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Graphical models are a way of representing the relationships between features (variables).
There are two main brands: directed and undirected. We shall focus on undirected graphical
models. See Figure 1 for an example of an undirected graph.

Undirected graphs come in different flavors, such as:

1. Marginal Correlation Graphs.

2. Partial Correlation Graphs.

3. Conditional Independence Graphs.

In each case, there are parametric and nonparametric versions.

Let X1, . . . , Xn ∼ P where Xi = (Xi(1), . . . , Xi(d))T ∈ Rd. The vertices (nodes) of the
graph refer to the d features. Each node of the graph corresponds to one feature. Edges
represent relationships between the features. The graph is represented by G = (V,E) where
V = (V1, . . . , Vd) are the vertices and E are the edges. We can regard the edges E as a d× d
matrix where E(j, k) = 1 if there is an edge between feature j and feature k and 0 otherwise.
Alternatively, you can regard E as a list of pairs where (j, k) ∈ E if there is an edge between
j and k. We write

X q Y
to mean that X and Y are independent. In other words, p(x, y) = p(x)p(y). We write

X q Y |Z

to mean that X and Y are independent given Z. In other words, p(x, y|z) = p(x|z)p(y|z).

1 Marginal Correlation Graphs

In a marginal correlation graph (or association graph) we put an edge between Vj and Vk if
|ρ(j, k)| ≥ ε where ρ(j, k) is some measure of association. Often we use ε = 0 in which case
there is an edge iff ρ(j, k) 6= 0. We also write ρ(Xj, Xk) to mean the same as ρ(j, k).

The parameter ρ(j, k) is required to have the following property:

X q Y implies that ρ(X, Y ) = 0.

In general, the reverse may not be true. We will say that ρ is strong if

X q Y if and only if ρ(X, Y ) = 0.

We would lile ρ to have several properties: easy to compute, robust to outliers and there is
some way to calculate a confidence interval for the parameter. Here is a summary of the
association measures we will consider:
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Figure 1: A Protein network. From: Maslov and Sneppen (2002). Specificity and Stability in
Topology of Protein Networks. Science, 296, 910-913.
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Pearson Correlation. A common choice of ρ is the Pearson correlation. For two variables
X and Y te Pearson correlation is

ρ(X, Y ) =
Cov(X, Y )

σXσY
(1)

. The sample estimate is

r(X, Y ) =

∑n
i=1(Xi −X)(Yi − Y )

sXsY
.

When dealing with d feaures X(1), . . . , X(d), we write ρ(j, k) ≡ ρ(X(j), X(k)). The sample
correlation is denoted by rjk.

To test H0 : ρ(j, k) = 0 versus H1 : ρ(j, k) 6= 0 we can use an asymptotic test or an exact test.
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The asymptotic test works like this. Define

Zjk =
1

2
log

(
1 + rjk
1− rjk

)
.

Fisher proved that

Zjk ≈ N

(
θjk,

1

n− 3

)
where

θjk =
1

2
log

(
1 + ρjk
1− ρjk

)
.

We reject H0 if |Zjk| > zα/2/
√
n− 3. In fact, to control for multiple testing, we should reject

when |Zjk| > zα/(2m)/
√
n− 3 where m =

(
d
2

)
. The confidence interval is Cn = [a, b] where

a = exp(Zjk − zα/2/
√
n− 3) and b = exp(Zjk + zα/2/

√
n− 3). A simultaneous confidence

set for all the correlations can be obtained using the high dimensional bootstrap which we
decribe later.

An exact test can be obtained by using a permutation test. Permute one of the variables and
recompute the correlation. Repeat B times to get r1

jk, . . . , r
B
jk. The p-value is

p =
1

B

∑
s

I(|rsjk| ≥ |rjk|).

Reject if p ≤ α/m.

Kendall’s τ . The Pearson correlation is not very robust to outliers. A more robust measure
of association is Kendall’s tau defined by

τ(X, Y ) = E

[
sign

[
(X1 −X2)(Y1 − Y2)

]]
.

Kendall’s τ can be intepreted as: probabilty(concordant) - probabilty(disconcordant). See
this plot:

~

~

Concordant Pair

~

~
Discordant Pair
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τ can be estimated by

τ̂(X, Y ) =
1(
n
2

)∑
s 6=t

[
sign[(Xs −Xt)(Ys − Yt)]

]
.

A statistic of this form is called a U -statistic. Under H0, τ̂jk ≈ N(0, 4/(9n)) so we reject

when
√

9n/4|τ̂jk| > zα/2m. Alternatively, use the permutation test.

Distance Correlation. There are various nonparametric measures of association. The
most common are the distance correlation and the RKHS correlation. The squared distance
covariance between two random vectors X and Y is defined by (Szekely et al 2007)

γ2(X, Y ) = Cov(||X −X ′||, ||Y − Y ′||)− 2Cov(||X −X ′||, ||Y − Y ′′||) (2)

where (X, Y ), (X ′, Y ′) and (X ′′, Y ′′) are independent pairs. We can write this as

γ2(X, Y ) =
1

4
E[b(X1, X2, X3, X4)b(Y1, Y2, Y3, Y4)]

where
b(z1, z2, z3, z4) = |z1 − z2|+ |z3 − z4| − |z1 − z3| − |z2 − z4|

The distance correlation is

ρ2(X, Y ) =
γ2(X, Y )√

γ2(X,X)γ2(Y, Y )
.

It can be shown that

γ2(X, Y ) =
1

c1c2

∫
|φX,Y (s, t)− φX(s)φY (t)|2

||s||1+d||t||1+d
ds dt (3)

where c1, c2 are constants and φ denotes the characteristic function. Another expression
(Lyons 2013) for γ is

γ2(X, Y ) = E[δ(X,X ′)δ(Y, Y ′)]

where

δ(X,X ′) = d(X,X ′)− 2

∫
d(X, u)dP (u) +

∫ ∫
d(u, v)dP (u)dP (v)

and d(x, y) = ||x− y||. In fact, other metrics d can be used.

Lemma 1 We have that 0 ≤ ρ(X, Y ) ≤ 1 and ρ(X, Y ) = 0 if and only if X q Y .
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An estimate of γ is

γ̂2(X, Y ) =
1

n2

∑
j,k

AjkBjk

where
Ajk = ajk − aj· − a·k + a··, Bjk = bjk − bj· − b·k + b··.

Here, ajk = ||Xj−Xk|| and aj·, a·k, a·· are the row, column and grand means of the matrix {ajk}.
The limiting distribution of γ̂2(X, Y ) is complicated. But we can easily test H0 : γ(X, Y ) = 0
using a permutation test.

Another nonparametric measure of independence based on RKHS is

γ2(X, Y ) = E[Kh(X,X
′)Kh(Y, Y

′)] + E[Kh(X,X
′)]E[Kh(Y, Y

′)]

− 2E

[∫
Kh(X, u)dP (u)

∫
Kh(Y, v)dP (v)

]

for a kernel Kh. See Gretton et al (2008).

To apply any of these methods to graphs, we need to test all
(
d
2

)
correlations.

The Bergsma-Dassios τ ∗ Correlation. Bergsma and Dassios (2014) extended Kendall’s
τ into a strong correlation. The definition is

τ ∗(X, Y ) = E[a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)] (4)

where
a(z1, z2, z3, z4) = sign(|z1 − z2|+ |z3 − z4| − |z1 − z3 − |z2 − z4|).

Lemma 2 τ ∗(X, Y ) ≥ 0. Further, τ ∗(X, Y ) = 0 if and only if X q Y .

An estimate of τ ∗ is

τ̂ ∗ =
1(
n
4

)∑ a(Xi, Xj, Xk, X`)a(Yi, Yj, Yk, Y`) (5)

where the sum is over all distinct quadruples.

