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Abstract 

On one hand, visual modeling languages are often 
used today in engineering domains, Mathworks’ Simu-
link/Stateflow for simulation, signal processing and 
controls being the prime example. On the other hand, 
they are also becoming suitable for implementing 
other computational tasks that assist in model-driven 
development, like model transformations. In this paper 
we briefly introduce GReAT: a visual modeling lan-
guage with simple, yet powerful semantics for imple-
menting transformations on attributed, typed hyper-
graphs with the help of explicitly sequenced graph 
transformation rules. The main contribution of the 
paper is the “highlights” of a specialized model trans-
formation tool: a code generator that generates execu-
table code from the input Simulink/Stateflow models.  

1. Introduction 

Visual programming still has to make its way into 
mainstream programming. However, with the arrival 
of model-based development practices, visual ap-
proaches made inroads into the mainstream software 
engineering - albeit in a somewhat different way. The 
Unified Modeling Language (UML) is often used to-
day to specify and design systems, and used occasion-
ally for actually implementing systems through code 
generation. The Model-Driven Architecture (MDA) 
vision of OMG advocates the use of model transfor-
mations in the development process, where these 
transformations could (also) be visually specified.  

We conjecture that the use of visual languages and 
visually specified transformations are especially rele-
vant for domain-specific modeling languages (DSML) 
and transformations on those languages — and thus 
can be a crucial part of a model-driven software de-
velopment process.  

In the work described below the application domain 
is control engineering and signal processing, where 

controllers are “signal processors” that are ultimately 
implemented in software. The flagship commercial 
product that supports this domain is Mathworks’ 
Simulink/Stateflow (MSS). This language allows 
specification of embedded controllers in terms of 
block-oriented signal-flow diagrams (to represent 
“processing”) and Statecharts (to represent “discrete 
control”).   

We have developed a model transformation tech-
nology in a tool (GReAT), which is based on graph 
transformation principles. GReAT uses a visual nota-
tion for describing the model transformations in terms 
of explicitly-sequenced transformation rules. We ar-
gue that GReAT, being a DSML for model transfor-
mations, increases agility through reducing complex-
ity: it makes easier the task of engineers who build 
model transformations. Raising the level of abstraction 
in the domain of model transformations means that 
developers can specify transformations in terms of 
abstractions of the target domain(s), not in the solution 
domain. GReAT has well-defined execution seman-
tics, which narrows the abstraction gap that developers 
needs to bridge between the problem and the solution 
domains. 

We were interested in trying out this technology for 
implementing a non-trivial model transformation pro-
gram: a code generator for MSS that generates C code 
from the high-level models for execution on a distrib-
uted embedded platform. In this paper we briefly in-
troduce GReAT, describe the code generator, and then 
evaluate the results. 

2. Background: The GReAT Approach 

The graph transformation based language we have 
developed is called GReAT, short for “Graph Rewrit-
ing and Transformation” [1]. GReAT is suitable for 
formal specification of model transformations, where 
UML class diagrams are used to represent the abstract 
syntax of the input and the output models of the trans-
formation. The models are represented with vertex and 



edge labeled multi-graphs, where the labels are denot-
ing the corresponding types in UML class diagrams. 
The transformations are represented as explicitly se-
quenced elementary rewriting operations, called pro-
ductions or rules.  A production contains a pattern 
graph that consists of pattern vertices and edges, 
jointly called pattern elements. Each pattern element 
has an attribute, called the role that specifies what 
happens during the transformation step. A pattern 
element can play one of three roles: Bind, Delete, or 
New. The execution of a rule involves matching every 
pattern object marked with either Bind or Delete. The 
pattern matcher will return all possible matches for the 
given pattern and a host graph. An (optional) guard 
condition can filter out undesirable matches from this 
set. Then for each match the pattern objects marked 
Delete are deleted from the graph and objects marked 
New are created. Finally, the attributes of the newly 
created graph objects can be updated by an optional 
AttributeMapping (AM) code, written in an execu-
table language (C++).  

GReAT uses the UML class diagram notation for 
the specification of patterns. For example, in Figure 1, 
OrState, SubOrState, State, SubOrState→State 
composition and OrState→SubOrState composition 
have the Bind role while NewState, Or-
State→NewState composition and State↔New-
State association have the New role. The semantics 
of the rule is: find the pattern that matches the ele-
ments with the Bind role, in this case the OrState, 
SubOrState, State, SubOrState→State composi-
tion and OrState→SubOrState composition pattern. 
Then, for every such pattern evaluate the Guard ex-
pression. Let the guard expression be “SubOr-
State.name == State.name”. Thus only those matches 
that have this property will pass the guard and the rest 
will be discarded. Then create the objects marked 
New, in this case NewState, OrState→NewState 
composition and State↔NewState association. Fi-
nally, use AttributeMapping to fill in the attributes 
of the newly created objects. 

