Rule Induction of Computer Events

Ricardo Vilalta, Sheng Ma, and Joseph Hellerstein

IBM T.J. Watson Research Center
30 Saw Mill River Rd., Hawthorne N.Y., 10592 USA

Monitoring systems are able to capture thousands of events from a computer network. Some of those events may be
particularly informative to ensure the correct operation of an application. We assume the user is interested in a specific
class of events, called target events (e.g., communication link is down). We propose a system that generates a set of
rules correlating each target event with events occurring previous to the target event within a specified time window
interval. Such rules can be extremely helpful in elucidating the origin of target events. We conduct experiments to
assess the accuracy of the induced rules for different types of target events in a real-world network environment. Our
results show the accuracy of the induced rules generally above 80% when the time window interval is at least 20 minutes
wide. Such results give strong empirical support to the validity of our approach.

Keywords: machine learning, rule induction, events

1 Introduction

Monitoring systems are able to capture an assortment of different events from a network environment. A
single event may correspond to one host, e.g., “cpu utilization is above a critical threshold”, or the network,
e.g., “communication link is down”. Monitoring systems can capture thousands of events in a short time
period; applying data analysis techniques (e.g., machine-learning, data-mining) on those events may reveal
useful patterns characterizing a network problem. Data analysis techniques have proved useful in the area
of network fault management.

In this paper we consider the following scenario. A computer network is under continuous monitoring;
a user is interested in identifying what triggers a specific kind of events, which we refer to as target events.
The user would like to know what events correlate to each target event within a fixed time window. We
describe a data-mining technique that takes as input all events gathered by the monitoring system, and
outputs a list of empirical rules, where each rule shows a form of correlation to a target event, for example,
within 5 minutes previous to the occurrence of a target event, event A often occurs 3 times and event B occurs
2 times. Such rules can be extremely helpful in elucidating the origin of target events. In a practical scenario,
the rules can be used off-line for problem determination, or on-line for automatic problem detection.

Our study reports on data generated by monitoring systems active during one consecutive month on
a computer network having 750 hosts. Our analysis concentrates on target events labeled as critical by
domain experts. One month of continuous monitoring generated over 26,000 events, with 165 different
types of events. Such high volume of records defies any form of manual analysis, rendering the use of
algorithms for pattern analysis indispensable.

Our approach to inducing rules combines the strength of association-rule mining [AMS*96] with a sys-
tematic search for rules under strong pruning techniques [Rym93, Web93, Web95, Web00]. Our analysis is
similar to the general framework for rule induction proposed by [Web00], but with important modifications
(Section 4). We show how specific settings for the modified framework provide a principled approach to
the construction of accurate rules correlating computer events.

Our experiments show the effects of varying several parameters on the quality of the induced rules. We
study the impact of varying the window size and the number of rules. In addition we analyze the feasibility
of adding a safe-window to allow for corrective actions to take place before each target event actually

O. Festor and A. Pras (Eds.) : 12th International Worshop on Distributed Systems: Operations and Management
DSOM'2001 Nancy France, October 15-17, 2001.


O. Festor
O. Festor and A. Pras (Eds.) : 12th International Worshop on Distributed Systems: Operations and Management
DSOM'2001 Nancy France, October 15-17, 2001.


Ricardo Vilalta, Sheng Ma, and Joseph Hellerstein

Tab. 1: A description of event data for a particular domain of application.

Features Examples of Possible Values No. of Values or Range of Values
Time 2.27.2001.900, 3.7.2001.856 February 25 2001 9:00 PM -
March 26 2001 12:00 PM
Event Type | Interface-Down, high-cpu-usage, 165
high-disk-usage, disk-error

Host Name ibm1.xxx.com, ibm2.xxx.com 750

Severity harmless, minor, warning, 5

critical, and fatal

occurs. Our results show accuracy levels above 80% when the time window interval is at least 20 minutes
wide. Such results give strong empirical support to the validity of our approach.

This paper is organized as follows. Section 2 provides background information on the nature of the event
data. Section 3 describes how the event data is transformed into a classification problem. Section 4 details
on the methodology for rule induction. Section 5 shows our experimental results. Finally, Section 6 gives a
summary and conclusions.