The τ ∗ parameter can also be given an interpretation in terms of concordant and discordant
points if we define them as follows:

6



~~
~~

Concordant Group

~~
~~

Concordant Group

~ ~

~ ~

Discordant Group

Then

τ ∗ =
2P (concordant)− P (discordant)

3
.

This statistic is related to the distance covariance as follows:

τ ∗(X, Y ) = E[a(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)]

γ2(X, Y ) =
1

4
E[b(X1, X2, X3, X4)b(Y1, Y2, Y3, Y4)]

where
b(z1, z2, z3, z4) = |z1 − z2|+ |z3 − z4| − |z1 − z3| − |z2 − z4|

and a(z1, z2, z3, z4) = sign(b(z1, z2, z3, z4)).

To test H0 : X q Y we use a permutation test. Recently Dhar, Dassios and Bergsma (2016)
showed that τ̂ ∗ has good power and is quite robust.

Confidence Intervals. Constructing confidence intervals for γ is not easy. The problem is
that the statistics have different limiting distributions depending on whether the the null
H0 : X q Y is true or not. For example, if H0 is true then

nγ̂2  
∞∑
j=1

λj[(Zj + aj)
2 − 1]

where Z1, Z2, . . . , N(0, 1) and {λj, aj}∞1 are (unknown) constants. A similar result holds
for γ̂. This is called a Gaussian chaos. On the other hand, when H0 is false, the limiting
distribution is different.

Since the limiting distribution varies, we cannot really use it to construct a confidence interval.
On way to solce this problem is to use blocking. Instead of using a U-statistics based on all
subsets of size 4, we can break the dataset into non-overlapping blocks of size 4. We construct
Q = a(Xi, Xj, Xk, X`)a(Yi, Yj, Yk, Y`) on each block. Then we define

g =
1

m

∑
j

Qj
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where m = n/4 is the number of blocks. Since this is an average, it will have a limiting
Normal distribution. We can then use the Normal approximation or the bootstrap to get
confidence intervals. However, g uses less information then γ̂ so we will get larger confidence
intervals than necessary.

For τ ∗ the situation is better. Note that τ̂∗ is a U-statistic of order 4. That is

τ̂ ∗ = τ̂ ∗ =
1(
n
4

)∑K(Zi, Zj, Zk, Z`)

where the sum is over all distinct quadruples and Zi = (Xi, Yi). Also, −1 ≤ K ≤ 1. By
Hoeffding’s inequalty for U -statsitics of order b we have

P(|τ̂ ∗ − τ ∗| > t) ≤ 2e−2(n/b)t2/r2

where r is the range of K. In our case, r = 2 and b = 4 so

P(|τ̂ ∗ − τ ∗| > t) ≤ 2e−nt
2/8.

If we set tn =
√

(8/n) log(2/α) then Cn = τ̂ ∗ ± tn is a 1− α confidence interval. However, it
may not be shortest possible confidence interval. Find the shortest valid confidence interval
is an open question.

Example. Figure 2 shows some Pearson graphs. These are: two Markov chains, a hub,
four clusters, and a band. Technically, these should be best discovered using conditional
independence graphs (discussed later). But correlation graphs are easy to estimate and often
reveal the salient structure.

Figure 3 shows a graph from highly non-Normal data. The data have the structure of two
Markov chains. I used the distance correlation on all pairs with permutation tests. Nice!

High Dimensional Bootstrap For Pearson Correlations We can also get simultaneous
confidence intervals for many Pearson correlations. This is especially important if we want to
put an edge when |ρ(j, k)| ≥ ε. If we have a confidence interval C then we can put an edge
whenever [−ε, ε] ∩ C = ∅.

The easiest way to get simultaneous confidence intervals is to use the bootstrap. Let R be the
d×d matrix of true correlations and let R̂ be the d×d matrix of sample correlations. (Actually,
it is probably better to use the Fisher transformed correlations.) Let X∗1 , . . . , X

∗
n denote a

bootstrap sample and let R̂∗ be the d× d matrix of correlations from the bootstrap sample.
After taking B bootstrap samples we have R̂∗1, . . . , R̂

∗
B. Let δj =

√
nmaxs,t |R̂∗j (s, t)− R̂(s, t)|

and define

F̂n(w) =
1

B

B∑
j=1

I(δj ≤ w)

which approximates

Fn(w) = P(
√
nmax

s,t
|R̂(s, t)−R(s, t)| ≤ w).
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Figure 2: Pearson correlation graphs. Top left: two Markov-chains. Top right: a Hub.
Bottom left: 4 clusters. Bottom right: banded.

9



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3: Graph based on nonparametric distance correlation. Two Markov chains.

Let wα = F̂−1
n (α). Finally, we set

Cst =

[
R̂(s, t)− wα√

n
, R̂(s, t) +

wα√
n

]
.

Theorem 3 Suppose that d = o(en
1/6

). Then

P (R(s, t) ∈ Cst for all s, t)→ 1− α

as n→∞.

2 Partial Correlation Graphs

Let X, Y ∈ R and Z be a random vector. The partial correlation between X and Y , given Z,
is a measure of association between X and Y after removing the effect of Z.

Specifically, ρ(X, Y |Z) is the correlation between εX and εY where

εX = X − ΠZX, εY = Y − ΠZY.

Here, ΠZX is the projection of X onto the linear space spanned by Z. That is ΠZX = βTX
where β minimizes E[Y − βTX]2. In other words, ΠZX is the linear regression of X on Z.
Similarly, for ΠZY . We’ll give an explicit formula for the partial correlation shortly.
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Now let’s go back to graphs. Let X = (X(1), . . . , X(d)) and let ρjk denote the partial
correlation between X(j) and X(k) given all the other variables. Let R = {ρjk} be the d× d
matrix of partial correlations.

Lemma 4 The matrix R is given by R(j, k) = −Ωjk/
√

ΩjjΩkk where Ω = Σ−1 and Σ is the
covariance matrix of X.

The partial correlation graph G has an edge between j and k when ρjk 6= 0.

In the low-dimensional setting, we can estimate R as follows. Let Sn be the sample covariance.

Let Ω̂ = S−1
n and define R̂(j, k) = −Ω̂jk/

√
Ω̂jjΩ̂kk. The easiest way to construct the graph is

to use get simultaneous confidence intervals Cjk using the bootstrap. Then we put an edge if
0 /∈ Cjk.

There is also a Normal approximation similar to correlations. Define

Zjk =
1

2
log

(
1 + rjk
1− rjk

)
where rjk = R̂(j, k). Then

Zjk ≈ N

(
θjk,

1

n− g − 3

)
where g = d− 2 and

θjk =
1

2
log

(
1 + ρjk
1− ρjk

)
.

We reject H0 if |Zjk| > zα/(2m)/
√
n− g − 3.

In high dimensions, this won’t work since Sn is not invertible. In fact,

Var(R̂(j, k)) ≈ 1

n− d

which shows that we cannot reliably estimate the partial correlation when d is large. You
can do three things:

1. Compute a correlation graph instead. This is easy, works well, and often reveals similar
structure that is in the partial correlation graph.

2. Shrinkage: let Ω̂ = [(1 − ε)Sn + εD]−1 where 0 ≤ ε ≤ 1 and D is a diagonal matrix
with Djj = Sjj. Then we use the bootstrap to test the entries of the matrix. Based
on calculations in Schafer and Strimmer (2005) amd Ledoit and Wolf (2004), a good
choice of ε is

ε =

∑
j 6=k V̂ar(sjk)∑

j 6=j s
2
jk

11
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Figure 4: Graphical Lasso for a hub graph.

where

V̂ar(sjk) =
n

(n− 1)3

n∑
i=1

(sijk − wjk)2,

wijk = (Xi(j)−X(j))(Xi(k)−X(k)) and wjk = n−1
∑

iwijk. This choice is based on
minimizing the estimated risk.

