SlideShare a Scribd company logo
2014/02/06 PFI

Statistical Semantic
~
word2vec
Preferred Infrastructure
(@unnonouno)

~
(@unnonouno)

! 
! 
! 
! 

! 

IBM

PFI
Statistical Semantic入門 ~分布仮説からword2vecまで~
Semantics
[Bird+10]
10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
[

+96]
5.
5.1
5.2
5.3
5.4
Wikipedia

! 
! 
! 
! 
! 
! 
! 

! 

! 

Statistical Semantics

Statistical Semantics
Statistical Semantics Distributional Semantics

! 
! 
! 
[Evert10]

NAACL2010 Stefan Evert
Semantic Models

Distributional
???

[Evert10]
???
2 cat

pig

knife

[Evert10]
dog

[Evert10]
(Distributional Hypothesis)
The Distributional Hypothesis is that words
that occur in the same contexts tend to have
similar meanings (Harris, 1954). (ACL wiki
)

! 
! 
(Statistical Semantics)
Statistical Semantics is the study of "how the
statistical patterns of human word usage can be
used to figure out what people mean, at least to
a level sufficient for information access” (ACL
wiki
)

! 
! 
Statistical Semantic入門 ~分布仮説からword2vecまで~
[

13]
! 
! 

! 
! 
! 

! 
! 

! 
! 

! 
! 
! 

! 

PFI
! 
! 
! 

! 

1
3
! 
! 

ex:

! 

etc…

ex:

! 

-

etc…

! 
! 
! 

ex:

NN
NN

etc…
: Latent Semantic Indexing (LSI),
Latent Semantic Analysis (LSA) [Deerwester+90]
! 
! 

! 

! 
LSI

k:

(SVD)
U

=

x

∑

x

i
i k

V
LSI
! 
! 
! 

! 

SVD
! 

-

-

etc.
etc.

! 

-

! 

etc.
Statistical Semantic入門 ~分布仮説からword2vecまで~
LSI

NMF

PLSI

LDA

NNLM

RNNLM

NTF

Skipgram

NN
! 

LSI

! 

Good
! 
! 

Bad
! 
! 

! 

! 
Probabilistic Latent Semantic
Indexing (PLSI) [Hofmann99]
! 

LSI

! 
! 

! 

ex:

LSI
PLSI
! 
! 

! 
! 
! 

! 

ex:
Latent Dirichlet Allocation (LDA) [Blei03]

PLSI
!  PLSI
LDA
! 
LDA
! 

NLP

! 

! 

1
! 
! 
! 

ex:

etc.

! 
! 

! 

1.0
! 
! 

Good
! 

Bad
! 
! 

LSI

SVD
Non-negative Matrix Factorization (NMF) [Lee
+99]
! 

SVD

! 
! 

[Lee+99]
NMF = PLSI [Dinga+08]
! 

NMF

PLSI

! 

NMF

PLSI
Non-negative Tensor Factorization (NTF)
[Cruys10]

3

! 
! 

2

3
! 
! 

SVD
! 
! 

Good
! 

Bad
! 
! 

word2vec
Neural Network Language Model (NNLM) [Bengio
+03]
! 
! 

N
NN
N-1
Recurrent Neural Network Language Model
(RNNLM) [Mikolov+10]
! 

t-1
t
! 

NNLM

N

! 

! 

http://rnnlm.org
RNNLM
! 

[Mikolov+13a]
RNNLM

! 

Transition-based parser

RNNLM
! 

! 
! 

Stack recurrent

Transition-based parser
Skip-gram

(word2vec) [Mikolov+13b]
! 
! 

CBOW
! 

Analogical reasoning

! 

Parser
Skip-gram

[Mikolov+13b]
: w1, w2, …, wT

! 

wi

c

vw

w

5
! 
[Mikolov+13c]
! 
word2vec
! 
! 
! 

! 

! 

NMF
[Kim+13]
! 

“good”

”best”

”better”
[Mikolov+13d]
! 
! 
NN
! 
! 

! 

2013

! 
! 
! 

Mikolov

15
! 

N

! 
! 
! 

NN

! 
! 
! 
! 

NN

N
! 