2 Background Information

We assume a network environment under continuous monitoring from which multiple events are generated.
We define an event, X = (F1,F,---,Fn), as a feature vector, where each F; describes a condition under
which the event took place. Possible features are the time at which the event occurred (Fime), the host
generating the event (Fnost), the type of event(Fype), the severity level (Fseverity), etc. Consider the following
example:

(1.1.2000.900, cpubusy, ibm.xxx.com, critical) Q

The event above can be interpreted as occurring on January 1, 2000 at 9:00 AM on host ibm.xxx.com
when the level of cpu utilization exceeded a maximum threshold; a domain expert qualified such event as
critical. Table 1 shows the set of features considered for our domain of application, examples of possible
values, and the number of different values for each feature.

The set of all m events generated by the network on a period of time defines an event dataset Tevents :
{f(i}{ll. In our study we examine closely a subset of events in Teyents that share the same event type of
interest to the user. We refer to that subset of events as Ttarget C Tevents. If the user specifies a target event
type V, then we characterize Tirget aS:

Trarget = {>~(| € Tevents| Fype = vV} 2

where V could be any possible event type (e.g., Interface-Down).

3 Transforming The Event Dataset

Our goal is to induce a set of rules that show some form of correlation with the set of target events Target.
We want to assess the degree of correlation between sets of events for the purpose of prediction. The idea
is to detect how many times each different type of event occurred before a target event, and to induce from
those counts correlation rules that can provide insight into the cause of target events. Our general approach
divides in two steps: feature extraction and classification.

1. Feature Extraction. This process transforms data set Teyents iNto a classification problem by creating
a positive example for every event in Tiarget, and a negative example for some of the events in the
complement set Tiarget.



Rule Induction Of Computer Events

Event Type Event Type
—Y— Z=(3,0,2)
. . V3 o«
) o e V2 X
. \%1 o o o
@) _ (b) ,
Time Time

Fig. 1: (a) A plot of event type vs time. (b) For each target event X;, we capture all events previous to X; within a time
window of size y. The result is a count vector indicating the number of instances of each event type.

2. Classification. This process uses the transformed dataset to generate a set of rules for classification.
Each induced rule can potentially be used to classify an event in one of two categories: target or
non-target.

Each event X; € Tevents is characterized by a set of features, two of which are the temporal feature Fijme,
and the type of event Fype. A plot of Fype vs. Fime shows how different event types distribute through
time, as exemplified in Figure 1(a). The problem we address is how to identify the conditions that serve to
differentiate between different types of events (e.g., target and non-target) through time.

3.1 Feature Extraction: Characterizing Target and Non-Target Events

Our characterization of target events is described in Figure 2. For each target event, we create a time
window of size y right before it. We then count the number of times each event type occurs within such
time window. In Figure 1(b), for example, target event Xi (of type V>), is preceded by three occurrences
of events of type V1, and two occurrences of events of type V3. Assuming only three possible types of
events, the result is a count vector Z = (3,0,2). Running the process described above over all target events
produces a set of count Vectors Zrget = {Zi} of size equal to the number of target events (i.e., equal to
|Ttarget|). The set Ziarget Captures the conditions under which a target event occurs. A similar process is
conducted to characterize the conditions under which a target event does not occur, resulting in a set of count
Vectors Znon—target- 1Ne process is very similar to Figure 2 and can be described as follows. For every two
consecutive target events in Tiarget, XI and XL, we look for an event in the complement set Ttarget that stands
closest to the middle point between X; and Xj. That is, we look for an event Xy with a time of occurrence

close to M Once X is located we proceed similarly as before by generating a window of size

Yy previous to the occurrence of Xy, and by generating a count vector of event types. The rationale behind
the mechanism described above is that non-target events are characterized by a set of conditions lying as far
as possible from target events to facilitate the search for rules discriminating between both kinds of events.

The two sets Zarget and Znon-—target @re forms of characterizing target and non-target events. This study is
based on the hypothesis that both sets contain enough information to differentiate the situations in which
the two types of events take place. We assume the number of event types previous to an event can be used to
form correlation rules able to discriminate among event types. Our experimental results provide evidence
supporting this hypothesis (Section 5).

3.2 Formulating a Classification Problem

We cast our problem as a classification problem in a straightforward manner. We generate a new dataset
Tirain DY labeling each count vector of a target event as positive and conversely by labeling each count vector
of a non-target event as negative. Tiin IS made of pairs {(Z, Ci)}, where Z; is a count vector and ¢; is the
class to which the count vector belongs, ¢i € {+,—}.

