2

2

)s

s!

Bq

(
n1

2
+ r, n2

2
+ s

)
B
(

n1

2
+ r, n2

2
+ s

) =

= e−
λ
2

∞∑
r=0

∞∑
s=0

(
λ1

2

)r

r!

(
λ2

2

)s

s!
Iq
(

n1

2
+ r, n2

2
+ s

)
with

q =
n1x
n2

1 + n1x
n2

11.4 Random Number Generation

Random numbers from a doubly non-central F -distribution is easily obtained using the
definition in terms of the ratio between two independent random numbers from non-central
chi-square distributions. This ought to be sufficient for most applications but if needed more
efficient techniques may easily be developed e.g. using more general techniques.
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12 Doubly Non-Central t-Distribution

12.1 Introduction

If x and y are independent and x is normally distributed with mean δ and unit variance
while y is distributed according a non-central chi-square distribution with n degrees of
freedom and non-centrality parameter λ then the variable

t = x/
√
y/n

is said to have a doubly non-central t-distribution with n degrees of freedom (positive
integer) and non-centrality parameters δ and λ (with λ ≥ 0).

This distribution may be expressed as

f(t;n, δ, λ) =
e−

δ2

2 e−
λ
2

√
nπ

∞∑
r=0

(
λ
2

)r

r!

1

Γ
(

n
2

+ r
) ∞∑

s=0

(tδ)s

s!
(

n
2

) s
2

(
1 +

t2

n

)−(n+s+1
2

+r)
Γ
(

n+s+1
2

+ r
)

For λ = 0 we obtain the (singly) non-central t-distribution (see section 33) and if also δ = 0
we are back to the ordinary t-distribution (see section 38).

Examples of doubly non-central t-distributions are shown in figure 9 for the case with
n = 10 and δ2 = 5 varying λ from zero (an ordinary non-central t-distribution) to ten.

Figure 10: Examples of doubly non-central t-distributions

12.2 Moments

Algebraic moments may be deduced from the expression

E(tk) =
e−

δ2

2 e−
λ
2

√
nπ

∞∑
r=0

(
λ
2

)r

r!

1

Γ
(

n
2

+ r
) ∞∑

s=0

δs

s!n
s
2
2

s
2 Γ
(

n+s+1
2

+ r
) ∞∫
−∞

ts+k(
1 + t2

n

)n+s+1
2

+r
dt =

=
e−

δ2

2 e−
λ
2

√
π

∞∑
r=0

(
λ
2

)r

r!

1

Γ
(

n
2

+ r
) ∞∑

s=0

δs

s!
2

s
2n

k
2 Γ
(

s+k+1
2

)
Γ
(

n−k
2

+ r
)
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where the sum should be taken for even values of s+ k i.e. for even (odd) orders sum only
over even (odd) s-values.

Differing between moments of even and odd order the following expressions for lower
order algebraic moments of the doubly non-central t-distribution may be expressed in terms
of the confluent hypergeometric function M(a, b;x) (see appendix B for details) as

E(t) = δ

√
n

2
e−

λ
2

Γ
(

n−1
2

)
Γ
(

n
2

) M
(

n−1
2
, n

2
; λ

2

)

E(t2) =
ne−

λ
2 (δ2 + 1)

n− 2
M
(

n−2
2
, n

2
; λ

2

)

E(t3) = δ(δ2 + 3)

√
n3

8
e−

λ
2

Γ
(

n−3
2

)
Γ
(

n
2

) M
(

n−3
2
, n

2
; λ

2

)

E(t4) =
n2

(n− 2)(n− 4)

(
δ4 + 6δ2 + 3

)
e−

λ
2M

(
n−4

2
, n

2
; λ

2

)

12.3 Cumulative Distribution

The cumulative, distribution, function is given by

F (t) =
e−

δ2

2 e−
λ
2

√
nπ

∞∑
r=0

(
λ
2

)r

r!

1

Γ
(

n
2

+ r
) ∞∑

s=0

δs

s!
(

n
2

) s
2
Γ
(

n+s+1
2

+ r
) t∫
−∞

us(
1 + u2

n

)n+s+1
2

+r
du =

=
e−

δ2

2 e−
λ
2

√
π

∞∑
r=0

(
λ
2

)r

r!

∞∑
s=0

δs

s!
2

s
2
−1Γ

(
s+1
2

) {
s1 + s2Iq

(
s+1
2
, n

2
+ r

)}

where q = (t2/n)/(1 + t2/n) and s1, s2 are signs differing between cases with positive or
negative t as well as odd or even s in the summation. More specific, the sign s1 is −1 if s
is odd and +1 if it is even while s2 is +1 unless t < 0 and s is even in which case it is −1.

12.4 Random Number Generation

Random numbers from a doubly non-central t-distribution is easily obtained with the def-
inition given above using random numbers from a normal distribution and a non-central
chi-square distribution. This ought to be sufficient for most applications but if needed more
efficient techniques may easily be developed e.g. using more general techniques.
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13 Error Function

13.1 Introduction

A function, related to the probability content of the normal distribution, which often is
referred to is the error function

erf z =
2√
π

z∫
0

e−t2dt

and its complement

erfc z =
2√
π

∞∫
z

e−t2dt = 1− erf z

These functions may be defined for complex arguments, for many relations concerning the
error function see [27], but here we are mainly interested in the function for real positive
values of z. However, sometimes one may still want to define the function values for negative
real values of z using symmetry relations

erf(−z) = −erf(z)

erfc(−z) = 1− erf(−z) = 1 + erf(z)

13.2 Probability Density Function

As is seen the error function erf is a distribution (or cumulative) function and the corre-
sponding probability density function is given by

f(z) =
2√
π
e−z2

If we make the transformation z = (x−µ)/σ
√

2 we obtain a folded normal distribution

f(x;µ, σ) =
1

σ

√
2

π
e−

1
2(

x−µ
σ )

2

where the function is defined for x > µ corresponding to z > 0, µ may be any real number
while σ > 0.

This implies that erf(z/
√

2) is equal to the symmetric integral of a standard normal
distribution between −z and z.

The error function may also be expressed in terms of the incomplete Gamma function

erf x =
2√
π

x∫
0

e−t2dt = P
(

1
2
, x2

)

defined for x ≥ 0.
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14 Exponential Distribution

14.1 Introduction

The exponential distribution is given by

f(x;α) =
1

α
e−

x
α

where the variable x as well as the parameter α is positive real quantities.
The exponential distribution occur in many different connections such as the radioactive

or particle decays or the time between events in a Poisson process where events happen at
a constant rate.

14.2 Cumulative Function

The cumulative (distribution) function is

F (x) =

x∫
0

f(x)dx = 1− e−
x
α

and it is thus straightforward to calculate the probability content in any given situation.
E.g. we find that the median and the lower and upper quartiles are at

M = α ln 2 ≈ 0.693α, Q1 = −α ln 3
4
≈ 0.288α, and Q3 = α ln 4 ≈ 1.386α

14.3 Moments

The expectation value, variance, and lowest order central moments are given by

E(x) = α, V (x) = α2, µ3 = 2α3, µ4 = 9α4,

µ5 = 44α5, µ6 = 265α6, µ7 = 1854α7, and µ8 = 14833α8

More generally algebraic moments are given by

µ′n = αnn!

Central moments thereby becomes

µn = αnn!
n∑

m=0

(−1)m

m!
→ αnn!

e
=
µ′n
e

when n→∞

the approximation is, in fact, quite good already for n = 5 where the absolute error is
0.146α5 and the relative error 0.3%.

14.4 Characteristic Function

The characteristic function of the exponential distribution is given by

φ(t) = E(eıtx) =
1

α

∞∫
0

e(ıt−
1
α

)xdx =
1

1− ıtα
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14.5 Random Number Generation

The most common way to achieve random numbers from an exponential distribution is to
use the inverse to the cumulative distribution such that

x = F−1(ξ) = −α ln(1− ξ) = −α ln ξ′

where ξ is a uniform random number between zero and one (aware not to include exactly
zero in the range) and so is, of course, also ξ′ = 1− ξ.

There are, however, alternatives some of which may be of some interest and useful if
the penalty of using the logarithm would be big on any system [28].

14.5.1 Method by von Neumann

The first of these is due to J. von Neumann [29] and is as follows (with different ξ’s denoting
independent uniform random numbers between zero and one)

i Set a = 0.

ii Generate ξ and put ξ0 = ξ.

iii Generate ξ∗ and if ξ∗ < ξ then go to vi.

iv Generate ξ and if ξ < ξ∗ then go to iii.

v Put a = a+ 1 and go to ii.

vi Put x = α(a+ ξ0) as a random number from an exponential distribution.

14.5.2 Method by Marsaglia

The second technique is attributed to G. Marsaglia [30].

• Prepare

pn = 1− e−n and qn =
1

e− 1

(
1

1!
+

1

2!
+ · · ·+ 1

n!

)
for n = 1, 2, . . . until the largest representable fraction below one is exceeded in both
vectors.

i Put i = 0 and generate ξ.

ii If ξ > pi+1 put i = i+ 1 and perform this step again.

iii Put k = 1, generate ξ and ξ∗, and set ξmin = ξ∗.

iv If ξ ≤ qk then go to vi else set k = k + 1.

v Generate a new ξ∗ and if ξ∗ < ξmin set ξmin = ξ∗ and go to iv.

vi Put x = α(i+ ξmin) as an exponentially distributed random number.

55



14.5.3 Method by Ahrens

The third method is due to J. H. Ahrens [28]

• Prepare

qn =
ln 2

1!
+

(ln 2)2

2!
+ · · ·+ (ln 2)n

n!

for n = 1, 2, . . . until the largest representable fraction less than one is exceeded.

i Put a = 0 and generate ξ.

ii If ξ < 1
2

set a = a+ ln 2 = a+ q1, ξ = 2ξ and perform this step again.

iii Set ξ = 2ξ − 1 and if ξ ≤ ln 2 = q1 then exit with x = α(a + ξ) else put i = 2 and
generate ξmin.

iv Generate ξ and put ξmin = ξ if ξ < ξmin then if ξ > qi put i = i+ 1 and perform this
step again else exit with x = α(a+ q1ξmin).

Of these three methods the method by Ahrens is the fastest. This is much due to the
fact that the average number of uniform random numbers consumed by the three methods
is 1.69 for Ahrens, 3.58 for Marsaglia, and 4.31 for von Neumann. The method by Ahrens
is often as fast as the direct logarithm method on many computers.
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15 Extreme Value Distribution

15.1 Introduction

The extreme value distribution is given by

f(x;µ, σ) =
1

σ
exp

{
∓x− µ

σ
− e∓

x−µ
σ

}
where the upper sign is for the maximum and the lower sign for the minimum (often
only the maximum is considered). The variable x and the parameter µ (the mode) are
real numbers while σ is a positive real number. The distribution is sometimes referred
to as the Fisher-Tippett distribution (type I), the log-Weibull distribution, or the Gumbel
distribution after E. J. Gumbel (1891–1966).

The extreme value distribution gives the limiting distribution for the largest or small-
est elements of a set of independent observations from a distribution of exponential type
(normal, gamma, exponential, etc.).

A normalized form, useful to simplify calculations, is obtained by making the substitu-
tion to the variable z = ±x−µ

σ
which has the distribution

g(z) = e−z−e−z

In figure 11 we show the distribution in this normalized form. The shape corresponds to
the case for the maximum value while the distribution for the minimum value would be
mirrored in z = 0.

Figure 11: The normalized Extreme Value Distribution
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15.2 Cumulative Distribution

The cumulative distribution for the extreme value distribution is given by

F (x) =

x∫
−∞

f(u)du =

±x−µ
σ∫

−∞

g(z)dz = G(±x− µ

σ
)

where G(z) is the cumulative function of g(z) which is given by

G(z) =

z∫
−∞

e−u−e−u

du =

∞∫
e−z

e−ydy = e−e−z

where we have made the substitution y = e−u in simplifying the integral. From this, and
using x = µ± σz, we find the position of the median and the lower and upper quartile as

M = µ∓ σ ln ln 2 ≈ µ± 0.367σ,

Q1 = µ∓ σ ln ln 4 ≈ µ∓ 0.327σ, and

Q3 = µ∓ σ ln ln 4
3
≈ µ± 1.246σ

15.3 Characteristic Function

The characteristic function of the extreme value distribution is given by

φ(t) = E
(
eıtx

)
=

∞∫
−∞

eıtx 1

σ
exp

{
∓x− µ

σ
− e∓

x−µ
σ

}
dx =

= ∓
∞∫
0

eıt(µ∓σ ln z) ze−z

(
∓σdz

z

)
= eıtµ

∞∫
0

z∓ıtσe−zdz = eıtµΓ(1∓ ıtσ)

where we have made the substitution z = exp (∓(x− µ)/σ) i.e. x = µ ∓ σ ln z and thus
dx = ∓σdz/z to achieve an integral which could be expressed in terms of the Gamma
function (see section 42.2). As a check we may calculate the first algebraic moment, the
mean, by

µ′1 =
1

ı

dφ(t)

dt

∣∣∣∣∣
t=0

=
1

ı
[ıµΓ(1) + Γ(1)ψ(1)(∓ıσ)] = µ± σγ

Here ψ(1) = −γ is the digamma function, see section 42.3, and γ is Euler’s constant.
Similarly higher moments could be obtained from the characteristic function or, perhaps
even easier, we may find cumulants from the cumulant generating function lnφ(t). In the
section below, however, moments are determined by a more direct technique.

15.4 Moments

Algebraic moments for f(x) are given by

E(xn) =

∞∫
−∞

xnf(x)dx =

∞∫
−∞

(µ± σz)ng(z)dz

58



which are related to moments of g(z)

E(zn) =

∞∫
−∞

zne−z−e−z

dz =

∞∫
0

(− ln y)ne−ydy

The first six such integrals, for n values from 1 to 6, are given by

∞∫
0

(− lnx)e−xdx = γ

∞∫
0

(− lnx)2e−xdx = γ2 +
π2

6

∞∫
0

(− lnx)3e−xdx = γ3 +
γπ2

2
+ 2ζ3

∞∫
0

(− lnx)4e−xdx = γ4 + γ2π2 +
3π4

20
+ 8γζ3

∞∫
0

(− lnx)5e−xdx = γ5 +
5γ3π2

3
+

3γπ4

4
+ 20γ2ζ3 +

10π2ζ3
3

+ 24ζ5

∞∫
0

(− lnx)6e−xdx = γ6 +
5γ4π2

2
+

9γ2π4

4
+

61π6

168
+ 40γ3ζ3 +

+20γπ2ζ3 + 40ζ2
3 + 144γζ5

corresponding to the six first algebraic moments of g(z). Here γ is Euler’s (or Euler-
Mascheroni) constant

γ = lim
n→∞

(
n∑

k=1

1

k
− lnn

)
= 0.57721 56649 01532 86060 65120 ...

and ζn is a short hand notation for Riemann’s zeta-function ζ(n) given by

ζ(z) =
∞∑

k=1

1

kz
=

1

Γ(z)

∞∫
0

xz−1

ex − 1
dx for z > 1

(see also [31]). For z an even integer we may use

ζ(2n) =
22n−1π2n|B2n|

(2n)!
for n = 1, 2, ...

where B2n are the Bernoulli numbers given by B2 = 1
6
, B4 = − 1

30
, B6 = 1

42
, B8 = − 1

30

etc (see table 4 on page 174 for an extensive table of the Bernoulli numbers). This implies
ζ2 = π2

6
, ζ4 = π4

90
, ζ6 = π6

945
etc.

For odd integer arguments no similar relation as for even integers exists but evaluating
the sum of reciprocal powers the two numbers needed in the calculations above are given
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by ζ3 =1.20205 69031 59594 28540 ... and ζ5 =1.03692 77551 43369 92633 .... The number ζ3 is
sometimes referred to as Apéry’s constant after the person who in 1979 showed that it is
an irrational number (but sofar it is not known if it is also transcendental) [32].

Using the algebraic moments of g(z) as given above we may find the low order central
moments of g(z) as

µ2 =
π2

6
= ζ2

µ3 = 2ζ3

µ4 = 3π4/20

µ5 =
10π2ζ3

3
+ 24ζ5

µ6 =
61π6

168
+ 40ζ2

3

and thus the coefficients of skewness γ1 and kurtosis γ2 are given by

γ1 = µ3/µ
3
2
2 = 12

√
6ζ3/π

3 ≈ 1.13955

γ2 = µ4/µ2
2 − 3 = 2.4

Algebraic moments of f(x) may be found from this with some effort. Central moments are
simpler being connected to those for g(z) through the relation µn(x) = (±1)nσnµn(z).

In particular the expectation value and the variance of f(x) are given by

E(x) = µ± σE(z) = µ± σγ

V (x) = σ2V (z) =
σ2π2

6

The coefficients of skewness (except for a sign ±1) and kurtosis are the same as for g(z).

15.5 Random Number Generation

Using the expression for the cumulative distribution we may use a random number ξ,
uniformly distributed between zero and one, to obtain a random number from the extreme
value distribution by

G(z) = e−e−z

= ξ ⇒ z = − ln(− ln ξ)

which gives a random number from the normalized function g(z). A random number from
f(x) is then easily obtained by x = µ± σz.
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16 F-distribution

16.1 Introduction

The F -distribution is given by

f(F ;m,n) =
m

m
2 n

n
2 Γ
(

m+n
2

)
Γ
(

m
2

)
Γ
(

n
2

) · F
m
2
−1

(mF + n)
m+n

2

=
m

m
2 n

n
2

B
(

m
2
, n

2

) · F
m
2
−1

(mF + n)
m+n

2

where the parameters m and n are positive integers, degrees of freedom and the variable
F is a positive real number. The functions Γ and B are the usual Gamma and Beta
functions. The distribution is often called the Fisher F -distribution, after the famous british
statistician Sir Ronald Aylmer Fisher (1890-1962), sometimes the Snedecor F -distribution
and sometimes the Fisher-Snedecor F -distribution. In figure 12 we show the F -distribution
for low values of m and n.

Figure 12: The F -distribution (a) for m = 10 and n = 1, 2, . . . , 10 and (b) for m =
1, 2, . . . , 10 and n = 10

For m ≤ 2 the distribution has its maximum at F = 0 and is monotonically decreasing.
Otherwise the distribution has the mode at

Fmode =
m− 2

m
· n

n+ 2

This distribution is also known as the variance-ratio distribution since it, as will be
shown below, describes the distribution of the ratio of the estimated variances from two
independent samples from normal distributions with equal variance.
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16.2 Relations to Other Distributions

Form = 1 we obtain a t2-distribution, the distribution of the square of a variable distributed
according to Student’s t-distribution. As n→∞ the quantity mF approaches a chi-square
distribution with m degrees of freedom.

For large values of m and n the F -distribution tends to a normal distribution. There are
several approximations found in the literature all of which are better than a simpleminded
standardized variable. One is

z1 =

√
2n− 1 mF

n
−
√

2m− 1√
1 + mF

n

and an even better choice is

z2 =
F

1
3

(
1− 2

9n

)
−
(
1− 2

9m

)
√

2
9m

+ F
2
3 · 2

9n

For large values of m and n also the distribution in the variable z = ln F
2

, the distri-
bution of which is known as the Fisher z-distribution, is approximately normal with mean
1
2

(
1
n
− 1

m

)
and variance 1

2

(
1
m

+ 1
n

)
. This approximation is, however, not as good as z2

above.

16.3 1/F

If F is distributed according to the F -distribution with m and n degrees of freedom then 1
F

has the F -distribution with n and m degrees of freedom. This is easily verified by a change
of variables. Putting G = 1

F
we have

f(G) =

∣∣∣∣∣dFdG
∣∣∣∣∣ f(F ) =

1

G2
· m

m
2 n

n
2

B(m
2
, n

2
)
·

(
1
G

)m
2
−1

(
m
G

+ n
)m+n

2

=
m

m
2 n

n
2

B(m
2
, n

2
)
· G

n
2
−1

(m+ nG)
m+n

2

which is seen to be identical to a F -distribution with n and m degrees of freedom for G = 1
F
.

16.4 Characteristic Function

The characteristic function for the F -distribution may be expressed in terms of the confluent
hypergeometric function M (see section 43.3) as

φ(t) = E(eıF t) = M
(

m
2
,−n

2
;− n

m
ıt
)

16.5 Moments

Algebraic moments are given by

µ′r =
m

m
2 n

n
2

B(m
2
, n

2
)

∞∫
0

F
m
2
−1+r

(mF + n)
m+n

2

dF =
(
m

n

)m
2 1

B(m
2
, n

2
)

∞∫
0

F
m
2
−1+r(

mF
n

+ 1
)m+n

2

dF =
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=
(
m

n

)m
2 1

B(m
2
, n

2
)

∞∫
0

(
un
m

)m
2
−1+r

(u+ 1)
m+n

2

n

m
du =

(
n

m

)r B(m
2

+ r, n
2
− r)

B(m
2
, n

2
)

=

=
(
n

m

)r

·
Γ
(

m
2

+ r
)

Γ
(

n
2
− r

)
Γ
(

m
2

)
Γ
(

n
2

)
and are defined for r < n

2
. This may be written

µ′r =
(
n

m

)r

·
m
2
(m

2
+ 1) · · · (m

2
+ r − 1)

(n
2
− r)(n

2
− r + 1) · · · (n

2
− 1)

a form which may be more convenient for computations especially when m or n are large.
A recursive formula to obtain the algebraic moments would thus be

µ′r = µ′r−1 ·
(
n

m

)
·

m
2

+ r − 1
n
2
− r

starting with µ′0 = 1.
The first algebraic moment, the mean, becomes

E(F ) =
n

n− 2
for n > 2

and the variance is given by

V (F ) =
2n2(m+ n− 2)

m(n− 2)2(n− 4)
for n > 4

16.6 F-ratio

Regard F = u/m
v/n

where u and v are two independent variables distributed according to the
chi-square distribution with m and n degrees of freedom, respectively.

The independence implies that the joint probability function in u and v is given by the
product of the two chi-square distributions

f(u, v;m,n) =


(

u
2

)m
2
−1
e−

u
2

2Γ
(

m
2

)


(

v
2

)n
2
−1
e−

v
2

2Γ
(

n
2

)


If we change variables to x = u/m
v/n

and y = v the distribution in x and y becomes

f(x, y;m,n) =

∣∣∣∣∣
∣∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣∣
∣∣∣∣∣ f(u, v;m,n)

The determinant of the Jacobian of the transformation is ym
n

and thus we have

f(x, y;m,n) =
ym

n


(

xym
n

)m
2
−1
e−

xym
2n

2
m
2 Γ

(
m
2

)

y n

2
−1e−

y
2

2
n
2 Γ
(

n
2

)

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Finally, since we are interested in the marginal distribution in x we integrate over y

f(x;m,n) =

∞∫
0

f(x, y;m,n)dy =

(
m
n

)m
2 x

m
2
−1

2
m+n

2 Γ
(

m
2

)
Γ
(

n
2

) ∞∫
0

y
m+n

2
−1e−

y
2 (

xm
n

+1)dy =

=

(
m
n

)m
2 x

m
2
−1

2
m+n

2 Γ
(

m
2

)
Γ
(

n
2

) · 2
m+n

2 Γ
(

m+n
2

)
(

xm
n

+ 1
)m+n

2

=

(
m
n

)m
2

B
(

m
2
, n

2

) · x
m
2
−1(

xm
n

+ 1
)m+n

2

which with x = F is the F -distribution with m and n degrees of freedom. Here we used
the integral

∞∫
0

tz−1e−αtdt =
Γ(z)

αz

in simplifying the expression.

16.7 Variance Ratio

A practical example where the F -distribution is applicable is when estimates of the variance
for two independent samples from normal distributions

s2
1 =

m∑
i=1

(xi − x)2

m− 1
and s2

2 =
n∑

i=1

(yi − y)2

n− 1

have been made. In this case s2
1 and s2

2 are so called normal theory estimates of σ2
1 and σ2

2

i.e. (m− 1)s2
1/σ

2
1 and (n− 1)s2

2/σ
2
2 are distributed according to the chi-square distribution

with m− 1 and n− 1 degrees of freedom, respectively.
In this case the quantity

F =
s2
1

σ2
1

· σ
2
2

s2
2

is distributed according to the F -distribution with m − 1 and n − 1 degrees of freedom.
If the true variances of the two populations are indeed the same then the variance ratio
s2
1/s

2
2 have the F -distribution. We may thus use this ratio to test the null hypothesis

H0 : σ2
1 = σ2

2 versus the alternative H1 : σ2
1 6= σ2

2 using the F -distribution. We would reject
the null hypotheses at the α confidence level if the F -ratio is less than F1−α/2,m−1,n−1 or
greater than Fα/2,m−1,n−1 where Fα,m,n is defined by

Fα,m,n∫
0

f(F ;m,n)dF = 1− α

i.e. α is the probability content of the distribution above the value Fα,m−1,n−1. Note that the
following relation between F -values corresponding to the same upper and lower confidence
levels is valid

F1−α,m,n =
1

Fα,n,m
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16.8 Analysis of Variance

As a simple example, which is often called analysis of variance, we regard n observations
of a dependent variable x with overall mean x divided into k classes on an independent
variable. The mean in each class is denoted xj for j = 1, 2, ..., k. In each of the k classes
there are nj observations together adding up to n, the total number of observations. Below
we denote by xji the i:th observation in class j.

Rewrite the total sum of squares of the deviations from the mean

SSx =
k∑

j=1

nj∑
i=1

(xji − x)2 =
k∑

j=1

nj∑
i=1

((xji − xj) + (xj − x))2 =

=
k∑

j=1

nj∑
i=1

[
(xji − xj)

2 + (xj − x)2 + 2(xji − xj)(xj − x)
]

=

=
k∑

j=1

nj∑
i=1

(xji − xj)
2 +

k∑
j=1

nj∑
i=1

(xj − x)2 + 2
k∑

j=1

(xj − x)
nj∑
i=1

(xji − xj) =

=
k∑

j=1

nj∑
i=1

(xji − xj)
2 +

k∑
j=1

nj(xj − x)2 = SSwithin + SSbetween

i.e. the total sum of squares is the sum of the sum of squares within classes and the sum
of squares between classes. Expressed in terms of variances

nV (x) =
k∑

j=1

njVj(x) +
k∑

j=1

nj(xj − x)2

If the variable x is independent on the classification then the variance within groups and
the variance between groups are both estimates of the same true variance. The quantity

F =
SSbetween/(k − 1)

SSwithin/(n− k)

is then distributed according to the F -distribution with k−1 and n−k degrees of freedom.
This may then be used in order to test the hypothesis of no dependence. A too high F -value
would be unlikely and thus we can choose a confidence level at which we would reject the
hypothesis of no dependence of x on the classification.

Sometimes one also defines η2 = SSbetween/SSx, the proportion of variance explained,
as a measure of the strength of the effects of classes on the variable x.

16.9 Calculation of Probability Content

In order to set confidence levels for the F -distribution we need to evaluate the cumulative
function i.e. the integral

1− α =

Fα∫
0

f(F ;m,n)dF
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where we have used the notation Fα instead of Fα,m,n for convenience.

1− α =
m

m
2 n

n
2

B(m
2
, n

2
)

Fα∫
0

F
m
2
−1

(mF + n)
m+n

2

dF =

(
m
n

)m
2

B(m
2
, n

2
)

Fα∫
0

F
m
2
−1(

mF
n

+ 1
)m+n

2

dF =

=

(
m
n

)m
2

B(m
2
, n

2
)

mFα
n∫

0

(
un
m

)m
2
−1

(u+ 1)
m+n

2

n

m
du =

1

B(m
2
, n

2
)

mFα
n∫

0

u
m
2
−1

(1 + u)
m+n

2

du

where we made the substitution u = mF
n

. The last integral we recognize as the incomplete
Beta function Bx defined for 0 ≤ x ≤ 1 as

Bx(p, q) =

x∫
0

tp−1(1− t)q−1dt =

x
1−x∫
0

up−1

(1 + u)p+q
du

where we made the substitution u = t
1−t

i.e. t = u
1+u

. We thus obtain

1− α =
Bx(

m
2
, n

2
)

B(m
2
, n

2
)

= Ix(
m

2
,
n

2
)

with x
1−x

= mFα

n
i.e. x = mFα

n+mFα
. The variable x thus has a Beta distribution. Note that

also Ix(a, b) is called the incomplete Beta function (for historical reasons discussed below
but see also section 42.7).

16.9.1 The Incomplete Beta function

In order to evaluate the incomplete Beta function we may use the serial expansion

Bx(p, q) = xp

[
1

p
+

1− q

p+ 1
x+

(1− q)(2− q)

2!(p+ 2)
x2 + . . .+

(1− q)(2− q) · · · (n− q)

n!(p+ n)
xn + . . .

]

For integer values of q corresponding to even values of n the sum may be stopped at
n = q − 1 since all remaining terms will be identical to zero in this case.

We may express the sum with successive terms expressed recursively in the previous
term

Bx(p, q) = xp
∞∑

r=0

tr with tr = tr−1 ·
x(r − q)(p+ r − 1)

r(p+ r)
starting with t0 =

1

p

The sum normally converges quite fast but beware that e.g. for p = q = 1
2

(m =
n = 1) the convergence is very slow. Also some cases with q very big but p small seem
pathological since in these cases big terms with alternate signs cancel each other causing
roundoff problems. It seems preferable to keep q < p to assure faster convergence. This
may be done by using the relation

Bx(p, q) = B1(q, p)−B1−x(q, p)
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which if inserted in the formula for 1− α gives

1− α =
B1(

n
2
, m

2
)−B1−x(

n
2
, m

2
)

B(m
2
, n

2
)

⇒ α =
B1−x(

n
2
, m

2
)

B(m
2
, n

2
)

= I1−x(
n

2
,
m

2
)

since B1(p, q) = B(p, q) = B(q, p).
A numerically better way to evaluate the incomplete Beta function Ix(a, b) is by the

continued fraction formula [10]

Ix(a, b) =
xa(1− x)b

aB(a, b)

[
1

1+

d1

1+

d2

1+
· · ·
]

Here

d2m+1 = − (a+m)(a+ b+m)x

(a+ 2m)(a+ 2m+ 1)
and d2m =

m(b−m)x

(a+ 2m− 1)(a+ 2m)

and the formula converges rapidly for x < (a+ 1)/(a+ b+ 1). For other x-values the same
formula may be used after applying the symmetry relation

Ix(a, b) = 1− I1−x(b, a)

16.9.2 Final Formulæ

Using the serial expression for Bx given in the previous subsection the probability content
of the F-distribution may be calculated. The numerical situation is, however, not ideal. For
integer a- or b-values3 the following relation to the binomial distribution valid for integer
values of a is useful

1− Ix(a, b) = I1−x(b, a) =
a−1∑
i=0

(
a+ b− 1

i

)
xi(1− x)a+b−1−i

Our final formulæ are taken from [26], using x = n
n+mF

(note that this is one minus our
previous definition of x),

• Even m:

1− α = x
n
2 ·
[
1 +

n

2
(1− x) +

n(n+ 1)

2 · 4
(1− x)2 + . . .

. . .+
n(n+ 2) . . . (m+ n− 4)

2 · 4 . . . (m− 2)
(1− x)

m−2
2

]

• Even n:

1− α = 1− (1− x)
m
2

[
1 +

m

2
x+

m(m+ 2)

2 · 4
x2 + . . .