NN
! 

! 
! 

! 
! 
! 
! 

Statistical Semantics
! 

3

! 
! 

! 

NN
! 
! 

NN
1
! 

! 

! 
! 

! 

[Bird+10] Steven Bird, Ewan Klein, Edward Loper,
,
,
.
.
, 2010.
[
+96]
.
.
, 1996.
[Evert10] Stefan Evert.
Distributional Semantic Models. NAACL 2010 Tutorial.
[
13]
.
.
, 2013.
[Deerwester+90] Scott Deerwester, Susan T. Dumais, George W.
Furnas, Thomas K. Landauer, Richard Harshman.
Indexing by Latent Semantic Analysis. JASIS, 1990.
2
! 
! 

! 

! 

! 

[Hofmann99] Thomas Hofmann.
Probabilistic Latent Semantic Indexing. SIGIR, 1999.
[Blei+03] David M. Blei, Andrew Y. Ng, Michael I. Jordan.
Latent Dirichlet Allocation. JMLR, 2003.
[Lee+99] Daniel D. Lee, H. Sebastian Seung.
Learning the parts of objects by non-negative matrix factorization.
Nature, vol 401, 1999.
[Ding+08] Chris Ding, Tao Li, Wei Peng.
On the equivalence between Non-negative Matrix Factorization and
Probabilistic Latent Semantic Indexing. Computational Statistics &
Data Analysis, 52(8), 2008.
[Cruys10] Tim Van de Cruys.
A Non-negative Tensor Factorization Model for Selectional Preference
Induction. Natural Language Engineering, 16(4), 2010.
3
! 

! 

! 

! 

NN 1

[Bengio+03] Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
Christian Jauvin.
A Neural Probabilistic Language Model. JMLR, 2003.
[Mikolov+10] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
"Honza" Cernocky, Sanjeev Khudanpur.
Recurrent neural network based language model.
Interspeech, 2010.
[Mikolov+13a] Tomas Mikolov, Wen-tau Yih, Geoffrey Zweig.
Linguistic Regularities in Continuous Space Word
Representations. HLT-NAACL, 2013.
[Mikolov+13b] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey
Dean.
Efficient Estimation of Word Representations in Vector Space.
CoRR, 2013.
4
! 

! 

! 

NN 2

[Mikolov+13c] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory
S. Corrado, Jeffrey Dean.
Distributed Representations of Words and Phrases and their
Compositionality. NIPS, 2013.
[Kim+13] Joo-Kyung Kim, Marie-Catherine de Marneffe.
Deriving adjectival scales from continuous space word
representations. EMNLP 2013.
,
[Mikolov+13d] Tomas Mikolov, Quoc V. Le, Ilya Sutskever.
Exploiting Similarities among Languages for Machine
Translation. CoRR, 2013.

More Related Content

What's hot (20)

PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
tmtm otm
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
ohken
 
Attentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門までAttentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門まで
AGIRobots
 
Hyperoptとその周辺について
Hyperoptとその周辺についてHyperoptとその周辺について
Hyperoptとその周辺について
Keisuke Hosaka
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
Hirokatsu Kataoka
 
画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ
Takahiro Kubo
 
画像キャプションの自動生成
画像キャプションの自動生成画像キャプションの自動生成
画像キャプションの自動生成
Yoshitaka Ushiku
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
gree_tech
 
Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化
Yusuke Fujimoto
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
Deep Learning JP
 
Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法について
Sho Takase
 
cvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tipscvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tips
cvpaper. challenge
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
Deep Learning JP
 
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
mlm_kansai
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
joisino
 
グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題
joisino
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
Preferred Networks
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
tmtm otm
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
ohken
 
Attentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門までAttentionの基礎からTransformerの入門まで
Attentionの基礎からTransformerの入門まで
AGIRobots
 
Hyperoptとその周辺について
Hyperoptとその周辺についてHyperoptとその周辺について
Hyperoptとその周辺について
Keisuke Hosaka
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
Hirokatsu Kataoka
 
画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ
Takahiro Kubo
 
画像キャプションの自動生成
画像キャプションの自動生成画像キャプションの自動生成
画像キャプションの自動生成
Yoshitaka Ushiku
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
gree_tech
 
Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化
Yusuke Fujimoto
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
Deep Learning JP
 
Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法について
Sho Takase
 
cvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tipscvpaper.challenge 研究効率化 Tips
cvpaper.challenge 研究効率化 Tips
cvpaper. challenge
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
Deep Learning JP
 
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
mlm_kansai
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
joisino
 
グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題
joisino
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
Preferred Networks
 

Viewers also liked (8)

表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ
Yuya Unno
 
ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望
maruyama097
 
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
Yoichi Motomura
 
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
Kota Abe
 
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
Yoichi Motomura
 
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
Yuichi Yoshida
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西
Keigo Nishida
 
パターン認識と機械学習入門
パターン認識と機械学習入門パターン認識と機械学習入門
パターン認識と機械学習入門
Momoko Hayamizu
 
表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ
Yuya Unno
 
ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望
maruyama097
 
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
Yoichi Motomura
 
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
Kota Abe
 
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
Yoichi Motomura
 
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
Yuichi Yoshida
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西
Keigo Nishida
 
パターン認識と機械学習入門
パターン認識と機械学習入門パターン認識と機械学習入門
パターン認識と機械学習入門
Momoko Hayamizu
 

Similar to Statistical Semantic入門 ~分布仮説からword2vecまで~ (16)

Cognitive science
Cognitive scienceCognitive science
Cognitive science
muberraoz
 
Wei Xu - Innovative Applications of AI Panel
Wei Xu - Innovative Applications of AI PanelWei Xu - Innovative Applications of AI Panel
Wei Xu - Innovative Applications of AI Panel
Rehgan Avon
 
Morse, Christian - LIBR 202 - The Future of Natural Language Processing
Morse, Christian - LIBR 202 - The Future of Natural Language ProcessingMorse, Christian - LIBR 202 - The Future of Natural Language Processing
Morse, Christian - LIBR 202 - The Future of Natural Language Processing
Christian Morse
 
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Tadahiro Taniguchi
 
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
MLconf
 
April 2020 most read artilce in contro theory & computer controlling
April 2020 most read artilce in contro theory & computer controllingApril 2020 most read artilce in contro theory & computer controlling
April 2020 most read artilce in contro theory & computer controlling
ijctcm
 
BEA12_sakaguchi
BEA12_sakaguchiBEA12_sakaguchi
BEA12_sakaguchi
Keisuke Sakaguchi
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Bhaskar Mitra
 
Nlp Sentemental analysis of Tweetr And CaseStudy
Nlp Sentemental analysis of Tweetr And CaseStudyNlp Sentemental analysis of Tweetr And CaseStudy
Nlp Sentemental analysis of Tweetr And CaseStudy
Raza Azeem
 
SciDataCon 2014 TDM Workshop Intro Slides
SciDataCon 2014 TDM Workshop Intro SlidesSciDataCon 2014 TDM Workshop Intro Slides
SciDataCon 2014 TDM Workshop Intro Slides
Jenny Molloy
 
Deep learning for natural language embeddings
Deep learning for natural language embeddingsDeep learning for natural language embeddings
Deep learning for natural language embeddings
Roelof Pieters
 
Simulating meaning: a neural theory of discourse coherence
Simulating meaning: a neural theory of discourse coherenceSimulating meaning: a neural theory of discourse coherence
Simulating meaning: a neural theory of discourse coherence
Terry McDonough
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information Retrieval
Bhaskar Mitra
 
Deep misconceptions and the myth of data driven NLU
Deep misconceptions and the myth of data driven NLUDeep misconceptions and the myth of data driven NLU
Deep misconceptions and the myth of data driven NLU
Walid Saba
 
___ __ Newlanguage evolution ___ BernabeuatLangUE.pdf
___ __ Newlanguage evolution ___  BernabeuatLangUE.pdf___ __ Newlanguage evolution ___  BernabeuatLangUE.pdf
___ __ Newlanguage evolution ___ BernabeuatLangUE.pdf
tkobelt
 
Language Variety Identification using Distributed Representations of Words an...
Language Variety Identification using Distributed Representations of Words an...Language Variety Identification using Distributed Representations of Words an...
Language Variety Identification using Distributed Representations of Words an...
Francisco Manuel Rangel Pardo
 