Tirain Can serve as input to a classification problem [WK90]. In this problem, Tiqin is said to be made
of examples, where each example is assigned a class. The problem is to learn how to assign the correct
class to an example not previously seen before. In our case, we wish to learn how to classify a new event
as either a target or non-target event. One approach to classification is to generate a set of rules that show



Ricardo Vilalta, Sheng Ma, and Joseph Hellerstein

Algorithm 1: Characterizing Target Events

Input: Event Set Tevents, Window Size y, Event Type V
Output: Set of count vectors Ziarget = {Zi}
CHARACTERIZE (Tevents,V.V)

@ Generate set of target events Tiarget according to V.
2 foreach (Xi € Tiarget)

©)) Let Twindow be the set of events within window y
4) previous to the ocurrence of Xi

(5) Initialize Z; + 0

(6) foreach (X;j € Twindow)

(7) Let Vi be the event type of X;

8) Update count vector: zl++

9 end for

(10)  end for
(11)  return {Z;}

Fig. 2: A characterization of target events.

strong correlation to the class. Another approach is to generate a full classification model such as a decision
tree, a neural network, or a support vector machine. We choose to generate a set of rules rather than a
full classification model because our interest lies primarily in helping the user elucidate the conditions
preceding target events through a mechanism that is fast (in case corrective actions need to take place) and
able to produce output amenable to interpretation. We describe our own approach to the rule-generation
process next.

4 Generating Rules For Target Events

We explain how to induce rules of the form A — {4, —}, where the antecedent A is a conjunction of feature
values that implies either a target event (+) or a non-target event (—). As an example, let’s assume three
event types {V1,V2,V3}; An induced rule could be represented as follows:

71 €[1,5]and 2, € [2,4] — + 3)

where z; stands for the number of occurrences of event type V;. The rules states that within time window
of size y of an event Xi, if event type V1 occurs between one and 5 times, and event type V, occurs between
2 and 4 times, then X; is a target event. Each rule antecedent is then a logical expression formed by the
conjunction of event-type intervals. We expect the user to specify the number K of rules output by the
system. We will show how K has a direct bearing on the amount of pruning available over the the search
space: the smaller K the stronger the amount of pruning available.

Previous to the rule-generation process, the range of counts z;j for each event type V; in Ty,in Needs to be
divided into a set of meaningful intervals. We follow a discretization method that minimizes the entropy
between the interval and the class [Cat91]. The method looks for intervals that facilitate discriminating
target events from non-target events. Each resulting interval can be considered as a Boolean variable (either
an event falls into the interval or not). As an example, consider again three possible event types {V1,V2,V3}.
If we create two intervals for each event type Vj, lj1,lj2, then we transform each count vector Ziin Tirain
into a Boolean vector Bj = (b} ;,bl,, b}, b}, bk, bb,). For example, boolean variable bl, = 1 (i.e., is true)
if the number of times event-type V1 occurred within a time window is within interval I13.

In general, the new dataset T,;,;, = {(Bi,¢i) } indicates the interval into which each event-type count falls
for the set of events occurring before a target event (cj = +) or a non-target event (c; = —).



Rule Induction Of Computer Events

100

80

60

80

Fig. 3: (a) Information Gain as a function of the possible coverage (number of positive and negative events) of a
monomial. (b) A contour plot of (a) showing isometric lines over the coverage plane.

4.1 Evaluating Monomials

We first describe the criterion used to compare monomials (i.e., the metric used over the search space). A
monomial M is said to cover an event if the conjunction is true for that event. As an example, the monomial
in the antecedent of the rule in equation 3 covers an event if it is true that event type V1 occurs between one
and five times, and event type V, occurs between two and four times. Events that are not covered by M are
covered by the complement M.

A monomial M shows perfect correlation with the class if it covers all target events, and the complement
M covers all non-target events. Such monomial gets a maximum score. But in the general case, a monomial
covers both positive and negative events, and a metric is necessary to assign a score. We use a common
metric called information-gain IG [Qui94] explained next.