3. Use the graphical lasso (described below). Warning! The reliability of the graphical
lasso depends on lots of non-trivial, uncheckable assumptions.

For the graphical lasso we proceed as follows. We assume that Xi ∼ N(µ,Σ). Then we
estimated Σ (and hence Ω = Σ−1) using the penalized log-likelihood,

Ω̂ = arg max
Ω�0

[
`(Ω)− λ

∑
j 6=k

|ωjk|
]

where the log-likelihood (after maximizing over µ) is

`(Ω) =
n

2
log |Ω| − n

2
tr(ΩSn)− nd

2
log(2π). (6)

Node-wise regression. A related but different approach due to Meinshausen and Buhlmann
(2006). The idea is to regress each variable on all the others using the lasso.

Example: Figure 4 shows a hub graph. The graphs was estimated by Meinshausen and
Buhlmann (2006) method using the R package huge.

How To Choose λ. If we use the graphical lasso, how do we choose λ? One idea is to use
cross-validation based on the Normal log-likelihood. In this case we fit the model on part of
the data and evaluate the log-likehood on the held-out data. This is not very reliable since it
depends heavily on the Normality assumption. Currently, I do not think there is a rigorously
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justified, robust method for choosing λ. Perhaps the best strategy is to plot the graph for
many values of λ.

More Robust Approach. Here is a more robust method. For each pair of variables, regress
them on all the other variables (using your favorate regression method). Now compute the
Kendal correlation on the residuals. This seems like a good idea but I have not seen anyone
try it.

Nonparametric Partial Correlation Graphs. There are various ways to create a non-
parametric partial correlation. Let us write

X = g(Z) + εX

Y = h(Z) + εY .

Thus, εX = X − g(Z) and εY = Y − h(Z) where g(z) = E[X|Z = x] and h(z) = E[Y |Z = z].
Now define

ρ(X, Y |Z) = ρ(εX , εY ).

We can estimate ρ by using nonparametric regression to estimate g(z) and h(z). Then we

take the correlation between the residuals ε̂X,i = Xi − ĝ(Xi) and ε̂Y,i = Yi − ĥ(Yi). When Z
is high-dimensional, we can use SpAM to estimate g and h.

3 Conditional Independence Graphs

The strongest type of undirected graph is a conditional independence graph. In this case, we
omit the edge between j and k if X(j) is independent of X(k) given the rest of the variables.
We write this as

X(j)qX(k) | rest. (7)

Conditional independence graphs are the most informative undirected graphs but they are
also the hardest to estimate.

3.1 Gaussian

In the special case of Normality, they are equivalent to partial correlation graphs.

Theorem 5 Suppose that X = (X(1), . . . , X(d)) ∼ N(µ,Σ). Let Ω = Σ−1. Then X(j) is
independent of X(k) given the rest, if and only if Ωjk = 0.
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So, in the Normal case, we are back to partial correlations.

3.2 Multinomials and Log-Linear Models

When all the variables are discrete, the joint distribution is multinomial. It is convenient to
reparameterize the multinomial in a form known as a log-linear model.

Let’s start with a simple example. Suppose X = (X(1), X(2)) and that each variable is
binary. Let

p(x1, x2) = P(X1 = x1, X2 = x2).

So, for example, p(0, 1) = P(X1 = 0, X2 = 1). There are four unknown parameters:
p(0, 0), p(0, 1), p(1, 0), p(1, 1). Actually, these have to add up to 1, so there are really only
three free parameters.

We can now write
log p(x1, x2) = β0 + β1x1 + β2x2 + β12x1x2.

This is the log-linear representation of the multinomial. The parameters β = (β0, β1, β2, β12)
are functions of p(0, 0), p(0, 1), p(1, 0), p(1, 1). Conversely, β = (β0, β1, β2, β12) are functions
of p(0, 0), p(0, 1), p(1, 0), p(1, 1). In fact we can solve and get:

β0 = log p(0, 0), β1 = log

(
p(1, 0)

p(0, 0)

)
, β2 = log

(
p(0, 1)

p(0, 0)

)
, β12 = log

(
p(1, 1)p(0, 0)

p(0, 1)p(1, 0)

)
.

So why should be bother writing the model this way? The answer is:

Lemma 6 In the above model, X1 qX2 if and only if β12 = 0.

The log-linear representation converts statements about independence and con-
ditional independence into statements about parameters being 0.

Now suppose that X = (X(1), . . . , X(d)). Let’s continue to assume that each variable is
binary. The log-linear representation is:

log p(x1, . . . , xd) = β0 +
∑
j

βjxj +
∑
j<k

βjkxjxk + · · ·+ β12···d x1 · · ·xd.

Theorem 7 We have that X(j)qX(k)|rest if and only if every βA = 0 if (j, k) ∈ A.
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Here is an example. Suppose that d = 3 and suppose that

log p(x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3.

In this model, β23 = β123 = 0. We conclude that X(2)qX(3)|X(1). Hence, we can omit the
edge between X(2) and X(3).

Log-linear models thus make a nice connection between conditional independence graphs
and parameters. There is a simple one-line command in R for fitting log-linear models. The
function gives the parameter estimates as well as tests that each parameter is 0.

When the variables are not binary, the model is a bit more complicated. Each variable is
now represented by a vector of parameters rather than one parameter. But conceptually, it is
the same. Suppose Xj ∈ {0, 1, . . . ,m− 1}, for j ∈ V , with V = {1, . . . , d}; thus each of the
d variables takes one of m possible values.

Definition 8 Let X = (X1, . . . , Xd) be a discrete random vector with probability function
p(x) = P (X = x) = P (X1 = x1, . . . , Xd = xd) where x = (x1, . . . , xd). The log-linear repre-
sentation of p(x) is

log p(x) =
∑
A⊂V

ψA(xA) (8)

with the constraints that ψΦ is a constant , and if j ∈ A and xj = 0 then ψA(xA) = 0.

The formula in (8) is called the log-linear expansion of p(x). Each ψA(xA) may depend
on some unknown parameters θA. Note that the total number of parameters satisfies∑d

j=1

(
d
j

)
(m− 1)j = md, however one of the parameters is the normalizing constant, and is

determined by the constraint that the sum of the probabilities is one. Thus, there are md − 1
free parameters, and this is a minimal exponential parameterization of the multinomial. Let
θ = (θA : A ⊂ V ) be the set of all these parameters. We will write p(x) = p(x; θ) when we
want to emphasize the dependence on the unknown parameters θ.

The next theorem provides an easy way to read out conditional independence in a log-linear
model.

Theorem 9 Let (XA, XB, XC) be a partition of X = (X1, . . . , Xd). Then XB ⊥⊥ XC |XA if
and only if all the ψ-terms in the log-linear expansion that have at least one coordinate in B
and one coordinate in C are zero.

Proof. From the definition of conditional independence, we know that XB ⊥⊥ XC |XA if and
only if p(xA, xB, xC) = f(xA, xB)g(xA, xC) for some functions f and g.