. . .+
m(m+ 2) . . . (m+ n− 4)

2 · 4 . . . (n− 2)
x

n−2
2

]
3If only b is an integer use the relation Ix(a, b) = 1− I1−x(b, a).
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• Odd m and n:

1− α = 1− A+ β with

A =
2

π

[
θ + sin θ

(
cos θ +

2

3
cos3 θ + . . .

. . .+
2 · 4 . . . (n− 3)

1 · 3 . . . (n− 2)
cosn−2 θ

)]
for n > 1 and

β =
2√
π
·
Γ
(

n+1
2

)
Γ
(

n
2

) · sin θ · cosn θ ·
[
1 +

n+ 1

3
sin2 θ + . . .

. . .+
(n+ 1)(n+ 3) . . . (m+ n− 4)

3 · 5 . . . (n− 2)
sinm−3 θ

]
for m > 1 where

θ = arctan

√
nF

m
and

Γ
(

n+1
2

)
Γ
(

n
2

) =
(n− 1)!!

(n− 2)!!
· 1√

π

If n = 1 then A = 2θ/π and if m = 1 then β = 0.

• For large values of m and n we use an approximation using the standard normal
distribution where

z =
F

1
3

(
1− 2

9n

)
−
(
1− 2

9m

)
√

2
9m

+ F
2
3 · 2

9n

is approximately distributed according to the standard normal distribution. Confi-
dence levels are obtained by

1− α =
1√
2π

∞∫
z

e−
x2

2 dx

In table 5 on page 175 we show some percentage points for the F -distribution. Here n
is the degrees of freedom of the greater mean square and m the degrees of freedom for the
lesser mean square. The values express the values of F which would be exceeded by pure
chance in 10%, 5% and 1% of the cases, respectively.

16.10 Random Number Generation

Following the definition the quantity

F =
ym/m

yn/n

where yn and ym are two variables distributed according to the chi-square distribution with
n and mx degrees of freedom respectively follows the F-distribution. We may thus use this
relation inserting random numbers from chi-square distributions (see section 8.7).
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17 Gamma Distribution

17.1 Introduction

The Gamma distribution is given by

f(x; a, b) = a(ax)b−1e−ax/Γ(b)

where the parameters a and b are positive real quantities as is the variable x. Note that
the parameter a is simply a scale factor.

For b ≤ 1 the distribution is J-shaped and for b > 1 it is unimodal with its maximum
at x = b−1

a
.

In the special case where b is a positive integer this distribution is often referred to as
the Erlangian distribution.

For b = 1 we obtain the exponential distribution and with a = 1
2

and b = n
2

with n an
integer we obtain the chi-squared distribution with n degrees of freedom.

In figure 13 we show the Gamma distribution for b-values of 2 and 5.

Figure 13: Examples of Gamma distributions

17.2 Derivation of the Gamma Distribution

For integer values of b, i.e. for Erlangian distributions, we may derive the Gamma distri-
bution from the Poisson assumptions. For a Poisson process where events happen at a rate
of λ the number of events in a time interval t is given by Poisson distribution

P (r) =
(λt)re−λt

r!
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The probability that the k:th event occur at time t is then given by

k−1∑
r=0

P (r) =
k−1∑
r=0

(λt)re−λt

r!

i.e. the probability that there are at least k events in the time t is given by

F (t) =
∞∑

r=k

P (r) = 1−
k−1∑
r=0

(λt)re−λt

r!
=

λt∫
0

zk−1e−z

(k − 1)!
dz =

t∫
0

λkzk−1e−λz

(k − 1)!
dz

where the sum has been replaced by an integral (no proof given here) and the substitution
z = λz made at the end. This is the cumulative Gamma distribution with a = λ and b = k,
i.e. the time distribution for the k:th event follows a Gamma distribution. In particular
we may note that the time distribution for the occurrence of the first event follows an
exponential distribution.

The Erlangian distribution thus describes the time distribution for exponentially dis-
tributed events occurring in a series. For exponential processes in parallel the appropriate
distribution is the hyperexponential distribution.

17.3 Moments

The distribution has expectation value, variance, third and fourth central moments given
by

E(x) =
b

a
, V (x) =

b

a2
, µ3 =

2b

a3
, and µ4 =

3b(2 + b)

a4

The coefficients of skewness and kurtosis is given by

γ1 =
2√
b

and γ2 =
6

b

More generally algebraic moments are given by

µ′n =

∞∫
0

xnf(x)dx =
ab

Γ(b)

∞∫
0

xn+b−1e−axdx =

=
ab

Γ(b)

∞∫
0

(
y

a

)n+b−1

e−y dy

a
=

Γ(n+ b)

anΓ(b)
=

=
b(b+ 1) · · · (b+ n− 1)

an

where we have made the substitution y = ax in simplifying the integral.

17.4 Characteristic Function

The characteristic function is

φ(t) = E(eıtx) =
ab

Γ(b)

∞∫
0

xb−1e−x(a−ıt)dx =

=
ab

Γ(b)
· 1

(a− ıt)b

∞∫
0

yb−1e−ydy =
(
1− ıt

a

)−b
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where we made the transformation y = x(a− ıt) in evaluating the integral.

17.5 Probability Content

In order to calculate the probability content for a Gamma distribution we need the cumu-
lative (or distribution) function

F (x) =

x∫
0

f(x)dx =
ab

Γ(b)

x∫
0

ub−1e−audu =

=
ab

Γ(b)

ax∫
0

(
v

a

)b−1

e−v dv

a
=

1

Γ(b)

ax∫
0

vb−1e−vdv =
γ(b, ax)

Γ(b)

where γ(b, ax) denotes the incomplete gamma function4.

17.6 Random Number Generation

17.6.1 Erlangian distribution

In the case of an Erlangian distribution (b a positive integer) we obtain a random number
by adding b independent random numbers from an exponential distribution i.e.

x = − ln(ξ1 · ξ2 · . . . · ξb)/a

where all the ξi are uniform random numbers in the interval from zero to one. Note that
care must be taken if b is large in which case the product of uniform random numbers may
become zero due to machine precision. In such cases simply divide the product in pieces
and add the logarithms afterwards.

17.6.2 General case

In a more general case we use the so called Johnk’s algorithm

i Denote the integer part of b with i and the fractional part with f and put r = 0. Let
ξ denote uniform random numbers in the interval from zero to one.

ii If i > 0 then put r = − ln(ξ1 · ξ2 · . . . · ξi).

iii If f = 0 then go to vii.

iv Calculate w1 = ξ
1/f
i+1 and w2 = ξ

1/(1−f)
i+2 .

v If w1 + w2 > 1 then go back to iv.

vi Put r = r − ln(ξi+3) · w1

w1+w2
.

vii Quit with r = r/a.

4When integrated from zero to x the incomplete gamma function is often denoted by γ(a, x) while for the
complement, integrated from x to infinity, it is denoted Γ(a, x). Sometimes the ratio P (a, x) = γ(a, x)/Γ(a)
is called the incomplete Gamma function.

71



17.6.3 Asymptotic Approximation

For b big, say b > 15, we may use the Wilson-Hilferty approximation:

i Calculate q = 1 + 1
9b

+ z
3
√

b
where z is a random number from a standard normal

distribution.

ii Calculate r = b · q3.

iii If r < 0 then go back to i.

iv Quit with r = r/a.
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18 Generalized Gamma Distribution

18.1 Introduction

The Gamma distribution is often used to describe variables bounded on one side. An even
more flexible version of this distribution is obtained by adding a third parameter giving
the so called generalized Gamma distribution

f(x; a, b, c) = ac(ax)bc−1e−(ax)c

/Γ(b)

where a (a scale parameter) and b are the same real positive parameters as is used for the
Gamma distribution but a third parameter c has been added (c = 1 for the ordinary Gamma
distribution). This new parameter may in principle take any real value but normally we
consider the case where c > 0 or even c ≥ 1. Put |c| in the normalization for f(x) if c < 0.

According to Hegyi [33] this density function first appeared in 1925 when L. Amoroso
used it in analyzing the distribution of economic income. Later it has been used to describe
the sizes of grains produced in comminution and drop size distributions in sprays etc.

In figure 14 we show the generalized Gamma distribution for different values of c for
the case a = 1 and b = 2.

Figure 14: Examples of generalized Gamma distributions

18.2 Cumulative Function

The cumulative function is given by

F (x) =
{
γ (b, (ax)c) /Γ(b) = P (b, (ax)c) if c > 0
Γ (b, (ax)c) /Γ(b) = 1− P (b, (ax)c) if c < 0

where P is the incomplete Gamma function.
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18.3 Moments

Algebraic moments are given by

µ′n =
1

an
·
Γ
(
b+ n

c

)
Γ(b)

For negative values of c the moments are finite for ranks n satisfying n/c > −b (or even
just avoiding the singularities 1

a
+ n

c
6= 0,−1,−2 . . .).

18.4 Relation to Other Distributions

The generalized Gamma distribution is a general form which for certain parameter com-
binations gives many other distributions as special cases. In the table below we indicate
some such relations. For notations see the corresponding section.

Distribution a b c Section

Generalized gamma a b c 18

Gamma a b 1 17

Chi-squared 1
2

n
2

1 8

Exponential 1
α

1 1 14

Weibull 1
σ

1 η 41

Rayleigh 1
α
√

2
1 2 37

Maxwell 1
α
√

2
3
2

2 25

Standard normal (folded) 1√
2

1
2

2 34

In reference [33], where this distribution is used in the description of multiplicity distri-
butions in high energy particle collisions, more examples on special cases as well as more
details regarding the distribution are given.

74



19 Geometric Distribution

19.1 Introduction

The geometric distribution is given by

p(r; p) = p(1− p)r−1

where the integer variable r ≥ 1 and the parameter 0 < p < 1 (no need to include limits
since this give trivial special cases). It expresses the probability of having to wait exactly
r trials before the first successful event if the probability of a success in a single trial is p
(probability of failure q = 1− p). It is a special case of the negative binomial distribution
(with k = 1).

19.2 Moments

The expectation value, variance, third and fourth moment are given by

E(r) =
1

p
V (r) =

1− p

p2
µ3 =

(1− p)(2− p)

p3
µ4 =

(1− p)(p2 − 9p+ 9)

p4

The coefficients of skewness and kurtosis is thus

γ1 =
2− p√
1− p

and γ2 =
p2 − 6p+ 6

1− p

19.3 Probability Generating Function

The probability generating function is

G(z) = E(zr) =
∞∑

r=1

zrp(1− p)r−1 =
pz

1− qz

19.4 Random Number Generation

The cumulative distribution may be written

P (k) =
k∑

r=1

p(r) = 1− qk with q = 1− p

which can be used in order to obtain a random number from a geometric distribution by
generating uniform random numbers between zero and one until such a number (the k:th)
is above qk.

A more straightforward technique is to generate uniform random numbers ξi until we
find a success where ξk ≤ p.

These two methods are both very inefficient for low values of p. However, the first
technique may be solved explicitly

k∑
r=1

P (r) = ξ ⇒ k =
ln ξ

ln q
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which implies taking the largest integer less than k+1 as a random number from a geometric
distribution. This method is quite independent of the value of p and we found [14] that
a reasonable breakpoint below which to use this technique is p = 0.07 and use the first
method mentioned above this limit. With such a method we do not gain by creating a
cumulative vector for the random number generation as we do for many other discrete
distributions.
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20 Hyperexponential Distribution

20.1 Introduction

The hyperexponential distribution describes exponential processes in parallel and is given
by

f(x; p, λ1, λ2) = pλ1e
−λ1x + qλ2e

−λ2x

where the variable x and the parameters λ1 and λ2 are positive real quantities and 0 ≤ p ≤ 1
is the proportion for the first process and q = 1− p the proportion of the second.

The distribution describes the time between events in a process where the events are
generated from two independent exponential distributions. For exponential processes in
series we obtain the Erlangian distribution (a special case of the Gamma distribution).

The hyperexponential distribution is easily generalized to the case with k exponential
processes in parallel

f(x) =
k∑

i=1

piλie
−λix

where λi is the slope and pi the proportion for each process (with the constraint that∑
pi = 1).
The cumulative (distribution) function is

F (x) = p
(
1− e−λ1x

)
+ q

(
1− e−λ2x

)
and it is thus straightforward to calculate the probability content in any given situation.

20.2 Moments

Algebraic moments are given by

µ′n = n!

(
p

λn
1

+
q

λn
2

)

Central moments becomes somewhat complicated but the second central moment, the
variance of the distribution, is given by

µ2 = V (x) =
p

λ2
1

+
q

λ2
2

+ pq
(

1

λ1

− 1

λ2

)2

20.3 Characteristic Function

The characteristic function of the hyperexponential distribution is given by

φ(t) =
p

1− ıt
λ1

+
q

1− ıt
λ2

77



20.4 Random Number Generation

Generating two uniform random numbers between zero and one, ξ1 and ξ2, we obtain a
random number from a hyperexponential distribution by

• If ξ1 ≤ p then put x = − ln ξ2
λ1

.

• If ξ1 > p then put x = − ln ξ2
λ2

.

i.e. using ξ1 we choose which of the two processes to use and with ξ2 we generate an
exponential random number for this process. The same technique is easily generalized to
the case with k processes.
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21 Hypergeometric Distribution

21.1 Introduction

The Hypergeometric distribution is given by

p(r;n,N,M) =

(
M
r

)(
N−M
n−r

)
(

N
n

)
where the discrete variable r has limits from max(0, n−N +M) to min(n,M) (inclusive).
The parameters n (1 ≤ n ≤ N), N (N ≥ 1) and M (M ≥ 1) are all integers.

This distribution describes the experiment where elements are picked at random without
replacement. More precisely, suppose that we have N elements out of which M has a certain
attribute (and N −M has not). If we pick n elements at random without replacement p(r)
is the probability that exactly r of the selected elements come from the group with the
attribute.

If N � n this distribution approaches a binomial distribution with p = M
N

.
If instead of two groups there are k groups with different attributes the generalized

hypergeometric distribution

p(r;n,N,M) =

k∏
i=1

(
Mi

ri

)
(

N
n

)
where, as before, N is the total number of elements, n the number of elements picked and
M a vector with the number of elements of each attribute (whose sum should equal N).
Here n =

∑
ri and the limits for each rk is given by max(0, n−N+Mk) ≤ rk ≤ min(n,Mk).

21.2 Probability Generating Function

The Hypergeometric distribution is closely related to the hypergeometric function, see
appendix B on page 167, and the probability generating function is given by

G(z) =

(
N−M

n

)
(

N
n

) 2F1(−n,−M ;N−M−n+1; z)

21.3 Moments

With the notation p = M
N

and q = 1− p, i.e. the proportions of elements with and without
the attribute, the expectation value, variance, third and fourth central moments are given
by

E(r) = np

V (r) = npq
N − n

N − 1

µ3 = npq(q − p)
(N − n)(N − 2n)

(N − 1)(N − 2)

µ4 = npq(N − n)
N(N + 1)− 6n(N − n) + 3pq(N2(n− 2)−Nn2 + 6n(N − n))

(N − 1)(N − 2)(N − 3)
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For the generalized hypergeometric distribution using pi = Mi/N and qi = 1 − pi we
find moments of ri using the formulæ above regarding the group i as having an attribute
and all other groups as not having the attribute. the covariances are given by

Cov(ri, rj) = npipj
N − n

N − 1

21.4 Random Number Generation

To generate random numbers from a hypergeometric distribution one may construct a
routine which follow the recipe above by picking elements at random. The same technique
may be applied for the generalized hypergeometric distribution. Such techniques may be
sufficient for many purposes but become quite slow.

For the hypergeometric distribution a better choice is to construct the cumulative func-
tion by adding up the individual probabilities using the recursive formula

p(r) =
(M − r + 1)(n− r + 1)

r(N −M − n+ r)
p(r − 1)

for the appropriate r-range (see above) starting with p(rmin). With the cumulative vector
and one single uniform random number one may easily make a fast algorithm in order to
obtain the required random number.
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22 Logarithmic Distribution

22.1 Introduction

The logarithmic distribution is given by

p(r; p) = −(1− p)r

r ln p

where the variable r ≥ 1 is an integer and the parameter 0 < p < 1 is a real quantity.
It is a limiting form of the negative binomial distribution when the zero class has been

omitted and the parameter k → 0 (see section 29.4.3).

22.2 Moments

The expectation value and variance are given by

E(r) = −αq
p

and V (r) = −αq(1 + αq)

p2

where we have introduced q = 1− p and α = 1/ ln p for convenience. The third and fourth
central moments are given by

µ3 = −αq
p3

(
1 + q + 3αq + 2α2q2

)
µ4 = −αq

p4

(
1 + 4q + q2 + 4αq(1 + q) + 6α2q2 + 3α3q3

)
More generally factorial moments are easily found using the probability generating

function

E(r(r − 1) · · · (r − k + 1)) =
dk

dzk
G(z)

∣∣∣∣∣
z=1

= −(n− 1)!α
qk

pk

From these moments ordinary algebraic and central moments may be found by straightfor-
ward but somewhat tedious algebra.

22.3 Probability Generating Function

The probability generating function is given by

G(z) = E(zr) =
∞∑

r=0

−z
r(1− p)r

r ln p
= − 1

ln p

∞∑
r=0

(zq)r

r
=

ln(1− zq)

ln(1− q)

where q = 1− p and since

ln(1− x) = −
(
x+

x2

2
+
x3

3
+
x4

4
+ . . .

)
for − 1 ≤ x < 1
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22.4 Random Number Generation

The most straightforward way to obtain random numbers from a logarithmic distribution
is to use the cumulative technique. If p is fixed the most efficient way is to prepare a
cumulative vector starting with p(1) = −αq and subsequent elements by the recursive
formula p(i) = p(i − 1)q/i. The cumulative vector may, however, become very long for
small values of p. Ideally it should extend until the cumulative vector element is exactly
one due to computer precision. It p is not fixed the same procedure has to be made at each
generation.
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23 Logistic Distribution

23.1 Introduction

The Logistic distribution is given by

f(x; a, k) =
ez

k(1 + ez)2
with z =

x− a

k

where the variable x is a real quantity, the parameter a a real location parameter (the
mode, median, and mean) and k a positive real scale parameter (related to the standard
deviation). In figure 15 the logistic distribution with parameters a=0 and k=1 (i.e. z=x)
is shown.

Figure 15: Graph of logistic distribution for a = 0 and k = 1

23.2 Cumulative Distribution

The distribution function is given by

F (x) = 1− 1

1 + ez
=

1

1 + e−z
=

1

1 + e−
x−a

k

The inverse function is found by solving F (x)=α giving

x = F−1(α) = a− k ln
(

1− α

α

)
from which we may find e.g. the median as M=a. Similarly the lower and upper quartiles
are given by Q1,2 =a∓ k ln 3.
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23.3 Characteristic Function

The characteristic function is given by

φ(t) = E(eıtx) =

∞∫
−∞

eıtx e
x−a

k

k
(
1 + e

x−a
k

)2dx = eıta

∞∫
−∞

eıtzkez

k(1 + ez)2
kdz =

= eıta

∞∫
0

yıtky

(1 + y)2
· dy
y

= eıtaB(1+ıtk, 1−ıtk) =

= eıta Γ(1+ıtk)Γ(1−ıtk)
Γ(2)

= eıtaıtkΓ(ıtk)Γ(1−ıtk) = eıta ıtkπ

sin πıtk

where we have used the transformations z=(x−a)/k and y=ez in simplifying the integral,
at the end identifying the beta function, and using relation of this in terms of Gamma
functions and their properties (see appendix A in section 42).

23.4 Moments

The characteristic function is slightly awkward to use in determining the algebraic moments
by taking partial derivatives in t. However, using

lnφ(t) = ıta+ ln Γ(1+ıtk) + ln Γ(1−ıtk)

we may determine the cumulants of the distributions. In the process we take derivatives of
lnφ(t) which involves polygamma functions (see section 42.4) but all of them with argument
1 when inserting t=0 a case which may be explicitly written in terms of Riemann’s zeta-
functions with even real argument (see page 59). It is quite easily found that all cumulants
of odd order except κ1 = a vanish and that for even orders

κ2n = 2k2nψ(2n−1)(1) = 2(2n− 1)!k2nζ(2n) = 2(2n− 1)!k2n 22n−1π2n|B2n|
(2n)!

for n = 1, 2, . . . and where B2n are the Bernoulli numbers (see table 4 on page 174).
Using this formula lower order moments and the coefficients of skewness and kurtosis

is found to be

µ′1 = E(x) = κ1 = a

µ2 = V (x) = κ2 = k2π2/3

µ3 = 0

µ4 = κ4 + 3κ2
2 =

2k4π4

15
+
k4π4

3
=

7k4π4

15
µ5 = 0

µ6 = κ6 + 15κ4κ2 + 10κ2
3 + 15κ3

2 =

=
16k6π6

63
+

2k6π6

3
+

15k6π6

27
=

31k6π6

11
γ1 = 0

γ2 = 1.2 (exact)
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23.5 Random numbers

Using the inverse cumulative function one easily obtains a random number from a logistic
distribution by

x = a+ k ln

(
ξ

1− ξ

)
with ξ a uniform random number between zero and one (limits not included).
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24 Log-normal Distribution

24.1 Introduction

The log-normal distribution or is given by

f(x;µ, σ) =
1

xσ
√

2π
e−

1
2(

ln x−µ
σ )

2

where the variable x > 0 and the parameters µ and σ > 0 all are real numbers. It is
sometimes denoted Λ(µ, σ2) in the same spirit as we often denote a normally distributed
variable by N(µ, σ2).

If u is distributed as N(µ, σ2) and u = lnx then x is distributed according to the
log-normal distribution.

Note also that if x has the distribution Λ(µ, σ2) then y = eaxb is distributed as Λ(a +
bµ, b2σ2).

In figure 16 we show the log-normal distribution for the basic form, with µ = 0 and
σ = 1.

Figure 16: Log-normal distribution

The log-normal distribution is sometimes used as a first approximation to the Landau
distribution describing the energy loss by ionization of a heavy charged particle (cf also the
Moyal distribution in section 26).

24.2 Moments

The expectation value and the variance of the distribution are given by

E(x) = eµ+σ2

2 and V (x) = e2µ+σ2
(
eσ2 − 1

)
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and the coefficients of skewness and kurtosis becomes

γ1 =
√
eσ2 − 1

(
eσ2

+ 2
)

and γ2 =
(
eσ2 − 1

) (
e3σ2

+ 3e2σ2

+ 6eσ2

+ 6
)

More generally algebraic moments of the log-normal distribution are given by

µ′k = E(xk) =
1

σ
√

2π

∞∫
0

xk−1e−
1
2(

ln x−µ
σ )

2

dx =
1

σ
√

2π

∞∫
−∞

eyke−
1
2(

y−µ
σ )

2

dy =

=
1

σ
√

2π
ekµ+ k2σ2

2

∞∫
−∞

e
− 1

2

(
y−µ−kσ2

σ

)2

dy = ekµ+ k2σ2

2

where we have used the transformation y = ln x in simplifying the integral.

24.3 Cumulative Distribution

The cumulative distribution, or distribution function, for the log-normal distribution is
given by

F (x) =
1

σ
√

2π

x∫
0

1

t
e−

1
2(

ln t−µ
σ )

2

dt =
1

σ
√

2π

ln x∫
0

e−
1
2(

y−µ
σ )

2

dy =

=
1

2
± 1

2
P

(
1

2
,
z2

2

)

where we have put z = (lnx−µ)/σ and the positive sign is valid for z ≥ 0 and the negative
sign for z < 0.

24.4 Random Number Generation

The most straightforward way of achieving random numbers from a log-normal distribution
is to generate a random number u from a normal distribution with mean µ and standard
deviation σ and construct r = eu.
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25 Maxwell Distribution

25.1 Introduction

The Maxwell distribution is given by

f(x;α) =
1

α3

√
2

π
x2e−

x2

2α2

where the variable x with x ≥ 0 and the parameter α with α > 0 are real quantities. It is
named after the famous scottish physicist James Clerk Maxwell (1831–1879).

The parameter α is simply a scale factor and the variable y = x/α has the simplified
distribution

g(y) =

√
2

π
y2e−

y2

2

Figure 17: The Maxwell distribution

The distribution, shown in figure 17, has a mode at x = α and is positively skewed.

25.2 Moments

Algebraic moments are given by

E(xn) =

∞∫
0

xnf(x)dx =
1

2α3

√
2

π

∞∫
−∞

|x|n+2e−x2/2α2

i.e. we have a connection to the absolute moments of the Gauss distribution. Using these
(see section on the normal distribution) the result is

E(xn) =

{√
2
π
2kk!α2k−1 for n = 2k − 1

(n+ 1)!!αn for n even
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Specifically we note that the expectation value, variance, and the third and fourth
central moments are given by

E(x) = 2α

√
2

π
, V (x) = α2

(
3− 8

π

)
, µ3 = 2α3

(
16

π
− 5

)√
2

π
, and µ4 = α4

(
15− 8

π

)
The coefficients of skewness and kurtosis is thus

γ1 =
2
(

16
π
− 5

)√
2
π(

3− 8
π

) 3
2

≈ 0.48569 and γ2 =
15− 8

π(
3− 8

π

)2 − 3 ≈ 0.10818

25.3 Cumulative Distribution

The cumulative distribution, or the distribution function, is given by

F (x) =

x∫
0

f(y)dy =
1

a3

√
2

π

x∫
0

y2e−
y2

2α2 dy =
2√
π

x2

2α2∫
0

√
ze−zdz =

γ
(

3
2
, x2

2α2

)
Γ
(

3
2

) = P

(
3

2
,
x2

2α2

)

where we have made the substitution z = y2

2α2 in order to simplify the integration. Here
P (a, x) is the incomplete Gamma function.

Using the above relation we may estimate the median M and the lower and upper
quartile, Q1 and Q3, as

Q1 = α
√
P−1(3

2
, 1

2
) ≈ 1.10115 α

M = α
√
P−1(3

2
, 1

2
) ≈ 1.53817 α

Q3 = α
√
P−1(3

2
, 1

2
) ≈ 2.02691 α

where P−1(a, p) denotes the inverse of the incomplete Gamma function i.e. the value x for
which P (a, x) = p.

25.4 Kinetic Theory

The following is taken from kinetic theory, see e.g. [34]. Let v = (vx, vy, vz) be the velocity
vector of a particle where each component is distributed independently according to normal
distributions with zero mean and the same variance σ2.

First construct

w =
v2

σ2
=
v2

x

σ2
+
v2

y

σ2
+
v2

z

σ2

Since vx/σ, vy/σ, and vz/σ are distributed as standard normal variables the sum of their

squares has the chi-squared distribution with 3 degrees of freedom i.e. g(w) =
√

w
2π
e−w/2

which leads to

f(v) = g(w)

∣∣∣∣∣dwdv
∣∣∣∣∣ = g

(
v2

σ2

)
2v

σ2
=

1

σ3

√
2

π
v2e−

v2

2σ2

which we recognize as a Maxwell distribution with α = σ.

89



In kinetic theory σ = kT/m, where k is Boltzmann’s constant, T the temperature, and
m the mass of the particles, and we thus have

f(v) =

√
2m3

πk3T 3
v2e−

mv2

2kT

The distribution in kinetic energy E = mv2/2 becomes

g(E) =

√
4E

πk3T 3
e−

E
kT

which is a Gamma distribution with parameters a = 1/kT and b = 3
2
.

25.5 Random Number Generation

To obtain random numbers from the Maxwell distribution we first make the transformation
y = x2/2α2 a variable which follow the Gamma distribution g(y) =

√
ye−y/Γ

(
3
2

)
.

A random number from this distribution may be obtained using the so called Johnk’s
algorithm which in this particular case becomes (denoting independent pseudorandom num-
bers from a uniform distribution from zero to one by ξi)

i Put r = − ln ξ1 i.e. a random number from an exponential distribution.

ii Calculate w1 = ξ2
2 and w2 = ξ2

3 (with new uniform random numbers ξ2 and ξ3 each
iteration, of course).

iii If w = w1 + w2 > 1 then go back to ii above.

iv Put r = r − w1

w
ln ξ4

v Finally construct a
√

2r as a random number from the Maxwell distribution with
parameter r.

Following the examples given above we may also use three independent random numbers
from a standard normal distribution, z1, z2, and z3, and construct

r =
1

α

√
z2
1 + z2

2 + z2
3

However, this technique is not as efficient as the one outlined above.
As a third alternative we could also use the cumulative distribution putting

F (x) = ξ ⇒ P
(

3
2
, x2

2α2

)
= ξ ⇒ x = α

√
2P−1

(
3
2
, ξ
)

where P−1(a, p), as above, denotes the value x where P (a, x) = p. This technique is,
however, much slower than the alternatives given above.

The first technique described above is not very fast but still the best alternative pre-
sented here. Also it is less dependent on numerical algorithms (such as those to find the
inverse of the incomplete Gamma function) which may affect the precision of the method.
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26 Moyal Distribution

26.1 Introduction

The Moyal distribution is given by

f(z) =
1√
2π

exp
{
−1

2

(
z + e−z

)}
for real values of z. A scale shift and a scale factor is introduced by making the standardized
variable z = (x− µ)/σ and hence the distribution in the variable x is given by

g(x) =
1

σ
f
(
x− µ

σ

)
Without loss of generality we treat the Moyal distribution in its simpler form, f(z), in this
document. Properties for g(x) are easily obtained from these results which is sometimes
indicated.

The Moyal distribution is a universal form for

(a) the energy loss by ionization for a fast charged particle and

(b) the number of ion pairs produced in this process.

It was proposed by J. E. Moyal [35] as a good approximation to the Landau distribution.
It was also shown that it remains valid taking into account quantum resonance effects and
details of atomic structure of the absorber.

Figure 18: The Moyal distribution

The distribution, shown in figure 18, has a mode at z = 0 and is positively skewed.
This implies that the mode of the x−distribution, g(x), is equal to the parameter µ.
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26.2 Normalization

Making the transformation x = e−z we find that

∞∫
−∞

f(z)dz =

∞∫
0

1√
2π

exp
{
−1

2
(− lnx+ x)

} dx
x

=
1√
2π

∞∫
0

e−
x
2

√
x
dx =

=
1√
2π

∞∫
0

e−y

√
2y

2dy =
1√
π

∞∫
0

e−y

√
y
dy =

1√
π

Γ
(

1
2

)
= 1

where we have made the simple substitution y = x/2 in order to clearly recognize the
Gamma function at the end. The distribution is thus properly normalized.

26.3 Characteristic Function

The characteristic function for the Moyal distribution becomes

φ(t) = E(eıtz) =
1√
2π

∞∫
−∞

eıtze−
1
2(z+e−z)dz =

1√
2π

∞∫
0

(2x)
1
2
(1−2ıt)e−xdx

x
=

=
2

1
2
(1−2ıt)

√
2π

∞∫
0

x−
1
2
(1+2ıt)e−xdx =

2−ıt

√
π

Γ
(

1
2
− ıt

)
where we made the substitution x = e−z/2 in simplifying the integral. The last relation to
the Gamma function with complex argument is valid when the real part of the argument
is positive which indeed is true in the case at hand.

