186

Intelligent Backtracking for Automated
Deduction in FOL

Stanis¥aw Matwin
Department of Computer Science, University of Ottawa, Ontario, Canada

Tomasz Pietrzykowski
School of Computer Science, Acadia Universitv, Nova Scotia, Canada

Abstract

An "intelligent" backtracking algorithm for depth-first search of the solution space
generated during linear resolution in fal has been designed. Tt inspects only a small
porticn of the total solution space, which consists of special graphs representing the
deductive structure of the proof. These graphs are generalization of AND/OR
trees. Our (partially) complete search algorithm has natural potential for parallel
implementation. However, it may generate redundant refutations; it seems that
this is the effect of the prevailing design objective, which in our case was
completeness of the method.

A preliminary estimate of the efficiency of the algorithm has been carried out.
It indicates exponential speed-up over the worst case of linear backtracking.

An implementation (3000 lines of PASCAL code, under CMS) has now been
completed. That allows us to experiment with the algorithm and investigate
certain open questions.

1. Introduction

Many researchers working in Artificial Intelligence and its applications agree that
an efficient backtracking mechanism will drastically expand applicahility of Logic
Programming ([(Warren et al 77], [Pereira and Porto 80], [Nau 82], [Stallman and
Sussman 77]). One swch algorithm has been designed by M. Bruynooghe (78] and
L.M. Pereira [79], [80]. This paper presents an alternative and different approach.
Our method is based on a graph-based, depth-first proof procedure [Cox and
Pietrzykowski 81]. The basic notion, on which this algorithm is based, is the plan:
a directed graph, representing deductive structure of the proof. The plan i a
natural generalization of AND/OR trees. The unifications, generated during the
proof, are kept in a separate graph structure, called the graph of constraints. In
this way, even if backtracking along a particular path of the plan does not lead to
a solutdon and this path will have to be re-generated, there is no need to re-
generate the unifications obtained along that path.

Furthermare, our method is applicable to general first order logic, without being
restricted to Harn clauses. Also, as it will be demonstrated later, intelligent plan-
based deduction has natural potential for a parallel implementation.

Finally, it has to be emphasized that the prevailing design criteria of our
algorithm was completeness of search of the search-space. This has been achieved,
and the proof of (partial) completeness has been obtained [Matwin and
Pietrzykowski 83]. However, a price which had to be paid is redundancy (@.e. the
same solution may be obtained more than once). Bruyncoghe-Pereira method does
not suffer from this deficiency, but then it is not certain that their solution is a
complete one.

/4'/;".; 3‘{ < ﬂ ;



13+

;. Operation of the Intelligent Backtracking System.

Before introducing the algerithm and a mare complete example, let us illustrate
he difference between "exhaustive" and "intelligent" backtrackmg using a very
imple case. Assume that the fdllowing set of clauses is given:

Px) Q9. -0(2) St,9 T(,2).
-P,v) Vo) W(). -5(a,b). -S(,0)
-V ). -V (a). -S@d). -S(a,e)
-W(c). -W(@). =T (b,a).

-W(e). -WH.

learly, with the left-to-right "reduction" (although "expansmn" seems to be more
:iequate term) pdlicy, the faollowing plan, which in this case is just and AND/OR
ree, is obtained:

. (CrP&xy 0® ) ,
) |

(-p (f,v) V) W) ) (=0t v&s 16,2)
l.‘s Xi o \\‘\\ | 6
) -V?a) -w (c)\ AR -V (fq,c) V@ :\?(q.e) l
W@ -We THe Vg T (0/2)

he continuous lines represent the AND arcs, the dotted are the OR arcs.
bviously, in this tree there is a clash between constant b, generated by arc 3, and
onstant a, generated by arc 6. One look at the plan convinces us that arc 3 is
e culprit, and that a reduction fdllowing its alternative remedies the problem.
owever, exhaustive backtracking will perform 33 reductions [3*2 + 3*((4*2) + 1) =
3] befare generating the solution. The reason for that is the fact that all the
}.ternatives between the arcs 3 and 6 invalved in the conflict are tried by
xhaustive bactracking. Our method is different: it only tries 6, 3 and the
lternatives lying above them. 1In this case, one reduction replacing 3 with its
lternative will. do the job. In a xeas:nably balanced AND/OR tree, the number of
lternative deductions obtainable in between two modes is of the order exponential
rt the height of the tree. Therefore, a method which operates only above the
lashes will be expmentially faster than the worst-case behaviour of exhaustive
’acktcacking discussed here.

We shall now proceed with a more thorough discussion of our method, beginning
ith the underlying rotions and concepts.