The computational complexity of the pattern 
matching can be significantly reduced if we provide 
the pattern matcher with an initial context. 

 
Figure 1 An example production 

By “context” we mean an initial partial match that is 
give to the pattern matcher when it is started. The ini-
tial matches are provided to a transformation rule with 
the help of ports that form the input and output inter-
face for each transformation step. Thus a transforma-
tion rule is similar to a function, which is applied to 
the set of bindings received through the input ports 
and results in a set of bindings over the output ports. 
For a transformation to be executed graph objects 
must be supplied to each port in the input interface. In 
Figure 1 the In and Out icons are input and output 
ports respectively. Input ports provide the initial match 
to the pattern matcher while output ports are used to 
extract graph objects from the rule so that they can be 
passed along to the next rule.  

In order to better manage complexity in transforma-
tion programs it is important to have higher-level con-
structs, like hierarchical rules and control structures in 
the graph rewriting language. For this reason, we sup-
port (1) the nesting of rules and (2) control structures. 
Figure 2 shows how an order of execution can be 
specified using control structures in GReAT. In this 
example the rules are executed from left to right start-
ing from CreateRootFunction. GReAT supports hier-
archical nesting of transformation rules. High-level 
rules can be created by composing a sequence of 
primitive rules. There are two kinds of high-level rules 
in GReAT: Block and ForBlock, giving the user con-
trol over the traversal strategies over the host graph. 
Compound rules CreateInputArgs and CreateOutpu-
tArgs shown in Figure 2 represent Blocks, that contain 
other compound and primitive rules. A Test/Case is 
also available in GReAT. It can be used to choose 
between different execution paths, during the trans-
formation and is similar to ’if’ statements in pro-
gramming languages.  

The GReAT language is implemented using the (1) 
GR Engine, and the (2) GR Code Generator tool. The 
GR Engine is a generic “interpreter” that takes the 
input graph, applies the model transformation to it, 
and thus generates the output graph. The GR Code 
Generator tool generates efficient C++ code that is 
specific to a particular transformation. Then the gener-
ated code is compiled into a binary executable that is 
used to perform the transformation with significant 
performance gains over the GR Engine. 

We conjecture that using GReAT to develop model 
transformers for an MDSD process has two primary 
benefits: (1) the semantics of the GReAT language 
allows for decreased development time in an easy-to-
use visual programming environment, (2) the semantic 

 
Figure 2 An example control structure  



 
Figure 3: Model-driven construction of a model transformation tool: a code generator

mapping between the input and the output of the  
transformation becomes formal and explicit, which 
allows a better understanding of what the transforma-
tion does. 

To illustrate these benefits, we briefly describe a 
specialized model transformation: a code generator 
that was specified using GReAT. This transformation 
generates C code from MSS models [2]. Figure 3 illus-
trates the process: on the top the metamodels for the 
input and the output and the models for the transfor-
mation are shown. The input models comply with the 
input metamodel, while the generated C code complies 
with the output, as shown on the bottom. The trans-
formation models are “operationalized” via the 
GReAT tools (i.e. the GR engine, or the executable 
code produced by the code generator). 

3. The Stateflow to C Code Generator 

Controllers modeled using Stateflow are often used 
in safety-critical applications such as those in “x-by-
wire”1. The correctness and verifiability of code-
generators thus becomes an important consideration. 
The declarative nature of the specification in GReAT 
opens up the possibility of verification. Our work is 
also driven by the specifications of Mathworks Auto-
motive Advisory Board (MAAB) that defines restric-
tions on the use of Stateflow constructs in modeling an 
automotive application, in effect defining a subset of 
Stateflow that can be used in automotive applications. 
A design goal and an additional benefit of specifying 
code-generators with GReAT, is the explication of 
semantics of Stateflow. 

The C code that must be generated from the dia-
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grams to implement the operational semantics o

 
1 “x” can take values like “brake”, “drive”, “throttle”, and “drive” 
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teflow, is a stylized subset of C. This stylization is 
driven by the fact that the code for implementing state-
based behavior follows some specific idioms and pat-
terns. For this subset we have created a metamodel in 
UML, that we call SFC (an abbreviation of Stateflow-
C). Some of the key constructs of SFC metamodel 
include: Statement, Declaration, Operational-
Statement,Functions, FunctionCall, StateVar, 
SetState, CheckState, among others.  Please note 
that the SFC metamodel is an important contribution 
of this work, as it leads to a cleaner semantic under-
pinning of Stateflow by explicitly formulating the ab-
stract machine for executing Stateflow (in terms of C 
code fragments). 

