
Model-Driven Software Development of Model-Driven Tools:
A Visually-Specified Code Generator for Simulink/Stateflow

Attila Vizhanyo, Sandeep Neema, Zsolt Kalmar, Feng Shi, and Gabor Karsai
Institute for Software-Integrated Systems

Vanderbilt University
Nashville, TN 37235, USA

Abstract

On one hand, visual modeling languages are often
used today in engineering domains, Mathworks’ Simu-
link/Stateflow for simulation, signal processing and
controls being the prime example. On the other hand,
they are also becoming suitable for implementing
other computational tasks that assist in model-driven
development, like model transformations. In this paper
we briefly introduce GReAT: a visual modeling lan-
guage with simple, yet powerful semantics for imple-
menting transformations on attributed, typed hyper-
graphs with the help of explicitly sequenced graph
transformation rules. The main contribution of the
paper is the “highlights” of a specialized model trans-
formation tool: a code generator that generates execu-
table code from the input Simulink/Stateflow models.

1. Introduction

Visual programming still has to make its way into
mainstream programming. However, with the arrival
of model-based development practices, visual ap-
proaches made inroads into the mainstream software
engineering - albeit in a somewhat different way. The
Unified Modeling Language (UML) is often used to-
day to specify and design systems, and used occasion-
ally for actually implementing systems through code
generation. The Model-Driven Architecture (MDA)
vision of OMG advocates the use of model transfor-
mations in the development process, where these
transformations could (also) be visually specified.

We conjecture that the use of visual languages and
visually specified transformations are especially rele-
vant for domain-specific modeling languages (DSML)
and transformations on those languages — and thus
can be a crucial part of a model-driven software de-
velopment process.

In the work described below the application domain
is control engineering and signal processing, where

controllers are “signal processors” that are ultimately
implemented in software. The flagship commercial
product that supports this domain is Mathworks’
Simulink/Stateflow (MSS). This language allows
specification of embedded controllers in terms of
block-oriented signal-flow diagrams (to represent
“processing”) and Statecharts (to represent “discrete
control”).

We have developed a model transformation tech-
nology in a tool (GReAT), which is based on graph
transformation principles. GReAT uses a visual nota-
tion for describing the model transformations in terms
of explicitly-sequenced transformation rules. We ar-
gue that GReAT, being a DSML for model transfor-
mations, increases agility through reducing complex-
ity: it makes easier the task of engineers who build
model transformations. Raising the level of abstraction
in the domain of model transformations means that
developers can specify transformations in terms of
abstractions of the target domain(s), not in the solution
domain. GReAT has well-defined execution seman-
tics, which narrows the abstraction gap that developers
needs to bridge between the problem and the solution
domains.

We were interested in trying out this technology for
implementing a non-trivial model transformation pro-
gram: a code generator for MSS that generates C code
from the high-level models for execution on a distrib-
uted embedded platform. In this paper we briefly in-
troduce GReAT, describe the code generator, and then
evaluate the results.

2. Background: The GReAT Approach

The graph transformation based language we have
developed is called GReAT, short for “Graph Rewrit-
ing and Transformation” [1]. GReAT is suitable for
formal specification of model transformations, where
UML class diagrams are used to represent the abstract
syntax of the input and the output models of the trans-
formation. The models are represented with vertex and

edge labeled multi-graphs, where the labels are denot-
ing the corresponding types in UML class diagrams.
The transformations are represented as explicitly se-
quenced elementary rewriting operations, called pro-
ductions or rules. A production contains a pattern
graph that consists of pattern vertices and edges,
jointly called pattern elements. Each pattern element
has an attribute, called the role that specifies what
happens during the transformation step. A pattern
element can play one of three roles: Bind, Delete, or
New. The execution of a rule involves matching every
pattern object marked with either Bind or Delete. The
pattern matcher will return all possible matches for the
given pattern and a host graph. An (optional) guard
condition can filter out undesirable matches from this
set. Then for each match the pattern objects marked
Delete are deleted from the graph and objects marked
New are created. Finally, the attributes of the newly
created graph objects can be updated by an optional
AttributeMapping (AM) code, written in an execu-
table language (C++).

GReAT uses the UML class diagram notation for
the specification of patterns. For example, in Figure 1,
OrState, SubOrState, State, SubOrState→State
composition and OrState→SubOrState composition
have the Bind role while NewState, Or-
State→NewState composition and State↔New-
State association have the New role. The semantics
of the rule is: find the pattern that matches the ele-
ments with the Bind role, in this case the OrState,
SubOrState, State, SubOrState→State composi-
tion and OrState→SubOrState composition pattern.
Then, for every such pattern evaluate the Guard ex-
pression. Let the guard expression be “SubOr-
State.name == State.name”. Thus only those matches
that have this property will pass the guard and the rest
will be discarded. Then create the objects marked
New, in this case NewState, OrState→NewState
composition and State↔NewState association. Fi-
nally, use AttributeMapping to fill in the attributes
of the newly created objects.