26.4 Moments

As in some other cases the most convenient way to find the moments of the distribution is
via its cumulants (see section 2.5). We find that

κ1 = − ln 2− ψ(1
2
) = ln 2 + γ

κn = (−1)nψ(n−1)(1
2
) = (n− 1)!(2n − 1)ζn for n ≥ 2

with γ ≈ 0.5772156649 Euler’s constant, ψ(n) polygamma functions (see section 42.4) and
ζ Riemann’s zeta-function (see page 59). Using the cumulants we find the lower order
moments and the coefficients of skewness and kurtosis to be

µ′1 = E(z) = κ1 = ln 2 + γ ≈ 1.27036

µ2 = V (z) = κ2 = ψ(1)(1
2
) =

π2

2
≈ 4.93480

µ3 = κ3 = −ψ(2)(1
2
) = 14ζ3

µ4 = κ4 + 3κ2
2 = ψ(3)(1

2
) + 3ψ(1)(1

2
)2 =

7π4

4

γ1 =
28
√

2ζ3
π3

≈ 1.53514

γ2 = 4
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For the distribution g(x) we have E(x) = σE(z) + µ, V (x) = σ2V (z) or more generally
central moments are obtained by µn(x) = σnµn(z) for n ≥ 2 while γ1 and γ2 are identical.

26.5 Cumulative Distribution

Using the same transformations as was used above in evaluating the normalization of the
distribution we write the cumulative (or distribution) function as

F (Z) =

Z∫
−∞

f(z)dz =
1√
2π

Z∫
−∞

exp
{
−1

2

(
z + e−z

)}
=

1√
2π

∞∫
e−Z

e−
x
2

√
x
dx =

=
1√
π

∞∫
e−Z/2

e−y

√
y
dy =

1√
π

Γ

(
1

2
,
e−Z

2

)
=

Γ
(

1
2
, e−Z

2

)
Γ
(

1
2

) = 1− P

(
1

2
,
e−Z

2

)

where P is the incomplete Gamma function.
Using the inverse of the cumulative function we find the median M ≈ 0.78760 and the

lower and upper quartiles Q1 ≈ -0.28013 and Q3 ≈ 2.28739.

26.6 Random Number Generation

To obtain random numbers from the Moyal distribution we may either make use of the
inverse to the incomplete Gamma function such that given a pseudorandom number ξ we
get a random number by solving the equation

1− P

(
1

2
,
e−z

2

)
= ξ

for z. If P−1(a, p) denotes the value x where P (a, x) = p then

z = − ln
{
2P−1

(
1
2
, 1− ξ

)}
is a random number from a Moyal distribution.

This is, however, a very slow method and one may instead use a straightforward reject-
accept (or hit-miss) method. To do this we prefer to transform the distribution to get it
into a finite interval. For this purpose we make the transformation tan y = x giving

h(y) = f(tan y)
1

cos2 y
=

1√
2π

1

cos2 y
exp

{
−1

2

(
tan y + e− tan y

)}

This distribution, shown in figure 19, has a maximum of about 0.911 and is limited to the
interval −π

2
≤ y ≤ π

2
.

A simple algorithm to get random numbers from a Moyal distribution, either f(z) or
g(x), using the reject-accept technique is as follows:

a Get into ξ1 and ξ2 two uniform random numbers uniformly distributed between zero
and one using a good basic pseudorandom number generator.
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Figure 19: Transformed Moyal distribution

b Calculate uniformly distributed variables along the horizontal and vertical direction
by y = πξ1 − π

2
and h = ξ2hmax where hmax = 0.912 is chosen slightly larger than the

maximum value of the function.

c Calculate z = tan y and the function value h(y).

d If h ≤ h(y) then accept z as a random number from the Moyal distribution f(z) else
go back to point a above.

e If required then scale and shift the result by x = zσ+ µ in order to obtain a random
number from g(x).

This method is easily improved e.g. by making a more tight envelope to the distribution
than a uniform distribution. The efficiency of the reject-accept technique outlined here is
only 1/0.912π ≈ 0.35 (the ratio between the area of the curve and the uniform distribution).
The method seems, however, fast enough for most applications.
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27 Multinomial Distribution

27.1 Introduction

The Multinomial distribution is given by

p(r;N, k, p) =
N !

r1!r2! · · · rk!
pr1

1 p
r2
2 · · · p

rk
k = N !

k∏
i=1

pri
i

ri!

where the variable r is a vector with k integer elements for which 0 ≤ ri ≤ N and
∑
ri = N .

The parameters N > 0 and k > 2 are integers and p is a vector with elements 0 ≤ pi ≤ 1
with the constraint that

∑
pi = 1.

The distribution is a generalization of the Binomial distribution (k = 2) to many di-
mensions where, instead of two groups, the N elements are divided into k groups each with
a probability pi with i ranging from 1 to k. A common example is a histogram with N
entries in k bins.

27.2 Histogram

The histogram example is valid when the total number of events N is regarded as a fixed
number. The variance in each bin then becomes, see also below, V (ri) = Npi(1− p1) ≈ ri

if pi � 1 which normally is the case for a histogram with many bins.
If, however, we may regard the total number of events N as a random variable dis-

tributed according to the Poisson distribution we find: Given a multinomial distribution,
here denoted M(r;N, p), for the distribution of events into bins for fixed N and a Poisson
distribution, denoted P (N ; ν), for the distribution of N we write the joint distribution

P(r,N) = M(r;N, p)P (N ; ν) =

(
N !

r1!r2! . . . rk!
pr1

1 p
r2
2 . . . prk

k

)(
νNe−ν

N !

)
=

=
(

1

r1!
(νp1)

r1e−νp1

)(
1

r2!
(νp2)

r2e−νp2

)
. . .
(

1

rk!
(νpk)

rke−νpk

)
where we have used that

k∑
i=1

pi = 1 and
k∑

i=1

ri = N

i.e. we get a product of independent Poisson distributions with means νpi for each individual
bin.

As seen, in both cases, we find justification for the normal rule of thumb to assign the
square root of the bin contents as the error in a certain bin. Note, however, that in principle
we should insert the true value of ri for this error. Since this normally is unknown we use
the observed number of events in accordance with the law of large numbers. This means
that caution must be taken in bins with few entries.

27.3 Moments

For each specific ri we may obtain moments using the Binomial distribution with qi = 1−pi

E(ri) = Npi and V (ri) = Npi(1− pi) = Npiqi
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The covariance between two groups are given by

Cov(ri, rj) = −Npipj for i 6= j

27.4 Probability Generating Function

The probability generating function for the multinomial distribution is given by

G(z) =

(
k∑

i=1

pizi

)N

27.5 Random Number Generation

The straightforward but time consuming way to generate random numbers from a multi-
nomial distribution is to follow the definition and generate N uniform random numbers
which are assigned to specific bins according to the cumulative value of the p-vector.

27.6 Significance Levels

To determine a significance level for a certain outcome from a multinomial distribution one
may add all outcomes which are as likely or less likely than the probability of the observed
outcome. This may be a non-trivial calculation for large values of N since the number of
possible outcomes grows very fast. An alternative, although quite clumsy, is to generate
a number of multinomial random numbers and evaluate how often these outcomes are as
likely or less likely than the observed one.

If we as an example observe the outcome r = (4, 1, 0, 0, 0, 0) for a case with 5 obser-
vations in 6 groups (N = 5 and k = 6) and the probability for all groups are the same
pi = 1/k = 1/6 we obtain a probability of p ≈ 0.02. This includes all orderings of the same
outcome since these are all equally probable but also all less likely outcomes of the type
p = (5, 0, 0, 0, 0, 0).

If a probability calculated in this manner is too small one may conclude that the null
hypothesis that all probabilities are equal is wrong. Thus if our confidence level is preset
to 95% this conclusion would be drawn in the above example. Of course, the conclusion
would be wrong in 2% of all cases.

27.7 Equal Group Probabilities

A common case or null hypothesis for a multinomial distribution is that the probability of
the k groups is the same i.e. p = 1/k. In this case the multinomial distribution is simplified
and since ordering become insignificant much fewer unique outcomes are possible.

Take as an example a game where five dices are thrown. The probabilities for different
outcomes may quite readily be evaluated from basic probability theory properly accounting
for the 65 = 7776 possible outcomes. But one may also use the multinomial distribution
with k = 6 and N = 5 to find probabilities for different outcomes. If we properly take
care of combinatorial coefficients for each outcome we obtain (with zeros for empty groups
suppressed)
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name outcome # combinations probability
one doublet 2,1,1,1 3600 0.46296
two doublets 2,2,1 1800 0.23148
triplets 3,1,1 1200 0.15432
nothing 1,1,1,1,1 720 0.09259
full house 3,2 300 0.03858
quadruplets 4,1 150 0.01929
quintuplets 5 6 0.00077
total 7776 1.00000

The experienced dice player may note that the “nothing” group includes 240 combina-
tions giving straights (1 to 5 or 2 to 6). From this table we may verify the statement from
the previous subsection that the probability to get an outcome with quadruplets or less
likely outcomes is given by 0.02006.

Generally we have for N < k that the two extremes of either all observations in separate
groups psep or all observations in one group pall

psep =
k!

kN(k −N)!
=
k

k
· k − 1

k
· · · k −N + 1

k

pall =
1

kN−1

which we could have concluded directly from a quite simple probability calculation.
The first case is the formula which shows the quite well known fact that if 23 people or

more are gathered the probability that at least two have the same birthday, i.e. 1− psep, is
greater than 50% (usingN = 23 and k = 365 and not bothering about leap-years or possible
deviations from the hypothesis of equal probabilities for each day). This somewhat non-
intuitive result becomes even more pronounced for higher values of k and the level above
which psep < 0.5 is approximately given by

N ≈ 1.2
√
k

For higher significance levels we may note that in the case with k = 365 the probability
1 − psep becomes greater than 90% at N = 41, greater than 99% at N = 57 and greater
than 99.9% at N = 70 i.e. already for N << k a bet would be almost certain.

In Fig.20 we show, in linear scale to the left and logarithmic scale to the right, the
lower limit on N for which the probability to have 1 − psep above 50%, 90%, 99% and
99.9.% for k-values ranging up to 1000. By use of the gamma function the problem has
been generalized to real numbers. Note that the curves start at certain values where k = N
since for N > k it is impossible to have all events in separate groups5.

5This limit is at N = k = 2 for the 50%-curve, 3.92659 for 90%, 6.47061 for 99% and 8.93077 for 99.9%
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Figure 20: Limits for N at several confidence levels as a function of k (linear scale to the
left and logarithmic scale to the right).
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28 Multinormal Distribution

28.1 Introduction

As a generalization of the normal or Gauss distribution to many dimensions we define the
multinormal distribution.

A multinormal distribution in x = {x1, x2, . . . , xn} with parameters µ (mean vector)
and V (variance matrix) is given by

f(x|µ, V ) =
e−

1
2
(x−µ)V −1(x−µ)T

(2π)
n
2

√
|V |

The variance matrix V has to be a positive semi-definite matrix in order for f to be a proper
probability density function (necessary in order that the normalization integral

∫
f(x)dx

should converge).
If x is normal and V non-singular then (x−µ)V −1(x−µ)T is called the covariance form

of x and has a χ2-distribution with n degrees of freedom. Note that the distribution has
constant probability density for constant values of the covariance form.

The characteristic function is given by

φ(t) = eıtµ− 1
2
tT V t

where t is a vector of length n.

28.2 Conditional Probability Density

The conditional density for a fixed value of any xi is given by a multinormal density with
n − 1 dimensions where the new variance matrix is obtained by deleting the i:th row and
column of V −1 and inverting the resulting matrix.

This may be compared to the case where we instead just want to neglect one of the
variables xi. In this case the remaining variables has a multinormal distribution with n− 1
dimensions with a variance matrix obtained by deleting the i:th row and column of V .

28.3 Probability Content

As discussed in section 6.6 on the binormal distribution the joint probability content of a
multidimensional normal distribution is different, and smaller, than the corresponding well
known figures for the one-dimensional normal distribution. In the case of the binormal
distribution the ellipse (see figure 2 on page 20) corresponding to one standard deviation
has a joint probability content of 39.3%.

The same is even more true for the probability content within the hyperellipsoid in the
case of a multinormal distribution. In the table below we show, for different dimensions n,
the probability content for the one (denoted z = 1), two and three standard deviation con-
tours. We also give z-values z1, z2, and z3 adjusted to give a probability content within the
hyperellipsoid corresponding to the one-dimensional one, two, and three standard deviation
contents ( 68.3%, 95.5%, and 99.7%). Finally z-value corresponding to joint probability
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contents of 90%, 95% and 99% in z90, z95, and z99, respectively, are given. Note that these
probability contents are independent of the variance matrix which only has the effect to
change the shape of the hyperellipsoid from a perfect hypersphere with radius z when all
variables are uncorrelated to e.g. cigar shapes when correlations are large.

Note that this has implications on errors estimated from a chi-square or a maximum
likelihood fit. If a multiparameter confidence limit is requested and the chi-square minimum
is at χ2

min or the logarithmic likelihood maximum at lnLmax, one should look for the error
contour at χ2

min + z2 or lnLmax − z2/2 using a z-value from the right-hand side of the
table below. The probability content for a n-dimensional multinormal distribution as given
below may be expressed in terms of the incomplete Gamma function by

p = P
(

n
2
, z2

2

)
as may be deduced by integrating a standard multinormal distribution out to a radius z.
Special formulæ for the incomplete Gamma function P (a, x) for integer and half-integer a
are given in section 42.5.3.

Probability content in % Adjusted z-values
n z = 1 z = 2 z = 3 z1 z2 z3 z90 z95 z99

1 68.27 95.45 99.73 1.000 2.000 3.000 1.645 1.960 2.576
2 39.35 86.47 98.89 1.515 2.486 3.439 2.146 2.448 3.035
3 19.87 73.85 97.07 1.878 2.833 3.763 2.500 2.795 3.368
4 9.020 59.40 93.89 2.172 3.117 4.031 2.789 3.080 3.644
5 3.743 45.06 89.09 2.426 3.364 4.267 3.039 3.327 3.884
6 1.439 32.33 82.64 2.653 3.585 4.479 3.263 3.548 4.100
7 0.517 22.02 74.73 2.859 3.786 4.674 3.467 3.751 4.298
8 0.175 14.29 65.77 3.050 3.974 4.855 3.655 3.938 4.482
9 0.0562 8.859 56.27 3.229 4.149 5.026 3.832 4.113 4.655
10 0.0172 5.265 46.79 3.396 4.314 5.187 3.998 4.279 4.818
11 0.00504 3.008 37.81 3.556 4.471 5.340 4.156 4.436 4.972
12 0.00142 1.656 29.71 3.707 4.620 5.486 4.307 4.585 5.120
13 0.00038 0.881 22.71 3.853 4.764 5.626 4.451 4.729 5.262
14 0.00010 0.453 16.89 3.992 4.902 5.762 4.590 4.867 5.398
15 0.00003 0.226 12.25 4.126 5.034 5.892 4.723 5.000 5.530
16 0.00001 0.1097 8.659 4.256 5.163 6.018 4.852 5.128 5.657
17 ≈ 0 0.0517 5.974 4.382 5.287 6.140 4.977 5.252 5.780
18 ≈ 0 0.0237 4.026 4.503 5.408 6.259 5.098 5.373 5.900
19 ≈ 0 0.0106 2.652 4.622 5.525 6.374 5.216 5.490 6.016
20 ≈ 0 0.00465 1.709 4.737 5.639 6.487 5.330 5.605 6.129
25 ≈ 0 0.00005 0.1404 5.272 6.170 7.012 5.864 6.136 6.657
30 ≈ 0 ≈ 0 0.0074 5.755 6.650 7.486 6.345 6.616 7.134

28.4 Random Number Generation

In order to obtain random numbers from a multinormal distribution we proceed as follows:
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• If x = {x1, x2, . . . , xn} is distributed multinormally with mean 0 (zero vector) and
variance matrix I (unity matrix) then each xi (i = 1, 2, . . . , n) can be found indepen-
dently from a standard normal distribution.

• If x is multinormally distributed with mean µ and variance matrix V then any linear
combination y = Sx is also multinormally distributed with mean Sµ and variance
matrix SV ST ,

• If we want to generate vectors, y, from a multinormal distribution with mean µ and
variance matrix V we may make a so called Cholesky decomposition of V , i.e. we find
a triangular matrix S such that V = SST . We then calculate y = Sx + µ with the
components of x generated independently from a standard normal distribution.

Thus we have found a quite nice way of generating multinormally distributed random
numbers which is important in many simulations where correlations between variables may
not be ignored. If many random numbers are to be generated for multinormal variables
from the same distribution it is beneficial to make the Cholesky decomposition once and
store the matrix S for further usage.
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29 Negative Binomial Distribution

29.1 Introduction

The Negative Binomial distribution is given by

p(r; k, p) =

(
r − 1

k − 1

)
pk(1− p)r−k

where the variable r ≥ k and the parameter k > 0 are integers and the parameter p
(0 ≤ p ≤ 1) is a real number.

The distribution expresses the probability of having to wait exactly r trials until k
successes have occurred if the probability of a success in a single trial is p (probability of
failure q = 1− p).

The above form of the Negative Binomial distribution is often referred to as the Pascal
distribution after the french mathematician, physicist and philosopher Blaise Pascal (1623–
1662).

The distribution is sometimes expressed in terms of the number of failures occurring
while waiting for k successes, n = r − k, in which case we write

p(n; k, p) =

(
n+ k − 1

n

)
pk(1− p)n

where the new variable n ≥ 0.
Changing variables, for this last form, to n and k instead of p and k we sometimes use

p(n;n, k) =

(
n+ k − 1

n

)
nnkk

(n+ k)n+k
=

(
n+ k − 1

n

)(
n

n+ k

)n
(

k

n+ k

)k

The distribution may also be generalized to real values of k, although this may seem
obscure from the above probability view-point (“fractional success”), writing the binomial
coefficient as (n+ k − 1)(n+ k − 2) · · · (k + 1)k/n!.

29.2 Moments

In the first form given above the expectation value, variance, third and fourth central
moments of the distribution are

E(r) =
k

p
, V (r) =

kq

p2
, µ3 =

kq(2− p)

p3
, and µ4 =

kq(p2 − 6p+ 6 + 3kq)

p4

The coefficients of skewness and kurtosis are

γ1 =
2− p√
kq

and γ2 =
p2 − 6p+ 6

kq

In the second formulation above, p(n), the only difference is that the expectation value
becomes

E(n) = E(r)− k =
k(1− p)

p
=
kq

p
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while higher moments remain unchanged as they should since we have only shifted the scale
by a fixed amount.

In the last form given, using the parameters n and k, the expectation value and the
variance are

E(n) = n and V (n) = n+
n2

k

29.3 Probability Generating Function

The probability generating function is given by

G(z) =

(
pz

1− zq

)k

in the first case (p(r)) and

G(z) =

(
p

1− zq

)k

=

(
1

1 + (1− z)n
k

)k

in the second case (p(n)) for the two different parameterizations.

29.4 Relations to Other Distributions

There are several interesting connections between the Negative Binomial distribution and
other standard statistical distributions. In the following subsections we briefly address
some of these connections.

29.4.1 Poisson Distribution

Regard the negative binomial distribution in the form

p(n;n, k) =

(
n+ k − 1

n

)(
1

1 + n/k

)k (
n/k

1 + n/k

)n

where n ≥ 0, k > 0 and n > 0.
As k →∞ the three terms become(

n+ k − 1

n

)
=

(n+ k − 1)(n+ k − 2) . . . k

n!
→ kn

n!
,

(
1

1 + n/k

)k

= 1− k
n

k
+
k(k + 1)

2

(
n

k

)2

− k(k + 1)(k + 2)

6

(
n

k

)3

+ . . .→ e−n and

kn

(
n/k

1 + n/k

)n

→ nn

where, for the last term we have incorporated the factor kn from the first term.
Thus we have shown that

lim
k→∞

p(n;n, k) =
nne−n

n!
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i.e. a Poisson distribution.
This “proof” could perhaps better be made using the probability generating function

of the negative binomial distribution

G(z) =

(
p

1− zq

)k

=

(
1

1− (z − 1)n/k

)k

Making a Taylor expansion of this for (z − 1)n/k � 1 we get

G(z) = 1 + (z − 1)n+
k + 1

k

(z − 1)2n2

2
+

(k + 1)(k + 2)

k2

(z − 1)3n3

6
+ . . .→ e(z−1)n

as k → ∞. This result we recognize as the probability generating function of the Poisson
distribution.

29.4.2 Gamma Distribution

Regard the negative binomial distribution in the form

p(n; k, p) =

(
n+ k − 1

n

)
pkqn

where n ≥ 0, k > 0 and 0 ≤ p ≤ 1 and where we have introduced q = 1− p. If we change
parameters from k and p to k and n = kq/p this may be written

p(n;n, k) =

(
n+ k − 1

n

)(
1

1 + n/k

)k (
n/k

1 + n/k

)n

Changing variable from n to z = n/n we get (dn/dz = n)

p(z;n, k) = p(n;n, k)
dn

dz
= n

(
zn+ k − 1

zn

)(
1

1 + n/k

)k (
n/k

1 + n/k

)zn

=

= n
(zn+ k − 1)(zn+ k − 2) . . . (zn+ 1)

Γ(k)
kk
(

1

k + n

)k
(

1

k/n+ 1

)zn

→

→ n kk (zn)k−1

Γ(k)

(
1

k + n

)k
(

1

k/n+ 1

)zn

=

=
zk−1kk

Γ(k)

(
n

k + n

)k
(

1

k/n+ 1

)zn

→ zk−1kke−kz

Γ(k)

where we have used that for k � n→∞(
n

k + n

)k

→ 1 and

(
1

k/n+ 1

)zn

= 1− zn
k

n
+
zn(zn+ 1)

2

(
k

n

)2

− zn(zn+ 1)(zn+ 2)

6

(
k

n

)3

+ . . .→

→ 1− zk +
z2k2

2
− z3k3

6
+ . . . = e−kz

as n→∞.
Thus we have “shown” that as n → ∞ and n � k we obtain a gamma distribution in

the variable z = n/n.
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29.4.3 Logarithmic Distribution

Regard the negative binomial distribution in the form

p(n; k, p) =

(
n+ k − 1

n

)
pkqn

where n ≥ 0, k > 0 and 0 ≤ p ≤ 1 and where we have introduced q = 1− p.
The probabilities for n = 0, 1, 2, 3... are given by

{ p(0), p(1), p(2), p(3), . . .} = pk

{
1, kq,

k(k + 1)

2!
q2,

k(k + 1)(k + 2)

3!
q3, ...

}

if we omit the zero class (n=0) and renormalize we get

kpk

1− pk

{
0, q,

k + 1

2!
q2,

(k + 1)(k + 2)

3!
q3, ...

}

and if we let k → 0 we finally obtain

− 1

ln p

{
0, q,

q2

2
,
q3

3
, ...

}

where we have used that

lim
k→0

k

p−k − 1
= − 1

ln p

which is easily realized expanding p−k = e−k ln p into a power series.
This we recognize as the logarithmic distribution

p(n; p) = − 1

ln p

(1− p)n

n

thus we have shown that omitting the zero class and letting k → 0 the negative binomial
distribution becomes the logarithmic distribution.

29.4.4 Branching Process

In a process where a branching occurs from a Poisson to a logarithmic distribution the most
elegant way to determine the resulting distribution is by use of the probability generating
function. The probability generating functions for a Poisson distribution with parameter
(mean) µ and for a logarithmic distribution with parameter p (q = 1− p) are given by

GP (z) = eµ(z−1) and GL(z) = ln(1− zq)/ ln(1− q) = α ln(1− zq)

where µ > 0, 0 ≤ q ≤ 1 and α = 1/ ln p.
For a branching process in n steps

G(z) = G1(G2(. . . Gn−1(Gn(z)) . . .))
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where Gk(z) is the probability generating function in the k:th step. In the above case this
gives

G(z) = GP (GL(z)) = exp {µ(α ln(1− zq)− 1)} =

= exp {αµ ln(1− zq)− µ} = (1− zq)αµe−µ =

= (1− zq)−k(1− q)k = pk/(1− zq)k

where we have put k = −αµ. This we recognize as the probability generating function of
a negative binomial distribution with parameters k and p.

We have thus shown that a Poisson distribution with mean µ branching into a loga-
rithmic distribution with parameter p gives rise to a negative binomial distribution with
parameters k = −αµ = −µ/ ln p and p (or n = kq/p).

Conversely a negative binomial distribution with parameters k and p or n could arise
from the combination of a Poisson distribution with parameter µ = −k ln p = k ln(1 + n

k
)

and a logarithmic distribution with parameter p and mean n/µ.
A particle physics example would be a charged multiplicity distribution arising from the

production of independent clusters subsequently decaying into charged particles according
to a logarithmic distribution. The UA5 experiment [36] found on the SppS collider at
CERN that at a centre of mass energy of 540 GeV a negative binomial distribution with
n = 28.3 and k = 3.69 fitted the data well. With the above scenario this would correspond
to ≈ 8 clusters being independently produced (Poisson distribution with µ = 7.97) each one
decaying, according to a logarithmic distribution, into 3.55 charged particles on average.

29.4.5 Poisson and Gamma Distributions

If a Poisson distribution with mean µ > 0

p(n;µ) =
e−µµn

n!
for n ≥ 0

is weighted by a gamma distribution with parameters a > 0 and b > 0

f(x; a, b) =
a(ax)b−1e−ax

Γ(b)
for x > 0

we obtain

P(n) =

∞∫
0

p(n;µ)f(µ; a, b)dµ =

∞∫
0

e−µµn

n!

a(aµ)b−1e−aµ

Γ(b)
dµ =

=
ab

n!Γ(b)

∞∫
0

µn+b−1e−µ(a+1)dµ =
ab

n!(b− 1)!
(n+ b− 1)!(a+ 1)−(n+b) =

=

(
n+ b− 1

n

)(
a

a+ 1

)b ( 1

a+ 1

)n

which is a negative binomial distribution with parameters p = a
a+1

, i.e. q = 1 − p = 1
a+1

,
and k = b. If we aim at a negative binomial distribution with parameters n and k we should
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thus weight a Poisson distribution with a gamma distribution with parameters a = k/n
and b = k. This is the same as superimposing Poisson distributions with means coming
from a gamma distribution with mean n.

In the calculation above we have made use of integral tables for the integral

∞∫
0

xne−αxdx = n!α−(n+1)

29.5 Random Number Generation

In order to obtain random numbers from a Negative Binomial distribution we may use the
recursive formula

p(r + 1) = p(r)
qr

r + 1− k
or p(n+ 1) = p(n)

q(k + n)

n+ 1

for r = k, k + 1, . . . and n = 0, 1, . . . in the two cases starting with the first term (p(k) or
p(0)) being equal to pk. This technique may be speeded up considerably, if p and k are
constants, by preparing a cumulative vector once for all.

One may also use some of the relations described above such as the branching of a
Poisson to a Logarithmic distribution6 or a Poisson distribution weighted by a Gamma dis-
tribution7. This, however, will always be less efficient than the straightforward cumulative
technique.

6Generating random numbers from a Poisson distribution with mean µ = −k ln p branching to a Log-
arithmic distribution with parameter p will give a Negative Binomial distribution with parameters k and
p.

7Taking a Poisson distribution with a mean distributed according to a Gamma distribution with pa-
rameters a = k/n and b = k.
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30 Non-central Beta-distribution

30.1 Introduction

The non-central Beta-distribution is given by

f(x; p, q) =
∞∑

r=0

e−
λ
2

(
λ
2

)r

r!

xp+r−1(1− x)q−1

B (p+ r, q)

where p and q are positive real quantities and the non-centrality parameter λ ≥ 0.
In figure 21 we show examples of a non-central Beta distribution with p = 3

2
and q = 3

varying the non-central parameter λ from zero (an ordinary Beta distribution) to ten in
steps of two.

Figure 21: Graph of non-central Beta-distribution for p = 3
2
, q = 3 and some values of λ

30.2 Derivation of distribution

If ym and yn are two independent variables distributed according to the chi-squared distri-
bution with m and n degrees of freedom, respectively, then the ratio ym/(ym + yn) follows
a Beta distribution with parameters p = m

2
and q = n

2
. If instead ym follows a non-central

chi-square distribution we may proceed in a similar way as was done for the derivation of
the Beta-distribution (see section 4.2).

We make a change of variables to x = ym/(ym +yn) and y = ym +yn which implies that
ym = xy and yn = y(1− x) obtaining

f(x, y) =

∣∣∣∣∣
∣∣∣∣∣

∂ym

∂x
∂ym

∂y
∂yn

∂x
∂yn

∂y

∣∣∣∣∣
∣∣∣∣∣ f(ym, yn) =

=
∣∣∣∣ y x
−y 1− x

∣∣∣∣


∞∑
r=0

e−
λ
2

(
λ
2

)r

r!

(
ym

2

)m
2

+r−1
e−

ym
2

2Γ
(

m
2

+ r
)



(

yn

2

)n
2
−1
e−

yn
2

2Γ
(

n
2

)
 =
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= y


∞∑

r=0

e−
λ
2

(
λ
2

)r

r!

(
xy
2

)m
2

+r−1
e−

xy
2

2Γ
(

m
2

+ r
)



(

y(1−x)
2

)n
2
−1
e−

y(1−x)
2

2Γ
(

n
2

)
 =

=
∞∑

r=0

e−
λ
2

(
λ
2

)r

r!

x
m
2

+r−1(1− x)
n
2
−1

B
(

m
2

+ r, n
2

)

(

y
2

)m+n
2

+r−1
e−

y
2

2Γ
(

m+n
2

+ r
)


In the last braces we see a chi-square distribution in y with m + n + 2r degrees of
freedom and integrating f(x, y) over y in order to get the marginal distribution in x gives
us the non-central Beta-distribution as given above with p = m/2 and q = n/2.

If instead yn were distributed as a non-central chi-square distribution we would get
a very similar expression (not amazing since ym/(ym + yn) = 1 − yn/(ym + yn)) but it’s
the form obtained when ym is non-central, that is normally referred to as the non-central
Beta-distribution.

30.3 Moments

Algebraic moments of the non-central Beta-distribution are given in terms of the hyperge-
ometric function 2F2 as

E(xk) =

1∫
0

xkf(x; p, q)dx =

1∫
0

∞∑
r=0

e−
λ
2

(
λ
2

)r

r!

xp+r+k−1(1− x)q−1

B (p+ r, q)
dx =

=
∞∑

r=0

e−
λ
2

(
λ
2

)r

r!

B (p+ r + k, q)

B (p+ r, q)
=

∞∑
r=0

e−
λ
2

(
λ
2

)r

r!

Γ (p+ r + k)

Γ (p+ r)

Γ (p+ r + q)

Γ (p+ r + q + k)
=

=
∞∑

r=0

e−
λ
2

(
λ
2

)r

r!

(p+ r + k − 1) · · · (p+ r + 1)(p+ r)

(p+ q + r + k − 1) · · · (p+ q + r + 1)(p+ q + r)
=

= e−
λ
2 · Γ(p+ k)

Γ(p)
· Γ(p+ q)

Γ(p+ q + k)
· 2F2

(
p+ q, p+ k; p, p+ q + k; λ

2

)
However, to evaluate the hypergeometric function involves a summation so it is more effi-
cient to directly use the penultimate expression above.