Mathworks Stateflow operational semantics is de-
fined in the onlin

 Stateflow release [3]. The semantics is described in 
the form of informal execution rules for various sce-
narios, such as executing a chart, executing a state, 
entering a state, executing a flow graph, etc. The code 
that our code generator produces is in effect a partial 
specialization (specialized for the input Stateflow 
model) and instantiation of these rules. 

In the generated code, we produce enter, exit, and 
exec (or step) function for each state in

e core of the state machine behavior is encoded in 
these functions. The enter function performs the ac-
tions that are required to activate a state. The Math-
works Stateflow document specifies 7 different steps 
involved in activating a state [3]. These steps can be 
partitioned in 4 non-exclusive groups. Depending on 
the mode of entry different groups of steps must be 
performed, e.g.: if a state is entered whose parent state 
is not active (typically in case of cross-hierarchy tran-
sition) then the execution semantics require execution 
of steps 1-4 for the parent state. In our generated code, 



we have codified this in the form of an ‘entryMode’ 
argument of the enter function, and different segments 
of the enter steps are condition with the mode argu-
ment. The ‘exec’ function is responsible for perform-
ing a state machine step. Per the Mathworks Stateflow 
semantics 4 steps are required. These are: a) execute 
outer flow graphs i.e. outgoing transitions from a state, 
and if one of the transition is enabled and gets taken 
then there is no further execution in this state, b) per-
form ‘during’ actions, c) execute inner flow graphs, 
which are transitions from the edge of a state and lead-
ing inwards i.e. destination state is a descendant, and if 
this does not cause any state transition, then d) execute 
active children in case of a sequential (OR-
decomposed) state, and all children in a specific order 
in case of a concurrent (AND-decomposed) state. The 
generated code contains a call to the exit function and 
the enter function respectively for implementing these 
steps. The exit function is responsible for exiting a 
state and performs 4 steps unconditionally, which in-
volves exiting sibling in case the state is a parallel 
state, exiting active children, performing user-defined 
exit actions, and finally marking the state inactive. 

The overall code generation algorithm is in effect a 
multi-pass traversal over the input graph. There are 
sev
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en main traversal passes in the transformation. 
Page limitations prevent us from giving a detailed ex-
planation of the algorithm. In brief, the transformation 
involves creating Enter, Exit, and Exec Function 
objects and populating these functions by constructing 
additional objects (instances of Statement and 
Statement derived classes) that faithfully implement 
the state machine behavior as explained above. For 
example, the Stateflow defined priority semantics for 
transitions is enforced by adhering to the following 
rules: (1) local transitions have a lower priority than 
cross-hierarchy transitions, (2) the clockwise orienta-
tion of transitions determines the priority of outbound 
transitions. The Stateflow priority semantics is used by 
domain experts (who are not necessarily software de-
velopers) to express domain knowledge. They can 
assign priorities to transitions in terms of Stateflow 
concepts within a GReAT transformation, and then the 
executable transformation is generated automatically 
from these high-level specifications. 

The code generator as implemented offers fairly 
exhaustive coverage of the Stateflow.

guage features include History junctions, Event 
broadcast, and arbitrary Junction structures requiring 
backtracking. The code that gets generated from our 
code generator is efficient and it preserves the state 
structures through the state labels. We have systemati-
cally validated the functional correctness of the code 
generator with several examples ranging from small to 
moderate complexity. We should note here that our 

goal was not to outperform the code generated by 
commercial products, which have been developed with 
an effort of several man years, and refined over an 
extended period of time. 

The transformation includes 82 basic rules, and 54 
compound rules. Additio

nces of these basic and compound rules. This com-
pares very favorably with a code generator of similar 
scale and complexity implemented with ~3000 lines of 
C++ source code. Using the GReAT tool suite, the 
code generator can be executed interpretively, or 
transformed into code, and compiled. For a typical 20-
30 states/sub-states model, the interpreted version 
takes nearly 4 minutes, while the compiled version 
takes a little over 6 seconds. 

4. Conclusion 

In this paper 
model transformat

ose specification was precisely captured in a mod-
eling language for model transformations, and its im-
plementation was almost entirely automatically gener-
ated using a tool that implements the semantics of the 
modeling language in a translational style. We believe 
this effort was a successful demonstration of the feasi-
bility and effectiveness of applying MDSD practices 
to express and automate the implementation of a non-
trivial tool. The generator built using the approach 
works with an acceptable performance, but it also 
lends itself to formal verification. 

We strongly believe that the GReAT and similar 
technologies offer a unique oppo

rifiable generator and transformation tools. How-
ever, much future research is needed to build up such a 
verification technology.  
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