Intuitively a monomial M is good if it is able to reduce the amount of chaos derived by a mixture of target
and non-target events in T,,;,. We say chaos is minimized if the proportion of target events existing in T,/,;;,
increases within M and decreases within M. Information gain is defined as the reduction of entropy (i.e.,
chaos) induced by M. Let p be the proportion of target events in T,.;,. Let pm be the proportion of target
events covered by monomial M, and let P, be the proportion of target events covered by the complement
M. Information gain is defined as follows:

IG(M) = H(p) — (WiH (pm) +W2H (Pm)) 4

where Wy and W, are the proportion of events covered by M and the complement M respectively. H
measures the degree of entropy or chaos over probability q as follows:

H(q) = —[alog,q + (1 —q)log, (1 — )] ()

Information gain measures the benefit that comes from partitioning the example space using monomial
M; it quantifies the degree of class uniformity of the sets covered by M and M and compares it to the degree
of class uniformity over the whole training set T,;;,. The result is a measure of the improvement produced
by M and M in grouping together examples of the same class.

Figure 3(a) plots information gain over a plane that counts the number of positive and negative events
covered by monomial M [VOO00], also known as the coverage plane. The maximum scores are attained at
the extreme points where M covers all positive events and no negative events and vice versa. Figure 3(b)
shows contour lines obtained by projecting information gain over the coverage plane. The function grows
monotonically from axis-line L to the extreme points. Other metrics other than Information Gain have been
used in the machine-learning literature [WL94], such as Gini, G statistic, Laplace, x2. All of them show
a similar monotonic shape over the coverage plane [VO00]. We choose Information Gain because it has



Ricardo Vilalta, Sheng Ma, and Joseph Hellerstein

Depth of 1 2 3
Search
X1 AX2 A X3
X1 A X2 — X1 AXo AX3
X1 A Xz X1 AX2 A X3
X1 — XL AKX
X1 A X3 1AX2 AX3
X1 A X3
X1 A X2 A X3
X1 A X2 — X1 A X2 A X3
_ X1 A Xz X1 AXo A X3
Space of X1 i — .
Monomials X1 A X3 1AX2AX3
X1 A X3
X2 A X3
X2 <
X2 A X3
_ X2 A X3
X2 < _ _
X2 A X3
X3
X3

Fig. 4: A systematic search in the space of monomials.

proved effective in previous studies [Qui94], but as any form of induction one must be aware that any fixed
form of bias is prone to perform well in some domains and poor in others [Wol96].

4.2 Searching the Space of Monomials

Our problem formulation leads us to a search for the best K rules over the space of all possible conjunctions
of Boolean features or monomials. In our case each Boolean feature is an interval over the range of event-
type counts. An example of the space of all possible monomials on three Boolean features is illustrated in
Figure 4.

Our approach consists in carrying out a search over the space of monomials while keeping track of the
best K states. We then output those K states as our set of induced rules. Specifically, we conduct a beam
search over the space of all monomials. A beam search explores states of size d before exploring states of
size d + 1. The search is not exhaustive but rather keeps only the best a candidates at level d to generate
candidates at level d + 1. In our case, the mechanism works by adding one literal (i.e., Boolean feature or
its complement) at a time to the a best previously retained monomials in the beam (the beam starts with
the best a single literals). Adding literals extends the depth of the search; retaining the best a monomials
limits the width of the search. The process continues while keeping track of the best K global monomials.
Figure 5 describes the logic behind our search mechanism. A distinction must be made between the role of
parameters a and K. The former keeps track of the best local monomials at each level of search, while the
latter keeps track of the best monomials across all levels of search.

To avoid exploring all possible states, the size of the search space can be constrained with two major
operations: a systematic search, and a pruning mechanism. We explain each operation next.



Rule Induction Of Computer Events

Algorithm 2: Search Mechanism for New Monomials
Input: Training set T, ;. beam width a
Output: Best K monomials

SEARCH(T{in)

D Let Liiteras be the list of literals

2 (i.e., boolean features and their complements)
©)) Lpeam < best a literals in Ljjterals

4) while (true)

(5) Lnew < Systematically form the conjunction
(6) of every Mj € Lyeam With every Mj € Liiterals
@) Apply pruning into Lpew

(8) if Lnew = 0

9 return K best global monomials

(10) Lbeam < best o combinations in Lpew

(11)  end while

Fig. 5: The search mechanism outputs the K best logical monomials.

A Systematic Search

A systematic search is necessary to avoid redundant monomials [Rym93]. Each monomial conjoins several
boolean features (or their complements). Because conjunction is commutative, the search space is defined
by avoiding any state that is identical to an existing state except for the order in which features appear
(Figure 4).