30.4 Cumulative distribution

The cumulative distribution is found by straightforward integration

F (x) =

x∫
0

∞∑
r=0

e−
λ
2

(
λ
2

)r

r!

up+r−1(1− u)q−1

B (p+ r, q)
du =

∞∑
r=0

e−
λ
2

(
λ
2

)r

r!
Ix (p+ r, q)

30.5 Random Number Generation

Random numbers from a non-central Beta-distribution with integer or half-integer p− and
q−values is easily obtained using the definition above i.e. by using a random number from
a non-central chi-square distribution and another from a (central) chi-square distribution.
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31 Non-central Chi-square Distribution

31.1 Introduction

If we instead of adding squares of n independent standard normal, N(0, 1), variables,
giving rise to the chi-square distribution with n degrees of freedom, add squares of N(µi, 1)
variables we obtain the non-central chi-square distribution

f(x;n, λ) =
∞∑

r=0

e−
λ
2

(
λ
2

)r

r!
f(x;n+ 2r) =

1

2
n
2 Γ
(

1
2

)xn
2
−1e−

1
2
(x+λ)

∞∑
r=0

(λx)r

(2r)!

Γ
(

1
2

+ r
)

Γ
(

n
2

+ r
)

where λ =
∑
µ2

i is the non-central parameter and f(x;n) the ordinary chi-square distri-
bution. As for the latter the variable x ≥ 0 and the parameter n a positive integer. The
additional parameter λ ≥ 0 and in the limit λ = 0 we retain the ordinary chi-square dis-
tribution. According to [2] pp 227–229 the non-central chi-square distribution was first
introduced by R. A. Fisher in 1928. In figure 22 we show the distribution for n = 5 and
non-central parameter λ = 0, 1, 2, 3, 4, 5 (zero corresponding to the ordinary chi-squared
distribution).

Figure 22: Graph of non-central chi-square distribution for n = 5 and some values of λ

31.2 Characteristic Function

The characteristic function for the non-central chi-square distribution is given by

φ(t) =
exp

(
ıtλ

1−2ıt

)
(1− 2ıt)

n
2

but even more useful in determining moments is

lnφ(t) =
ıtλ

1− 2ıt
− n

2
ln(1− 2ıt)
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from which cumulants may be determined in a similar manner as we normally obtain
algebraic moments from φ(t) (see below).

By looking at the characteristic function one sees that the sum of two non-central chi-
square variates has the same distribution with degrees of freedoms as well as non-central
parameters being the sum of the corresponding parameters for the individual distributions.

31.3 Moments

To use the characteristic function to obtain algebraic moments is not trivial but the cumu-
lants (see section 2.5) are easily found to be given by the formula

κr = 2r−1(r − 1)!(n+ rλ) for r ≥ 1

from which we may find the lower order algebraic and central moments (with a = n + λ
and b = λ/a) as

µ′1 = κ1 = a = n+ λ

µ2 = κ2 = 2a(1 + b) = 2(n+ 2λ)

µ3 = κ3 = 8a(1 + 2b) = 8(n+ 3λ)

µ4 = κ4 + 3κ2
2 = 48(n+ 4λ) + 12(n+ 2λ)2

µ5 = κ5 + 10κ3κ2 = 384(n+ 5λ) + 160(n+ 2λ)(n+ 3λ)

µ6 = κ6 + 15κ4κ2 + 10κ2
3 + 15κ3

2 =

= 3840(n+ 6λ) + 1440(n+ 2λ)(n+ 4λ) + 640(n+ 3λ)2 + 120(n+ 2λ)3

γ1 =
(

2

1 + b

) 3
2

· 1 + 2b√
a

=
8(n+ 3λ)

[2(n+ 2λ)]
3
2

γ2 =
12

a
· 1 + 3b

(1 + b)2
=

12(n+ 4λ)

(n+ 2λ)2

31.4 Cumulative Distribution

The cumulative, or distribution, function may be found by

F (x) =
1

2
n
2 Γ
(

1
2

)e−λ
2

∞∑
r=0

λr

(2r)!

Γ
(

1
2

+ r
)

Γ
(

n
2

+ r
) x∫

0

u
n
2
+r−1e−

u
2 du =

=
1

2
n
2 Γ
(

1
2

)e−λ
2

∞∑
r=0

λr

(2r)!

Γ
(

1
2

+ r
)

Γ
(

n
2

+ r
)2

n
2
+rγ

(
n
2

+ r, x
2

)
=

= e−
λ
2

∞∑
r=0

(
λ
2

)r

r!
P
(

n
2

+ r, x
2

)

31.5 Approximations

An approximation to a chi-square distribution is found by equating the first two cumulants
of a non-central chi-square distribution with those of ρ times a chi-square distribution.
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Here ρ is a constant to be determined. The result is that with

ρ =
n+ 2λ

n+ λ
= 1 +

λ

n+ λ
and n∗ =

(n+ λ)2

n+ 2λ
= n+

λ2

n+ 2λ

we may approximate a non-central chi-square distribution f(x;n, λ) with a (central) chi-
square distribution in x/ρ with n∗ degrees of freedom (n∗ in general being fractional).

Approximations to the standard normal distribution are given using

z =

√
2x

1 + b
−
√

2a

1 + b
− 1 or z =

(
x
a

) 1
3 −

[
1− 2

9
· 1+b

a

]
√

2
9
· 1+b

a

31.6 Random Number Generation

Random numbers from a non-central chi-square distribution is easily obtained using the
definition above by e.g.

• Put µ =
√
λ/n

• Sum n random numbers from a normal distribution with mean µ and variance unity.
Note that this is not a unique choice. The only requirement is that λ =

∑
µ2

i .

• Return the sum as a random number from a non-central chi-square distribution with
n degrees of freedom and non-central parameter λ.

This ought to be sufficient for most applications but if needed more efficient techniques
may easily be developed e.g. using more general techniques.
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32 Non-central F -Distribution

32.1 Introduction

If x1 is distributed according to a non-central chi-square distribution with m degrees of
freedom and non-central parameter λ and x2 according to a (central) chi-square distribution
with n degrees of freedom then, provided x1 and x2 are independent, the variable

F ′ =
x1/m

x2/n

is said to have a non-central F -distribution with m,n degrees of freedom (positive integers)
and non-central parameter λ ≥ 0. As the non-central chi-square distribution it was first
discussed by R. A. Fisher in 1928.

This distribution in F ′ may be written

f(F ′;m,n, λ) = e−
λ
2

∞∑
r=0

1

r!

(
λ

2

)r Γ
(

m+n
2

+ r
)

Γ
(

m
2

+ r
)

Γ
(

n
2

) (m
n

)m
2

+ r (F ′)
m
2
− 1 + r(

1 + mF ′

n

) 1
2
(m+n)+r

In figure 23 we show the non-central F -distribution for the case with m = 10 and n = 5
varying λ from zero (an ordinary, central, F -distribution) to five.

Figure 23: Graph of non-central F -distribution for m = 10, n = 5 and some values of λ

When m = 1 the non-central F -distribution reduces to a non-central t2-distribution
with δ2 = λ. As n→∞ then nF ′ approaches a non-central chi-square distribution with m
degrees of freedom and non-central parameter λ.
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32.2 Moments

Algebraic moments of the non-central F -distribution may be achieved by straightforward,
but somewhat tedious, algebra as

E(F ′k) =

∞∫
0

xkf(x;m,n, λ)dx =

= e−
λ
2

(
n

m

)k Γ
(

n
2
− k

)
Γ
(

n
2

) ∞∑
r=0

1

r!

(
λ

2

)r Γ
(

m
2

+ r + k
)

Γ
(

m
2

+ r
)

an expression which may be used to find lower order moments (defined for n > 2k)

E(F ′) =
n

m
· m+ λ

n− 2

E(F ′2) =
(
n

m

)2 1

(n− 2)(n− 4)

{
λ2 + (2λ+m)(m+ 2)

}
E(F ′3) =

(
n

m

)3 1

(n− 2)(n− 4)(n− 6)
·
{
λ3 + 3(m+ 4)λ2 + (3λ+m)(m+ 4)(m+ 2)

}
E(F ′4) =

(
n

m

)4 1

(n− 2)(n− 4)(n− 6)(n− 8)
·
{
λ4 + 4(m+ 6)λ3 + 6(m+ 6)(m+ 4)λ2+

+(4λ+m)(m+ 6)(m+ 4)(m+ 2)}

V (F ′) =
(
n

m

)2 2

(n− 2)(n− 4)

{
(λ+m)2

n− 2
+ 2λ+m

}

32.3 Cumulative Distribution

The cumulative, or distribution, function may be found by

F (x) =

x∫
0

ukf(u;m,n, λ)du =

= e−
λ
2

∞∑
r=0

1

r!
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λ

2

)r Γ
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)
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) (m
n

)m
2
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= e−
λ
2

∞∑
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(
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)
with

q =
mx
n

1 + mx
n

32.4 Approximations

Using the approximation of a non-central chi-square distribution to a (central) chi-square
distribution given in the previous section we see that

m

m+ λ
F ′
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is approximately distributed according to a (central) F -distribution with m∗ = m + λ2

m+2λ

and n degrees of freedom.
Approximations to the standard normal distribution is achieved with

z1 =
F ′ − E(F ′)√

V (F ′)
=

F ′ − n(m+λ)
m(n−2)

n
m

[
2

(n−2)(n−4)

{
(m+λ)2

n−2
+m+ 2λ

}] 1
2

or z2 =

(
mF ′

m+λ

) 1
3
(
1− 2

9n

)
−
(
1− 2

9
· m+2λ

(m+λ)2

)
[

2
9
· m+2λ

(m+λ)2
+ 2

9n
·
(

mF ′

m+λ

) 2
3

] 1
2

32.5 Random Number Generation

Random numbers from a non-central chi-square distribution is easily obtained using the
definition above i.e. by using a random number from a non-central chi-square distribution
and another from a (central) chi-square distribution.
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33 Non-central t-Distribution

33.1 Introduction

If x is distributed according to a normal distribution with mean δ and variance 1 and y
according to a chi-square distribution with n degrees of freedom (independent of x) then

t′ =
x√
y/n

has a non-central t-distribution with n degrees of freedom (positive integer) and non-central
parameter δ (real).

We may also write

t′ =
z + δ√
w/n

where z is a standard normal variate and w is distributed as a chi-square variable with n
degrees of freedom.

The distribution is given by (see comments on derivation in section below)

f(t′;n, δ) =
e−

δ2

2

√
nπΓ

(
n
2

) ∞∑
r=0

(t′δ)r

r!n
r
2

(
1 +

t′2

n

)−n+r+1
2

2
r
2 Γ
(

n+r+1
2

)

In figure 24 we show the non-central t-distribution for the case with n = 10 varying δ
from zero (an ordinary t-distribution) to five.

Figure 24: Graph of non-central t-distribution for n = 10 and some values of δ

This distribution is of importance in hypotheses testing if we are interested in the
probability of committing a Type II error implying that we would accept an hypothesis
although it was wrong, see discussion in section 38.11 on page 146.

33.2 Derivation of distribution

Not many text-books include a formula for the non-central t-distribution and some turns
out to give erroneous expressions. A non-central F -distribution with m = 1 becomes a
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non-central t2-distribution which then may be transformed to a non-central t-distribution.
However, with this approach one easily gets into trouble for t′ < 0. Instead we adopt
a technique very similar to what is used in section 38.6 to obtain the normal (central)
t-distribution from a t-ratio.

The difference in the non-central case is the presence of the δ-parameter which intro-
duces two new exponential terms in the equations to be solved. One is simply exp(−δ2/2)
but another factor we treat by a serial expansion leading to the p.d.f. above. This may not
be the ‘best’ possible expression but empirically it works quite well.

33.3 Moments

With some effort the p.d.f. above may be used to calculate algebraic moments of the
distribution yielding

E(t′k) =
e−

δ2

2

√
πΓ
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2

)Γ
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2

)
n

k
2

∞∑
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Γ
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2

)

where the sum should be made for odd (even) values of r if k is odd (even). This gives for
low orders
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)

from which expressions for central moments may be found e.g. the variance

µ2 = V (t′) =
n

2
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) 2
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33.4 Cumulative Distribution

The cumulative, or distribution, function may be found by

F (t) =
e−

δ2

2

√
nπΓ
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=
e−

δ2

2

√
π

∞∑
r=0

δr

r!
2

r
2
−1Γ

(
r+1
2

) {
s1 + s2Iq

(
r+1
2
, n

2

)}
where s1 are and s2 are signs differing between cases with positive or negative t as well as
odd or even r in the summation. The sign s1 is −1 if r is odd and +1 if it is even while s2

is +1 unless t < 0 and r is even in which case it is −1.

33.5 Approximation

An approximation is given by

z =
t′
(
1− 1

4n

)
− δ√

1 + t′2

2n

which is asymptotically distributed as a standard normal variable.

33.6 Random Number Generation

Random numbers from a non-central t-distribution is easily obtained using the definition
above i.e. by using a random number from a normal distribution and another from a chi-
square distribution. This ought to be sufficient for most applications but if needed more
efficient techniques may easily be developed e.g. using more general techniques.
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34 Normal Distribution

34.1 Introduction

The normal distribution or, as it is often called, the Gauss distribution is the most impor-
tant distribution in statistics. The distribution is given by

f(x;µ, σ2) =
1

σ
√

2π
e−

1
2(

x−µ
σ )

2

where µ is a location parameter, equal to the mean, and σ the standard deviation. For
µ = 0 and σ = 1 we refer to this distribution as the standard normal distribution. In many
connections it is sufficient to use this simpler form since µ and σ simply may be regarded
as a shift and scale parameter, respectively. In figure 25 we show the standard normal
distribution.

Figure 25: Standard normal distribution

Below we give some useful information in connection with the normal distribution.
Note, however, that this is only a minor collection since there is no limit on important and
interesting statistical connections to this distribution.

34.2 Moments

The expectation value of the distribution is E(x) = µ and the variance V (x) = σ2.
Generally odd central moments vanish due to the symmetry of the distribution and

even central moments are given by

µ2r =
(2r)!

2rr!
σ2r = (2r − 1)!!σ2r

for r ≥ 1.

119



It is sometimes also useful to evaluate absolute moments E(|x|n) for the normal distri-
bution. To do this we make use of the integral

∞∫
−∞

e−ax2

dx =

√
π

a

which if differentiated k times with respect to a yields

∞∫
−∞

x2ke−ax2

dx =
(2k − 1)!!

2k

√
π

a2k+1

In our case a = 1/2σ2 and since even absolute moments are identical to the algebraic
moments it is enough to evaluate odd absolute moments for which we get

E(|x|2k+1) =
2

σ
√

2π

∞∫
0

x2k+1e−
x2

2σ2 dx =

√
2

π

(2σ2)k+1

2σ

∞∫
0

yke−ydy

The last integral we recognize as being equal to k! and we finally obtain the absolute
moments of the normal distribution as

E(|x|n) =

{
(n− 1)!!σn for n = 2k√

2
π
2kk!σ2k+1 for n = 2k + 1

The half-width at half-height of the normal distribution is given by
√

2 ln 2σ ≈ 1.177σ
which may be useful to remember when estimating σ using a ruler.

34.3 Cumulative Function

The distribution function, or cumulative function, may be expressed in term of the incom-
plete gamma function P as

F (z) =


1
2

+ 1
2
P
(

1
2
, z2

2

)
if z ≥ 0

1
2
− 1

2
P
(

1
2
, z2

2

)
if z < 0

or we may use the error function erf(z/
√

2) in place of the incomplete gamma function.

34.4 Characteristic Function

The characteristic function for the normal distribution is easily found from the general
definition

φ(t) = E
(
eıtx

)
= exp

{
µıt− 1

2
σ2t2

}
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34.5 Addition Theorem

The so called Addition theorem for normally distributed variables states that any linear
combination of independent normally distributed random variables xi (i = 1, 2, . . . , n) is
also distributed according to the normal distribution.

If each xi is drawn from a normal distribution with mean µi and variance σ2
i then regard

the linear combination

S =
n∑

i=1

aixi

where ai are real coefficients. Each term aixi has characteristic function

φaixi
(t) = exp

{
(aiµi)ıt− 1

2
(a2

iσ
2
i )t

2
}

and thus S has characteristic function

φS(t) =
n∏

i=1

φaixi
(t) = exp

{(
n∑

i=1

aiµi

)
ıt− 1

2

(
n∑

i=1

a2
iσ

2
i

)
t2
}

which is seen to be a normal distribution with mean
∑
aiµi and variance

∑
a2

iσ
2
i .

34.6 Independence of x and s2

A unique property of the normal distribution is the independence of the sample statistics
x and s2, estimates of the mean and variance of the distribution. Recall that the definition
of these quantities are

x =
1

n

n∑
i=1

xi and s2 =
1

n− 1

n∑
i=1

(xi − x)2

where x is an estimator of the true mean µ and s2 is the usual unbiased estimator for the
true variance σ2.

For a population of n events from a normal distribution x has the distributionN(µ, σ2/n)
and (n− 1)s2/σ2 is distributed according to a chi-square distribution with n− 1 degrees of
freedom. Using the relation

n∑
i=1

(
xi − µ

σ

)2

=
(n− 1)s2

σ2
+

(
x− µ

σ/
√
n

)2

and creating the joint characteristic function for the variables (n − 1)s2/σ2 and (
√
n(x −

µ)/σ2)2 one may show that this function factorizes thus implying independence of these
quantities and thus also of x and s2.

In summary the “independence theorem” states that given n independent random vari-
ables with identical normal distributions the two statistics x and s2 are independent. Also
conversely it holds that if the mean x and the variance s2 of a random sample are indepen-
dent then the population is normal.
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34.7 Probability Content

The probability content of the normal distribution is often referred to in statistics. When
the term one standard deviation is mentioned one immediately thinks in terms of a proba-
bility content of 68.3% within the symmetric interval from the value given.

Without loss of generality we may treat the standard normal distribution only since
the transformation from a more general case is straightforward putting z = (x− µ)/σ. In
different situation one may want to find

• the probability content, two-side or one-sided, to exceed a certain number of standard
deviations, or

• the number of standard deviations corresponding to a certain probability content.

In calculating this we need to evaluate integrals like

α =
∫ 1√

2π
e−

t2

2 dt

There are no explicit solution to this integral but it is related to the error function (see
section 13) as well as the incomplete gamma function (see section 42).

1√
2π

z∫
−z

e−
z2

2 = erf

(
z√
2

)
= P

(
1

2
,
z2

2

)

These relations may be used to calculate the probability content. Especially the error
function is often available as a system function on different computers. Beware, however,
that it seems to be implemented such that erf(z) is the symmetric integral from −z to z
and thus the

√
2 factor should not be supplied. Besides from the above relations there are

also excellent approximations to the integral which may be used.
In the tables below we give the probability content for exact z-values (left-hand table)

as well as z-values for exact probability contents (right-hand table).

z
z∫

−∞

z∫
−z

∞∫
z

0.0 0.50000 0.00000 0.50000
0.5 0.69146 0.38292 0.30854
1.0 0.84134 0.68269 0.15866
1.5 0.93319 0.86639 0.06681
2.0 0.97725 0.95450 0.02275
2.5 0.99379 0.98758 6.210 · 10−3

3.0 0.99865 0.99730 1.350 · 10−3

3.5 0.99977 0.99953 2.326 · 10−4

4.0 0.99997 0.99994 3.167 · 10−5

4.5 1.00000 0.99999 3.398 · 10−6

5.0 1.00000 1.00000 2.867 · 10−7

6.0 1.00000 1.00000 9.866 · 10−10

7.0 1.00000 1.00000 1.280 · 10−12

8.0 1.00000 1.00000 6.221 · 10−16

z
z∫

−∞

z∫
−z

∞∫
z

0.00000 0.5 0.0 0.5
0.25335 0.6 0.2 0.4
0.67449 0.75 0.5 0.25
0.84162 0.8 0.6 0.2
1.28155 0.9 0.8 0.1
1.64485 0.95 0.9 0.05
1.95996 0.975 0.95 0.025
2.32635 0.99 0.98 0.01
2.57583 0.995 0.99 0.005
3.09023 0.999 0.998 0.001
3.29053 0.9995 0.999 0.0005
3.71902 0.9999 0.9998 0.0001
3.89059 0.99995 0.9999 0.00005
4.26489 0.99999 0.99998 0.00001
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It is sometimes of interest to scrutinize extreme significance levels which implies inte-
grating the far tails of a normal distribution. In the table below we give the number of
standard deviations, z, required in order to achieve a one-tailed probability content of 10−n.

z-values for which 1√
2π

∞∫
z
e−z2/2dz = 10−n for n = 1, 2, . . . , 23

n z n z n z n z n z
1 1.28155 6 4.75342 11 6.70602 16 8.22208 21 9.50502
2 2.32635 7 5.19934 12 7.03448 17 8.49379 22 9.74179
3 3.09023 8 5.61200 13 7.34880 18 8.75729 23 9.97305
4 3.71902 9 5.99781 14 7.65063 19 9.01327
5 4.26489 10 6.36134 15 7.94135 20 9.26234

Below are also given the one-tailed probability content for a standard normal distribu-
tion in the region from z to ∞ (or −∞ to −z). The information in the previous as well as
this table is taken from [26].

Probability content Q(z) = 1√
2π

∞∫
z
e−z2/2dz for z = 1, 2, . . . , 50, 60, . . . , 100, 150, . . . , 500

z − logQ(z) z − logQ(z) z − logQ(z) z − logQ(z) z − logQ(z)
1 0.79955 14 44.10827 27 160.13139 40 349.43701 80 1392.04459
2 1.64302 15 50.43522 28 172.09024 41 367.03664 90 1761.24604
3 2.86970 16 57.19458 29 184.48283 42 385.07032 100 2173.87154
4 4.49934 17 64.38658 30 197.30921 43 403.53804 150 4888.38812
5 6.54265 18 72.01140 31 210.56940 44 422.43983 200 8688.58977
6 9.00586 19 80.06919 32 224.26344 45 441.77568 250 13574.49960
7 11.89285 20 88.56010 33 238.39135 46 461.54561 300 19546.12790
8 15.20614 21 97.48422 34 252.95315 47 481.74964 350 26603.48018
9 18.94746 22 106.84167 35 267.94888 48 502.38776 400 34746.55970
10 23.11805 23 116.63253 36 283.37855 49 523.45999 450 43975.36860
11 27.71882 24 126.85686 37 299.24218 50 544.96634 500 54289.90830
12 32.75044 25 137.51475 38 315.53979 60 783.90743
13 38.21345 26 148.60624 39 332.27139 70 1066.26576

Beware, however, that extreme significance levels are purely theoretical and that one
seldom or never should trust experimental limits at these levels. In an experimental situa-
tions one rarely fulfills the statistical laws to such detail and any bias or background may
heavily affect statements on extremely small probabilities.

Although one normally would use a routine to find the probability content for a normal
distribution it is sometimes convenient to have a “classical” table available. In table 6 on
page 176 we give probability contents for a symmetric region from −z to z for z-values
ranging from 0.00 to 3.99 in steps of 0.01. Conversely we give in table 7 on page 177 the
z-values corresponding to specific probability contents from 0.000 to 0.998 in steps of 0.002.
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34.8 Random Number Generation

There are many different methods to obtain random numbers from a normal distribution
some of which are reviewed below. It is enough to consider the case of a standard normal
distribution since given such a random number z we may easily obtain one from a general
normal distribution by making the transformation x = µ+ σz.

Below f(x) denotes the standard normal distribution and if not explicitly stated all
variables denoted by ξ are uniform random numbers in the range from zero to one.

34.8.1 Central Limit Theory Approach

The sum of n independent random numbers from a uniform distribution between zero and
one, Rn, has expectation value E(Rn) = n/2 and variance V (Rn) = n/12. By the central
limit theorem the quantity

zn =
Rn − E(Rn)√

V (Rn)
=
Rn − n

2√
n
12

approaches the standard normal distribution as n→∞. A practical choice is n = 12 since
this expression simplifies to z12 = R12 − 6 which could be taken as a random number from
a standard normal distribution. Note, however, that this method is neither accurate nor
fast.

34.8.2 Exact Transformation

The Box-Muller transformation used to find random numbers from the binormal distribu-
tion (see section 6.5 on page 22), using two uniform random numbers between zero and
one in ξ1 and ξ2,

z1 =
√
−2 ln ξ1 sin 2πξ2

z2 =
√
−2 ln ξ1 cos 2πξ2

may be used to obtain two independent random numbers from a standard normal distri-
bution.

34.8.3 Polar Method

The above method may be altered in order to avoid the cosine and sine by

i Generate u and v as two uniformly distributed random numbers in the range from -1
to 1 by u = 2ξ1 − 1 and v = 2ξ2 − 1.

ii Calculate w = u2 + v2 and if w > 1 then go back to i.

iii Return x = uz and y = vz with z =
√
−2 lnw/w as two independent random numbers

from a standard normal distribution.

This method is often faster than the previous since it eliminates the sine and cosine
at the slight expense of 1 − π/4 ≈ 21% rejection in step iii and a few more arithmetic
operations. As is easily seen u/

√
w and v/

√
w plays the role of the cosine and the sine in

the previous method.
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34.8.4 Trapezoidal Method

The maximum trapezoid that may be inscribed under the standard normal curve covers an
area of 91.95% of the total area. Random numbers from a trapezoid is easily obtained by a
linear combination of two uniform random numbers. In the remaining cases a tail-technique
and accept-reject techniques, as described in figure 26, are used.

Figure 26: Trapezoidal method

Below we describe, in some detail, a slightly modified version of what is presented in
[28]. For more exact values of the constants used see this reference.

i Generate two uniform random numbers between zero and one ξ and ξ0

ii If ξ < 0.9195 generate a random number from the trapezoid by x = 2.404ξ0 + 1.984ξ−
2.114 and exit

iii Else if ξ < 0.9541 (3.45% of all cases) generate a random number from the tail x > 2.114

a Generate two uniform random numbers ξ1 and ξ2

b Put x = 2.1142 − 2 ln ξ1 and if xξ2
2 > 2.1142 then go back to a

c Put x =
√
x and go to vii

iv Else if ξ < 0.9782 ( 2.41% of all cases) generate a random number from the region
0.290 < x < 1.840 between the normal curve and the trapezoid

a Generate two uniform random numbers ξ1 and ξ2

b Put x = 0.290 + 1.551ξ1 and if f(x)− 0.443 + 0.210x < 0.016ξ2 then go to a

c Go to vii

v Else if ξ < 0.9937 ( 1.55% of all cases) generate a random number from the region
1.840 < ξ < 2.114 between the normal curve and the trapezoid

a Generate two uniform random numbers ξ1 and ξ2

b Put x = 1.840 + 0.274ξ1 and if f(x)− 0.443 + 0.210x < 0.043ξ2 then go to a
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c Go to vii

vi Else, in 0.63% of all cases, generate a random number from the region 0 < x < 0.290
between the normal curve and the trapezoid by

a Generate two uniform random numbers ξ1 and ξ2

b Put x = 0.290ξ1 and if f(x)− 0.383 < 0.016ξ2 then go back to a

vii Assign a minus sign to x if ξ0 ≥ 1
2

34.8.5 Center-tail method

Ahrens and Dieter [28] also proposes a so called center-tail method. In their article they
treat the tails outside |z| >

√
2 with a special tail method which avoids the logarithm.

However, it turns out that using the same tail method as in the previous method is even
faster. The method is as follows:

i Generate a uniform random number ξ and use the first bit after the decimal point as
a sign bit s i.e. for ξ ≤ 1

2
put ξ = 2ξ and s = −1 and for ξ > 1

2
put ξ = 2ξ − 1 and

s = 1

ii If ξ > 0.842700792949715 (the area for −
√

2 < z <
√

2) go to vi.

iii Center method: Generate ξ0 and set ν = ξ + 0

iv Generate ξ1 and ξ2 and set ν∗ = max(ξ1, ξ2).
If ν < ν∗ calculate y = ξ0

√
2 and go to viii

v Generate ξ1 and ξ2 and set ν = max(ξ1, ξ2)
If ν < ν∗ go to iv else go to iii

vi Tail method: Generate ξ1 and set y = 1− ln ξ1

vii Generate ξ2 and if yξ2
2 > 1 go to vi else put y =

√
y

viii Set x = sy
√

2.

34.8.6 Composition-rejection Methods

In reference [21] two methods using the composition-rejection method is proposed. The
first one, attributed to Butcher [23] and Kahn, uses only one term in the sum and has

α =
√

2e/π, f(x) = exp {−x} and g(x) = exp {−(x− 1)2/2}. The algorithm is as follows:

i Generate ξ1 and ξ2

ii Determine x = − ln ξ1, i.e. a random number from f(x)

iii Determine g(x) = exp {−(x− 1)2/2}

iv If ξ2 > g(x) then go to i
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v Decide a sign either by generating a new random number, or by using ξ2 for which
0 < ξ2 ≤ g(x) here, and exit with x with this sign.

The second method is originally proposed by J. C. Butcher [23] and uses two terms

α1 =
√

2
π

f1(x) = 1 g1(x) = e−
x2

2 for 0 ≤ x ≤ 1

α2 = 1/
√

2π f2(x) = 2e−2(x−1) g2(x) = e−
(x−2)2

2 for x > 1

i Generate ξ1 and ξ2

ii If ξ1 − 2
3
> 0 then determine x = 1− 1

2
ln(3ξ1 − 2) and z = 1

2
(x− 2)2 else determine

x = 3ξ1/2 and z = x2/2

iii Determine g = e−z

iv If ξ2 > g the go to i

v Determine the sign of ξ2 − g/2 and exit with x with this sign.

34.8.7 Method by Marsaglia

A nice method proposed by G. Marsaglia is based on inscribing a spline function beneath the
standard normal curve and subsequently a triangular distribution beneath the remaining
difference. See figure 27 for a graphical presentation of the method. The algorithm used is
described below.

Figure 27: Marsaglia method

• The sum of three uniform random numbers ξ1, ξ2, and ξ3 follow a parabolic spline
function. Using x = 2(ξ1 + ξ2 + ξ3 − 3

2
) we obtain a distribution

f1(x) =


(3− x2)/8 if |x| ≤ 1
(3− |x|)2/16 if 1 < |x| ≤ 3
0 if |x| > 3

Maximizing α1 with the constraint f(x) − α1f1(x) ≥ 0 in the full interval |x| ≤ 3
gives α1 = 16e−2/

√
2π ≈ 0.8638554 i.e. in about 86% of all cases such a combination

is made.
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• Moreover, a triangular distribution given by making the combination x = 3
2
(ξ1+ξ2−1)

leading to a function

f2(x) = 4
9

(
3
2
− |x|

)
for |x| < 3

2

and zero elsewhere. This function may be inscribed under the remaining curve
f(x) − f1(x) maximizing α2 such that f3(x) = f(x) − α1f1(x) − α2f2(x) ≥ 0 in
the interval |x| ≤ 3

2
. This leads to a value α2 ≈ 0.1108 i.e. in about 11% of all cases

this combination is used

• The maximum value of f3(x) in the region |x| ≤ 3 is 0.0081 and here we use a
straightforward reject-accept technique. This is done in about 2.26% of all cases.