15



Suppose that ψt is 0 whenever t has coordinates in B and C. Hence, ψt is 0 if t * A ∪B or
t * A ∪ C. Therefore

log p(x) =
∑

t⊂A∪B

ψt(xt) +
∑
t⊂A∪C

ψt(xt)−
∑
t⊂A

ψt(xt). (9)

Exponentiating, we see that the joint density is of the form f(xA, xB)g(xA, xC). Therefore
XB ⊥⊥ XC |XA. The reverse follows by reversing the argument. �

A graphical log-linear model with respect to a graph G is a log-linear model for which the
parameters ψA satisfy ψA(xA) 6= 0 if and only if A is a clique of G. Thus, a graphical log-linear
model has potential functions on each clique, both maximal and non-maximal, with the
restriction that ψA(xA) = 0 in case xj = 0 for any j ∈ A. In a hierarchical log-linear model, if
ψA(xA) = 0 then ψB(xB) = 0 whenever A ⊂ B. Thus, the parameters in a hierarchical model
are nested, in the sense that if a parameter is identically zero for some subset of variables,
the parameter for supersets of those variables must also be zero. Every graphical log-linear
model is hierarchical, but a hierarchical model need not be graphical; Such a relationship is
shown in Figure 5 and is characterized by the next lemma.

Lemma 10 A graphical log-linear model is hierarchical but the reverse need not be true.

Proof. We assume there exists a model that is graphical but not hierarchical. There must
exist two sets A and B, such that A ⊂ B with ψA(xA) = 0 and ψB(xB) 6= 0. Since the model
is graphical, ψB(xB) 6= 0 implies that B is a clique. We then know that A must also be a
clique due to A ⊂ B, which implies that ψA(xA) 6= 0. A contradiction.

To see that a hierarchical model does not have to be graphical. We consider the following
example. Let

log p(x) = ψΦ +
3∑
i=1

ψi(xi) +
∑

1≤j<k≤3

ψjk(xjk). (10)

This model is hierarchical but not graphical. The graph corresponding to this model is a
complete graph with three nodes X1, X2, X3. It is not graphical since ψ123(x) = 0, which is
contradict with the fact that the graph is complete. �

3.3 The Nonparametric Case

In real life, nothing has a Normal distribution. What should we do? We could just use a
correlation graph or partial correlation graph. That’s what I recommend. But if you really
want a nonparametric conditional independence graph, there are some possible approaches.

16



Graphical

Hierarchical

Log-linear = Multinomial

Figure 5: Every graphical log-linear model is hierarchical but the reverse may not be true.

Conditional cdf Method. Let X and Y be real and let Z be a random vector. Define

U = F (X|Z), V = G(Y |Z)

where
F (x|z) = P(X ≤ x|Z = z), G(y|z) = P(Y ≤ y|Z = z).

Lemma 11 If X q Y |Z then U q V .

If we knew F and G, we could compute Ui = F (Xi|Zi) and Vi = G(Yi|Zi) and then test for
independence between U and V .

In practice, we estimate Ui and Vi using smoothing:

Ûi = F̂ (Xi|Zi), V̂i = Ĝ(Yi|Zi)

where

F̂ (x|z) =

∑n
s=1K(||z − Zs||/h)I(Xs ≤ x)∑n

s=1K(||z − Zs||/h)

Ĝ(y|z) =

∑n
s=1K(||z − Zs||/b)I(Ys ≤ y)∑n

s=1K(||z − Zs||/b)
.

We have the following result from Bergsma (2011).

Theorem 12 (Bergsma) Let θ be the Pearson or Kendall measure of association between

U and V . Let θ̃ be the sample version based on (Ui, Vi), i = 1, . . . , n. Let θ̂ be the sample

version based on (Ûi, V̂i), i = 1, . . . , n. Suppose that

n1/2(θ̃ − θ) = OP (1), nβ1(F̂ (x|z)− F (x|z)) = OP (1), nβ2(F̂ (y|z)− F (y|z)) = OP (1).
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Then √
n(θ̂ − θ) =

√
n(θ̃ − θ) +OP (n−γ)

where γ = min{β1, β2}.

This means that, asymptotically, we can treat (Ûi, V̂i) as if they were (Ui, Vi). Of course, for
graphs, the whole procedure needs to be repeated for each pair of variables.

There are some caveats. First, we are essentially doing high dimensional regression. In high
dimensions, the convergence will be very slow. Second, we have to choose the bandwidths h
and b. It is not obvious how to do this in practice.

Challenge: Can you think of a way to do sparse estimation of F (x|z) and F (y|z)?

Nonparanormal. Another approach is to use a Gaussian copula, also known as a Nonpara-
normal (Liu, Lafferty and Wasserman 2009). Recall that, in high dimnsional nonparametric
regression, we replaced the linear model Y =

∑
j βjXj + ε with the sparse additive model:

Y =
∑
j

fj(Xj) + ε where most ||fj|| = 0.

We can take a similar strategy for graphs.

Assumptions Dimension Regression Graphical Models

parametric
low linear model multivariate normal

high lasso graphical lasso

nonparametric
low additive model nonparanormal

high sparse additive model `1-regularized nonparanormal

One idea is to do node-wise regression using SpAM (see Voorman, Shojaie and Witten 2007).
An alternative is as follows. Let f(X) = (f1(X1), . . . , fp(Xp)). Assume that f(X) ∼ N(µ,Σ).
Write X ∼ NPN(µ,Σ, f). If each fj is monotone then this is just a Gaussian copula, that is,

F (x1, . . . , xp) = Φµ,Σ

(
Φ−1(F1(x1)), . . . ,Φ−1(Fp(xp))

)
.

Lemma 13 Xj qXk|rest iff Σ−1
jk = 0 where Σ = cov(f(X)), f(x) = (f1(x1), . . . , fd(xd))

and fj(xj) = Φ−1(Fj(xj)).

The marginal means and variances µj and σj are not identifiable but this does not affect the
graph G.
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Three examples of nonparanormals.

We can estimate G using a two stage procedure:

1. Estimate each Zj = fj(xj) = Φ−1(Fj(xj)).

2. Apply the glasso to the Zj’s.

Let f̂j(xj) = Φ−1(F̂j(xj)). The usual empirical F̂j(xj) will not work if d increases with n. We
use a Winsorized version:

F̃j(x) =


δn if F̂j(x) < δn

F̂j(x) if δn ≤ F̂j(x) ≤ 1− δn
(1− δn) if F̂j(x) > 1− δn,

where

δn ≡
1

4n1/4
√
π log n

.

This choice of δn provides the right bias-variance balance so that we can achieve the desired
rate of convergence in our estimate of Ω and the associated undirected graph G. Now compute
the sample covariance Sn of the Normalized variables: Zj = f̂j(Xj) = Φ−1(F̃j(Xj)). Finally,
apply the glasso to Sn. Let S∗n be the covariance using the true fj’s.
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Suppose that d ≤ nξ. For large n,

P
(
max
jk
|Sn(j, k)− S∗

n(j, k)| > ε

)
≤ c1d

(nε2)2ξ
+

c1d

(nε2)c5ξ−1
+ c3 exp

(
− c4n

1/2ε2

log d log2 n

)
and hence

max
jk
|Sn(j, k)− S∗n(j, k)| = OP

√ log d log2 n

n1/2

 .

Suppose (unrealistically) that X(i) ∼ NPN(µ0,Σ0, f0), and let Ω0 = Σ−1
0 . If

λn �

√
log d log2 n

n1/2

then ‖Ω̂n − Ω0‖F = OP

(√
(s+d) log d log2 n

n1/2

)
and

‖Ω̂n − Ω0‖2 = OP

(√
s log d log2 n

n1/2

)
where s is the sparsity level. Under extra conditions we

get sparsistency:

P
(

sign(Σ̂n(j, k)) = sign(Σ0(j, k) for all j, k)
)
→ 1.