The computational complexity of the pattern
matching can be significantly reduced if we provide
the pattern matcher with an initial context.

Figure 1 An example production

By “context” we mean an initial partial match that is
give to the pattern matcher when it is started. The ini-
tial matches are provided to a transformation rule with
the help of ports that form the input and output inter-
face for each transformation step. Thus a transforma-
tion rule is similar to a function, which is applied to
the set of bindings received through the input ports
and results in a set of bindings over the output ports.
For a transformation to be executed graph objects
must be supplied to each port in the input interface. In
Figure 1 the In and Out icons are input and output
ports respectively. Input ports provide the initial match
to the pattern matcher while output ports are used to
extract graph objects from the rule so that they can be
passed along to the next rule.

In order to better manage complexity in transforma-
tion programs it is important to have higher-level con-
structs, like hierarchical rules and control structures in
the graph rewriting language. For this reason, we sup-
port (1) the nesting of rules and (2) control structures.
Figure 2 shows how an order of execution can be
specified using control structures in GReAT. In this
example the rules are executed from left to right start-
ing from CreateRootFunction. GReAT supports hier-
archical nesting of transformation rules. High-level
rules can be created by composing a sequence of
primitive rules. There are two kinds of high-level rules
in GReAT: Block and ForBlock, giving the user con-
trol over the traversal strategies over the host graph.
Compound rules CreateInputArgs and CreateOutpu-
tArgs shown in Figure 2 represent Blocks, that contain
other compound and primitive rules. A Test/Case is
also available in GReAT. It can be used to choose
between different execution paths, during the trans-
formation and is similar to ’if’ statements in pro-
gramming languages.

The GReAT language is implemented using the (1)
GR Engine, and the (2) GR Code Generator tool. The
GR Engine is a generic “interpreter” that takes the
input graph, applies the model transformation to it,
and thus generates the output graph. The GR Code
Generator tool generates efficient C++ code that is
specific to a particular transformation. Then the gener-
ated code is compiled into a binary executable that is
used to perform the transformation with significant
performance gains over the GR Engine.

We conjecture that using GReAT to develop model
transformers for an MDSD process has two primary
benefits: (1) the semantics of the GReAT language
allows for decreased development time in an easy-to-
use visual programming environment, (2) the semantic

Figure 2 An example control structure

Figure 3: Model-driven construction of a model transformation tool: a code generator

mapping between the input and the output of the
transformation becomes formal and explicit, which
allows a better understanding of what the transforma-
tion does.

To illustrate these benefits, we briefly describe a
specialized model transformation: a code generator
that was specified using GReAT. This transformation
generates C code from MSS models [2]. Figure 3 illus-
trates the process: on the top the metamodels for the
input and the output and the models for the transfor-
mation are shown. The input models comply with the
input metamodel, while the generated C code complies
with the output, as shown on the bottom. The trans-
formation models are “operationalized” via the
GReAT tools (i.e. the GR engine, or the executable
code produced by the code generator).

3. The Stateflow to C Code Generator

Controllers modeled using Stateflow are often used
in safety-critical applications such as those in “x-by-
wire”1. The correctness and verifiability of code-
generators thus becomes an important consideration.
The declarative nature of the specification in GReAT
opens up the possibility of verification. Our work is
also driven by the specifications of Mathworks Auto-
motive Advisory Board (MAAB) that defines restric-
tions on the use of Stateflow constructs in modeling an
automotive application, in effect defining a subset of
Stateflow that can be used in automotive applications.
A design goal and an additional benefit of specifying
code-generators with GReAT, is the explication of
semantics of Stateflow.

The C code that must be generated from the dia-
f

grams to implement the operational semantics o

1 “x” can take values like “brake”, “drive”, “throttle”, and “drive”

Sta

e help documentation included with
the

 the Stateflow.
Th

teflow, is a stylized subset of C. This stylization is
driven by the fact that the code for implementing state-
based behavior follows some specific idioms and pat-
terns. For this subset we have created a metamodel in
UML, that we call SFC (an abbreviation of Stateflow-
C). Some of the key constructs of SFC metamodel
include: Statement, Declaration, Operational-
Statement,Functions, FunctionCall, StateVar,
SetState, CheckState, among others. Please note
that the SFC metamodel is an important contribution
of this work, as it leads to a cleaner semantic under-
pinning of Stateflow by explicitly formulating the ab-
stract machine for executing Stateflow (in terms of C
code fragments).

Mathworks Stateflow operational semantics is de-
fined in the onlin

 Stateflow release [3]. The semantics is described in
the form of informal execution rules for various sce-
narios, such as executing a chart, executing a state,
entering a state, executing a flow graph, etc. The code
that our code generator produces is in effect a partial
specialization (specialized for the input Stateflow
model) and instantiation of these rules.