• Finally, the tails outside |x| > 3, covering about 0.27% of the total area is dealt with
with a standard tail-method where

a Put x = 9− 2 ln ξ1

b If xξ2
2 > 9 then go to a

c Else generate a sign s = +1 or s = −1 with equal probability and exit with
x = s

√
x

34.8.8 Histogram Technique

Yet another method due to G. Marsaglia and collaborators [37] is one where a histogram
with k bins and bin-width c is inscribed under the (folded) normal curve. The difference
between the normal curve and the histogram is treated with a combination of triangular
distributions and accept-reject techniques as well as the usual technique for the tails. Trying
to optimize fast generation we found k = 9 and c = 1

3
to be a fair choice. This may, however,

not be true on all computers. See figure 28 for a graphical presentation of the method.

Figure 28: Histogram method

The algorithm is as follows:

i Generate ξ1 and chose which region to generate from. This is done e.g. with a
sequential search in a cumulative vector where the areas of the regions have been
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sorted in descending order. The number of elements in this vector is 2k+ 1
c
+1 which

for the parameters mentioned above becomes 22.

ii If a histogram bin i (i = 1, 2, . . . , k) is selected then determine x = (ξ2 + i− 1)c and
go to vii.

iii If an inscribed triangle i (i = 1, 2, . . . , 1
c
) then determine x = (min(ξ2, ξ3) + 1 − i)c

and go to vii.

iv If subscribed triangle i (i = 1
c
+1, . . . , k) then determine x = (min(ξ2, ξ3)+i−1)c and

accept this value with a probability equal to the ratio between the normal curve and
the triangle at this x-value (histogram subtracted in both cases) else iterate. When
a value is accepted then go to vii.

v For the remaining 1
c

regions between the inscribed triangles and the normal curve for
x < 1 use a standard reject accept method in each bin and then go to vii.

vi If the tail region is selected then use a standard technique e.g. (a) x = (kc)2−2 ln ξ2,
(b) if xξ2

3 > (kc)2 then go to a else use x =
√
x.

vii Attach a random sign to x and exit. This is done by either generating a new uniform
random number or by saving the first bit of ξ1 in step i. The latter is faster and the
degradation in precision is negligible.

34.8.9 Ratio of Uniform Deviates

A technique using the ratio of two uniform deviates was propose by A. J. Kinderman and
J. F. Monahan in 1977 [38]. It is based on selecting an acceptance region such that the ratio
of two uniform pseudorandom numbers follow the standard normal distribution. With u

and v uniform random numbers, u between 0 and 1 and v between −
√

2/e and
√

2/e, such
a region is defined by

v2 < −4 u2 lnu

as is shown in the left-hand side of figure 29.
Note that it is enough to consider the upper part (v > 0) of the acceptance limit due to

the symmetry of the problem. In order to avoid taking the logarithm, which may slow the
algorithm down, simpler boundary curves were designed. An improvement to the original
proposal was made by Joseph L. Leva in 1992 [39,40] choosing the same quadratic form for
both the lower and the upper boundary namely

Q(u, v) = (u− s)2 − b(u− s)(v − t) + (a− v)2

Here (s, t) = (0.449871, -0.386595) is the center of the ellipses and a = 0.196 and b = 0.25472
are suitable constants to obtain tight boundaries. In the right-hand side of figure 29 we
show the value of the quadratic form at the acceptance limit Q(u, 2u

√
− lnu) as a function

of u. It may be deduced that only in the interval r1 < Q < r2 with r1 = 0.27597 and
r2 = 0.27846 we still have to evaluate the logarithm.

The algorithm is as follows:
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Figure 29: Method using ratio between two uniform deviates

i Generate uniform random numbers u = ξ1 and v = 2
√

2/e(ξ2 − 1
2
).

ii Evaluate the quadratic form Q = x2 + y(ay − bx) with x = u− s and y = |v| − t.

iii Accept if inside inner boundary, i.e. if Q < r1, then go to vi.

iv Reject if outside upper boundary, i.e. if Q > r2, then go to i.

v Reject if outside acceptance region, i.e. if v2 > −4u2 lnu, then go to i.

vi Return the ratio v/u as a pseudorandom number from a standard normal distribution.

On average 2.738 uniform random numbers are consumed and 0.012 logarithms are com-
puted per each standard normal random number obtained by this algorithm. As a com-
parison the number of logarithmic evaluations without cutting on the boundaries, skipping
steps ii through iv above, would be 1.369. The penalty when using logarithms on modern
computers is not as severe as it used to be but still some efficiency is gained by using the
proposed algorithm.

34.8.10 Comparison of random number generators

Above we described several methods to achieve pseudorandom numbers from a standard
normal distribution. Which one is the most efficient may vary depending on the actual
implementation and the computer it is used at. To give a rough idea we found the following
times per random number8 (in the table are also given the average number of uniform

8The timing was done on a Digital Personal Workstation 433au workstation running Unix version 4.0D
and all methods were programmed in standard Fortran as functions giving one random number at each
call.
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pseudorandom numbers consumed per random number in our implementations)

Method section µs/r.n. Nξ/r.n. comment
Trapezoidal method 34.8.4 0.39 2.246
Polar method 34.8.3 0.41 1.273 pair
Histogram method 34.8.8 0.42 2.121
Box-Muller transformation 34.8.2 0.44 1.000 pair
Spline functions 34.8.7 0.46 3.055
Ratio of two uniform deviates 34.8.9 0.55 2.738
Composition-rejection, two terms 34.8.6 0.68 2.394
Center-tail method 34.8.5 0.88 5.844
Composition-rejection, one term 34.8.6 0.90 2.631
Central limit method approach 34.8.1 1.16 12.000 inaccurate

The trapezoidal method is thus fastest but the difference is not great as compared to
some of the others. The central limit theorem method is slow as well as inaccurate although
it might be the easiest to remember. The other methods are all exact except for possible
numerical problems. ”Pair” indicates that these generators give two random numbers at a
time which may implies that either one is not used or one is left pending for the next call
(as is the case in our implementations).
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34.9 Tests on Parameters of a Normal Distribution

For observations from a normal sample different statistical distributions are applicable in
different situations when it comes to estimating one or both of the parameters µ and σ. In
the table below we try to summarize this in a condensed form.

TESTS OF MEAN AND VARIANCE OF NORMAL DISTRIBUTION

H0 Condition Statistic Distribution

µ = µ0 σ2 known x−µ0

σ/
√
n

N(0, 1)

σ2 unknown x−µ0

s/
√
n

tn−1

σ2 = σ2
0 µ known (n−1)s2

σ2
0

=
n∑
i=1

(xi−µ)2

σ2
0

χ2
n

µ unknown (n−1)s2

σ2
0

=
n∑
i=1

(xi−x)2
σ2

0
χ2
n−1

µ1 = µ2 = µ σ2
1 = σ2

2 = σ2 known x−y
σ
√

1
n+ 1

m

N(0, 1)

σ2
1 6= σ2

2 known x−y√
σ2
1

n +
σ2
2

m

N(0, 1)

σ2
1 = σ2

2 = σ2 unknown x−y
s
√

1
n+ 1

m

tn+m−2

s = (n−1)s21+(m−1)s22
n+m−2

σ2
1 6= σ2

2 unknown x−y√
s2
1
n +

s2
2

m

≈ N(0, 1)

σ2
1 = σ2

2 µ1 6= µ2 known s21
s22

=
1

n−1

n∑
i=1

(xi−µ1)2

1
m−1

m∑
i=1

(yi−µ2)2
Fn,m

µ1 6= µ2 unknown s21
s22

=
1

n−1

n∑
i=1

(xi−x)2

1
m−1

m∑
i=1

(yi−y)2
Fn−1,m−1
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35 Pareto Distribution

35.1 Introduction

The Pareto distribution is given by

f(x;α, k) = αkα/xα+1

where the variable x ≥ k and the parameter α > 0 are real numbers. As is seen k is only
a scale factor.

The distribution has its name after its inventor the italian Vilfredo Pareto (1848–1923)
who worked in the fields of national economy and sociology (professor in Lausanne, Switzer-
land). It was introduced in order to explain the distribution of wages in society.

35.2 Cumulative Distribution

The cumulative distribution is given by

F (x) =

x∫
k

f(u)du = 1−
(
k

x

)α

35.3 Moments

Algebraic moments are given by

E(xn) =

∞∫
k

xnf(x) =

∞∫
k

xn αk
α

xα+1
=

[
− αkα

xα−n+1

]∞
k

=
αkα

α− n

which is defined for α > n.
Especially the expectation value and variance are given by

E(x) =
αk

α− 1
for α > 1

V (x) =
αk2

(α− 2)(α− 1)2
for α > 2

35.4 Random Numbers

To obtain a random number from a Pareto distribution we use the straightforward way of
solving the equation F (x) = ξ with ξ a random number uniformly distributed between zero
and one. This gives

F (x) = 1−
(
k

x

)α

= ξ ⇒ x =
k

(1− ξ)
1
α
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36 Poisson Distribution

36.1 Introduction

The Poisson distribution is given by

p(r;µ) =
µre−µ

r!

where the variable r is an integer (r ≥ 0) and the parameter µ is a real positive quantity.
It is named after the french mathematician Siméon Denis Poisson (1781–1840) who was
the first to present this distribution in 1837 (implicitly the distribution was known already
in the beginning of the 18th century).

As is easily seen by comparing two subsequent r-values the distribution increases up to
r + 1 < µ and then declines to zero. For low values of µ it is very skewed (for µ < 1 it is
J-shaped).

The Poisson distribution describes the probability to find exactly r events in a given
length of time if the events occur independently at a constant rate µ. An unbiased and
efficient estimator of the Poisson parameter µ for a sample with n observations xi is µ̂ = x̄,
the sample mean, with variance V (µ̂) = µ/n.

For µ → ∞ the distribution tends to a normal distribution with mean µ and variance
µ.

The Poisson distribution is one of the most important distributions in statistics with
many applications. Along with the properties of the distribution we give a few examples
here but for a more thorough description we refer to standard text-books.

36.2 Moments

The expectation value, variance, third and fourth central moments of the Poisson distribu-
tion are

E(r) = µ

V (r) = µ

µ3 = µ

µ4 = µ(1 + 3µ)

The coefficients of skewness and kurtosis are γ1 = 1/
√
µ and γ2 = 1/µ respectively, i.e.

they tend to zero as µ → ∞ in accordance with the distribution becoming approximately
normally distributed for large values of µ.

Algebraic moments may be found by the recursive formula

µ′k+1 = µ

{
µ′k +

dµ′k
dµ

}

and central moments by a similar formula

µk+1 = µ

{
kµk−1 +

dµk

dµ

}
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For a Poisson distribution one may note that factorial moments gk (cf page 6) and
cumulants κk (see section 2.5) become especially simple

gk = E(r(r − 1) · · · (r − k + 1)) = µk

κr = µ for all r ≥ 1

36.3 Probability Generating Function

The probability generating function is given by

G(z) = E(zr) =
∞∑

r=0

zrµ
re−µ

r!
= e−µ

∞∑
r=0

(µz)

r!
= eµ(z−1)

Although we mostly use the probability generating function in the case of a discrete distri-
bution we may also define the characteristic function

φ(t) = E(eıtr) = e−µ
∞∑

r=0

eıtrµ
r

r!
= exp

{
µ
(
eıt − 1

)}
a result which could have been given directly since φ(t) = G(eıt).

36.4 Cumulative Distribution

When calculating the probability content of a Poisson distribution we need the cumulative,
or distribution, function. This is easily obtained by finding the individual probabilities e.g.
by the recursive formula p(r) = p(r − 1)µ

r
starting with p(0) = e−µ.

There is, however, also an interesting connection to the incomplete Gamma function
[10]

P (r) =
r∑

k=0

µke−µ

k!
= 1− P (r + 1, µ)

with P (a, x) the incomplete Gamma function not to be confused with P (r).
Since the cumulative chi-square distribution also has a relation to the incomplete

Gamma function one may obtain a relation between these cumulative distributions namely

P (r) =
r∑

k=0

µke−µ

k!
= 1−

2µ∫
0

f(x; ν = 2r + 2)dx

where f(x; ν = 2r + 2) denotes the chi-square distribution with ν degrees of freedom.

36.5 Addition Theorem

The so called addition theorem states that the sum of any number of independent Poisson-
distributed variables is also distributed according to a Poisson distribution.

For n variables each distributed according to the Poisson distribution with parameters
(means) µi we find characteristic function

φ(r1 + r2 + . . .+ rn) =
n∏

i=1

exp
{
µi

(
eıt − 1

)}
= exp

{
n∑

i=1

µi

(
eıt − 1

)}
which is the characteristic function for a Poisson variable with parameter µ =

∑
µi.
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36.6 Derivation of the Poisson Distribution

For a binomial distribution the rate of “success” p may be very small but in a long series of
trials the total number of successes may still be a considerable number. In the limit p→ 0
and N →∞ but with Np = µ a finite constant we find

p(r) =

(
N

r

)
pr(1− p)N−r ≈ 1

r!

√
2πNNNe−N√

2π(N − r)(N − r)N−re−(N−r)

(
µ

N

)r (
1− µ

N

)N−r

=

=
1

r!

√
N

N − r

1(
1− r

N

)N e
−rµr

(
1− µ

N

)N−r

→ µre−µ

r!

as N →∞ and where we have used that limn→∞(1− x
n
)n = e−x and Stirling’s formula (se

section 42.2) for the factorial of a large number n! ≈
√

2πn nn e−n.
It was this approximation to the binomial distribution which S. D. Poisson presented

in his book in 1837.

36.7 Histogram

In a histogram of events we would regard the distribution of the bin contents as multi-
nomially distributed if the total number of events N were regarded as a fixed number.
If, however, we would regard the total number of events not as fixed but as distributed
according to a Poisson distribution with mean ν we obtain (with k bins in the histogram
and the multinomial probabilities for each bin in the vector p)

Given a multinomial distribution, denoted M(r;N, p), for the distribution of events into
bins for fixed N and a Poisson distribution, denoted P (N ; ν), for the distribution of N we
write the joint distribution

P(r,N) = M(r;N, p)P (N ; ν) =

(
N !

r1!r2! . . . rk!
pr1

1 p
r2
2 . . . prk

k

)(
νNe−ν

N !

)
=

=
(

1

r1!
(νp1)

r1e−νp1

)(
1

r2!
(νp2)

r2e−νp2

)
. . .
(

1

rk!
(νpk)

rke−νpk

)
where we have used that

k∑
i=1

pi = 1 and
k∑

i=1

ri = N

i.e. we get a product of independent Poisson distributions with means νpi for each individual
bin. A simpler case leading to the same result would be the classification into only two
groups using a binomial and a Poisson distribution.

The assumption of independent Poisson distributions for the number events in each bin
is behind the usual rule of using

√
N as the standard deviation in a bin with N entries and

neglecting correlations between bins in a histogram.
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36.8 Random Number Generation

By use of the cumulative technique e.g. forming the cumulative distribution by starting
with P (0) = e−µ and using the recursive formula

P (r) = P (r − 1)
µ

r

a random number from a Poisson distribution is easily obtained using one uniform random
number between zero and one. If µ is a constant the by far fastest generation is obtained
if the cumulative vector is prepared once for all.

An alternative is to obtain, in ρ, a random number from a Poisson distribution by
multiplying independent uniform random numbers ξi until

ρ∏
i=0

ξi ≤ e−µ

For large values of µ use the normal approximation but beware of the fact that the
Poisson distribution is a function in a discrete variable.
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37 Rayleigh Distribution

37.1 Introduction

The Rayleigh distribution is given by

f(x;α) =
x

α2
e−

x2

2α2

for real positive values of the variable x and a real positive parameter α. It is named after
the british physicist Lord Rayleigh (1842–1919), also known as Baron John William Strutt
Rayleigh of Terling Place and Nobel prize winner in physics 1904.

Note that the parameter α is simply a scale factor and that the variable y = x/α has
the simplified distribution g(y) = ye−y2/2.

Figure 30: The Rayleigh distribution

The distribution, shown in figure 30, has a mode at x = α and is positively skewed.

37.2 Moments

Algebraic moments are given by

E(xn) =

∞∫
0

xnf(x)dx =
1

2α2

∞∫
−∞

|x|n+1e−x2/2α2

i.e. we have a connection to the absolute moments of the Gauss distribution. Using these
(see section 34 on the normal distribution) the result is

E(xn) =

{√
π
2
n!!αn for n odd

2kk!α2k for n = 2k
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Specifically we note that the expectation value, variance, and the third and fourth
central moments are given by

E(x) = α

√
π

2
, V (x) = α2

(
2− π

2

)
, µ3 = α3(π − 3)

√
π

2
, and µ4 = α4

(
8− 3π2

4

)

The coefficients of skewness and kurtosis is thus

γ1 =
(π − 3)

√
π
2(

2− π
2

) 3
2

≈ 0.63111 and γ2 =
8− 3π2

4(
2− π

2

)2 − 3 ≈ 0.24509

37.3 Cumulative Distribution

The cumulative distribution, or the distribution function, is given by

F (x) =

x∫
0

f(y)dy =
1

a2

x∫
0

ye−
y2

2α2 dy =

x2

2α2∫
0

e−zdz = 1− e−
x2

2α2

where we have made the substitution z = y2

2α2 in order to simplify the integration. As it
should we see that F (0) = 0 and F (∞) = 1.

Using this we may estimate the median M by

F (M) =
1

2
⇒M = α

√
2 ln 2 ≈ 1.17741α

and the lower and upper quartiles becomes

Q1 = α
√
−2 ln 3

4
≈ 0.75853α and Q3 = α

√
2 ln 4 ≈ 1.66511α

and the same technique is useful when generating random numbers from the Rayleigh
distribution as is described below.

37.4 Two-dimensional Kinetic Theory

Given two independent coordinates x and y from normal distributions with zero mean and
the same variance σ2 the distance z =

√
x2 + y2 is distributed according to the Rayleigh

distribution. The x and y may e.g. be regarded as the velocity components of a particle
moving in a plane.

To realize this we first write

w =
z2

σ2
=
x2

σ2
+
y2

σ2

Since x/σ and y/σ are distributed as standard normal variables the sum of their squares
has the chi-squared distribution with 2 degrees of freedom i.e. g(w) = e−w/2/2 from which
we find

f(z) = g(w)

∣∣∣∣∣dwdz
∣∣∣∣∣ = g

(
z2

σ2

)
2z

σ2
=

z

σ2
e−

z2

2σ2

which we recognize as the Rayleigh distribution. This may be compared to the three-
dimensional case where we end up with the Maxwell distribution.
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37.5 Random Number Generation

To obtain random numbers from the Rayleigh distribution in an efficient way we make the
transformation y = x2/2α2 a variable which follow the exponential distribution g(y) = e−y.
A random number from this distribution is easily obtained by taking minus the natural
logarithm of a uniform random number. We may thus find a random number r from a
Rayleigh distribution by the expression

r = α
√
−2 ln ξ

where ξ is a random number uniformly distributed between zero and one.
This could have been found at once using the cumulative distribution putting

F (x) = ξ ⇒ 1− e−
x2

2α2 = ξ ⇒ x = α
√
−2 ln(1− ξ)

a result which is identical since if ξ is uniformly distributed between zero and one so is
1− ξ.

Following the examples given above we may also have used two independent random
numbers from a standard normal distribution, z1 and z2, and construct

r =
1

α

√
z2
1 + z2

2

However, this technique is not as efficient as the one outlined above.
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38 Student’s t-distribution

38.1 Introduction

The Student’s t-distribution is given by

f(t;n) =
Γ
(

n+1
2

)
√
nπΓ

(
n
2

) (1 +
t2

n

)−n+1
2

=

(
1 + t2

n

)−n+1
2

√
nB

(
1
2
, n

2

)
where the parameter n is a positive integer and the variable t is a real number. The
functions Γ and B are the usual Gamma and Beta functions. In figure 31 we show the
t-distribution for n values of 1 (lowest maxima), 2, 5 and ∞ (fully drawn and identical to
the standard normal distribution).

Figure 31: Graph of t-distribution for some values of n

If we change variable to x = t/
√
n and put m = n+1

2
the Student’s t-distribution

becomes

f(x;m) =
k

(1 + x2)m
with k =

Γ(m)

Γ
(

1
2

)
Γ
(
m− 1

2

) =
1

B
(

1
2
,m− 1

2

)
where k is simply a normalization constant and m is a positive half-integer.

38.2 History

A brief history behind this distribution and its name is the following. William Sealy Gosset
(1876-1937) had a degree in mathematics and chemistry from Oxford when he in 1899 began
working for Messrs. Guinness brewery in Dublin. In his work at the brewery he developed
a small-sample theory of statistics which he needed in making small-scale experiments.
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Due to company policy it was forbidden for employees to publish scientific papers and his
work on the t-ratio was published under the pseudonym “Student”. It is a very important
contribution to statistical theory.

38.3 Moments

The Student’s t-distribution is symmetrical around t = 0 and thus all odd central moments
vanish. In calculating even moments (note that algebraic and central moments are equal)
we make use of the somewhat simpler f(x;m) form given above with x = t√

n
which implies

the following relation between expectation values E(t2r) = nrE(x2r). Central moments of
even order are given by, with r an integer ≥ 0,

µ2r(x) =

∞∫
−∞

f(x;m)dx = k

∞∫
−∞

x2r

(1 + x2)m
dx = 2k

∞∫
0

x2r

(1 + x2)m
dx

If we make the substitution y = x2

1+x2 implying 1
1+x2 = 1 − y and x =

√
y

1−y
then dy =

2x
(1+x2)2

dx and we obtain

µ2r(x) = 2k

1∫
0

x2r

(1 + x2)m
· (1 + x2)2

2x
dy = k

1∫
0

x2r−1

(1 + x2)m−2
dy =

= k

1∫
0

(1− y)m−2

(√
y

1− y

)2r−1

dy = k

1∫
0

(1− y)m−r− 3
2yr− 1

2dy =

= kB(r +
1

2
,m− r − 1

2
) =

B(r + 1
2
,m− r − 1

2
)

B(1
2
,m− 1

2
)

The normalization constant k was given above and we may now verify this expression by
looking at µ0 = 1 giving k = 1/B(1

2
,m− 1

2
) and thus finally, including the nr factor giving

moments in t we have

µ2r(t) = nrµ2r(x) = nrB(r + 1
2
,m− r − 1

2
)

B(1
2
,m− 1

2
)

= nrB(r + 1
2
, n

2
− r)

B(1
2
, n

2
)

As can be seen from this expression we get into problems for 2r ≥ n and indeed those
moments are undefined or divergent9. The formula is thus valid only for 2r < n. A recursive
formula to obtain even algebraic moments of the t-distribution is

µ′2r = µ′2r−2 · n ·
r − 1

2
n
2
− r

starting with µ′0 = 1.
Especially we note that, when n is big enough so that these moments are defined,

the second central moment (i.e. the variance) is µ2 = V (t) = n
n−2

and the fourth central

moment is given by µ4 = 3n2

(n−2)(n−4)
. The coefficients of skewness and kurtosis are given by

γ1 = 0 and γ2 = 6
n−4

, respectively.

9See e.g. the discussion in the description of the moments for the Cauchy distribution which is the
special case where m = n = 1.
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38.4 Cumulative Function

In calculating the cumulative function for the t-distribution it turns out to be simplifying
to first estimate the integral for a symmetric region

t∫
−t

f(u)du =
1

√
nB

(
1
2
, n

2

) t∫
−t

(
1 +

u2

n

)−n+1
2

du =

=
2

√
nB

(
1
2
, n

2

) t∫
0

(
1 +

u2

n

)−n+1
2

du =

=
−2

√
nB

(
1
2
, n

2

)
n

n+t2∫
1

x
n+1

2 n
√
x

2x2
√
n
√

1− x
dx =

=
1

B
(

1
2
, n

2

) 1∫
n

n+t2

(1− x)−
1
2x

n
2
−1dx =

=
1

B
(

1
2
, n

2

) (B (n
2
, 1

2

)
−B n

n+t2

(
n
2
, 1

2

))
=

= 1− I n
n+t2

(
n
2
, 1

2

)
= I t2

n+t2

(
1
2
, n

2

)
where we have made the substitution x = n/(n + u2) in order to simplify the integration.
From this we find the cumulative function as

F (t) =


1
2
− 1

2
I t2

n+t2

(
1
2
, n

2

)
for −∞ < x < 0

1
2

+ 1
2
I x2

n+x2

(
1
2
, n

2

)
for 0 ≤ x <∞

38.5 Relations to Other Distributions

The distribution in F = t2 is given by

f(F ) =

∣∣∣∣∣ dtdF
∣∣∣∣∣ f(t) =

1

2
√
F
·

(
1 + F

n

)−n+1
2

√
nB(1

2
, n

2
)

=
n

n
2F− 1

2

B(1
2
, n

2
)(F + n)

n+1
2

which we recognize as a F -distribution with 1 and n degrees of freedom.
As n → ∞ the Student’s t-distribution approaches the standard normal distribution.

However, a better approximation than to create a simpleminded standardized variable,
dividing by the square root of the variance, is to use

z =
t
(
1− 1

4n

)
√

1 + t2

2n

which is more closely distributed according to the standard normal distribution.
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38.6 t-ratio

Regard t = x/
√

y
n

where x and y are independent variables distributed according to the

standard normal and the chi-square distribution with n degrees of freedom, respectively.
The independence implies that the joint probability function in x and y is given by

f(x, y;n) =

(
1√
2π
e−

x2

2

)y n
2
−1e−

y
2

2
n
2 Γ
(

n
2

)


where −∞ < x < ∞ and y > 0. If we change variables to t = x/
√

y
n

and u = y the

distribution in t and u, with −∞ < t <∞ and u > 0, becomes

f(t, u;n) =

∣∣∣∣∣
∣∣∣∣∣∂(x, y)

∂(t, u)

∣∣∣∣∣
∣∣∣∣∣ f(x, y;n)

The determinant is
√

u
n

and thus we have

f(t, u;n) =

√
u

n

(
1√
2π
e−

ut2

2n

)un
2
−1e−

u
2

2
n
2 Γ
(

n
2

)
 =

u
1
2
(n+1)−1e

−u
2

(
1+ t2

n

)
√
nπΓ

(
n
2

)
2

n+1
2

Finally, since we are interested in the marginal distribution in t we integrate over u

f(t;n) =

∞∫
0

f(t, u;n)du =
1

√
nπΓ

(
n
2

)
2

n+1
2

∞∫
0

u
n+1

2
−1e

−u
2

(
1+ t2

n

)
du =

=
1

√
nπΓ

(
n
2

)
2

n+1
2

∞∫
0

(
2v

1 + t2

n

)n+1
2
−1

e−v dv
1
2

(
1 + t2

n

) =

=

(
1 + t2

n

)−n+1
2

√
nπΓ

(
n
2

) ∞∫
0

v
n+1

2
−1e−vdv =

(
1 + t2

n

)−n+1
2

√
nπΓ

(
n
2

) Γ
(

n+1
2

)
=

(
1 + t2

n

)−n+1
2

√
nB

(
1
2
, n

2

)
where we made the substitution v = u

2

(
1 + t2

n

)
in order to simplify the integral which in

the last step is recognized as being equal to Γ
(

n+1
2

)
.

38.7 One Normal Sample

Regard a sample from a normal population N(µ, σ2) where the mean value x is distributed

as N(µ, σ2

n
) and (n−1)s2

σ2 is distributed according to the chi-square distribution with n − 1

degrees of freedom. Here s2 is the usual unbiased variance estimator s2 = 1
n−1

n∑
i=1

(xi − x)2

which in the case of a normal distribution is independent of x. This implies that

t =

x−µ
σ/
√

n√
(n−1)s2

σ2 /(n− 1)
=
x− µ

s/
√
n

is distributed according to Student’s t-distribution with n− 1 degrees of freedom. We may
thus use Student’s t-distribution to test the hypothesis that x = µ (see below).
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38.8 Two Normal Samples

Regard two samples {x1, x2, ..., xm} and {y1, y2, ..., yn} from normal distributions having
the same variance σ2 but possibly different means µx and µy, respectively. Then the
quantity (x− y)− (µx − µy) has a normal distribution with zero mean and variance equal

to σ2
(

1
m

+ 1
n

)
. Furthermore the pooled variance estimate

s2 =
(m− 1)s2

x + (n− 1)s2
y

m+ n− 2
=

m∑
i=1

(xi − x)2 +
n∑

i=1
(yi − y)2

m+ n− 2

is a normal theory estimate of σ2 with m+ n− 2 degrees of freedom10.
Since s2 is independent of x for normal populations the variable

t =
(x− y)− (µx − µy)

s
√

1
m

+ 1
n

has the t-distribution with m + n − 2 degrees of freedom. We may thus use Student’s
t-distribution to test the hypotheses that x−y is consistent with δ = µx−µy. In particular
we may test if δ = 0 i.e. if the two samples originate from population having the same
means as well as variances.

38.9 Paired Data

If observations are made in pairs (xi, yi) for i = 1, 2, ..., n the appropriate test statistic is

t =
d

sd

=
d

sd/
√
n

=
d√√√√ n∑

i=1

(di−d)2

n(n−1)

where di = xi − yi and d = x− y. This quantity has a t-distribution with n− 1 degrees of
freedom. We may also write this t-ratio as

t =

√
n · d√

s2
x + s2

y − 2Cxy

where s2
x and s2

y are the estimated variances of x and y and Cxy is the covariance between
them. If we would not pair the data the covariance term would be zero but the number of
degrees of freedom 2n− 2 i.e. twice as large. The smaller number of degrees of freedom in
the paired case is, however, often compensated for by the inclusion of the covariance.

38.10 Confidence Levels

In determining confidence levels or testing hypotheses using the t-distribution we define
the quantity tα,n from

F (tα,n) =

tα,n∫
−∞

f(t;n)dt = 1− α

10If y is a normal theory estimate of σ2 with k degrees of freedom then ky/σ2 is distributed according
to the chi-square distribution with k degrees of freedom.

145



i.e. α is the probability that a variable distributed according to the t-distribution with
n degrees of freedom exceeds tα,n. Note that due to the symmetry about zero of the
t-distribution tα,n = −t1−α,n.

In the case of one normal sample described above we may set a 1−α confidence interval
for µ

x− s√
n
tα/2,n−1 ≤ µ ≤ x+

s√
n
tα/2,n−1

Note that in the case where σ2 is known we would not use the t-distribution. The
appropriate distribution to use in order to set confidence levels in this case would be the
normal distribution.

38.11 Testing Hypotheses

As indicated above we may use the t-statistics in order to test hypotheses regarding the
means of populations from normal distributions.

In the case of one sample the null hypotheses would be H0: µ = µ0 and the alternative
hypothesis H1: µ 6= µ0. We would then use t = x−µ0

s/
√

n
as outlined above and reject H0 at

the α confidence level of significance if |t| > s√
n
tα/2,n−1. This test is two-tailed since we

do not assume any a priori knowledge of in which direction an eventual difference would
be. If the alternate hypothesis would be e.g. H1 : µ > µ0 then a one-tailed test would be
appropriate.

The probability to reject the hypothesis H0 if it is indeed true is thus α. This is a so
called Type I error. However, we might also be interested in the probability of committing
a Type II error implying that we would accept the hypothesis although it was wrong and
the distribution instead had a mean µ1. In addressing this question the t-distribution
could be modified yielding the non-central t-distribution. The probability content β of
this distribution in the confidence interval used would then be the probability of wrongly
accepting the hypothesis. This calculation would depend on the choice of α as well as on
the number of observations n. However, we do not describe details about this here.

In the two sample case we may want to test the null hypothesis H0: µx = µy as
compared to H1: µx 6= µy. Once again we would reject H0 if the absolute value of the

quantity t = (x− y)/s
√

1
m

+ 1
n

would exceed tα/2,n+m−2.