Now suppose (more realistically) P is not NPN. Let R(f̂ , Σ̂) denote risk (expected log-
likelihood). Let d ≤ en

ξ
for ξ < 1 and let

Mn = {f : fj monotone, ||fj||∞ ≤ C
√

log n},

Cn = {Ω : ||Ω−1||1 ≤ Ln}
with Ln = o(n(1−ξ)/2/

√
log n). Then

R(f̂ , Ω̂)− inf
f,Ω

R(f,Ω) = oP (1).
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Figure 6: ROC curves for sample sizes n = 200.

The Skeptic is a more robst version (Spearman/Kendall Estimators Pre-empt Transformations

to Infer Correlation). Set Ŝjk = sin
(
π
2
τ̂jk
)

where

τ̂jk =
2

n(n− 1)

∑
1≤s<t≤n

sign
(

(Xs(j)−Xt(j))(Xs(k)−Xt(k))
)
.

Then (with d ≥ n)

P

(
max
jk
|Ŝjk − Σjk| > 2.45π

√
log d

n

)
≤ 1

d
.

As in Yuan (2010), let

M =

{
Ω : Ω � 0, ||Ω||1 ≤ κ,

1

c
≤ λmin(Ω) ≤ λmax(Ω) < c, deg(Ω) ≤M

}
.

Then, for all 1 ≤ q ≤ ∞,

sup
Ω∈M
||Ω̂− Ω||q = OP

(
M

√
log d

n

)
.

From Yuan, this implies that the Skepic is minimax rate optimal. Now plug Ŝ into glasso.
See Liu, Han, Yuan, Lafferty and Wasserman arXiv:1202.2169 for numerical experiments and
theoretical results.
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Forests. Yet another approach is based on forests. A tractable family of graphs are forests.
A graph F is a forest if it contains no cycles. If F is a d-node undirected forest with vertex
set VF = {1, . . . , d} and edge set EF ⊂ {1, . . . , d} × {1, . . . , d}, the number of edges satisfies
|EF | < d. Suppose that P is Markov to F and has density p. Then p can be written as

p(x) =
∏

(i,j)∈EF

p(xi, xj)

p(xi) p(xj)

∏
k∈VF

p(xk), (11)

where each p(xi, xj) is a bivariate density, and each p(xk) is a univariate density. Using (11),
we have

E log p(X) (12)

= −
∫
p(x)

( ∑
(i,j)∈EF

log
p(xi, xj)

p(xi)p(xj)
+
∑
k∈VF

log (p(xk))

)
dx

= −
∑

(i,j)∈EF

∫
p(xi, xj) log

p(xi, xj)

p(xi)p(xj)
dxidxj −

∑
k∈VF

∫
p(xk) log p(xk)dxk

= −
∑

(i,j)∈EF

I(Xi;Xj) +
∑
k∈VF

H(Xk), (13)

where

I(Xi;Xj) ≡
∫
p(xi, xj) log

p(xi, xj)

p(xi) p(xj)
dxidxj (14)

is the mutual information between the pair of variables Xi, Xj and

H(Xk) ≡ −ds
∫
p(xk) log p(xk) dxk (15)

is the entropy.

The optimal forest F ∗ can be found by minimizing the right hand side of (13). Since the
entropy term H(X) =

∑
kH(Xk) is constant across all forests, this can be recast as the

problem of finding the maximum weight spanning forest for a weighted graph, where the
weight w(i, j) of the edge connecting nodes i and j is I(Xi;Xj). Kruskal’s algorithm (Kruskal
1956) is a greedy algorithm that is guaranteed to find a maximum weight spanning tree of a
weighted graph. In the setting of density estimation, this procedure was proposed by Chow
and Liu (1968) as a way of constructing a tree approximation to a distribution. At each
stage the algorithm adds an edge connecting that pair of variables with maximum mutual
information among all pairs not yet visited by the algorithm, if doing so does not form a
cycle. When stopped early, after k < d edges have been added, it yields the best k-edge
weighted forest.

Of course, the above procedure is not practical since the true density p(x) is unknown. In
applications, we parameterize bivariate and univariate distributions to be pθij(xi, xj) and
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Chow-Liu Algorithm for Learning Forest Graphs

Initialize E(0) = ∅ and the desired forest size K < d.
Calculate the mutual information matrix M̂ =

[
În(Xi, Xj)

]
according to (16).

For k = 1, . . . , K

(a) (i(k), j(k))← argmax(i,j) M̂(i, j) such that E(k−1) ∪ {(i(k), j(k))} does not contain
a cycle.

(b) E(k) ← E(k−1) ∪ {(i(k), j(k))}.

Output the obtained edge set E(K).

pθk(xk). We replace the population mutual information I(Xi;Xj) in (13) by the plug-in

estimate În(Xi, Xj), defined as

În(Xi, Xj) =

∫
pθ̂ij(xi, xj) log

pθ̂ij(xi, xj)

pθ̂i(xi) pθ̂j(xj)
dxidxj (16)

where θ̂ij and θ̂k are maximum likelihood estimates. Given this estimated mutual information

matrix M̂ =
[
În(Xi, Xj)

]
, we can apply Kruskal’s algorithm (equivalently, the Chow-Liu

algorithm) to find the best forest structure F̂ . The detailed algorithm is described in the
following:

Example 14 (Learning Gaussian maximum weight spanning tree) For Gaussian data
X ∼ N(µ,Σ), we know that the mutual information between two variables are

I(Xi;Xj) = −1

2
log
(
1− ρ2

ij

)
, (17)

where ρij is the correlation between Xi and Xj. To obtain an empirical estimator, we simply
plug-in the sample correlation ρ̂ij. Once the mutual information matrix is calculated, we
could apply the Chow-Liu algorithm to get the maximum weight spanning tree.

Example 15 (Graphs for Equities Data) We collect the daily closing prices were ob-
tained for 452 stocks that were consistently in the S&P 500 index between January 1, 2003
through January 1, 2011. This gave us altogether 2,015 data points, each data point corre-
sponds to the vector of closing prices on a trading day. With St,j denoting the closing price
of stock j on day t, we consider the variables Xtj = log (St,j/St−1,j) and build graphs over
the indices j. We simply treat the instances Xt as independent replicates, even though they
form a time series. We truncate every stock so that its data points are within six times the
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mean absolute deviation from the sample average. In Figure 7(a) we show boxplots for 10
randomly chosen stocks. It can be seen that the data contains outliers even after truncation;
the reasons for these outliers includes splits in a stock, which increases the number of shares.
In Figure 7(b) we show the boxplots of the data after the nonparanormal transformation (the
details of nonparanormal transformation will be explained in the nonparametric graphical
model chapter). In this analysis, we use the subset of the data between January 1, 2003 to
January 1, 2008, before the onset of the “financial crisis.” There are altogether n = 1, 257
data points and d = 452 dimensions.
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(a) original data (b) after nonparanormal transformation

Figure 7: Boxplots of Xt = log(St/St−1) for 10 stocks. As can be seen, the original data has
many outliers, which is addressed by the nonparanormal transformation on the re-scaled data
(right).

The 452 stocks are categorized into 10 Global Industry Classification Standard (GICS) sec-
tors, including Consumer Discretionary (70 stocks), Energy (37 stocks), Financials

(74 stocks), Consumer Staples (35 stocks), Telecommunications Services (6 stocks),
Health Care (46 stocks), Industrials (59 stocks), Information Technology (64 stocks),
Materials (29 stocks), and Utilities (32 stocks). It is expected that stocks from the same
GICS sectors should tend to be clustered together, since stocks from the same GICS sector
tend to interact more with each other. In the graphs shown below, the nodes are colored
according to the GICS sector of the corresponding stock.

With the Gaussian assumption, we directly apply Chow-Liu algorithm to obtain a full spanning
tree of d− 1 = 451 edges. The resulting graph is shown in Figure 8. We see that the stocks
from the same GICS sector are clustered very well.