I‘he basic structure, invadlved in the algorithm is the plan. By a plan we
ﬁerstand a directed graph, nodes of which represent variants of clauses. One of
ne nodes, referred to as TOP, represents the clause to be proven. Arcs of the
ian connect pairs of literals, belonging to individual nodes. Each two literals,
ﬁmng ann arc, are unifiable and of opposite sign. There are two types of arcs:
JB arcs and RED arcs (as proven in [Cox and Pietrzvkowski 81], those two rules
rovide a complete set). Informally speaking, SUB arcs point "downwards" in the
lan, while RED arcs point "wpwards". Each node, except the mOP, is entered by
xactly one SUB arc (and, pcesihly, by zero or mcre RED arcs). The literal within

/L//%?M//U -2




18%

a node, pointed to by a SUB arc, is the kev of this node. Each other literal of this
node is called a goal. A goal is called closed if there is an arc, originating in this
goal, cotherwise the goal is an open one.

With each goal of the plan we associate a set of arcs, called the set of
potentials., They are the arcs which could have been generated instead of the one
actually created. TLet us notice that, if the olan is a tree, then the initial value
of all potentials represents all the OR arcs. In any case, this initial value is static
information.

As mentioned befare, the information gathered as resu't of unification is kept
separately, in a special data structure called the gravh of constraints. This graph
reflects the history of unifications which have taken place In the proof during its
progress. A node of the graph of constraints, called a constraint, represents the
information ahbout the hindings which have ben imposed on a variable during the
history of proof., Therefore, presence of two different constants in a constraint is
an indication of a cdlash. This clash is then mapped on the plan. Each minimal set
of plan arcs such that its removal annihilates the clash is referred to as a conflict.
The conflict set is the set of all such conflicts for a given plan. In some
situations, even though the conflict set is empty, we want to create an artificial
conflict set, in order to assure completeness. Artificial conflict set contains all
the arcs entering unit clauses, and all the reduction arcs.

Finally, our method introduces two other notions, motivated by memory
management probhlems., The algarithm uses a repository of plans, accompanied by
their graphs of constraimts and conflict sets. This repository, called the store
resides on disk, and plans are fetched from it and added to it. There is always
one plan being operated on: it is called the tabe plan (or simply the table).

With this backgrourd, we can now fdllow the operation of our algcrithm on the
following set of clauses: 02

A. P Q) Reny) e = TOP
. =P
N c. ew

D. -P(c)

E. =-Q(w) V(v,w)
F. -R(z,2)

G. =-R{u,v) S
H. =S(a)

LN "V(bvb)

J. =V(c,c)

Initially, the store is empty. Clause A is chosen as the TOP and a single-node
plan consisting of A is generated. Since it is not cdlosed, it will be further
developed until either a closed plan is obtained or a non-empty conflict set is
generated. In our case, we get the fallowing plan:

plan P1 @& , )
«—1 ﬁ\ 7 sl
B - .
, 8 F G C
D




| 89

s conflict set is (3, 1A 5 4). Suppose that 3 is chosen for removal; the open
lan P2 is obtained and placed in the store:

ln p2 (& , »
y 2 ~. 7 5
/’ ¥ S
;'8 (E ) P G 9
D 5

he conflict on the tahle is now (1A 5, 4). If 1A 5 is chosen, orunning annihilates
ne plan, as 5 has no potential and A is the TOP. With the choice of 4, open plan
3 is obtained and placed in store:

)

1

(A
ince there are no more conflicts on the table, one of the store plans (suppose it
P2) is placed on the table. Potential 6 is realized as an arc, which leads to a
Enﬂict set 1A 5, 6, 4 on the tahle.
wh

3

lan

L

K
D

Since choice of either 6 or 1A 5 leads

| ere, suppcse that 4 is chosen and P4 is sent to store.

lan P4 (& D)
— T 2 7 S(L
L %
l/ \G
D 6
J

s the conflict set is again empty, one of the store nlans P4 and P3 is placed on
ne table. Assume P3 is chosen; the only open goal is closed with its potential 7

nd a solution is obtained:

lan 5 (& J
il 2 7 SJ/
3 :
D 6" |3
3¢ 1 B

rtificial conflict set of PS5 is (1, 3, 5, 9). Removal of 5 and 9 leads nrowhere as
nere are no potentials between these arcs and the top. Renlacement of 1 by 8 is
Iso unproductive (the reader will easilv see whv). This leaves us with 3 as a
sasonakle candidate for removal, which results in plan PA.