38.12 Calculation of Probability Content

In order to find confidence intervals or to test hypotheses we must be able to calculate
integrals of the probability density function over certain regions. We recall the formula

F (tα,n) =

tα,n∫
−∞

f(t;n)dt = 1− α

which defines the quantity tα,n for a specified confidence level α. The probability to get a
value equal to tα,n or higher is thus α.

Classically all text-books in statistics are equipped with tables giving values of tα,n for
specific α-values. This is sometimes useful and in table 8 on page 178 we show such a
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table giving points where the distribution has a cumulative probability content of 1−α for
different number of degrees of freedom.

However, it is often preferable to calculate directly the exact probability that one would
observe the actual t-value or worse. To calculate the integral on the left-hand side we differ
between the case where the number of degrees of freedom is an odd or even integer. The
equation above may either be adjusted such that a required α is obtained or we may
replace tα,n with the actual t-value found in order to calculate the probability for the
present outcome of the experiment.

The algorithm proposed for calculating the probability content of the t-distribution is
described in the following subsections.

38.12.1 Even number of degrees of freedom

For even n we have putting m = n
2

and making the substitution x = t√
n

1− α =

tα,n∫
−∞

f(t;n)dt =
Γ
(

n+1
2

)
√
nπΓ

(
n
2

) tα,n∫
−∞

dt(
1 + t2

n

)n+1
2

=
Γ
(
m+ 1

2

)
√
πΓ(m)

tα,n/
√

n∫
−∞

dx

(1 + x2)m+ 1
2

For convenience (or maybe it is rather laziness) we make use of standard integral tables
where we find the integral

∫ dx

(ax2 + c)m+ 1
2

=
x√

ax2 + c

m−1∑
r=0

22m−2r−1(m− 1)!m!(2r)!

(2m)!(r!)2cm−r (ax2 + c)r

where in our case a = c = 1. Introducing xα = tα,n/
√
n for convenience this gives

1− α =
Γ
(
m+ 1

2

)
(m− 1)!m!22m

√
πΓ(m)(2m)!

·

 xα

2
√

1 + x2
α

m−1∑
r=0

(2r)!

22r(r!)2 (1 + x2
α)r +

1

2


The last term inside the brackets is the value of the integrand at −∞ which is seen to equal
−1

2
. Looking at the factor outside the brackets using that Γ(n) = (n− 1)! for n a positive

integer, Γ
(
m+ 1

2

)
= (2m−1)!!

2m

√
π, and rewriting (2m)! = (2m)!!(2m−1)!! = 2mm!(2m−1)!!

we find that it in fact is equal to one. We thus have

1− α =
xα

2
√

1 + x2
α

m−1∑
r=0

(2r)!

22r(r!)2 (1 + x2
α)r +

1

2

In evaluating the sum it is useful to look at the individual terms. Denoting these by ur we
find the recurrence relation

ur = ur−1 ·
2r(2r − 1)

r222(1 + x2
α)

= ur−1 ·
1− 1

2r

1 + x2
α

where we start with u0 = 1.
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To summarize: in order to determine the probability α to observe a value t or bigger
from a t-distribution with an even number of degrees of freedom n we calculate

1− α =

t√
n

2
√

1 + t2

n

m−1∑
r=0

ur +
1

2

where u0 = 1 and ur = ur−1 ·
1− 1

2r

1+t2/n
.

38.12.2 Odd number of degrees of freedom

For odd n we have putting m = n−1
2

and making the substitution x = t√
n

1− α =

tα,n∫
−∞

f(t;n)dt =
Γ
(

n+1
2

)
√
nπΓ

(
n
2

) tα,n∫
−∞

dt(
1 + t2

n

)n+1
2

=
Γ(m+ 1)

√
πΓ

(
m+ 1

2

) xα∫
−∞

dx

(1 + x2)m+1

where we again have introduced xα = tα,n/
√
n. Once again we make use of standard

integral tables where we find the integral∫ dx

(a+ bx2)m+1 =
(2m)!

(m!)2

[
x

2a

m∑
r=1

r!(r − 1)!

(4a)m−r(2r)! (a+ bx2)r +
1

(4a)m

∫ dx

a+ bx2

]

where in our case a = b = 1. We obtain

1− α =
Γ(m+ 1)(2m)!

√
πΓ

(
m+ 1

2

)
m!24m

[
xα

2

m∑
r=1

4rr!(r − 1)!

(2r)! (1 + x2
α)r + arctanxα +

π

2

]

where the last term inside the brackets is the value of the integrand at −∞. The factor
outside the brackets is equal to 1

π
which is found using that Γ(n) = (n−1)! for n a positive

integer, Γ
(
m+ 1

2

)
= (2m−1)!!

2m

√
π, and (2m)! = (2m)!!(2m − 1)!! = 2m(m)!(2m − 1)!!. We

get

1− α =
1

π

[
xα

2

m∑
r=1

4rr!(r − 1)!

(2r)! (1 + x2
α)r + arctanxα +

π

2

]
=

=
1

π

[
xα

1 + x2
α

m∑
r=1

22r−1r!(r − 1)!

(2r)!(1 + x2
α)r−1

+ arctanxα +
π

2

]

To compute the sum we denote the terms by vr and find the recurrence relation

vr = vr−1
4r(r − 1)

2r(2r − 1)(1 + x2
α)

= vr−1

(
1− 1

2r−1

)
(1 + x2

α)

starting with v1 = 1.
To summarize: in order to determine the probability α to observe a value t or bigger

from a t-distribution with an odd number of degrees of freedom n we calculate

1− α =
1

π

 t√
n

1 + t2

n

n−1
2∑

r=1

vr + arctan
t√
n

+
1

2

where v1 = 1 and vr = vr−1 ·
1− 1

2r−1

1+t2/n
.
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38.12.3 Final algorithm

The final algorithm to evaluate the probability content from −∞ to t for a t-distribution
with n degrees of freedom is

• Calculate x = t√
n

• For n even:

◦ Put m = n
2

◦ Set u0 = 1, s = 0 and i = 0.

◦ For i = 0, 1, 2, ...,m− 1 set s = s+ ui, i = i+ 1 and ui = ui−1
1− 1

2i

1+x2 .

◦ α = 1
2
− 1

2
· x√

1+x2 s.

• For n odd:

◦ Put m = n−1
2

.

◦ Set v1 = 1, s = 0 and i = 1.

◦ For i = 1, 2, ...,m set s = s+ vi, i = i+ 1 and vi = vi−1 ·
1− 1

2i−1

1+x2 .

◦ α = 1
2
− 1

π
( x

1+x2 · s+ arctanx).

38.13 Random Number Generation

Following the definition we may define a random number t from a t-distribution, using
random numbers from a normal and a chi-square distribution, as

t =
z√
yn/n

where z is a standard normal and yn a chi-squared variable with n degrees of freedom. To
obtain random numbers from these distributions see the appropriate sections.
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39 Triangular Distribution

39.1 Introduction

The triangular distribution is given by

f(x;µ,Γ) =
−|x− µ|

Γ2
+

1

Γ

where the variable x is bounded to the interval µ − Γ ≤ x ≤ µ + Γ and the location and
scale parameters µ and Γ (Γ > 0) all are real numbers.

39.2 Moments

The expectation value of the distribution is E(x) = µ. Due to the symmetry of the
distribution odd central moments vanishes while even moments are given by

µn =
2Γn

(n+ 1)(n+ 2)

for even values of n. In particular the variance V (x) = µ2 = Γ2/6 and the fourth central
moment µ4 = Γ4/15. The coefficient of skewness is zero and the coefficient of kurtosis
γ2 = −0.6.

39.3 Random Number Generation

The sum of two pseudorandom numbers uniformly distributed between (µ − Γ)/2 and
(µ+Γ)/2 is distributed according to the triangular distribution. If ξ1 and ξ2 are uniformly
distributed between zero and one then

x = µ+ (ξ1 + ξ2 − 1)Γ or x = µ+ (ξ1 − ξ2)Γ

follow the triangular distribution.
Note that this is a special case of a combination

x = (a+ b)ξ1 + (b− a)ξ2 − b

with b > a ≥ 0 which gives a random number from a symmetric trapezoidal distribution
with vertices at (±b, 0) and (±a, 1

a+b
).
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40 Uniform Distribution

40.1 Introduction

The uniform distribution is, of course, a very simple case with

f(x; a, b) =
1

b− a
for a ≤ x ≤ b

The cumulative, distribution, function is thus given by

F (x; a, b) =


0 if x ≤ a
x−a
b−a

if a ≤ x ≤ b
1 if b ≤ x

40.2 Moments

The uniform distribution has expectation value E(x) = (a + b)/2, variance V (x) = (b −
a)2/12, µ3 = 0, µ4 = (b− a)4/80, coefficient of skewness γ1 = 0 and coefficient of kurtosis
γ2 = −1.2. More generally all odd central moments vanish and for n an even integer

µn =
(b− a)n

2n(n+ 1)

40.3 Random Number Generation

Since we assume the presence of a pseudorandom number generator giving random numbers
ξ between zero and one a random number from the uniform distribution is simply given by

x = (b− a)ξ + a

151



41 Weibull Distribution

41.1 Introduction

The Weibull distribution is given by

f(x; η, σ) =
η

σ

(
x

σ

)η−1

e−( x
σ )

η

where the variable x and the parameters η and σ all are positive real numbers. The
distribution is named after the swedish physicist Waloddi Weibull (1887–1979) a professor
at the Technical Highschool in Stockholm 1924–1953.

The parameter σ is simply a scale parameter and the variable y = x/σ has the distri-
bution

g(y) = η yη−1 e−yη

In figure 32 we show the distribution for a few values of η. For η < 1 the distribution has
its mode at y = 0, at η = 1 it is identical to the exponential distribution, and for η > 1
the distribution has a mode at

x =

(
η − 1

η

) 1
η

which approaches x = 1 as η increases (at the same time the distribution gets more sym-
metric and narrow).

Figure 32: The Weibull distribution
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41.2 Cumulative Distribution

The cumulative distribution is given ,by

F (x) =

x∫
0

f(u)du =

x∫
0

η

σ

(
u

σ

)η−1

e−(u
σ )

η

du =

(x/σ)η∫
0

e−ydy = 1− e−( x
σ )

η

where we have made the substitution y = (u/σ)η in order to simplify the integration.

41.3 Moments

Algebraic moments are given by

E(xk) =

∞∫
0

xkf(x)dx = σk

∞∫
0

y
k
η e−ydy = σkΓ

(
k

η
+ 1

)

where we have made the same substitution as was used when evaluating the cumulative
distribution above.

Especially the expectation value and the variance are given by

E(x) = σΓ

(
1

η
+ 1

)
and V (x) = σ2

Γ

(
2

η
+ 1

)
− Γ

(
1

η
+ 1

)2


41.4 Random Number Generation

To obtain random numbers from Weibull’s distribution using ξ, a random number uniformly
distributed from zero to one, we may solve the equation F (x) = ξ to obtain a random
number in x.

F (x) = 1− e−( x
σ )

η

= ξ ⇒ x = σ(− ln ξ)
1
η
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42 Appendix A: The Gamma and Beta Functions

42.1 Introduction

In statistical calculations for standard statistical distributions such as the normal (or Gaus-
sian) distribution, the Student’s t-distribution, the chi-squared distribution, and the F -
distribution one often encounters the so called Gamma and Beta functions. More specifi-
cally in calculating the probability content for these distributions the incomplete Gamma
and Beta functions occur. In the following we briefly define these functions and give nu-
merical methods on how to calculate them. Also connections to the different statistical
distributions are given. The main references for this has been [41,42,43] for the formalism
and [10] for the numerical methods.

42.2 The Gamma Function

The Gamma function is normally defined as

Γ(z) =

∞∫
0

tz−1e−tdt

where z is a complex variable with Re(z) > 0. This is the so called Euler’s integral form for
the Gamma function. There are, however, two other definitions worth mentioning. Firstly
Euler’s infinite limit form

Γ(z) = lim
n→∞

1 · 2 · 3 · · ·n
z(z + 1)(z + 2) · · · (z + n)

nz z 6= 0,−1,−2, . . .

and secondly the infinite product form sometimes attributed to Euler and sometimes to
Weierstrass

1

Γ(z)
= zγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n |z| <∞

where γ ≈ 0.5772156649 is Euler’s constant.
In figure 33 we show the Gamma function for real arguments from −5 to 5. Note the

singularities at x = 0,−1,−2, . . ..
For z a positive real integer n we have the well known relation to the factorial function

n! = Γ(n+ 1)

and, as the factorial function, the Gamma function satisfies the recurrence relation

Γ(z + 1) = zΓ(z)

In the complex plane Γ(z) has a pole at z = 0 and at all negative integer values of z.
The reflection formula

Γ(1− z) =
π

Γ(z) sin(πz)
=

πz

Γ(z + 1) sin(πz)

may be used in order to get function values for Re(z) < 1 from values for Re(z) > 1.
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Figure 33: The Gamma function

A well known approximation to the Gamma function is Stirling’s formula

Γ(z) = zze−z

√
2π

z

(
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+ . . .

)
for | arg z| < π and |z| → ∞ and where often only the first term (1) in the series expansion
is kept in approximate calculations. For the faculty of a positive integer n one often uses
the approximation

n! ≈
√

2πn nn e−n

which has the same origin and also is called Stirling’s formula.

42.2.1 Numerical Calculation

There are several methods to calculate the Gamma function in terms of series expansions
etc. For numerical calculations, however, the formula by Lanczos is very useful [10]

Γ(z + 1) =
(
z + γ + 1

2

)z+ 1
2 e−(z+γ+ 1

2)
√

2π
[
c0 +

c1
z + 1

+
c2

z + 2
+ · · ·+ cn

z + n
+ ε

]
for z > 0 and an optimal choice of the parameters γ, n, and c0 to cn. For γ = 5,
n = 6 and a certain set of c’s the error is smaller than |ε| < 2 · 10−10. This bound is
true for all complex z in the half complex plane Re(z) > 0. The coefficients normally
used are c0 = 1, c1 = 76.18009173, c2 = -86.50532033, c3 = 24.01409822, c4 = -1.231739516,
c5 = 0.00120858003, and c6 = -0.00000536382. Use the reflection formula given above to ob-
tain results for Re(z) < 1 e.g. for negative real arguments. Beware, however, to avoid the
singularities. While implementing routines for the Gamma function it is recommendable
to evaluate the natural logarithm in order to avoid numerical overflow.
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An alternative way of evaluating ln Γ(z) is given in references [44,45], giving formulæ
which also are used in order to evaluate the Digamma function below. The expressions
used for ln Γ(z) are

ln Γ(z) =



(
z − 1

2

)
ln z − z + 1

2
ln 2π + z

K∑
k=1

B2k

2k(2k−1)
z−2k +RK(z) for 0 < x0 ≤ x

ln Γ(z + n)− ln
n−1∏
k=0

(z + k) for 0 ≤ x < x0

ln π + ln Γ(1− z)− ln sinπz for x < 0

Here n = [x0]− [x] (the difference of integer parts, where x is the real part of z = x + ıy)
and e.g. K = 10 and x0 = 7.0 gives excellent accuracy i.e. small RK . Note that Kölbig [45]
gives the wrong sign on the (third) constant term in the first case above.

42.2.2 Formulæ

Below we list some useful relations concerning the Gamma function, faculties and semi-
faculties (denoted by two exclamation marks here). For a more complete list consult e.g.
[42].

Γ(z) =

1∫
0

(
ln

1

t

)z−1

dt

Γ(z + 1) = zΓ(z) = z!

Γ(z) = αz

∞∫
0

tz−1e−αtdt for Re(z) > 0, Re(α) > 0

Γ(k) = (k − 1)! for k ≥ 1 (integer, 0! = 1)

z! = Γ(z + 1) =

∞∫
0

e−ttzdt for Re(z) > −1

Γ
(

1
2

)
=

√
π

Γ
(
n+ 1

2

)
=

(2n− 1)!!

2n

√
π

Γ(z)Γ(1− z) =
π

sin πz

z!(−z)! =
πz

sin πz
(2m)!! = 2 · 4 · 6 · · · 2m = 2mm!

(2m− 1)!! = 1 · 3 · 5 · · · (2m− 1)

(2m)! = (2m)!!(2m− 1)!! = 2mm!(2m− 1)!!

42.3 Digamma Function

It is often convenient to work with the logarithm of the Gamma function in order to avoid
numerical overflow in the calculations. The first derivatives of this function

ψ(z) =
d

dz
ln Γ(z) =

1

Γ(z)

dΓ(z)

dz
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is known as the Digamma, or Psi, function. A series expansion of this function is given by

ψ(z + 1) = −γ −
∞∑

n=1

(
1

z + n
− 1

n

)
for z 6= 0,−1,−2,−3, . . .

where γ ≈ 0.5772156649 is Euler’s constant which is seen to be equal to −ψ(1). If the
derivative of the Gamma function itself is required we may thus simply use dΓ(z)/dz =
Γ(z) · ψ(z). Note that some authors write ψ(z) = d

dz
ln Γ(z + 1) = d

dz
z! for the Digamma

function, and similarly for the polygamma functions below, thus shifting the argument by
one unit.

In figure 34 we show the Digamma function for real arguments from −5 to 5. Note the
singularities at x = 0,−1,−2, . . ..

Figure 34: The Digamma, or Psi, function

For integer values of z we may write

ψ(n) = −γ +
n−1∑
m=1

1

m

which is efficient enough for numerical calculations for not too large values of n. Similarly
for half-integer values we have

ψ
(
n+ 1

2

)
= −γ − 2 ln 2 + 2

n∑
m=1

1

2m− 1

However, for arbitrary arguments the series expansion above is unusable. Following the
recipe given in an article by K. S. Kölbig [45] we use

ψ(z) =


ln z − 1

2z
−

K∑
k=1

B2k

2k
z−2k +RK(z) for 0 < x0 ≤ x

ψ(z + n)−
n−1∑
k=0

1
z+k

for 0 ≤ x < x0

ψ(−z) + 1
z

+ π cotπz for x < 0
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Here n = [x0]− [x] (the difference of integer parts, where x is the real part of z = x + ıy)
and we have chosen K = 10 and x0 = 7.0 which gives a very good accuracy (i.e. small
RK , typically less than 10−15) for double precision calculations. The main interest in
statistical calculations is normally function values for ψ(x) for real positive arguments
but the formulæ above are valid for any complex argument except for the singularities
along the real axis at z = 0,−1,−2,−3, . . .. The B2k are Bernoulli numbers given by
B0 = 1, B1 = −1

2
, B2 = 1

6
, B4 = − 1

30
, B6 = 1

42
, B8 = − 1

30
, B10 = 5

66
, B12 = − 691

2730
, B14 =

7
6
, B16 = −3617

510
, B18 = 43867

798
, B20 = −174611

330
. . .

42.4 Polygamma Function

Higher order derivatives of ln Γ(z) are called Polygamma functions11

ψ(n)(z) =
dn

dzn
ψ(z) =

dn+1

dzn+1
ln Γ(z) for n = 1, 2, 3, . . .

Here a series expansion is given by

ψ(n)(z) = (−1)n+1n!
∞∑

k=0

1

(z + k)n+1
for z 6= 0,−1,−2, . . .

For numerical calculations we have adopted a technique similar to what was used to
evaluate ln Γ(z) and ψ(z).

ψ(n)(z) =


(−1)n−1

[
t1 + n!

2zn+1 +
K∑

k=1
B2k

(2k+n−1)!
(2k)!z2k+n +RK(z)

]
for 0 < x0 ≤ x

ψ(n)(z +m)− (−1)nn!
m−1∑
k=0

1
(z+k)n+1 for 0 ≤ x < x0

where t1 = − ln z for n = 0 and t1 = (n − 1)!/zn for n > 0. Here m = [x0] − [x] i.e.
the difference of integer parts, where x is the real part of z = x + ıy. We treat primarily
the case for real positive arguments x and if complex arguments are required one ought
to add a third reflection formula as was done in the previous cases. Without any special
optimization we have chosen K = 14 and x0 = 7.0 which gives a very good accuracy, i.e.
small RK , typically less than 10−15, even for double precision calculations except for higher
orders and low values of x where the function value itself gets large.12

For more relations on the Polygamma (and the Digamma) functions see e.g. [42]. Two
useful relations used in this document in finding cumulants for some distributions are

ψ(n)(1) = (−1)n+1n!ζ(n+ 1)

ψ(n)(1
2
) = (−1)n+1n!(2n+1 − 1)ζ(n+ 1) = (2n+1 − 1)ψ(n)(1)

where ζ is Riemann’s zeta function (see page 59 and [31]).

11Sometimes the more specific notation tri-, tetra-, penta- and hexagamma functions are used for ψ′,
ψ′′, ψ(3) and ψ(4), respectively.

12For this calculation we need a few more Bernoulli numbers not given on page 158 above namely
B22 = 854513

138 , B24 = − 236364091
2730 , B26 = 8553103

6 , and B28 = − 23749461029
870
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42.5 The Incomplete Gamma Function

For the incomplete Gamma function there seem to be several definitions in the literature.
Defining the two integrals

γ(a, x) =

x∫
0

ta−1e−tdt and Γ(a, x) =

∞∫
x

ta−1e−tdt

with Re(a) > 0 the incomplete Gamma function is normally defined as

P (a, x) =
γ(a, x)

Γ(a)

but sometimes also γ(a, x) and Γ(a, x) is referred to under the same name as well as the
complement to P (a, x)

Q(a, x) = 1− P (a, x) =
Γ(a, x)

Γ(a)

Note that, by definition, γ(a, x) + Γ(a, x) = Γ(a).

In figure 35 the incomplete Gamma function P (a, x) is shown for a few a-values (0.5,
1, 5 and 10).

Figure 35: The incomplete Gamma function

42.5.1 Numerical Calculation

For numerical evaluations of P two formulæ are useful [10]. For values x < a+ 1 the series

γ(a, x) = e−xxa
∞∑

n=0

Γ(a)

Γ(a+ n+ 1)
xn
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converges rapidly while for x ≥ a+ 1 the continued fraction

Γ(a, x) = e−xxa
(

1

x+

1− a

1+

1

x+

2− a

1+

2

x+
· · ·
)

is a better choice.

42.5.2 Formulæ

Below we list some relations concerning the incomplete Gamma function. For a more
complete list consult e.g. [42].

Γ(a) = γ(a, x) + Γ(a, x)

γ(a, x) =

x∫
0

e−tta−1dt for Re(a) > 0

γ(a+ 1, x) = aγ(a, x)− xae−x

γ(n, x) = (n− 1)!

[
1− e−x

n−1∑
r=0

xr

r!

]

Γ(a, x) =

∞∫
x

e−tta−1dt

Γ(a+ 1, x) = aΓ(a, x)− xae−x

Γ(n, x) = (n− 1)!e−x
n−1∑
r=0

xr

r!
n = 1, 2, . . .

42.5.3 Special Cases

The usage of the incomplete Gamma function P (a, x) in calculations made in this document
often involves integer or half-integer values for a. These cases may be solved by the following
formulæ

P (n, x) = 1− e−x
n−1∑
k=0

xk

k!

P
(

1
2
, x
)

= erf
√
x

P (a+ 1, x) = P (a, x)− xae−x

Γ(a+ 1)
= P (a, x)− xae−x

aΓ(a)

P
(

n
2
, x
)

= erf
√
x−

n−1
2∑

k=1

x
2k−1

2 e−x

Γ
(

2k+1
2

) = erf
√
x− 2e−x

√
x

π

n−1
2∑

k=1

(2x)k−1

(2k − 1)!!

the last formula for odd values of n.

42.6 The Beta Function

The Beta function is defined through the integral formula

B(a, b) = B(b, a) =

1∫
0

ta−1(1− t)b−1dt
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and is related to the Gamma function by

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

The most straightforward way to calculate the Beta function is by using this last expression
and a well optimized routine for the Gamma function. In table 9 on page 179 expressions
for the Beta function for low integer and half-integer arguments are given.

Another integral, obtained by the substitution x = t/(1− t), yielding the Beta function
is

B(a, b) =

∞∫
0

xa−1

(1 + x)a+b
dx

42.7 The Incomplete Beta Function

The incomplete Beta function is defined as

Ix(a, b) =
Bx(a, b)

B(a, b)
=

1

B(a, b)

x∫
0

ta−1(1− t)b−1dt

for a, b > 0 and 0 ≤ x ≤ 1.
The function Bx(a, b), often also called the incomplete Beta function, satisfies the fol-

lowing formula

Bx(a, b) =

x
1−x∫
0

ua−1

(1 + u)a+b
du = B1(b, a)−B1−x(b, a) =

= xa

[
1

a
+

1− b

a+ 1
x+

(1− b)(2− b)

2!(a+ 2)
x2+

· · ·+ (1− b)(2− b) · · · (n− b)

n!(a+ n)
xn + · · ·

]

In figure 36 the incomplete Beta function is shown for a few (a, b)-values. Note that by
symmetry the (1, 5) and (5, 1) curves are reflected around the diagonal. For large values of
a and b the curve rises sharply from near zero to near one around x = a/(a+ b).

42.7.1 Numerical Calculation

In order to obtain Ix(a, b) the series expansion

Ix(a, b) =
xa(1− x)b

aB(a, b)

[
1 +

∞∑
n=0

B(a+ 1, n+ 1)

B(a+ b, n+ 1)
xn+1

]

is not the most useful formula for computations. The continued fraction formula

Ix(a, b) =
xa(1− x)b

aB(a, b)

[
1

1+

d1

1+

d2

1+
· · ·
]
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Figure 36: The incomplete Beta function

turns out to be a better choice [10]. Here

d2m+1 = − (a+m)(a+ b+m)x

(a+ 2m)(a+ 2m+ 1)
and d2m =

m(b−m)x

(a+ 2m− 1)(a+ 2m)

and the formula converges rapidly for x < (a+ 1)/(a+ b+ 1). For other x-values the same
formula may be used after applying the symmetry relation

Ix(a, b) = 1− I1−x(b, a)

42.7.2 Approximation

For higher values of a and b, well already from a + b > 6, the incomplete Beta function
may be approximated by

• For (a+ b+ 1)(1− x) ≤ 0.8 using an approximation to the chi-square distribution in
the variable χ2 = (a + b − 1)(1 − x)(3 − x) − (1 − x)(b − 1) with n = 2b degrees of
freedom.

• For (a+b+1)(1−x) ≥ 0.8 using an approximation to the standard normal distribution
in the variable

z =
3
[
w1

(
1− 1

9b

)
− w2

(
1− 1

9a

)]
√

w2
1

b
+

w2
2

a

where w1 = 3
√
bx and w2 = 3

√
a(1− x)

In both cases the maximum difference to the true cumulative distribution is below 0.005
all way down to the limit where a+ b = 6 [26].
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42.8 Relations to Probability Density Functions

The incomplete Gamma and Beta functions, P (a, x) and Ix(a, b) are related to many stan-
dard probability density functions or rather to their cumulative (distribution) functions.
We give very brief examples here. For more details on these distributions consult any book
in statistics.

42.8.1 The Beta Distribution

The cumulative distribution for the Beta distribution with parameters p and q is given by

F (x) =
1

B(p, q)

x∫
0

tp−1(1− t)q−1dt =
Bx(p, q)

B(p, q)
= Ix(p, q)

i.e. simply the incomplete Beta function.

42.8.2 The Binomial Distribution

For the binomial distribution with parameters n and p

n∑
j=k

(
n

j

)
pj(1− p)n−j = Ip(k, n−k+1)

i.e. the cumulative distribution may be obtained by

P (k) =
k∑

i=0

(
n

i

)
pi(1− p)n−i = I1−p(n−k, k+1)

However, be careful to evaluate P (n), which obviously is unity, using the incomplete Beta
function since this is not defined for arguments which are less or equal to zero.

42.8.3 The Chi-squared Distribution

The cumulative chi-squared distribution for n degrees of freedom is given by

F (x) =
1

2Γ
(

n
2

) x∫
0

(
x

2

)n
2
−1

e−
x
2 dx =

1

2Γ
(

n
2

)
x
2∫

0

y
n
2
−1e−y2dy =

=
γ
(

n
2
, x

2

)
Γ
(

n
2

) = P
(

n
2
, x

2

)

where x is the chi-squared value sometimes denoted χ2. In this calculation we made the
simple substitution y = x/2 in simplifying the integral.
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42.8.4 The F -distribution

The cumulative F -distribution with m and n degrees of freedom is given by

F (x) =
1

B
(

m
2
, n

2

) x∫
0

m
m
2 n

n
2F

m
2
−1

(mF + n)
m+n

2

dF =
1

B
(

m
2
, n

2

) x∫
0

(
mF

mF + n

)m
2
(

n

mF + n

)n
2 dF

F
=

=
1

B
(

m
2
, n

2

)
mx

mx+n∫
0

y
m
2 (1− y)

n
2

dy

y(1− y)
=

1

B
(

m
2
, n

2

)
mx

mx+n∫
0

y
m
2
−1(1− y)

n
2
−1dy =

=
Bz

(
m
2
, n

2

)
B
(

m
2
, n

2

) = Iz
(

m
2
, n

2

)

with z = mx/(n +mx). Here we have made the substitution y = mF/(mF + n), leading
to dF/F = dy/y(1− y), in simplifying the integral.

42.8.5 The Gamma Distribution

Not surprisingly the cumulative distribution for the Gamma distribution with parameters
a and b is given by an incomplete Gamma function.

F (x) =

x∫
0

f(x)dx =
ab

Γ(b)

x∫
0

ub−1e−audu =
ab

Γ(b)

ax∫
0

(
v

a

)b−1

e−v dv

a
=

=
1

Γ(b)

ax∫
0

vb−1e−vdv =
γ(b, ax)

Γ(b)
= P (b, ax)

42.8.6 The Negative Binomial Distribution

The negative binomial distribution with parameters n and p is related to the incomplete
Beta function via the relation

n∑
s=a

(
n+ s− 1

s

)
pn(1− p)s = I1−p(a, n)

Also the geometric distribution, a special case of the negative binomial distribution, is
connected to the incomplete Beta function, see summary below.

42.8.7 The Normal Distribution

The cumulative normal, or Gaussian, distribution is given by13

F (x) =


1
2

+ 1
2
P
(

1
2
, x2

2

)
if x ≥ 0

1
2
− 1

2
P
(

1
2
, x2

2

)
if x < 0

13Without loss of generality it is enough to regard the standard normal density.
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where P
(

1
2
, x2

2

)
is the incomplete Gamma function occurring as twice the integral of the

standard normal curve from 0 to x since

1√
2π

x∫
0

e−
t2

2 dt =
1

2
√
π

x2

2∫
0

e−u

√
u
du =

1

2Γ
(

1
2

)
x2

2∫
0

u−
1
2 e−udu =

=
γ
(

1
2
, x2

2

)
2Γ
(

1
2

) =
1

2
P
(

1
2
, x2

2

)

The so called error function may be expressed in terms of the incomplete Gamma
function

erf x =
2√
π

x∫
0

e−t2dt = P
(

1
2
, x2

)
as is the case for the complementary error function

erfc x = 1− erf x =
2√
π

∞∫
x

e−t2dt = 1− P
(

1
2
, x2

)

defined for x ≥ 0, for x < 0 use erf(−x) = −erf(x) and erfc(−x) = 1 + erf(x). See also
section 13.