To get a nonparametric version, we can just an nonparametric estimate of the mutual
information. But for that matter, we might as well put in any measure of association such as
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Figure 8: Tree graph learned from S&P 500 stock data from Jan. 1, 2003 to Jan. 1, 2008.
The graph is estimated using the Chow-Liu algorithm under the Gaussian model. The nodes
are colored according to their GICS sector categories.
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distance correlation. In that case, we see that a forest is just a correlation graph without
cycles.

4 A Deeper Look At Conditional Independence Graphs

In this section, we will take a closer look at conditional independence graphs.

Let G = (V,E) be an undirected graph with vertex set V and edge set E, and let A, B,
and C be subsets of vertices. We say that C separates A and B if every path from a
node in A to a node in B passes through a node in C. Now consider a random vector
X = (X(1), . . . , X(d)) where Xj corresponds to node j in the graph. If A ⊂ {1, . . . , d} then
we write XA = (X(j) : j ∈ A).

4.1 Markov Properties

A probability distribution P for a random vector X = (X(1), . . . , X(d)) may satisfy a range
of different Markov properties with respect to a graph G = (V,E):

Definition 16 (Global Markov Property) A probability distribution P for a random vector
X = (X(1), . . . , X(d)) satisfies the global Markov property with respect to a graph G if for
any disjoint vertex subsets A, B, and C such that C separates A and B, the random variables
XA are conditionally independent of XB given XC.

The set of distributions that is globally Markov with respect to G is denoted by P(G).

Definition 17 (Local Markov Property) A probability distribution P for a random vector
X = (X(1), . . . , X(d)) satisfies the local Markov property with respect to a graph G if the
conditional distribution of a variable given its neighbors is independent of the remaining nodes.
That is, let N(s) = {t ∈ V | (s, t) ∈ E} denote the set of neighbors of a node s ∈ V . Then the
local Markov property is that

p(xs |xt, t 6= s) = p (xs |xt, t ∈ N(s)) (18)

for each node s.

Definition 18 (Pairwise Markov Property) A probability distribution P for a random vector
X = (X(1), . . . , X(d)) satisfies the pairwise Markov property with respect to a graph G if for
any pair of non-adjacent nodes s, t ∈ V , we have

Xs ⊥⊥ Xt |XV \{s,t}. (19)

26



Consider for example the graph in Figure 9. Here the set C separates A and B. Thus, a
distribution that satisfies the global Markov property for this graph must have the property
that the random variables in A are conditionally independent of the random variables in
B given the random variables C. This is seen to generalize the usual Markov property for
simple chains, where XA −→ XC −→ XB forms a Markov chain in case XA and XB are
independent given XC . A distribution that satisfies the global Markov property is said to
be a Markov random field or Markov network with respect to the graph. The local Markov
property is depicted in Figure 10.

43

876

21 5

Figure 9: An undirected graph. C = {3, 7} separates A = {1, 2} and B = {4, 8}.

X1

X2

X3 X4

X5

Figure 10: The local Markov property: Conditioned on its four neighbors X2, X3, X4, and
X5, node X1 is independent of the remaining nodes in the graph.

From the definitions, the relationships of different Markov properties can be characterized as:
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Proposition 19 For any undirected graph G and any distribution P , we have

global Markov property =⇒ local Markov property =⇒ pairwise Markov property.

Proof. The global Markov property implies the local Markov property because for each node
s ∈ V , its neighborhood N(s) separates {s} and V \{N(s)∪{s}}. Assume next that the local
Markov property holds. Any t that is not adjacent to s is an element of t ∈ V \ {N(s)∪ {s}}.
Therefore

N(s) ∪ [(V \ {N(s) ∪ {s}}) \ {t}] = V \ {s, t}, (20)

and it follows from the local Markov property that

Xs ⊥⊥ XV \{N(s)∪{s}} |XV \{s,t}. (21)

This implies Xs ⊥⊥ Xt |XV \{s,t}, which is the pairwise Markov property. �

The next theorem, due to Pearl (1986), provides a sufficient condition for equivalence.

Theorem 20 Suppose that, for all disjoint subsets A,B,C,D ⊂ V ,

if XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XC |XB∪D, then XA ⊥⊥ XB∪C |XD, (22)

then the global, local, and pairwise Markov properties are equivalent.

Proof. It is enough to show that the pairwise Markov property implies the global Markov
property under the given condition. Let S,A,B ⊂ V with S separating A from B in the
graph G. Without loss of generality both A and B are assumed to be non-empty. The
proof can be carried out using backward induction on the number of nodes in S, denoted
by m = |S|. Let d = |V |, for the base case, if m = d− 1 then both A and B only consist of
single vertex and the result follows from pairwise Markov property.

Now assume that m < d−1 and separation implies conditional independence for all separating
sets S with more than m nodes. We proceed in two cases: (i) A ∪ B ∪ S = V and (ii)
A ∪B ∪ S ⊂ V .

For case (i), we know that at least one of A and B must have more than one element. Without
loss of generality, we assume A has more than one element. If s ∈ A, then S ∪ {s} separates
A \ {s} from B and also S ∪ (A \ {s}) separates s from B. Thus by the induction hypothesis

XA\{s} ⊥⊥ XB |XS∪{s} and Xs ⊥⊥ XB |S ∪ (A \ {s}). (23)

Now the condition (22) implies XA ⊥⊥ XB |XS. For case (ii), we could choose s ∈ V \ (A ∪
B ∪ S). Then S ∪ {s} separates A and B, implying A ⊥⊥ B |S ∪ {s}. We then proceed in
two cases, either A ∪ S separates B from s or B ∪ S separates A from s. For both cases, the
condition (22) implies that A ⊥⊥ B |S. �

The next proposition provides a stronger condition that implies (22).
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Proposition 21 Let X = (X1, . . . , Xd) be a random vector with distribution P and joint
density p(x). If the joint density p(x) is positive and continuous with respect to a product
measure, then condition (22) holds.

Proof. Without loss of generality, it suffices to assume that d = 3. We want to show that

if X1 ⊥⊥ X2 |X3 and X1 ⊥⊥ X3 |X2 then X1 ⊥⊥ {X2, X3}. (24)

Since the density is positive and X1 ⊥⊥ X2 |X3 and X1 ⊥⊥ X3 |X2, we know that there must
exist some positive functions f13, f23, g12, g23 such that the joint density takes the following
factorization:

p(x1, x2, x3) = f13(x1, x3)f23(x2, x3) = g12(x1, x2)g23(x2, x3). (25)

Since the density is continuous and positive, we have

g12(x1, x2) =
f13(x1, x3)f23(x2, x3)

g23(x2, x3)
. (26)

For each fixed X3 = x′3, we see that g12(x1, x2) = h(x1)`(x2) where h(x1) = f13(x1, x
′
3) and

`(x2) = f23(x2, x
′
3)/g23(x2, x

′
3). This implies that

p(x1, x2, x3) = h(x1)`(x2)g23(x2, x3) (27)

and hence X1 ⊥⊥ {X2, X3} as desired. �

From Proposition 21, we see that for distributions with positive continuous densities, the
global, local, and pairwise Markov properties are all equivalent. If a distribution P satisfies
global Markov property with respect to a graph G, we say that P is Markov to G

4.2 Clique Decomposition

Unlike a directed graph which encodes a factorization of the joint probability distribution in
terms of conditional probability distributions. An undirected graph encodes a factorization
of the joint probability distribution in terms of clique potentials. Recall that a clique in
a graph is a fully connected subset of vertices. Thus, every pair of nodes in a clique is
connected by an edge. A clique is a maximal clique if it is not contained in any larger clique.
Consider, for example, the graph shown in the right plot of Figure 11. The pairs {X4, X5}
and {X1, X3} form cliques; {X4, X5} is a maximal clique, while {X1, X3} is not maximal
since it is contained in a larger clique {X1, X2, X3}.