Cognitive science
Cognitive scienceCognitive science
Cognitive science
muberraoz
 
Wei Xu - Innovative Applications of AI Panel
Wei Xu - Innovative Applications of AI PanelWei Xu - Innovative Applications of AI Panel
Wei Xu - Innovative Applications of AI Panel
Rehgan Avon
 
Morse, Christian - LIBR 202 - The Future of Natural Language Processing
Morse, Christian - LIBR 202 - The Future of Natural Language ProcessingMorse, Christian - LIBR 202 - The Future of Natural Language Processing
Morse, Christian - LIBR 202 - The Future of Natural Language Processing
Christian Morse
 
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Tadahiro Taniguchi
 
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
MLconf
 
April 2020 most read artilce in contro theory & computer controlling
April 2020 most read artilce in contro theory & computer controllingApril 2020 most read artilce in contro theory & computer controlling
April 2020 most read artilce in contro theory & computer controlling
ijctcm
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Bhaskar Mitra
 
Nlp Sentemental analysis of Tweetr And CaseStudy
Nlp Sentemental analysis of Tweetr And CaseStudyNlp Sentemental analysis of Tweetr And CaseStudy
Nlp Sentemental analysis of Tweetr And CaseStudy
Raza Azeem
 
SciDataCon 2014 TDM Workshop Intro Slides
SciDataCon 2014 TDM Workshop Intro SlidesSciDataCon 2014 TDM Workshop Intro Slides
SciDataCon 2014 TDM Workshop Intro Slides
Jenny Molloy
 
Deep learning for natural language embeddings
Deep learning for natural language embeddingsDeep learning for natural language embeddings
Deep learning for natural language embeddings
Roelof Pieters
 
Simulating meaning: a neural theory of discourse coherence
Simulating meaning: a neural theory of discourse coherenceSimulating meaning: a neural theory of discourse coherence
Simulating meaning: a neural theory of discourse coherence
Terry McDonough
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information Retrieval
Bhaskar Mitra
 
Deep misconceptions and the myth of data driven NLU
Deep misconceptions and the myth of data driven NLUDeep misconceptions and the myth of data driven NLU
Deep misconceptions and the myth of data driven NLU
Walid Saba
 
___ __ Newlanguage evolution ___ BernabeuatLangUE.pdf
___ __ Newlanguage evolution ___  BernabeuatLangUE.pdf___ __ Newlanguage evolution ___  BernabeuatLangUE.pdf
___ __ Newlanguage evolution ___ BernabeuatLangUE.pdf
tkobelt
 
Language Variety Identification using Distributed Representations of Words an...
Language Variety Identification using Distributed Representations of Words an...Language Variety Identification using Distributed Representations of Words an...
Language Variety Identification using Distributed Representations of Words an...
Francisco Manuel Rangel Pardo
 

More from Yuya Unno (20)

深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来
Yuya Unno
 
深層学習時代の 自然言語処理ビジネス
深層学習時代の自然言語処理ビジネス深層学習時代の自然言語処理ビジネス
深層学習時代の 自然言語処理ビジネス
Yuya Unno
 
ベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をするベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をする
Yuya Unno
 
PFNにおける セミナー活動
PFNにおけるセミナー活動PFNにおけるセミナー活動
PFNにおける セミナー活動
Yuya Unno
 
深層学習フレームワーク Chainerとその進化
深層学習フレームワークChainerとその進化深層学習フレームワークChainerとその進化
深層学習フレームワーク Chainerとその進化
Yuya Unno
 
進化するChainer
進化するChainer進化するChainer
進化するChainer
Yuya Unno
 
予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル
Yuya Unno
 
深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション
Yuya Unno
 
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
Yuya Unno
 
Chainer, Cupy入門
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門
Yuya Unno
 
Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用
Yuya Unno
 
深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴
Yuya Unno
 
子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得
Yuya Unno
 
NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」
Yuya Unno
 
Chainer入門と最近の機能
Chainer入門と最近の機能Chainer入門と最近の機能
Chainer入門と最近の機能
Yuya Unno
 
Chainerの使い方と 自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と 自然言語処理への応用
Yuya Unno
 
GPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装についてGPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装について
Yuya Unno
 
言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール
Yuya Unno
 
企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端
Yuya Unno
 
「知識」のDeep Learning
「知識」のDeep Learning「知識」のDeep Learning
「知識」のDeep Learning
Yuya Unno
 
深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来
Yuya Unno
 
深層学習時代の 自然言語処理ビジネス
深層学習時代の自然言語処理ビジネス深層学習時代の自然言語処理ビジネス
深層学習時代の 自然言語処理ビジネス
Yuya Unno
 
ベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をするベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をする
Yuya Unno
 
PFNにおける セミナー活動
PFNにおけるセミナー活動PFNにおけるセミナー活動
PFNにおける セミナー活動
Yuya Unno
 
深層学習フレームワーク Chainerとその進化
深層学習フレームワークChainerとその進化深層学習フレームワークChainerとその進化
深層学習フレームワーク Chainerとその進化
Yuya Unno
 
進化するChainer
進化するChainer進化するChainer
進化するChainer
Yuya Unno
 
予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル
Yuya Unno
 
深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション
Yuya Unno
 
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
Yuya Unno
 
Chainer, Cupy入門
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門
Yuya Unno
 
Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用
Yuya Unno
 
深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴
Yuya Unno
 
子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得
Yuya Unno
 
NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」
Yuya Unno
 
Chainer入門と最近の機能
Chainer入門と最近の機能Chainer入門と最近の機能
Chainer入門と最近の機能
Yuya Unno
 
Chainerの使い方と 自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と 自然言語処理への応用
Yuya Unno
 
GPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装についてGPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装について
Yuya Unno
 
言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール
Yuya Unno
 
企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端
Yuya Unno
 
「知識」のDeep Learning
「知識」のDeep Learning「知識」のDeep Learning
「知識」のDeep Learning
Yuya Unno
 

Recently uploaded (20)

Dev Dives: Unlock the future of automation with UiPath Agent Builder
Dev Dives: Unlock the future of automation with UiPath Agent BuilderDev Dives: Unlock the future of automation with UiPath Agent Builder
Dev Dives: Unlock the future of automation with UiPath Agent Builder
UiPathCommunity
 
UiPath Automation Developer Associate Training Series 2025 - Session 1
UiPath Automation Developer Associate Training Series 2025 - Session 1UiPath Automation Developer Associate Training Series 2025 - Session 1
UiPath Automation Developer Associate Training Series 2025 - Session 1
DianaGray10
 
Teaching Prompting and Prompt Sharing to End Users.pptx
Teaching Prompting and Prompt Sharing to End Users.pptxTeaching Prompting and Prompt Sharing to End Users.pptx
Teaching Prompting and Prompt Sharing to End Users.pptx
Michael Blumenthal (Microsoft MVP)
 
Big Data Analytics Quick Research Guide by Arthur Morgan (PREVIEW)
Big Data Analytics Quick Research Guide by Arthur Morgan (PREVIEW)Big Data Analytics Quick Research Guide by Arthur Morgan (PREVIEW)
Big Data Analytics Quick Research Guide by Arthur Morgan (PREVIEW)
Arthur Morgan
 
Bedrock Data Automation (Preview): Simplifying Unstructured Data Processing
Bedrock Data Automation (Preview): Simplifying Unstructured Data ProcessingBedrock Data Automation (Preview): Simplifying Unstructured Data Processing
Bedrock Data Automation (Preview): Simplifying Unstructured Data Processing
Zilliz
 
Blockchain for Businesses Practical Use Cases & Benefits.pdf
Blockchain for Businesses Practical Use Cases & Benefits.pdfBlockchain for Businesses Practical Use Cases & Benefits.pdf
Blockchain for Businesses Practical Use Cases & Benefits.pdf
Yodaplus Technologies Private Limited
 
2025-02-27 Tech & Play_ Fun, UX, and Community.pdf
2025-02-27 Tech & Play_ Fun, UX, and Community.pdf2025-02-27 Tech & Play_ Fun, UX, and Community.pdf
2025-02-27 Tech & Play_ Fun, UX, and Community.pdf
katalinjordans1
 
