Opens in a new windowOpens an external websiteOpens an external website in a new window
This website utilizes technologies such as cookies to enable essential site functionality, as well as for analytics, personalization, and targeted advertising purposes. To learn more, view the following link: Cookie Policy
Session: Internet Economics & Monetization 1
* Machine Learning in an Auction Environment
Patrick Hummel & R. Preston McAfee (Google Inc.)
* Optimal Revenue-Sharing Double Auctions with Applications to Ad Exchanges
Renato Gomes (Toulouse School of Economics) & Vahab Mirrokni (Google Research)
Session: The Future
* Exploring the Filter Bubble: The Effect of Using Recommender Systems on Content Diversity
Tien T. Nguyen, Pik-Mai Hui, F. Maxwell Harper, Loren Terveen, & Joseph A. Konstan(University of Minnesota)
8. ターゲティング広告
ユーザの過去行動をもとにその広告に興味を
持つであろうユーザに対して広告を配信する
既存の手法としては“Finance, Investment”など
のカテゴリベースでの興味を推定するもの
ex Large-scale behavioral targeting, KDD 2009
広告レベルで推定するものがある
ex How much can behavioral targeting help online
advertising, WWW 2009
9. 従来研究
クリックを最大化するもの
Large-scale behavioral targeting, KDD 2009
How much can behavioral targeting help online advertising,
WWW 2009
Learning relevance from a heterogeneous social network
and its application in online targeting, SIGIR 2011
コンバージョンを最大化するもの
Large-scale customized models for advertisers, ICDM
2010
Learning to Target: What Works for Behavioral Targeting,
CIKM 2011
17. Global model using the campaign
metadata
キャンペーンのランディングページなどの
メタ情報を使って、最適化を行う
手法としては以下の2つを考える
Merge-based global model
Interaction-based global model
33. その他広告に関する話題
(コンテンツ連動型広告)
広告が表示されている面と関連している広
告を表示する
面と類似性が高い広告を高速かつ高い精度
で取得できる必要がある
Fast top-k retrieval for model based
recommendation, WSDM 2012
A hidden class page-ad probability model for
contextual advertising, WWW 2008 (Workshop)
A semantic approach to contextual advertising,
SIGIR 2007