A set of clique potentials {ψC(xC) ≥ 0}C∈C determines a probability distribution that factors
with respect to the graph by normalizing:

p(x1, . . . , x|V |) =
1

Z

∏
C∈C

ψC(xC). (28)
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Figure 11: A directed graph encodes a factorization of the joint probability distribution in
terms of conditional probability distributions. An undirected graph encodes a factorization
of the joint probability distribution in terms of clique potentials.

The normalizing constant or partition function Z sums (or integrates) over all settings of the
random variables:

Z =

∫
x1,...,x|V |

∏
C∈C

ψC(xC)dx1 . . . dx|V |. (29)

Thus, the family of distributions represented by the undirected graph in Figure 11 can be
written as

p(x1, x2, x3, x4, x5) = ψ1,2,3(x1, x2, x3)ψ1,4(x1, x4)ψ4,5(x4, x5). (30)

In contrast, the family of distributions represented by the directed graph in Figure 11 can be
factored into conditional distributions according to

p(x1, x2, x3, x4, x5) = p(x5) p(x4 |x5) p(x1 |x4) p(x3 |x1) p(x2 |x1, x3). (31)

Theorem 22 For any undirected graph G = (V,E), a distribution P that factors with respect
to the graph also satisfies the global Markov property on the graph.

Proof. Let A,B, S ⊂ V such that S separates A and B. We want to show XA⊥⊥XB |XS.
For a subset D ⊂ V , we denote GD to be the subgraph induced by the vertex set D. We
define Ã to be the connectivity components in GV \S which contain A and B̃ = V \ (Ã ∪ S).
Since A and B are separated by S, they must belong to different connectivity components of
GV \S and any clique of G must be a subset of either Ã ∪ S or B̃ ∪ S. Let CA be the set of

cliques contained in Ã ∪ S, the joint density p(x) takes the following factorization

p(x) =
∏
C∈C

ψC(xC) =
∏
C∈CA

ψC(xC)
∏

C∈C\CA

ψC(xC). (32)

This implies that Ã ⊥⊥ B̃ |S and thus A ⊥⊥ B |S. �
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It is worth remembering that while we think of the set of maximal cliques as given in a
list, the problem of enumerating the set of maximal cliques in a graph is NP-hard, and the
problem of determining the largest maximal clique is NP-complete. However, many graphs of
interest in statistical analysis are sparse, with the number of cliques of size O(|V |).

Theorem 22 shows that factoring with respect to a graph implies global Markov property.
The next question is, under what conditions the Markov properties imply factoring with
respect to a graph. In fact, in the case where P has a positive and continuous density we can
show that the pairwise Markov property implies factoring with respect to a graph. Thus all
Markov properties are equivalent. The results have been discovered by many authors but is
usually referred to as Hammersley and Clifford due to one of their unpublished manuscript
in 1971. They proved the result in the discrete case. The following result is usually referred
to as the Hammersley-Clifford theorem; a proof appears in Besag (1974). The extension to
the continuous case is left as an exercise.

Theorem 23 (Hammersley-Clifford-Besag) Suppose that G = (V,E) is a graph and Xi,
i ∈ V are random variables that take on a finite number of values. If p(x) > 0 is strictly
positive and satisfies the local Markov property with respect to G, then it factors with respect
to G.

Proof. Let d = |V |. By re-indexing the values of Xi, we may assume without loss of
generality that each Xi takes on the value 0 with positive probability, and P(0, 0, . . . , 0) > 0.
Let X0\i denote the vector X0\i = (X1, X2, . . . , Xi−1, 0, Xi+1, . . . , Xd) obtained by setting
Xi = 0, and let X\i = (X1, X2, . . . , Xi−1, Xi+1, . . . , Xd) denote the vector of all components
except Xi. Then

P(x)

P(xi\0)
=

P(xi |x\i)
P(0 |x\i)

. (33)

Now, let

Q(x) = log

(
P(x)

P(0)

)
. (34)

Then for any i ∈ {1, 2, . . . , d} we have that

Q(x) = log

(
P(x)

P(0)

)
(35)

= log

(
P(0, . . . , xi, 0, . . . , 0)

P(0)

)
+ log

(
P(x)

P(0, . . . , xi, 0, . . . , 0)

)
(36)

=
1

d

d∑
i=1

{
log

(
P(0, . . . , xi, 0, . . . , 0)

P(0)

)
+ log

(
P(x)

P(0, . . . , xi, 0, . . . , 0)

)}
. (37)
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Recursively, we obtain

Q(x) =
∑
i

φi(xi) +
∑
i<j

φij(xi, xj) +
∑
i<j<k

φijk(xi, xj, xk) + · · ·+ φ12···d(x)

for functions φA that satisfy φA(xA) = 0 if i ∈ A and xi = 0. Consider node i = 1, we have

Q(x)−Q(x0\i) = log

(
P(xi |x\i)
P(0 |x\i)

)
(38)

= φ1(x1) +
∑
i>1

φ1i(x1, xi) +
∑
j>i>1

φ1ij(x1, xi, xj) + · · ·+ φ12···d(x)

depends only on x1 and the neighbors of node 1 in the graph. Thus, from the local Markov
property, if k is not a neighbor of node 1, then the above expression does not depend of
xk. In particular, φ1k(x1, xk) = 0, and more generally all φA(xA) with 1 ∈ A and k ∈ A are
identically zero. Similarly, if i, j are not neighbors in the graph, then φA(xA) = 0 for any A
containing i and j. Thus, φA 6= 0 only holds for the subsets A that form cliques in the graph.
Since it is obvious that exp(φA(x)) > 0, we finish the proof. �

Since factoring with respect to the graph implies the global Markov property, we may
summarize this result as follows:

For positive distributions: global Markov ⇔ local Markov ⇔ factored

For strictly positive distributions, the global Markov property, the local Markov
property, and factoring with respect to the graph are equivalent.

Thus we can write:

p(x) =
1

Z

∏
C∈C

ψC(xC) =
1

Z
exp

(∑
C∈C

logψC(xC)

)

where C is the set of all (maximal) cliques in G and Z is the normalization constant. This is
called the Gibbs representation.

4.3 Directed vs. Undirected Graphs

Directed graphical models are naturally viewed as generative; the graph specifies a straight-
forward (in principle) procedure for sampling from the underlying distribution. For instance,
a sample from a distribution represented from the DAG in left plot of Figure 12 can be
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sampled as follows:

X1 ∼ P (X1) (39)

X2 ∼ P (X2) (40)

X3 ∼ P (X3) (41)

X5 ∼ P (X5) (42)

X4 |X1, X2 ∼ P (X4 |X1, X2) (43)

X6 |X3, X4, X5 ∼ P (X6 |X3, X4, X5). (44)

As long as each of the conditional probability distributions can be efficiently sampled, the
full model can be efficiently sampled as well. In contrast, there is no straightforward way to
sample from an distribution from the family specified by an undirected graph. Instead one
need something like MCMC.

X1 X2

X3 X4

X5

X6

X1 X2

X3 X4

X5

X6

Figure 12: A DAG and its corresponding moral graph. A probability distribution that factors
according to a DAG obeys the global Markov property on the undirected moral graph.