In the generated code, we produce enter, exit, and
exec (or step) function for each state in

e core of the state machine behavior is encoded in
these functions. The enter function performs the ac-
tions that are required to activate a state. The Math-
works Stateflow document specifies 7 different steps
involved in activating a state [3]. These steps can be
partitioned in 4 non-exclusive groups. Depending on
the mode of entry different groups of steps must be
performed, e.g.: if a state is entered whose parent state
is not active (typically in case of cross-hierarchy tran-
sition) then the execution semantics require execution
of steps 1-4 for the parent state. In our generated code,

we have codified this in the form of an ‘entryMode’
argument of the enter function, and different segments
of the enter steps are condition with the mode argu-
ment. The ‘exec’ function is responsible for perform-
ing a state machine step. Per the Mathworks Stateflow
semantics 4 steps are required. These are: a) execute
outer flow graphs i.e. outgoing transitions from a state,
and if one of the transition is enabled and gets taken
then there is no further execution in this state, b) per-
form ‘during’ actions, c) execute inner flow graphs,
which are transitions from the edge of a state and lead-
ing inwards i.e. destination state is a descendant, and if
this does not cause any state transition, then d) execute
active children in case of a sequential (OR-
decomposed) state, and all children in a specific order
in case of a concurrent (AND-decomposed) state. The
generated code contains a call to the exit function and
the enter function respectively for implementing these
steps. The exit function is responsible for exiting a
state and performs 4 steps unconditionally, which in-
volves exiting sibling in case the state is a parallel
state, exiting active children, performing user-defined
exit actions, and finally marking the state inactive.

The overall code generation algorithm is in effect a
multi-pass traversal over the input graph. There are
sev

 The unsupported
lan

nally, there are 54 reuse in-
sta

we have highlighted a non-trivial
ion tool: a model-to-code generator

wh

rtunity for building
ve

wal A., Shi F., Sprinkle J., “On the Use
formations for the Formal Specification

en main traversal passes in the transformation.
Page limitations prevent us from giving a detailed ex-
planation of the algorithm. In brief, the transformation
involves creating Enter, Exit, and Exec Function
objects and populating these functions by constructing
additional objects (instances of Statement and
Statement derived classes) that faithfully implement
the state machine behavior as explained above. For
example, the Stateflow defined priority semantics for
transitions is enforced by adhering to the following
rules: (1) local transitions have a lower priority than
cross-hierarchy transitions, (2) the clockwise orienta-
tion of transitions determines the priority of outbound
transitions. The Stateflow priority semantics is used by
domain experts (who are not necessarily software de-
velopers) to express domain knowledge. They can
assign priorities to transitions in terms of Stateflow
concepts within a GReAT transformation, and then the
executable transformation is generated automatically
from these high-level specifications.

The code generator as implemented offers fairly
exhaustive coverage of the Stateflow.

guage features include History junctions, Event
broadcast, and arbitrary Junction structures requiring
backtracking. The code that gets generated from our
code generator is efficient and it preserves the state
structures through the state labels. We have systemati-
cally validated the functional correctness of the code
generator with several examples ranging from small to
moderate complexity. We should note here that our

goal was not to outperform the code generated by
commercial products, which have been developed with
an effort of several man years, and refined over an
extended period of time.

The transformation includes 82 basic rules, and 54
compound rules. Additio

nces of these basic and compound rules. This com-
pares very favorably with a code generator of similar
scale and complexity implemented with ~3000 lines of
C++ source code. Using the GReAT tool suite, the
code generator can be executed interpretively, or
transformed into code, and compiled. For a typical 20-
30 states/sub-states model, the interpreted version
takes nearly 4 minutes, while the compiled version
takes a little over 6 seconds.

4. Conclusion

In this paper
model transformat

ose specification was precisely captured in a mod-
eling language for model transformations, and its im-
plementation was almost entirely automatically gener-
ated using a tool that implements the semantics of the
modeling language in a translational style. We believe
this effort was a successful demonstration of the feasi-
bility and effectiveness of applying MDSD practices
to express and automate the implementation of a non-
trivial tool. The generator built using the approach
works with an acceptable performance, but it also
lends itself to formal verification.

We strongly believe that the GReAT and similar
technologies offer a unique oppo

rifiable generator and transformation tools. How-
ever, much future research is needed to build up such a
verification technology.

5. References
[1] Karsai G., Agra

of Graph Trans
of Model Interpreters”, JUCS, November 2003.

[2] Neema S., Karsai G., “Embedded Control Systems
Language for Distributed Processing,” ISIS Technical
Report, ISIS-04-505, May 12, 2004.

[3] Mathworks Stateflow semantics documentation,
http://www.mathworks.com/access/helpdesk/help/toolb
ox/stateflow/semantics.html#1032458

http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/semantics.html#1032458

	1. Introduction
	2. Background: The GReAT Approach
	3. The Stateflow to C Code Generator
	4. Conclusion
	5. References