There are also other series expansions for erf x like

erf x =
2√
π

[
x− x3

3 · 1!
+

x5

5 · 2!
− x7

7 · 3!
+ . . .

]
=

= 1− e−x2

√
πx

[
1− 1

2x2
+

1 · 3
(2x2)2

− 1 · 3 · 5
(2x2)3

+ . . .

]

42.8.8 The Poisson Distribution

Although the Poisson distribution is a probability density function in a discrete variable
the cumulative distribution may be expressed in terms of the incomplete Gamma function.
The probability for outcomes from zero to k − 1 inclusive for a Poisson distribution with
parameter (mean) µ is

Pµ(< k) =
k−1∑
n=0

µne−µ

n!
= 1− P (k, µ) for k = 1, 2, . . .

42.8.9 Student’s t-distribution

The symmetric integral of the t-distribution with n degrees of freedom, often denoted
A(t|n), is given by

A(t|n) =
1

√
nB

(
1
2
, n

2

) t∫
−t

(
1 +

x2

n

)−n+1
2

dx =
2

√
nB

(
1
2
, n

2

) t∫
0

(
n

n+ x2

)n+1
2

dx =
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=
2

√
nB

(
1
2
, n

2

)
t2

n+t2∫
0

(1− y)
n+1

2
n

2

(
1

1− y

)2√
1− y

ny
dy =

=
1

B
(

1
2
, n

2

)
t2

n+t2∫
0

y−
1
2 (1− y)

n
2
−1dy =

Bz

(
1
2
, n

2

)
B
(

1
2
, n

2

) = Iz
(

1
2
, n

2

)

with z = t2/(n+ t2).

42.8.10 Summary

The following table summarizes the relations between the cumulative, distribution, func-
tions of some standard probability density functions and the incomplete Gamma and Beta
functions.

Distribution Parameters Cumulative distribution Range

Beta p, q F (x) = Ix(p, q) 0 ≤ x ≤ 1

Binomial n, p P (k) = I1−p(n−k, k+1) k = 0, 1, . . . , n

Chi-squared n F (x) = P
(

n
2
, x

2

)
x ≥ 0

F m, n F (x) = I mx
n+mx

(
m
2
, n

2

)
x ≥ 0

Gamma a, b F (x) = P (b, ax) x ≥ 0

Geometric p P (k) = Ip(1, k) k = 1, 2, . . .

Negative binomial n, p P (k) = Ip(n, k+1) k = 0, 1, . . .

Standard normal F (x) = 1
2
− 1

2
P
(

1
2
, x2

2

)
−∞ < x < 0

F (x) = 1
2

+ 1
2
P
(

1
2
, x2

2

)
0 ≤ x <∞

Poisson µ P (k) = 1− P (k+1, µ) k = 0, 1, . . .

Student n F (x) = 1
2
− 1

2
I x2

n+x2

(
1
2
, n

2

)
−∞ < x < 0

F (x) = 1
2

+ 1
2
I x2

n+x2

(
1
2
, n

2

)
0 ≤ x <∞
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43 Appendix B: Hypergeometric Functions

43.1 Introduction

The hypergeometric and the confluent hypergeometric functions has a central role inasmuch
as many standard functions may be expressed in terms of them. This appendix is based on
information from [41,46,47] in which much more detailed information on the hypergeometric
and confluent hypergeometric function may be found.

43.2 Hypergeometric Function

The hypergeometric function, sometimes called Gauss’s differential equation, is given by
[41,46]

x(1− x)
∂2f(x)

∂x2
+ [c− (a+ b+ 1)x]

∂f(x)

∂x
− abf(x) = 0

One solution is

f(x) = 2F1(a, b, c;x) = 1 +
ab

c

x

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

x2

2!
+ · · · c 6= 0,−1,−2,−3, . . .

The range of convergence is |x| < 1 and x = 1, for c > a+ b, and x = −1, for c > a+ b− 1.
Using the so called Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
(a+ n− 1)!

(a− 1)!
=

Γ(a+ n)

Γ(a)

with (a)0 = 1 this solution may be written14 as

2F1(a, b, c;x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
=

Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

xn

n!

By symmetry 2F1(a, b, c;x) = 2F1(b, a, c;x) and sometimes the indices are dropped and
when the risk for confusion is negligible one simply writes F (a, b, c;x).

Another independent solution to the hypergeometric equation is

f(x) = x1−c
2F1(a+1−c, b+1−c, 2−c;x) c 6= 2, 3, 4, . . .

The n:th derivative of the hypergeometric function is given by

dn

dxn 2F1(a, b, c;x) =
(a)n(b)n

(c)n
2F1(a+n, b+n, c+n;x)

and

2F1(a, b, c;x) = (1− x)c−a−b
2F1(c−a, c−b, c;x)

Several common mathematical function may be expressed in terms of the hypergeomet-
ric function such as, the incomplete Beta function Bx(a, b), the complete elliptical integrals

14The notation 2F1 indicates the presence of two Pochhammer symbols in the numerator and one in the
denominator.
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K and E, the Gegenbauer functions T β
n (x), the Legendre functions Pn(x), Pm

n (x) and Qν(x)
(second kind), and the Chebyshev functions Tn(x), Un(x) and Vn(x)

(1− z)−a = 2F1(a, b, b; z)

ln(1 + z) = x · 2F1(1, 1, 2;−z)
arctan z = z · 2F1

(
1
2
, 1, 3

2
;−z2

)
arcsin z = z · 2F1

(
1
2
, 1

2
, 3

2
; z2

)
= z

√
1− z2

2F1

(
1, 1, 3

2
; z2

)
Bx(a, b) =

xa

a
2F1(a, 1−b, a+1;x)

K =

π
2∫

0

(1− k2 sin2 θ)−
1
2dθ =

π

2
2F1

(
1
2
, 1

2
, 1; k2

)

E =

π
2∫

0

(1− k2 sin2 θ)
1
2dθ =

π

2
2F1

(
1
2
,−1

2
, 1; k2

)

T β
n (x) =

(n+ 2β)!

2βn!β!
2F1

(
−n, n+2β+1, 1+β; 1−x

2

)
Pn(x) = 2F1

(
−n, n+ 1, 1; 1−x

2

)
Pm

n (x) =
(n+m)!

(n−m)!

(1− x2)
m
2

2mm!
2F1

(
m−n,m+n+1,m+1; 1−x

2

)
P2n(x) = (−1)n (2n− 1)!!

(2n)!!
2F1

(
−n, n+ 1

2
, 1

2
;x2

)
P2n+1(x) = (−1)n (2n+ 1)!!

(2n)!!
x · 2F1

(
−n, n+ 3

2
, 3

2
;x2

)
Qν(x) =

√
πν!(

ν + 1
2

)
!(2x)ν+1

2F1

(
ν+1
2
, ν

2
+1, ν+3

2
; 1

x2

)
Tn(x) = 2F1

(
−n, n, 1

2
; 1−x

2

)
Un(x) = (n+ 1) · 2F1

(
−n, n+2, 3

2
; 1−x

2

)
Vn(x) = n

√
1− x2

2F1

(
−n+1, n+1, 3

2
; 1−x

2

)
for Qν(x) the conditions are |x| > 1, | arg x| < π, and ν 6= −1,−2,−3, . . .. See [46] for
many more similar and additional formulæ.

43.3 Confluent Hypergeometric Function

The confluent hypergeometric equation, or Kummer’s equation as it is often called, is given
by [41,47]

x
∂2f(x)

∂x2
+ (c− x)

∂f(x)

∂x
− af(x) = 0

One solution to this equation is

f(x) = 1F1(a, c;x) = M(a, c;x) =
∞∑

n=0

(a)n

(c)n

xn

n!
c 6= 0,−1,−2, . . .
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This solution is convergent for all finite real x (or complex z). Another solution is given by

f(x) = x1−cM(a+1−c, 2−c;x) c 6= 2, 3, 4, . . .

Often a linear combination of the first and second solution is used

U(a, c;x) =
π

sin πc

[
M(a, c;x)

(a−c)!(c−1)!
− x1−cM(a+1−c, 2−c;x)

(a−1)!(1−c)!

]

The confluent hypergeometric functions M and U may be expressed in integral form as

M(a, c;x) =
Γ(c)

Γ(a)Γ(c− a)

1∫
0

extta−1(1− t)c−a−1dt Re c > 0, Re a > 0

U(a, c;x) =
1

Γ(a)

∞∫
0

e−xtta−1(1 + t)c−a−1dt Re x > 0, Re a > 0

Useful formulæ are the Kummer transformations

M(a, c;x) = exM(c−a, c;−x)
U(a, c;x) = x1−cU(a−c+1, 2−c;x)

The n:th derivatives of the confluent hypergeometric functions are given by

dn

dzn
M(a, b; z) =

(a)n

(b)n

M(a+n, b+n; z)

dn

dzn
U(a, b; z) = (−1)n(a)nU(a+n, b+n; z)

Several common mathematical function may be expressed in terms of the hypergeomet-
ric function such as the error function, the incomplete Gamma function γ(a, x), Bessel func-
tions Jν(x), modified Bessel functions of the first kind Iν(x), Hermite functions Hn(x), La-
guerre functions Ln(x), associated Laguerre functions Lm

n (x), Whittaker functions Mkµ(x)
and Wkµ(x), Fresnel integrals C(x) and S(x), modified Bessel function of the second kind
Kν(x)

ez = M(a, a; z)

erf(x) =
2√
π
xM

(
1
2
, 3

2
;−x2

)
=

2√
π
xe−x2

M
(
1, 3

2
;x2

)
γ(a, x) =

xa

a
M(a, a+1;−x) Re a > 0

Jν(x) =
e−ıx

ν!

(
x

2

)ν

M
(
ν+ 1

2
, 2ν+1; 2ıx

)
Iν(x) =

e−x

ν!

(
x

2

)ν

M
(
ν+ 1

2
, 2ν+1; 2x

)
H2n(x) = (−1)n (2n)!

n!
M
(
−n, 1

2
;x2

)
H2n+1(x) = (−1)n 2(2n+ 1)!

n!
xM

(
−n, 3

2
;x2

)
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Ln(x) = M(−n, 1;x)

Lm
n (x) = (−1)m ∂m

∂xm
Ln+m(x) =

(n+m)!

n!m!
M(−n,m+1;x)

Mkµ(x) = e−
x
2xµ+

1
2M

(
µ−k+ 1

2
, 2µ+1;x

)
Wkµ(x) = e−

x
2xµ+

1
2U
(
µ−k+ 1

2
, 2µ+1;x

)
C(x) + ıS(x) = xM

(
1

x
,
3

2
;
ıπx2

2

)
Kν(x) =

√
πe−x(2x)νU

(
ν+ 1

2
, 2ν+1; 2x

)
See [47] for many more similar and additional formulæ.
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Table 1: Percentage points of the chi-square distribution

1− α
n 0.5000 0.8000 0.9000 0.9500 0.9750 0.9900 0.9950 0.9990
1 0.4549 1.6424 2.7055 3.8415 5.0239 6.6349 7.8794 10.828
2 1.3863 3.2189 4.6052 5.9915 7.3778 9.2103 10.597 13.816
3 2.3660 4.6416 6.2514 7.8147 9.3484 11.345 12.838 16.266
4 3.3567 5.9886 7.7794 9.4877 11.143 13.277 14.860 18.467
5 4.3515 7.2893 9.2364 11.070 12.833 15.086 16.750 20.515
6 5.3481 8.5581 10.645 12.592 14.449 16.812 18.548 22.458
7 6.3458 9.8032 12.017 14.067 16.013 18.475 20.278 24.322
8 7.3441 11.030 13.362 15.507 17.535 20.090 21.955 26.124
9 8.3428 12.242 14.684 16.919 19.023 21.666 23.589 27.877

10 9.3418 13.442 15.987 18.307 20.483 23.209 25.188 29.588
11 10.341 14.631 17.275 19.675 21.920 24.725 26.757 31.264
12 11.340 15.812 18.549 21.026 23.337 26.217 28.300 32.909
13 12.340 16.985 19.812 22.362 24.736 27.688 29.819 34.528
14 13.339 18.151 21.064 23.685 26.119 29.141 31.319 36.123
15 14.339 19.311 22.307 24.996 27.488 30.578 32.801 37.697
16 15.338 20.465 23.542 26.296 28.845 32.000 34.267 39.252
17 16.338 21.615 24.769 27.587 30.191 33.409 35.718 40.790
18 17.338 22.760 25.989 28.869 31.526 34.805 37.156 42.312
19 18.338 23.900 27.204 30.144 32.852 36.191 38.582 43.820
20 19.337 25.038 28.412 31.410 34.170 37.566 39.997 45.315
21 20.337 26.171 29.615 32.671 35.479 38.932 41.401 46.797
22 21.337 27.301 30.813 33.924 36.781 40.289 42.796 48.268
23 22.337 28.429 32.007 35.172 38.076 41.638 44.181 49.728
24 23.337 29.553 33.196 36.415 39.364 42.980 45.559 51.179
25 24.337 30.675 34.382 37.652 40.646 44.314 46.928 52.620
26 25.336 31.795 35.563 38.885 41.923 45.642 48.290 54.052
27 26.336 32.912 36.741 40.113 43.195 46.963 49.645 55.476
28 27.336 34.027 37.916 41.337 44.461 48.278 50.993 56.892
29 28.336 35.139 39.087 42.557 45.722 49.588 52.336 58.301
30 29.336 36.250 40.256 43.773 46.979 50.892 53.672 59.703
40 39.335 47.269 51.805 55.758 59.342 63.691 66.766 73.402
50 49.335 58.164 63.167 67.505 71.420 76.154 79.490 86.661
60 59.335 68.972 74.397 79.082 83.298 88.379 91.952 99.607
70 69.334 79.715 85.527 90.531 95.023 100.43 104.21 112.32
80 79.334 90.405 96.578 101.88 106.63 112.33 116.32 124.84
90 89.334 101.05 107.57 113.15 118.14 124.12 128.30 137.21

100 99.334 111.67 118.50 124.34 129.56 135.81 140.17 149.45
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Table 2: Extreme confidence levels for the chi-square distribution

Chi-square Confidence Levels (as χ2 values)
d.f. 0.1 0.01 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1 2.71 6.63 10.8 15.1 19.5 23.9 28.4 32.8 37.3 41.8 46.3 50.8
2 4.61 9.21 13.8 18.4 23.0 27.6 32.2 36.8 41.4 46.1 50.7 55.3
3 6.25 11.3 16.3 21.1 25.9 30.7 35.4 40.1 44.8 49.5 54.2 58.9
4 7.78 13.3 18.5 23.5 28.5 33.4 38.2 43.1 47.9 52.7 57.4 62.2
5 9.24 15.1 20.5 25.7 30.9 35.9 40.9 45.8 50.7 55.6 60.4 65.2
6 10.6 16.8 22.5 27.9 33.1 38.3 43.3 48.4 53.3 58.3 63.2 68.1
7 12.0 18.5 24.3 29.9 35.3 40.5 45.7 50.8 55.9 60.9 65.9 70.8
8 13.4 20.1 26.1 31.8 37.3 42.7 48.0 53.2 58.3 63.4 68.4 73.5
9 14.7 21.7 27.9 33.7 39.3 44.8 50.2 55.4 60.7 65.8 70.9 76.0

10 16.0 23.2 29.6 35.6 41.3 46.9 52.3 57.7 62.9 68.2 73.3 78.5
11 17.3 24.7 31.3 37.4 43.2 48.9 54.4 59.8 65.2 70.5 75.7 80.9
12 18.5 26.2 32.9 39.1 45.1 50.8 56.4 61.9 67.3 72.7 78.0 83.2
13 19.8 27.7 34.5 40.9 46.9 52.7 58.4 64.0 69.5 74.9 80.2 85.5
14 21.1 29.1 36.1 42.6 48.7 54.6 60.4 66.0 71.6 77.0 82.4 87.8
15 22.3 30.6 37.7 44.3 50.5 56.5 62.3 68.0 73.6 79.1 84.6 90.0
16 23.5 32.0 39.3 45.9 52.2 58.3 64.2 70.0 75.7 81.2 86.7 92.2
17 24.8 33.4 40.8 47.6 54.0 60.1 66.1 71.9 77.6 83.3 88.8 94.3
18 26.0 34.8 42.3 49.2 55.7 61.9 68.0 73.8 79.6 85.3 90.9 96.4
19 27.2 36.2 43.8 50.8 57.4 63.7 69.8 75.7 81.6 87.3 92.9 98.5
20 28.4 37.6 45.3 52.4 59.0 65.4 71.6 77.6 83.5 89.3 94.9 101
25 34.4 44.3 52.6 60.1 67.2 73.9 80.4 86.6 92.8 98.8 105 111
30 40.3 50.9 59.7 67.6 75.0 82.0 88.8 95.3 102 108 114 120
35 46.1 57.3 66.6 74.9 82.6 89.9 97.0 104 110 117 123 129
40 51.8 63.7 73.4 82.1 90.1 97.7 105 112 119 125 132 138
45 57.5 70.0 80.1 89.1 97.4 105 113 120 127 134 140 147
50 63.2 76.2 86.7 96.0 105 113 120 128 135 142 149 155
60 74.4 88.4 99.6 110 119 127 135 143 150 158 165 172
70 85.5 100 112 123 132 141 150 158 166 173 181 188
80 96.6 112 125 136 146 155 164 172 180 188 196 204
90 108 124 137 149 159 169 178 187 195 203 211 219

100 118 136 149 161 172 182 192 201 209 218 226 234
120 140 159 174 186 198 209 219 228 237 246 255 263
150 173 193 209 223 236 247 258 268 278 288 297 306
200 226 249 268 283 297 310 322 333 344 355 365 374
300 332 360 381 400 416 431 445 458 471 483 495 506
400 437 469 493 514 532 549 565 580 594 607 620 632
500 541 576 603 626 646 665 682 698 714 728 742 756
600 645 684 713 737 759 779 798 815 832 847 862 877
800 852 896 929 957 982 1005 1026 1045 1064 1081 1098 1114

1000 1058 1107 1144 1175 1202 1227 1250 1272 1292 1311 1330 1348
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Table 3: Extreme confidence levels for the chi-square distribution (as χ2/d.f. values)

Chi-square Confidence Levels (as χ2/d.f. values)
d.f. 0.1 0.01 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

1 2.71 6.63 10.83 15.14 19.51 23.93 28.37 32.84 37.32 41.82 46.33 50.84

2 2.30 4.61 6.91 9.21 11.51 13.82 16.12 18.42 20.72 23.03 25.33 27.63

3 2.08 3.78 5.42 7.04 8.63 10.22 11.80 13.38 14.95 16.51 18.08 19.64

4 1.94 3.32 4.62 5.88 7.12 8.34 9.56 10.77 11.97 13.17 14.36 15.55

5 1.85 3.02 4.10 5.15 6.17 7.18 8.17 9.16 10.14 11.11 12.08 13.05

6 1.77 2.80 3.74 4.64 5.52 6.38 7.22 8.06 8.89 9.72 10.54 11.35

7 1.72 2.64 3.47 4.27 5.04 5.79 6.53 7.26 7.98 8.70 9.41 10.12

8 1.67 2.51 3.27 3.98 4.67 5.34 6.00 6.65 7.29 7.92 8.56 9.18

9 1.63 2.41 3.10 3.75 4.37 4.98 5.57 6.16 6.74 7.31 7.88 8.45

10 1.60 2.32 2.96 3.56 4.13 4.69 5.23 5.77 6.29 6.82 7.33 7.85

11 1.57 2.25 2.84 3.40 3.93 4.44 4.94 5.44 5.92 6.41 6.88 7.35

12 1.55 2.18 2.74 3.26 3.76 4.24 4.70 5.16 5.61 6.06 6.50 6.93

13 1.52 2.13 2.66 3.14 3.61 4.06 4.49 4.92 5.34 5.76 6.17 6.58

14 1.50 2.08 2.58 3.04 3.48 3.90 4.31 4.72 5.11 5.50 5.89 6.27

15 1.49 2.04 2.51 2.95 3.37 3.77 4.16 4.54 4.91 5.28 5.64 6.00

16 1.47 2.00 2.45 2.87 3.27 3.65 4.01 4.37 4.73 5.08 5.42 5.76

17 1.46 1.97 2.40 2.80 3.17 3.54 3.89 4.23 4.57 4.90 5.22 5.55

18 1.44 1.93 2.35 2.73 3.09 3.44 3.78 4.10 4.42 4.74 5.05 5.36

19 1.43 1.90 2.31 2.67 3.02 3.35 3.67 3.99 4.29 4.59 4.89 5.18

20 1.42 1.88 2.27 2.62 2.95 3.27 3.58 3.88 4.17 4.46 4.75 5.03

25 1.38 1.77 2.10 2.41 2.69 2.96 3.21 3.47 3.71 3.95 4.19 4.42

30 1.34 1.70 1.99 2.25 2.50 2.73 2.96 3.18 3.39 3.60 3.80 4.00

35 1.32 1.64 1.90 2.14 2.36 2.57 2.77 2.96 3.15 3.34 3.52 3.69

40 1.30 1.59 1.84 2.05 2.25 2.44 2.62 2.80 2.97 3.13 3.29 3.45

45 1.28 1.55 1.78 1.98 2.16 2.34 2.50 2.66 2.82 2.97 3.12 3.26

50 1.26 1.52 1.73 1.92 2.09 2.25 2.41 2.55 2.70 2.84 2.97 3.11

60 1.24 1.47 1.66 1.83 1.98 2.12 2.25 2.38 2.51 2.63 2.75 2.86

70 1.22 1.43 1.60 1.75 1.89 2.02 2.14 2.25 2.37 2.48 2.58 2.68

80 1.21 1.40 1.56 1.70 1.82 1.94 2.05 2.15 2.26 2.35 2.45 2.54

90 1.20 1.38 1.52 1.65 1.77 1.87 1.98 2.07 2.17 2.26 2.35 2.43

100 1.18 1.36 1.49 1.61 1.72 1.82 1.92 2.01 2.09 2.18 2.26 2.34

120 1.17 1.32 1.45 1.55 1.65 1.74 1.82 1.90 1.98 2.05 2.12 2.19

150 1.15 1.29 1.40 1.49 1.57 1.65 1.72 1.79 1.85 1.92 1.98 2.04

200 1.13 1.25 1.34 1.42 1.48 1.55 1.61 1.67 1.72 1.77 1.82 1.87

300 1.11 1.20 1.27 1.33 1.39 1.44 1.48 1.53 1.57 1.61 1.65 1.69

400 1.09 1.17 1.23 1.28 1.33 1.37 1.41 1.45 1.48 1.52 1.55 1.58

500 1.08 1.15 1.21 1.25 1.29 1.33 1.36 1.40 1.43 1.46 1.48 1.51

600 1.07 1.14 1.19 1.23 1.27 1.30 1.33 1.36 1.39 1.41 1.44 1.46

800 1.06 1.12 1.16 1.20 1.23 1.26 1.28 1.31 1.33 1.35 1.37 1.39

1000 1.06 1.11 1.14 1.17 1.20 1.23 1.25 1.27 1.29 1.31 1.33 1.35
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Table 4: Exact and approximate values for the Bernoulli numbers

Bernoulli numbers

n N/D = Bn/10k k
0 1/1 = 1.00000 00000 0
1 –1/2 = – 5.00000 00000 –1
2 1/6 = 1.66666 66667 –1
4 –1/30 = – 3.33333 33333 –2
6 1/42 = 2.38095 23810 –2
8 –1/30 = – 3.33333 33333 –2

10 5/66 = 7.57575 75758 –2

12 –691/2730 = – 2.53113 55311 –1
14 7/6 = 1.16666 66667 0
16 –3 617/510 = – 7.09215 68627 0
18 43 867/798 = 5.49711 77945 1
20 –174 611/330 = – 5.29124 24242 2

22 854 513/138 = 6.19212 31884 3
24 –236 364 091/2 730 = – 8.65802 53114 4
26 8 553 103/6 = 1.42551 71667 6
28 –23 749 461 029/870 = – 2.72982 31068 7
30 8 615 841 276 005/14 322 = 6.01580 87390 8

32 –7 709 321 041 217/510 = – 1.51163 15767 10
34 2 577 687 858 367/6 = 4.29614 64306 11
36 –26 315 271 553 053 477 373/1 919 190 = – 1.37116 55205 13
38 2 929 993 913 841 559/6 = 4.88332 31897 14
40 –261 082 718 496 449 122 051/13 530 = – 1.92965 79342 16

42 1 520 097 643 918 070 802 691/1 806 = 8.41693 04757 17
44 –27 833 269 579 301 024 235 023/690 = – 4.03380 71854 19
46 596 451 111 593 912 163 277 961/282 = 2.11507 48638 21
48 –5 609 403 368 997 817 686 249 127 547/46 410 = – 1.20866 26522 23
50 495 057 205 241 079 648 212 477 525/66 = 7.50086 67461 24

52 –801 165 718 135 489 957 347 924 991 853/1 590 = – 5.03877 81015 26
54 29 149 963 634 884 862 421 418 123 812 691/798 = 3.65287 76485 28
56 –2 479 392 929 313 226 753 685 415 739 663 229/870 = – 2.84987 69302 30
58 84 483 613 348 880 041 862 046 775 994 036 021/354 = 2.38654 27500 32
60 –1 215 233 140 483 755 572 040 304 994 079 820 246 041 491/56 786 730 = – 2.13999 49257 34

62 12 300 585 434 086 858 541 953 039 857 403 386 151/6 = 2.05009 75723 36
64 –106 783 830 147 866 529 886 385 444 979 142 647 942 017/510 = – 2.09380 05911 38
66 1 472 600 022 126 335 654 051 619 428 551 932 342 241 899 101/64 722 = 2.27526 96488 40
68 –78 773 130 858 718 728 141 909 149 208 474 606 244 347 001/30 = – 2.62577 10286 42
70 1 505 381 347 333 367 003 803 076 567 377 857 208 511 438 160 235/4 686 = 3.21250 82103 44
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Table 5: Percentage points of the F -distribution

α=0.10
n

m 1 2 3 4 5 10 20 50 100 ∞
1 39.86 49.50 53.59 55.83 57.24 60.19 61.74 62.69 63.01 63.33
2 8.526 9.000 9.162 9.243 9.293 9.392 9.441 9.471 9.481 9.491
3 5.538 5.462 5.391 5.343 5.309 5.230 5.184 5.155 5.144 5.134
4 4.545 4.325 4.191 4.107 4.051 3.920 3.844 3.795 3.778 3.761
5 4.060 3.780 3.619 3.520 3.453 3.297 3.207 3.147 3.126 3.105

10 3.285 2.924 2.728 2.605 2.522 2.323 2.201 2.117 2.087 2.055
20 2.975 2.589 2.380 2.249 2.158 1.937 1.794 1.690 1.650 1.607
50 2.809 2.412 2.197 2.061 1.966 1.729 1.568 1.441 1.388 1.327

100 2.756 2.356 2.139 2.002 1.906 1.663 1.494 1.355 1.293 1.214
∞ 2.706 2.303 2.084 1.945 1.847 1.599 1.421 1.263 1.185 1.000

α=0.05
n

m 1 2 3 4 5 10 20 50 100 ∞
1 161.4 199.5 215.7 224.6 230.2 241.9 248.0 251.8 253.0 254.3
2 18.51 19.00 19.16 19.25 19.30 19.40 19.45 19.48 19.49 19.50
3 10.13 9.552 9.277 9.117 9.013 8.786 8.660 8.581 8.554 8.526
4 7.709 6.944 6.591 6.388 6.256 5.964 5.803 5.699 5.664 5.628
5 6.608 5.786 5.409 5.192 5.050 4.735 4.558 4.444 4.405 4.365

10 4.965 4.103 3.708 3.478 3.326 2.978 2.774 2.637 2.588 2.538
20 4.351 3.493 3.098 2.866 2.711 2.348 2.124 1.966 1.907 1.843
50 4.034 3.183 2.790 2.557 2.400 2.026 1.784 1.599 1.525 1.438

100 3.936 3.087 2.696 2.463 2.305 1.927 1.676 1.477 1.392 1.283
∞ 3.841 2.996 2.605 2.372 2.214 1.831 1.571 1.350 1.243 1.000

α=0.01
n

m 1 2 3 4 5 10 20 50 100 ∞
1 4052 5000 5403 5625 5764 6056 6209 6303 6334 6366
2 98.50 99.00 99.17 99.25 99.30 99.40 99.45 99.48 99.49 99.50
3 34.12 30.82 29.46 28.71 28.24 27.23 26.69 26.35 26.24 26.13
4 21.20 18.00 16.69 15.98 15.52 14.55 14.02 13.69 13.58 13.46
5 16.26 13.27 12.06 11.39 10.97 10.05 9.553 9.238 9.130 9.020

10 10.04 7.559 6.552 5.994 5.636 4.849 4.405 4.115 4.014 3.909
20 8.096 5.849 4.938 4.431 4.103 3.368 2.938 2.643 2.535 2.421
50 7.171 5.057 4.199 3.720 3.408 2.698 2.265 1.949 1.825 1.683

100 6.895 4.824 3.984 3.513 3.206 2.503 2.067 1.735 1.598 1.427
∞ 6.635 4.605 3.782 3.319 3.017 2.321 1.878 1.523 1.358 1.000
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Table 6: Probability content from −z to z of Gauss distribution in %

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.00 0.80 1.60 2.39 3.19 3.99 4.78 5.58 6.38 7.17
0.1 7.97 8.76 9.55 10.34 11.13 11.92 12.71 13.50 14.28 15.07
0.2 15.85 16.63 17.41 18.19 18.97 19.74 20.51 21.28 22.05 22.82
0.3 23.58 24.34 25.10 25.86 26.61 27.37 28.12 28.86 29.61 30.35
0.4 31.08 31.82 32.55 33.28 34.01 34.73 35.45 36.16 36.88 37.59
0.5 38.29 38.99 39.69 40.39 41.08 41.77 42.45 43.13 43.81 44.48
0.6 45.15 45.81 46.47 47.13 47.78 48.43 49.07 49.71 50.35 50.98
0.7 51.61 52.23 52.85 53.46 54.07 54.67 55.27 55.87 56.46 57.05
0.8 57.63 58.21 58.78 59.35 59.91 60.47 61.02 61.57 62.11 62.65
0.9 63.19 63.72 64.24 64.76 65.28 65.79 66.29 66.80 67.29 67.78
1.0 68.27 68.75 69.23 69.70 70.17 70.63 71.09 71.54 71.99 72.43
1.1 72.87 73.30 73.73 74.15 74.57 74.99 75.40 75.80 76.20 76.60
1.2 76.99 77.37 77.75 78.13 78.50 78.87 79.23 79.59 79.95 80.29
1.3 80.64 80.98 81.32 81.65 81.98 82.30 82.62 82.93 83.24 83.55
1.4 83.85 84.15 84.44 84.73 85.01 85.29 85.57 85.84 86.11 86.38
1.5 86.64 86.90 87.15 87.40 87.64 87.89 88.12 88.36 88.59 88.82
1.6 89.04 89.26 89.48 89.69 89.90 90.11 90.31 90.51 90.70 90.90
1.7 91.09 91.27 91.46 91.64 91.81 91.99 92.16 92.33 92.49 92.65
1.8 92.81 92.97 93.12 93.27 93.42 93.57 93.71 93.85 93.99 94.12
1.9 94.26 94.39 94.51 94.64 94.76 94.88 95.00 95.12 95.23 95.34
2.0 95.45 95.56 95.66 95.76 95.86 95.96 96.06 96.15 96.25 96.34
2.1 96.43 96.51 96.60 96.68 96.76 96.84 96.92 97.00 97.07 97.15
2.2 97.22 97.29 97.36 97.43 97.49 97.56 97.62 97.68 97.74 97.80
2.3 97.86 97.91 97.97 98.02 98.07 98.12 98.17 98.22 98.27 98.32
2.4 98.36 98.40 98.45 98.49 98.53 98.57 98.61 98.65 98.69 98.72
2.5 98.76 98.79 98.83 98.86 98.89 98.92 98.95 98.98 99.01 99.04
2.6 99.07 99.09 99.12 99.15 99.17 99.20 99.22 99.24 99.26 99.29
2.7 99.31 99.33 99.35 99.37 99.39 99.40 99.42 99.44 99.46 99.47
2.8 99.49 99.50 99.52 99.53 99.55 99.56 99.58 99.59 99.60 99.61
2.9 99.63 99.64 99.65 99.66 99.67 99.68 99.69 99.70 99.71 99.72
3.0 99.73 99.74 99.75 99.76 99.76 99.77 99.78 99.79 99.79 99.80
3.1 99.81 99.81 99.82 99.83 99.83 99.84 99.84 99.85 99.85 99.86
3.2 99.86 99.87 99.87 99.88 99.88 99.88 99.89 99.89 99.90 99.90
3.3 99.90 99.91 99.91 99.91 99.92 99.92 99.92 99.92 99.93 99.93
3.4 99.93 99.94 99.94 99.94 99.94 99.94 99.95 99.95 99.95 99.95
3.5 99.95 99.96 99.96 99.96 99.96 99.96 99.96 99.96 99.97 99.97
3.6 99.97 99.97 99.97 99.97 99.97 99.97 99.97 99.98 99.98 99.98
3.7 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98
3.8 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99
3.9 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99
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Table 7: Standard normal distribution z-values for a specific probability content from −z
to z. Read column-wise and add marginal column and row z. Read column-wise and add
marginal column and row figures to find probabilities.