VAL &



190

olan P5 (A )
s 2 5
,/'8’ (E ) C
D ‘16
g

The only plans in store are now P4 and P6. With the choice of P6, potential J is
realized and we get solution P7:

plan P7 (A )
- 1) 2 7 SJ/
B s
8 E G C
D 9

J

Since all attempts of obtaining new plans from its artificial onflict set fail, the
only remaining store plan, P4, is placed on the tahle. Tts potential 7 and then arc
9 are realized, which gives a redundant solution identical to P7. The store is now
empty and the algorithm terminates.

We have proven elsewhere [Matwin, Pietrzykowski 83] that when our algorithm
terminates, it generates all the existing proofs (partial completeness).

3. Further Inhancements of the Algorithm

There are at least three directions of further research, leading to potentially
interesting enhancements of the algorithm.

1. Different strategies for nondeterminism. A number of nondeterministic choices
is invalved in the algorithm. Two types of such choices were mentioned in
the brief description in the preceding section: choice of the plan from the
store to be placed on the tahble, and choice of a conflict from the set of
conflicts. Tt is not clear, at this stage, what are the right criteria for these
choices, This is particularly important when the objective is to find a proof,
rather than all the possible proofs. Tt seems that in this case the right
strategy may bring about significant increase in efficiency.

2. Applicahility of the algorithm in the domain of expert systems. The
researchers in expert systems point out that a method of limiting the search
space is of great importance for implementation of practical systems Nau 83].
The early work of ([Stallman and Sussman 77] bears a good deal of
resemblance to our method, although their approach is less general. System
ARS, repoated in [Stallman and Sussman 77] implements a method of
dependency directed backtracking, tailored to the particular environment of
algebraic relationships encountered in the analysis of electric circuits.
Therefore it seems that a method like ours mav be productive, particularly in
case of ewpert svstems using fal or its derivatives [Skuce 83] to represent
knowledge bases,

3. Distributed implementation. Since no orderina of conflicts in within the




(91

conflict set is assumed, an interesting parallel implementation seems possihle.
It will invalve a number of processors, each of which would remove a conflict,
carry out the necessary pruming Gf anv) and develop the plan. The result of
development is placed in store, ready to be picked up by another processor.
The whole system stops when the store becomes empty. Such a parallel,
distributed implementation seems to he feasible. Let us notice that the
similar approach to Bruynooghe-Pereira method would not work, since their
algorithm specifically orders the conflicts, which in tum allows them to avoid
the redurdancv prohblem.

.eferences

éruymoghe 78] Bruyrooghe, M., Intelligent Backtracking for an Intervreter of Horn
Clause Logic Programs, Procs. of Cdlloguim on Mathematical Togic in
Program ming, Salgotarjan, Hungary, 1978.

Jruynocoghe and Perreira 81] Bruyncoghe, M., Pereira, L.M., revision of Top-Down
Logical Reasoning Through Intelligent Backtracking, res. Report of XKUIL and
CIUNT, 1981.

"ox and Pietrzykowski 81] Cox, P., Pietrzykowski, T., Deduction Plans: A Basis
for Intelligent Backtracking, IEEE PAMI, Jan. 1981,

latwin and Pietrzykowski 82] Matwin, S., Pietrzykowski, T., Exponential
Improvement of Exhaustive Backtracking: Data Structure and Implementation,
Procs, of CADE-6, 1982.

flatwin and Pietrzykowski 83] Matwin, S., Pietrzykowski, T., Intelligent
Backtracking in Plan-Based Deduction, Submitted to IEEE PAMI.

lau 83] Nau, D.S., Expert Computer Systems, IEEE Computer, Feb. 1983. <—

lereira 79] Pereira, L.M., Backtracking Intelligently in AND/OR Trees, Research
Report, CTUNL 1979,

‘ereira and Porto 80] Pereira, L.M., Porto, A., Selective Backtracking for Logic
| Programs, Procs., of CADE-5, 1980.

ietrzykowski and Matwin 82] Pietrzykowski, T., Matwin, S., Exponential
Improvement of Exhaustive Backtracking: A Strategqy far Plan-Based
Deduction, Proc. of CADE-6, 1982,

kuce, 83] Skuce, D., KNOWLOG, Submitted to IEEE Computer. L

ta]lman, R.M. and Sussman 77] Stallman, R.M., Sussman, G.J., Forward Reasoning

and Dependency-Directed Backtracking in a System for Computer-aided Circuit
Analysis, Artificial Intelligence, 1977.

arren et al 1977] Warren, D.H.D., Pereira, T..M. Pereira, F.,., PROLOG - The
lanquage and its implementation compared to LISP, ACM SIGPLAN, Aug. 1977.