Generally, edges must be added to the skeleton of a DAG in order for the distribution to
satisfy the global Markov property on the graph. Consider the example in Figure 12. Here
the directed model has a distribution

p(x1) p(x2) p(x3) p(x5) p(x4 |x1, x2) p(x6 |x3, x4, x5). (45)

The corresponding undirected graphical model has two maximal cliques, and factors as

ψ1,2,4(x1, x2, x4)ψ3,4,5,6(x3, x4, x5, x6). (46)

More generally, let P be a probability distribution that is Markov to a DAG G. We define
the moralized graph of G as the following:
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Definition 24 (Moral graph) The moral graph M of a DAG G is an undirected graph that
contains an undirected edge between two nodes Xi and Xj if (i) there is a directed edge between
Xi and Xj in G, or (ii) Xi and Xj are both parents of the same node.

Theorem 25 If a probability distribution factors with respected to a DAG G, then it obeys
the global Markov property with respect to the undirected moral graph of G.

Proof. Directly follows from the definition of Bayesian networks and Theorem 22. �

XB XCXA XB XCXA

XB XCXA

Figure 13: These three graphs encode distributions with identical independence relations.
Conditioned on variable XC , the variables XA and XB are independent; thus C separates A
and B in the undirected graph.

XB

XCXA

XB

XCXA

Figure 14: A directed graph whose conditional independence properties can not be perfectly
expressed by its undirected moral graph. In the directed graph, the node C is a collider;
therefore, XA and XB are not independent conditioned on XC . In the corresponding moral
graph, A and B are not separated by C. However, in the directed graph, we have the
independence relationship XA ⊥⊥ XB, which is missing in the moral graph.

Example 26 (Basic Directed and Undirected Graphs) To illustrate some basic cases, consider
the graphs in Figure 13. Each of the top three graphs encodes the same family of probability
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X1 X2

X3 X4

Figure 15: This undirected graph encodes a family of distributions that cannot be represented
by a directed graph on the same set of nodes.

X1 X2 XdX3

Y1 Y2 YdY3

X1 X2 XdX3

Y1 Y2 YdY3

Figure 16: The top graph is a directed graph representing a hidden Markov model. The
shaded nodes are observed, but the unshaded nodes, representing states in a latent Markov
chain, are unobserved. Replacing the directed edges by undirected edges (bottom) does not
changed the independence relations.
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distributions. In the two directed graphs, by d-separation the variables XA and XB are
independent conditioned on the variable XC. In the corresponding undirected graph, which
simply removes the arrows, node C separates A and B.

The two graphs in Figure 14 provide an example of a directed graph which encodes a set of
conditional independence relationships that can not be perfectly represented by the correspond-
ing moral graph. In this case, for the directed graph the node C is a collider, and deriving
an equivalent undirected graph requires joining the parents by an edge. In the corresponding
undirected graph, A and B are not separated by C. However, in the directed graph, XA and
XB are marginally independent, such an independence relationship is lost in the moral graph.
Conversely, Figure 15 provides an undirected graph over four variables. There is no directed
graph over four variables that implies the same set of conditional independence properties.

The upper plot in Figure 16 shows the directed graph underlying a hidden Markov model.
There are no colliders in this graph, and therefore the undirected skeleton represents an
equivalent set of independence relations. Thus, hidden Markov models are equivalent to hidden
Markov fields with an underlying tree graph.

4.4 Faithfulness

The set of all distributions that are Markov to a graph G is denoted by P(G) To understand
P(G) more clearly, we introduce some more notation. Given a distribution P let I(P ) denote
all conditional independence statements that are true for P . For example, if P has density p
and p(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2) then I(P ) = {X1 ⊥⊥ X2}. On the other hand, if
p(x1, x2, x3) = p(x1)p(x2, x3) then

I(P ) =
{
X1 ⊥⊥ X2, X1 ⊥⊥ X3, X1 ⊥⊥ X2|X3, X1 ⊥⊥ X3|X2

}
.

Similarly, given a graph G let I(G) denote all independence statements implied by the graph.
For example, if G is the graph in Figure 15, then

I(G) =
{
X1 ⊥⊥ X4 | {X2, X3} , X2 ⊥⊥ X3 | {X1, X4}

}
.

From definition, we could write P(G) as

P(G) =
{
P : I(G) ⊆ I(P )

}
. (47)

This result often leads to confusion since you might have expected that P(G) would be equal
to
{
P : I(G) = I(P )

}
. But this is incorrect. For example, consider the undirected graph X1

— X2, in this case, I(G) = ∅ and P(G) consists of all distributions p(x1, x2). Since, P(G)
consists of all distributions, it also includes distributions of the form p0(x1, x2) = p0(x1)p0(x2).
For such a distribution we have I(P0) = {X1 ⊥⊥ X2}. Hence, I(G) is a strict subset of I(P0).
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In fact, you can think of I(G) as the set of independence statements that are common to all
P ∈ P(G). In other words,

I(G) =
⋂{
I(P ) : P ∈ P(G)

}
. (48)

Every P ∈ P(G) has the independence properties in I(G). But some P ’s in P(G) might
have extra independence properties.

We say that P is faithful to G if I(P ) = I(G). We define

F(G) =
{
P : I(G) = I(P )

}
(49)

and we note that F(G) ⊂ P(G). A distribution P that is in P(G) but is not in F(G) is said
to be unfaithful with respect to G. The independence relation expressed by G are correct
for such a P . It’s just that P has extra independence relations not expressed by G. A
distribution P is also Markov to some graph. For example, any distribution is Markov to
the complete graph. But there exist distributions P that are not faithful to any graph. This
means that there will be some independence relations of P that cannot be expressed using a
graph.

Example 27 The directed graph in Figure 14 implies that XA ⊥⊥ XB but that XA and XB

are not independent given XC. There is no undirected graph G for (XA, XB, XC) such that
I(G) contains XA ⊥⊥ XB but excludes XA ⊥⊥ XB |XC. The only way to represent P is to
use the complete graph. Then P is Markov to G since I(G) = ∅ ⊂ I(P ) = {XA ⊥⊥ XB}
but P is unfaithful to G since it has an independence relation not represented by G, namely,
{XA ⊥⊥ XB}.

Example 28 (Unfaithful Gaussian distribution) . Let ξ1, ξ2, ξ3 ∼ N(0, 1) be indepen-
dent.

X1 = ξ1 (50)

X2 = aX1 + ξ2 (51)

X3 = bX2 + cX1 + ξ3 (52)

where a, b, c are nonzero. See Figure 17. Now suppose that c = − b(a2+1)
a

. Then

Cov (X2, X3) = E(X2X3)− EX2EX3 (53)

= E(X2X3) (54)

= E [(aX1 + ξ2)(bX2 + cX1 + ξ3)] (55)

= E [(aξ1 + ξ2)(b(aξ1 + ξ2) + cX1 + ξ3)] (56)

= (a2b+ ac)Eξ2
1 + bEξ2

2 . (57)

= a2b+ ac+ b = 0. (58)

Thus, we know that X2 ⊥⊥ X3. We would like to drop the edge between X2 and X3. But this
would imply that X2 ⊥⊥ X3 |X1 which is not true.
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X3

X2X1
a

bc

Figure 17: An unfaithful Gaussian distribution.

Generally, the set of unfaithful distributions P(G) \ F(G) is a small set. In fact, it has
Lebesgue measure zero if we restrict ourselves to nice parametric families. However, these
unfaithful distributions are scattered throughout P(G) in a complex way; see Figure 18.

Figure 18: The blob represents the set P(G) of distributions that are Markov to some graph
G. The lines are a stylized representation of the members of P(G) that are not faithful to G.
Hence the lines represent the set P(G) \ F(G). These distributions have extra independence
relations not captured by the graph G. The set P(G) \ F(G) is small but these distributions
are scattered throughout P(G).
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