Prob. 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.000 0.000 0.125 0.253 0.385 0.524 0.674 0.841 1.036 1.282 1.645
0.002 0.002 0.128 0.256 0.388 0.527 0.677 0.845 1.041 1.287 1.655
0.004 0.005 0.130 0.258 0.390 0.530 0.681 0.849 1.045 1.293 1.665
0.006 0.007 0.133 0.261 0.393 0.533 0.684 0.852 1.049 1.299 1.675
0.008 0.010 0.135 0.263 0.396 0.536 0.687 0.856 1.054 1.305 1.685

0.010 0.012 0.138 0.266 0.398 0.538 0.690 0.859 1.058 1.311 1.696
0.012 0.015 0.141 0.268 0.401 0.541 0.693 0.863 1.063 1.317 1.706
0.014 0.017 0.143 0.271 0.404 0.544 0.696 0.867 1.067 1.323 1.717
0.016 0.020 0.146 0.274 0.407 0.547 0.700 0.870 1.071 1.329 1.728
0.018 0.022 0.148 0.276 0.409 0.550 0.703 0.874 1.076 1.335 1.740

0.020 0.025 0.151 0.279 0.412 0.553 0.706 0.878 1.080 1.341 1.751
0.022 0.027 0.153 0.281 0.415 0.556 0.709 0.881 1.085 1.347 1.763
0.024 0.030 0.156 0.284 0.417 0.559 0.712 0.885 1.089 1.353 1.775
0.026 0.033 0.158 0.287 0.420 0.562 0.716 0.889 1.094 1.360 1.787
0.028 0.035 0.161 0.289 0.423 0.565 0.719 0.893 1.099 1.366 1.800

0.030 0.038 0.163 0.292 0.426 0.568 0.722 0.896 1.103 1.372 1.812
0.032 0.040 0.166 0.295 0.428 0.571 0.725 0.900 1.108 1.379 1.825
0.034 0.043 0.168 0.297 0.431 0.574 0.729 0.904 1.112 1.385 1.839
0.036 0.045 0.171 0.300 0.434 0.577 0.732 0.908 1.117 1.392 1.853
0.038 0.048 0.173 0.302 0.437 0.580 0.735 0.911 1.122 1.399 1.867

0.040 0.050 0.176 0.305 0.439 0.582 0.739 0.915 1.126 1.405 1.881
0.042 0.053 0.179 0.308 0.442 0.585 0.742 0.919 1.131 1.412 1.896
0.044 0.055 0.181 0.310 0.445 0.588 0.745 0.923 1.136 1.419 1.911
0.046 0.058 0.184 0.313 0.448 0.591 0.749 0.927 1.141 1.426 1.927
0.048 0.060 0.186 0.316 0.451 0.594 0.752 0.931 1.146 1.433 1.944

0.050 0.063 0.189 0.318 0.453 0.597 0.755 0.935 1.150 1.440 1.960
0.052 0.065 0.191 0.321 0.456 0.600 0.759 0.938 1.155 1.447 1.978
0.054 0.068 0.194 0.323 0.459 0.603 0.762 0.942 1.160 1.454 1.996
0.056 0.070 0.196 0.326 0.462 0.606 0.765 0.946 1.165 1.461 2.015
0.058 0.073 0.199 0.329 0.464 0.609 0.769 0.950 1.170 1.469 2.034

0.060 0.075 0.202 0.331 0.467 0.612 0.772 0.954 1.175 1.476 2.054
0.062 0.078 0.204 0.334 0.470 0.615 0.775 0.958 1.180 1.484 2.075
0.064 0.080 0.207 0.337 0.473 0.619 0.779 0.962 1.185 1.491 2.097
0.066 0.083 0.209 0.339 0.476 0.622 0.782 0.966 1.190 1.499 2.121
0.068 0.085 0.212 0.342 0.478 0.625 0.786 0.970 1.195 1.507 2.145

0.070 0.088 0.214 0.345 0.481 0.628 0.789 0.974 1.200 1.514 2.171
0.072 0.090 0.217 0.347 0.484 0.631 0.792 0.978 1.206 1.522 2.198
0.074 0.093 0.219 0.350 0.487 0.634 0.796 0.982 1.211 1.530 2.227
0.076 0.095 0.222 0.353 0.490 0.637 0.799 0.986 1.216 1.539 2.258
0.078 0.098 0.225 0.355 0.493 0.640 0.803 0.990 1.221 1.547 2.291

0.080 0.100 0.227 0.358 0.495 0.643 0.806 0.994 1.227 1.555 2.327
0.082 0.103 0.230 0.361 0.498 0.646 0.810 0.999 1.232 1.564 2.366
0.084 0.105 0.232 0.363 0.501 0.649 0.813 1.003 1.237 1.572 2.409
0.086 0.108 0.235 0.366 0.504 0.652 0.817 1.007 1.243 1.581 2.458
0.088 0.110 0.237 0.369 0.507 0.655 0.820 1.011 1.248 1.590 2.513

0.090 0.113 0.240 0.371 0.510 0.659 0.824 1.015 1.254 1.599 2.576
0.092 0.115 0.243 0.374 0.513 0.662 0.827 1.019 1.259 1.608 2.652
0.094 0.118 0.245 0.377 0.515 0.665 0.831 1.024 1.265 1.617 2.748
0.096 0.120 0.248 0.379 0.518 0.668 0.834 1.028 1.270 1.626 2.879
0.098 0.123 0.250 0.382 0.521 0.671 0.838 1.032 1.276 1.636 3.091
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Table 8: Percentage points of the t-distribution

1− α
n 0.60 0.70 0.80 0.90 0.95 0.975 0.990 0.995 0.999 0.9995
1 0.325 0.727 1.376 3.078 6.314 12.71 31.82 63.66 318.3 636.6
2 0.289 0.617 1.061 1.886 2.920 4.303 6.965 9.925 22.33 31.60
3 0.277 0.584 0.978 1.638 2.353 3.182 4.541 5.841 10.21 12.92
4 0.271 0.569 0.941 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.267 0.559 0.920 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.265 0.553 0.906 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.263 0.549 0.896 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.262 0.546 0.889 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.261 0.543 0.883 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 0.260 0.542 0.879 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.260 0.540 0.876 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.259 0.539 0.873 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.259 0.538 0.870 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.258 0.537 0.868 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.258 0.536 0.866 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.258 0.535 0.865 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.257 0.534 0.863 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.257 0.534 0.862 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.257 0.533 0.861 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.257 0.533 0.860 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.257 0.532 0.859 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.256 0.532 0.858 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.256 0.532 0.858 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.256 0.531 0.857 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.256 0.531 0.856 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.256 0.531 0.856 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.256 0.531 0.855 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.256 0.530 0.855 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.256 0.530 0.854 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.256 0.530 0.854 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 0.255 0.529 0.851 1.303 1.684 2.021 2.423 2.704 3.307 3.551
50 0.255 0.528 0.849 1.299 1.676 2.009 2.403 2.678 3.261 3.496
60 0.254 0.527 0.848 1.296 1.671 2.000 2.390 2.660 3.232 3.460
70 0.254 0.527 0.847 1.294 1.667 1.994 2.381 2.648 3.211 3.435
80 0.254 0.526 0.846 1.292 1.664 1.990 2.374 2.639 3.195 3.416
90 0.254 0.526 0.846 1.291 1.662 1.987 2.368 2.632 3.183 3.402

100 0.254 0.526 0.845 1.290 1.660 1.984 2.364 2.626 3.174 3.390
110 0.254 0.526 0.845 1.289 1.659 1.982 2.361 2.621 3.166 3.381
120 0.254 0.526 0.845 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 0.253 0.524 0.842 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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Table 9: Expressions for the Beta function B(m,n) for integer and half-integer arguments

n→ 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5

m ↓

1
2 π

1 2 1
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1
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8π
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2
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Mathematical Constants

Introduction

It is handy to have available the values of differ-
ent mathematical constants appearing in many ex-
pressions in statistical calculations. In this section
we list, with high precision, many of those which
may be needed. In some cases we give, after the ta-
bles, basic expressions which may be nice to recall.
Note, however, that this is not full explanations and
consult the main text or other sources for details.

Some Basic Constants

exact approx.
π 3.14159 26535 89793 23846
e 2.71828 18284 59045 23536
γ 0.57721 56649 01532 86061√
π 1.77245 38509 05516 02730

1/
√

2π 0.39894 22804 01432 67794

e =
∞∑

n=0

1
n!

= lim
n→∞

(
1 +

1
n

)n

γ = lim
n→∞

(
n∑

k=1

1
k
− lnn

)

Gamma Function

exact approx.
Γ( 1

2 )
√
π 1.77245 38509 05516 02730

Γ( 3
2 ) 1

2

√
π 0.88622 69254 52758 01365

Γ( 5
2 ) 3

4

√
π 1.32934 03881 79137 02047

Γ( 7
2 ) 15

8

√
π 3.32335 09704 47842 55118

Γ( 9
2 ) 105

16

√
π 11.63172 83965 67448 92914

Γ(z) =

∞∫
0

tz−1e−tdt

n! = Γ(n+ 1) = nΓ(n)

Γ
(
n+ 1

2

)
=

(2n− 1)!!
2n

Γ
(

1
2

)
=

=
(2n)!
22nn!

√
π

See further section 42.2 on page 154 and reference
[42] for more details.

Beta Function

For exact expressions for the Beta function for half-
integer and integer values see table 9 on page 179.

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

=

=

1∫
0

xa−1(1− x)b−1dx =

=

∞∫
0

xa−1

(1 + x)a+b
dx

See further section 42.6 on page 160.

Digamma Function

exact approx.
ψ( 1

2 ) −γ − 2 ln 2 –1.96351 00260 21423 47944
ψ( 3

2 ) ψ( 1
2 ) + 2 0.03648 99739 78576 52056

ψ( 5
2 ) ψ( 1

2 ) + 8
3 0.70315 66406 45243 18723

ψ( 7
2 ) ψ( 1

2 ) + 46
15 1.10315 66406 45243 18723

ψ( 9
2 ) ψ( 1

2 ) + 352
105 1.38887 09263 59528 90151

ψ( 11
2 ) ψ( 9

2 ) + 2
9 1.61109 31485 81751 12373

ψ( 13
2 ) ψ( 11

2 ) + 2
11 1.79291 13303 99932 94192

ψ( 15
2 ) ψ( 13

2 ) + 2
13 1.94675 74842 46086 78807

ψ( 17
2 ) ψ( 15

2 ) + 2
15 2.08009 08175 94201 21402

ψ( 19
2 ) ψ( 17

2 ) + 2
17 2.19773 78764 02949 53317

ψ(1) −γ –0.57721 56649 01532 86061
ψ(2) 1− γ 0.42278 43350 98467 13939
ψ(3) 3

2 − γ 0.92278 43350 98467 13939
ψ(4) 11

6 − γ 1.25611 76684 31800 47273
ψ(5) 25

12 − γ 1.50611 76684 31800 47273
ψ(6) 137

60 − γ 1.70611 76684 31800 47273
ψ(7) 49

20 − γ 1.87278 43350 98467 13939
ψ(8) 363

140 − γ 2.01564 14779 55609 99654
ψ(9) 761

280 − γ 2.14064 14779 55609 99654
ψ(10) 7129

2520 − γ 2.25175 25890 66721 10765

ψ(z) =
d

dz
ln Γ(z) =

1
Γ(z)

dΓ(z)
dz

ψ(z + 1) = ψ(z) + 1
z

ψ(n) = −γ +
n−1∑
m=1

1
m

ψ(n+ 1
2 ) = −γ − 2 ln 2 + 2

n∑
m=1

1
2m− 1

See further section 42.3 on page 156.
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Polygamma Function

exact approx.
ψ(1)( 1

2 ) π2/2 4.93480 22005 44679 30942
ψ(2)( 1

2 ) −14ζ3 –16.82879 66442 34319 99560
ψ(3)( 1

2 ) π4 97.40909 10340 02437 23644
ψ(4)( 1

2 ) −744ζ5 –771.47424 98266 67225 19054
ψ(5)( 1

2 ) 8π6 7691.11354 86024 35496 24176

ψ(1)(1) ζ2 1.64493 40668 48226 43647
ψ(2)(1) −2ζ3 –2.40411 38063 19188 57080
ψ(3)(1) 6ζ4 6.49393 94022 66829 14910
ψ(4)(1) −24ζ5 –24.88626 61234 40878 23195
ψ(5)(1) 120ζ6 122.08116 74381 33896 76574

ψ(n)(z) =
dn

dzn
ψ(z) =

dn+1

dzn+1
ln Γ(z)

ψ(n)(z) = (−1)n+1n!
∞∑

k=0

1
(z + k)n+1

ψ(n)(1) = (−1)n+1n!ζn+1

ψ(n)( 1
2 ) = (2n+1 − 1)ψ(n)(1)

ψ(m)(n+ 1) = (−1)mm!
[
−ζm+1 + 1 +

+
1

2m+1
+ . . .+

1
nm+1

]
=

= ψ(m)(n) + (−1)mm!
1

nm+1

See further section 42.4 on page 158.

Bernoulli Numbers

See table 4 on page 174.

Riemann’s Zeta-function

exact approx.
ζ0 -1
ζ1 ∞
ζ2 π2/6 1.64493 40668 48226 43647
ζ3 1.20205 69031 59594 28540
ζ4 π4/90 1.08232 32337 11138 19152
ζ5 1.03692 77551 43369 92633
ζ6 π6/945 1.01734 30619 84449 13971
ζ7 1.00834 92773 81922 82684
ζ8 π8/9450 1.00407 73561 97944 33938
ζ9 1.00200 83928 26082 21442
ζ10 π10/93555 1.00099 45751 27818 08534

ζn =
∞∑

k=1

1
kn

ζ2n =
22n−1π2n|B2n|

(2n)!

See also page 59 and for details reference [31].

Sum of Powers

In many calculations involving discrete distributions
sums of powers are needed. A general formula for
this is given by

n∑
k=1

ki =
i∑

j=0

(−1)jBj

(
i

j

)
ni−j+1

i− j + 1

where Bj denotes the Bernoulli numbers (see page
174). More specifically

n∑
k=1

k = n(n+ 1)/2

n∑
k=1

k2 = n(n+ 1)(2n+ 1)/6

n∑
k=1

k3 = n2(n+ 1)2/4 =

(
n∑

k=1

k

)2

n∑
k=1

k4 = n(n+ 1)(2n+ 1)(3n2 + 3n− 1)/30

n∑
k=1

k5 = n2(n+ 1)2(2n2 + 2n− 1)/12

n∑
k=1

k6 = n(n+ 1)(2n+ 1)(3n4 + 6n3 − 3n+ 1)/42
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ERRATA et ADDENDA
Errors in this report are corrected as they are found but for those who have printed an
early version of the hand-book we list here errata. These are thus already obsolete in this
copy. Minor errors in language etc are not listed. Note, however, that a few additions
(subsections and tables) have been made to the original report (see below).

• Contents part now having roman page numbers thus shifting arabic page numbers
for the main text.

• A new section 6.2 on conditional probability density for binormal distribution has
been added after the first edition

• Section 42.6, formula, line 2, ν changed into λ giving

f(x;µ, λ) =
λ

2
e−λ|x−µ|

• Section 10.3, formula 2, line 4 has been corrected

φx(t) = E(eıtx) = eıtµE(eıt(x−µ)) = eıtµφx−µ(t) = eıtµ λ2

λ2 + t2

• Section 14.4, formula, line 2 changed to

φ(t) = E(eıtx) =
1

α

∞∫
0

e(ıt−
1
α

)xdx =
1

1− ıtα

• Section 18.1, figure 14 was erroneous in early editions and should look as is now
shown in figure 73.

• Section 27.2, line 12: change νri to νpi.

• Section 27.6 on significance levels for the multinomial distribution has been added
after the first edition.

• Section 27.7 on the case with equal group probabilities for a multinomial distribution
has been added after the first edition.

• A small paragraph added to section 28.1 introducing the multinormal distribution.

• A new section 28.2 on conditional probability density for the multinormal distribution
has been added after the first edition.

• Section 36.4, first formula, line 5, should read:

P (r) =
r∑

k=0

µke−µ

k!
= 1− P (r + 1, µ)
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• Section 36.4, second formula, line 9, should read:

P (r) =
r∑

k=0

µke−µ

k!
= 1−

2µ∫
0

f(x; ν = 2r + 2)dx

• and in the next line it should read f(x; ν = 2r + 2).

• Section 42.5.2, formula 3, line 6, should read:

Γ(z) = αz

∞∫
0

tz−1e−αtdt for Re(z) > 0, Re(α) > 0

• Section 42.6, line 6: a reference to table 9 has been added (cf below).

• Table 9 on page 179, on the Beta function B(m,n) for integer and half-integer argu-
ments, has been added after the first version of the paper.

These were, mostly minor, changes up to the 18th of March 1998 in order of apperance.
In October 1998 the first somewhat larger revision was made:

• Some text concerning the coefficient of kurtosis added in section 2.2.

• Figure 6 for the chi-square distribution corrected for a normalization error for the
n = 10 curve.

• Added figure 8 for the chi distribution on page 44.

• Added section 11 for the doubly non-central F -distribution and section 12 for the
doubly non-central t-distribution.

• Added figure 12 for the F -distribution on page 61.

• Added section 30 on the non-central Beta-distribution on page 108.

• For the non-central chi-square distribution we have added figure 22 and subsections
31.4 and 31.6 for the cumulative distribution and random number generation, respec-
tively.

• For the non-central F -distribution figure 23 has been added on page 113. Errors in
the formulæ for f(F ′;m,n, λ) in the introduction and z1 in the section on approxi-
mations have been corrected. Subsections 32.2 on moments, 32.3 for the cumulative
distribution, and 32.5 for random number generation have been added.

• For the non-central t-distribution figure 24 has been added on page 116, some text
altered in the first subsection, and an error corrected in the denominator of the
approximation formula in subsection 33.5. Subsections 33.2 on the derivation of the
distribution, 33.3 on its moments, 33.4 on the cumulative distribution, and 33.6 on
random number generation have been added.

183



• A new subsection 34.8.9 has been added on yet another method, using a ratio between
two uniform deviates, to achieve standard normal random numbers. With this change
three new references [38,39,40] were introduced.

• A comparison of the efficiency for different algorithms to obtain standard normal
random numbers have been introduced as subsection 34.8.10.

• Added a comment on factorial moments and cumulants for a Poisson distribution in
section 36.2.

• This list of “Errata et Addenda” for past versions of the hand-book has been added
on page 182 and onwards.

• Table 2 on page 172 and table 3 on page 173 for extreme significance levels of the
chi-square distribution have been added thus shifting the numbers of several other
tables. This also slightly affected the text in section 8.10.

• The Bernoulli numbers used in section 15.4 now follow the same convention used e.g.
in section 42.3. This change also affected the formula for κ2n in section 23.4. Table
4 on page 174 on Bernoulli numbers was introduced at the same time shifting the
numbers of several other tables.

• A list of some mathematical constants which are useful in statistical calculations have
been introduced on page 180.

Minor changes afterwards include:

• Added a “proof” for the formula for algebraic moments of the log-normal distribution
in section 24.2 and added a section for the cumulative distribution as section 24.3.

• Added formula also for c < 0 for F (x) of a Generalized Gamma distribution in section
18.2.

• Corrected bug in first formula in section 6.6.

• Replaced table for multinormal confidence levels on page 100 with a more precise one
based on an analytical formula.

• New section on sums of powers on page 181.

• The illustration for the log-normal distribution in Figure 16 in section 24 was wrong
and has been replaced.
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Poisson, Siméon Denis . . . . . . . . . . . . . . . . . 134
Poisson distribution . . . . . . . . . . . . . . . . . . . . 134

Addition theorem . . . . . . . . . . . . . . . . . . 135
Polygamma function . . . . . . . . . . . . . . . . . . . 158
Probability generating function . . . . . . . . . . . 5

Branching process . . . . . . . . . . . . . . . . . 105
Psi function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Q
Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Quartile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

R
Rayleigh, Lord . . . . . . . . . . . . . . . . . . . . . . . . . 138
Rayleigh distribution . . . . . . . . . . . . . . . . . . . 138

Kinetic theory, 2-dim. . . . . . . . . . . . . . 139
Riemann’s zeta-function . . . . . . . . . . . . . . . . . 59

S
Semi-faculty . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Semi-interquartile range . . . . . . . . . . . . . . . . . 32
Skewness, Coefficient of . . . . . . . . . . . . . . . . . . 3
Standard normal distribution . . . . . . . . . . 119
Stirling’s formula . . . . . . . . . . . . . . . . . . . . . . 155
Stuart, Alan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Student’s t-distribution . . . . . . . . . . . . . . . . 141

T
t-distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 141

189



Doubly non-central . . . . . . . . . . . . . . . . . 51
Non-central . . . . . . . . . . . . . . . . . . . . . . . . 116
Percentage points . . . . . . . . . . . . . . . . . . 178

t-ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Trapezoidal distribution . . . . . . . . . . . . . . . .150
Triangular distribution . . . . . . . . . . . . . . . . . 150

U
Uniform distribution . . . . . . . . . . . . . . . . . . . 151

V
Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Variance-ratio distribution . . . . . . . . . . . . . . 61

W
Weibull, Waloddi . . . . . . . . . . . . . . . . . . . . . . 152
Weibull distribution . . . . . . . . . . . . . . . . . . . . 152
Wigner, Eugene . . . . . . . . . . . . . . . . . . . . . . . . . 28
Wilson, E. B. . . . . . . . . . . . . . . . . . . . . . . . . 39,72

Z
Zeta-function, Riemann’s . . . . . . . . . . . . . . . . 59

190


	Introduction
	Random Number Generation

	Probability Density Functions
	Introduction
	Moments
	Errors of Moments

	Characteristic Function
	Probability Generating Function
	Cumulants
	Random Number Generation
	Cumulative Technique
	Accept-Reject technique
	Composition Techniques

	Multivariate Distributions
	Multivariate Moments
	Errors of Bivariate Moments
	Joint Characteristic Function
	Random Number Generation


	Bernoulli Distribution
	Introduction
	Relation to Other Distributions

	Beta distribution
	Introduction
	Derivation of the Beta Distribution
	Characteristic Function
	Moments
	Probability Content
	Random Number Generation

	Binomial Distribution
	Introduction
	Moments
	Probability Generating Function
	Cumulative Function
	Random Number Generation
	Estimation of Parameters
	Probability Content

	Binormal Distribution
	Introduction
	Conditional Probability Density
	Characteristic Function
	Moments
	Box-Muller Transformation
	Probability Content
	Random Number Generation

	Cauchy Distribution
	Introduction
	Moments
	Normalization
	Characteristic Function
	Location and Scale Parameters
	Breit-Wigner Distribution
	Comparison to Other Distributions
	Truncation
	Sum and Average of Cauchy Variables
	Estimation of the Median
	Estimation of the HWHM
	Random Number Generation
	Physical Picture
	Ratio Between Two Standard Normal Variables

	Chi-square Distribution
	Introduction
	Moments
	Characteristic Function
	Cumulative Function
	Origin of the Chi-square Distribution
	Approximations
	Random Number Generation
	Confidence Intervals for the Variance
	Hypothesis Testing
	Probability Content
	Even Number of Degrees of Freedom
	Odd Number of Degrees of Freedom
	Final Algorithm
	Chi Distribution

	Compound Poisson Distribution
	Introduction
	Branching Process
	Moments
	Probability Generating Function
	Random Number Generation

	Double-Exponential Distribution
	Introduction
	Moments
	Characteristic Function
	Cumulative Function
	Random Number Generation

	Doubly Non-Central F-Distribution
	Introduction
	Moments
	Cumulative Distribution
	Random Number Generation

	Doubly Non-Central t-Distribution
	Introduction
	Moments
	Cumulative Distribution
	Random Number Generation

	Error Function
	Introduction
	Probability Density Function

	Exponential Distribution
	Introduction
	Cumulative Function
	Moments
	Characteristic Function
	Random Number Generation
	Method by von Neumann
	Method by Marsaglia
	Method by Ahrens


	Extreme Value Distribution
	Introduction
	Cumulative Distribution
	Characteristic Function
	Moments
	Random Number Generation

	F-distribution
	Introduction
	Relations to Other Distributions
	1/F
	Characteristic Function
	Moments
	F-ratio
	Variance Ratio
	Analysis of Variance
	Calculation of Probability Content
	The Incomplete Beta function
	Final Formulæ

	 Random Number Generation

	Gamma Distribution
	Introduction
	Derivation of the Gamma Distribution
	Moments
	Characteristic Function
	Probability Content
	Random Number Generation
	Erlangian distribution
	General case
	Asymptotic Approximation


	Generalized Gamma Distribution
	Introduction
	Cumulative Function
	Moments
	Relation to Other Distributions

	Geometric Distribution
	Introduction
	Moments
	Probability Generating Function
	Random Number Generation

	Hyperexponential Distribution
	Introduction
	Moments
	Characteristic Function
	Random Number Generation

	Hypergeometric Distribution
	Introduction
	Probability Generating Function
	Moments
	Random Number Generation

	Logarithmic Distribution
	Introduction
	Moments
	Probability Generating Function
	Random Number Generation

	Logistic Distribution
	Introduction
	Cumulative Distribution
	Characteristic Function
	Moments
	Random numbers

	Log-normal Distribution
	Introduction
	Moments
	Cumulative Distribution
	Random Number Generation

	Maxwell Distribution
	Introduction
	Moments
	Cumulative Distribution
	Kinetic Theory
	Random Number Generation

	Moyal Distribution
	Introduction
	Normalization
	Characteristic Function
	Moments
	Cumulative Distribution
	Random Number Generation

	Multinomial Distribution
	Introduction
	Histogram
	Moments
	Probability Generating Function
	Random Number Generation
	Significance Levels
	Equal Group Probabilities

	Multinormal Distribution
	Introduction
	Conditional Probability Density
	Probability Content
	Random Number Generation

	Negative Binomial Distribution
	Introduction
	Moments
	Probability Generating Function
	Relations to Other Distributions
	Poisson Distribution
	Gamma Distribution
	Logarithmic Distribution
	Branching Process
	Poisson and Gamma Distributions

	Random Number Generation

	Non-central Beta-distribution
	Introduction
	Derivation of distribution
	Moments
	Cumulative distribution
	Random Number Generation

	Non-central Chi-square Distribution
	Introduction
	Characteristic Function
	Moments
	Cumulative Distribution
	Approximations
	Random Number Generation

	Non-central F-Distribution
	Introduction
	Moments
	Cumulative Distribution
	Approximations
	Random Number Generation

	Non-central t-Distribution
	Introduction
	Derivation of distribution
	Moments
	Cumulative Distribution
	Approximation
	Random Number Generation

	Normal Distribution
	Introduction
	Moments
	Cumulative Function
	Characteristic Function
	Addition Theorem
	Independence of x and s2
	Probability Content
	Random Number Generation
	Central Limit Theory Approach
	Exact Transformation
	Polar Method
	Trapezoidal Method
	Center-tail method
	Composition-rejection Methods
	Method by Marsaglia
	Histogram Technique
	Ratio of Uniform Deviates
	Comparison of random number generators

	Tests on Parameters of a Normal Distribution

	Pareto Distribution
	Introduction
	Cumulative Distribution
	Moments
	Random Numbers

	Poisson Distribution
	Introduction
	Moments
	Probability Generating Function
	Cumulative Distribution
	Addition Theorem
	Derivation of the Poisson Distribution
	Histogram
	Random Number Generation

	Rayleigh Distribution
	Introduction
	Moments
	Cumulative Distribution
	Two-dimensional Kinetic Theory
	Random Number Generation

	Student's t-distribution
	Introduction
	History
	Moments
	Cumulative Function
	Relations to Other Distributions
	t-ratio
	One Normal Sample
	Two Normal Samples
	Paired Data
	 Confidence Levels
	 Testing Hypotheses
	 Calculation of Probability Content
	 Even number of degrees of freedom
	 Odd number of degrees of freedom
	 Final algorithm

	 Random Number Generation

	Triangular Distribution
	Introduction
	Moments
	Random Number Generation

	Uniform Distribution
	Introduction
	Moments
	Random Number Generation

	Weibull Distribution
	Introduction
	Cumulative Distribution
	Moments
	Random Number Generation

	Appendix A: The Gamma and Beta Functions
	Introduction
	The Gamma Function
	Numerical Calculation
	Formulæ

	Digamma Function
	Polygamma Function
	The Incomplete Gamma Function
	Numerical Calculation
	Formulæ
	Special Cases

	The Beta Function
	The Incomplete Beta Function
	Numerical Calculation
	Approximation

	Relations to Probability Density Functions
	The Beta Distribution
	The Binomial Distribution
	The Chi-squared Distribution
	The F-distribution
	The Gamma Distribution
	The Negative Binomial Distribution
	The Normal Distribution
	The Poisson Distribution
	Student's t-distribution
	 Summary


	Appendix B: Hypergeometric Functions
	Introduction
	Hypergeometric Function
	Confluent Hypergeometric Function

	 Mathematical Constants to.44em.
	 Errata et Addenda to.44em.
	 References to.44em.
	 Index to.44em.