Agentic AI: The 2025 Next-Gen Automation Guide
Agentic AI: The 2025 Next-Gen Automation GuideAgentic AI: The 2025 Next-Gen Automation Guide
Agentic AI: The 2025 Next-Gen Automation Guide
Thoughtminds
 
SB7 Mobile Ltd: Simplified & Secure Services
SB7 Mobile Ltd: Simplified & Secure ServicesSB7 Mobile Ltd: Simplified & Secure Services
SB7 Mobile Ltd: Simplified & Secure Services
Reuben Jasper
 
Caching for Performance Masterclass: Caching Strategies
Caching for Performance Masterclass: Caching StrategiesCaching for Performance Masterclass: Caching Strategies
Caching for Performance Masterclass: Caching Strategies
ScyllaDB
 
Supercharge Your Career with UiPath Certifications
Supercharge Your Career with UiPath CertificationsSupercharge Your Career with UiPath Certifications
Supercharge Your Career with UiPath Certifications
DianaGray10
 
The Constructor's Digital Transformation Playbook: Reducing Risk With Technology
The Constructor's Digital Transformation Playbook: Reducing Risk With TechnologyThe Constructor's Digital Transformation Playbook: Reducing Risk With Technology
The Constructor's Digital Transformation Playbook: Reducing Risk With Technology
Aggregage
 
William Maclyn Murphy McRae - A Seasoned Professional Renowned
William Maclyn Murphy McRae - A Seasoned Professional RenownedWilliam Maclyn Murphy McRae - A Seasoned Professional Renowned
William Maclyn Murphy McRae - A Seasoned Professional Renowned
William Maclyn Murphy McRae
 
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Chris Wahl
 
Webinar: LF Energy GEISA: Addressing edge interoperability at the meter
Webinar: LF Energy GEISA: Addressing edge interoperability at the meterWebinar: LF Energy GEISA: Addressing edge interoperability at the meter
Webinar: LF Energy GEISA: Addressing edge interoperability at the meter
DanBrown980551
 
Kickstart Your QA: An Introduction to Automated Regression Testing Tools
Kickstart Your QA: An Introduction to Automated Regression Testing ToolsKickstart Your QA: An Introduction to Automated Regression Testing Tools
Kickstart Your QA: An Introduction to Automated Regression Testing Tools
Shubham Joshi
 
Benchmark Testing Demystified: Your Roadmap to Peak Performance
Benchmark Testing Demystified: Your Roadmap to Peak PerformanceBenchmark Testing Demystified: Your Roadmap to Peak Performance
Benchmark Testing Demystified: Your Roadmap to Peak Performance
Shubham Joshi
 
AMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes WebinarAMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes Webinar
ThousandEyes
 
5 Must-Use AI Tools to Supercharge Your Productivity
5 Must-Use AI Tools to Supercharge Your Productivity5 Must-Use AI Tools to Supercharge Your Productivity
5 Must-Use AI Tools to Supercharge Your Productivity
cryptouniversityoffi
 
Artificial Intelligence Quick Research Guide by Arthur Morgan
Artificial Intelligence Quick Research Guide by Arthur MorganArtificial Intelligence Quick Research Guide by Arthur Morgan
Artificial Intelligence Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Dev Dives: Unlock the future of automation with UiPath Agent Builder
Dev Dives: Unlock the future of automation with UiPath Agent BuilderDev Dives: Unlock the future of automation with UiPath Agent Builder
Dev Dives: Unlock the future of automation with UiPath Agent Builder
UiPathCommunity
 
UiPath Automation Developer Associate Training Series 2025 - Session 1
UiPath Automation Developer Associate Training Series 2025 - Session 1UiPath Automation Developer Associate Training Series 2025 - Session 1
UiPath Automation Developer Associate Training Series 2025 - Session 1
DianaGray10
 
Big Data Analytics Quick Research Guide by Arthur Morgan (PREVIEW)
Big Data Analytics Quick Research Guide by Arthur Morgan (PREVIEW)Big Data Analytics Quick Research Guide by Arthur Morgan (PREVIEW)
Big Data Analytics Quick Research Guide by Arthur Morgan (PREVIEW)
Arthur Morgan
 
Bedrock Data Automation (Preview): Simplifying Unstructured Data Processing
Bedrock Data Automation (Preview): Simplifying Unstructured Data ProcessingBedrock Data Automation (Preview): Simplifying Unstructured Data Processing
Bedrock Data Automation (Preview): Simplifying Unstructured Data Processing
Zilliz
 
2025-02-27 Tech & Play_ Fun, UX, and Community.pdf
2025-02-27 Tech & Play_ Fun, UX, and Community.pdf2025-02-27 Tech & Play_ Fun, UX, and Community.pdf
2025-02-27 Tech & Play_ Fun, UX, and Community.pdf
katalinjordans1
 
Agentic AI: The 2025 Next-Gen Automation Guide
Agentic AI: The 2025 Next-Gen Automation GuideAgentic AI: The 2025 Next-Gen Automation Guide
Agentic AI: The 2025 Next-Gen Automation Guide
Thoughtminds
 
SB7 Mobile Ltd: Simplified & Secure Services
SB7 Mobile Ltd: Simplified & Secure ServicesSB7 Mobile Ltd: Simplified & Secure Services
SB7 Mobile Ltd: Simplified & Secure Services
Reuben Jasper
 
Caching for Performance Masterclass: Caching Strategies
Caching for Performance Masterclass: Caching StrategiesCaching for Performance Masterclass: Caching Strategies
Caching for Performance Masterclass: Caching Strategies
ScyllaDB
 
Supercharge Your Career with UiPath Certifications
Supercharge Your Career with UiPath CertificationsSupercharge Your Career with UiPath Certifications
Supercharge Your Career with UiPath Certifications
DianaGray10
 
The Constructor's Digital Transformation Playbook: Reducing Risk With Technology
The Constructor's Digital Transformation Playbook: Reducing Risk With TechnologyThe Constructor's Digital Transformation Playbook: Reducing Risk With Technology
The Constructor's Digital Transformation Playbook: Reducing Risk With Technology
Aggregage
 
William Maclyn Murphy McRae - A Seasoned Professional Renowned
William Maclyn Murphy McRae - A Seasoned Professional RenownedWilliam Maclyn Murphy McRae - A Seasoned Professional Renowned
William Maclyn Murphy McRae - A Seasoned Professional Renowned
William Maclyn Murphy McRae
 
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Chris Wahl
 
Webinar: LF Energy GEISA: Addressing edge interoperability at the meter
Webinar: LF Energy GEISA: Addressing edge interoperability at the meterWebinar: LF Energy GEISA: Addressing edge interoperability at the meter
Webinar: LF Energy GEISA: Addressing edge interoperability at the meter
DanBrown980551
 
Kickstart Your QA: An Introduction to Automated Regression Testing Tools
Kickstart Your QA: An Introduction to Automated Regression Testing ToolsKickstart Your QA: An Introduction to Automated Regression Testing Tools
Kickstart Your QA: An Introduction to Automated Regression Testing Tools
Shubham Joshi
 
Benchmark Testing Demystified: Your Roadmap to Peak Performance
Benchmark Testing Demystified: Your Roadmap to Peak PerformanceBenchmark Testing Demystified: Your Roadmap to Peak Performance
Benchmark Testing Demystified: Your Roadmap to Peak Performance
Shubham Joshi
 
AMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes WebinarAMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes Webinar
ThousandEyes
 
5 Must-Use AI Tools to Supercharge Your Productivity
5 Must-Use AI Tools to Supercharge Your Productivity5 Must-Use AI Tools to Supercharge Your Productivity
5 Must-Use AI Tools to Supercharge Your Productivity
cryptouniversityoffi
 
Artificial Intelligence Quick Research Guide by Arthur Morgan
Artificial Intelligence Quick Research Guide by Arthur MorganArtificial Intelligence Quick Research Guide by Arthur Morgan
Artificial Intelligence Quick Research Guide by Arthur Morgan
Arthur Morgan
 

Statistical Semantic入門 ~分布仮説からword2vecまで~