The number of all possible new monomials grows exponentially with the depth of the search, but is
limited by the number of combinations that remain still feasible as deeper subspaces are explored. In
general, the number of possible monomials at depth d is 29 x (g), where n is the number of features.

The Pruning Mechanism
We are now in a position to explain our two pruning techniques: information-gain and minimum support.

Information-gain pruning. Let (cp,Cn) be the number of positive and negative events covered by mono-
mial M, expressed as a pair of coordinates in the coverage plane. Let (M1, My, -- -, M) be the list of the best
K global monomials found up to this point in the search space. We test to see if M can improve over the
worst of the best K monomials, M. Now, the best M can do is to conjoin with other literals until it covers
positive events only (cp,0), or negative events only (0,cy). Let’s call Moptim1 and Moptim2 the two optimal
cases respectively. If the information gain scored by My is better than Moptimt and Mgptim1 then M can be
safely pruned away because it can never be part of the list of K best monomials. This can be derived from
the monotonic nature of information-gain over the coverage plane (Figure 3(b)).

In information-gain pruning, the value of K directly affects the number of monomials amenable to elim-
ination. In the case where K is too large, the search becomes longer. A small value of K increases the
efficiency of the search process but at the expense of having less rules output by the system.

Minimum-support pruning. Our second technique simply eliminates a monomial M when the number
of events covered by M falls below a minimum threshold I as specified by the user. Let (cp,cn) be the
number of positive and negative events covered by monomial M. We eliminate M if cp+ ¢y < I'T where I1
is a constant. This technique borrows from the area of association-rule mining in data mining [AMS™96].
It enables us to focus the search on those rules that have a minimum degree of support.

5 Experiments

Our experiments test the quality of the rules induced from a particular domain of application. The computer
network under analysis comprises 750 hosts (Table 1). Monitoring systems active during 1 month generated



Ricardo Vilalta, Sheng Ma, and Joseph Hellerstein

over 26,000 events, with 165 different types of events. We focus our analysis on 4 target events labeled as
critical by domain experts. The target events are listed as follows:

e Node-Down indicates that a server or router cannot be reached.
e CRT URL Time-Out indicates a URL page unaccessible by a probing mechanism.
e Email server indicates the server is been started.

e EPP Event indicates that end-to-end response time generated by a probing mechanism is above a
critical threshold.

For each target event and time window, the first step creates a training set for classification as described
in Section 3. The resulting training set is then used for rule-generation (Section 4).

5.1 Methodology

We report on the predictive accuracy of the best rule and the predictive accuracy averaged over all K rules.
Assessing the quality of a rule is not trivial and requires more than one indicator. For example, the approach
adopted by most association-rule mining algorithms [AMS™96] is to evaluate a rule based on its support
(proportion of examples covered by the rule), and confidence (accuracy of the rule on the examples covered
by the rule exclusively). This approach ignores the accuracy of the rule over all examples (examples covered
and not covered by the rule) and may carry little information on the correlation between the rule and the
class [BMS99]. For a correct assessment we use three different types of predictive accuracy:

e The overall predictive accuracy of the rule (Acc) defined as the fraction of examples correctly classi-
fied by the rule.

e The accuracy of a rule over the examples covered by the rule (Acc+) .

e The accuracy of a rule over the examples not covered by the rule (Acc-).

In the following we will take the accuracy over all examples (Acc) as the main performance indicator
and use the rest to complement our analysis.

By default we set the number of rules K = 5. The size of the time window capturing all events previous to
a target event will take one of the following values: y € {1min.,5min.,10min.,20min.}. Predictive accuracy
is estimated using stratified 10-fold cross-validation [Koh95]. For each run, 10% of the examples are used
for testing, 60% for training, and 20% for validation to avoid statistical errors from multiple comparisons
[JC99]. Runs were performed on a RISC/6000 IBM model 7043-140.

5.2 Results on Predictive Accuracy

Our experimental results for the predictive accuracy of the best rule are depicted in Table 2. In addition to
reporting on the 3 types of accuracy described above we also include the rule support.

Table 2 shows an increase in accuracy as the time window increases from 1 minute to 20 minutes. For
Node-Down accuracy reaches the 99% level with a support of around 50%. CRT URL Time-Out starts with
low accuracy, but it increases up to the 87.5% level as the time window grows; notice, however, that the
accuracy in the examples covered by the rule (Acc+) is low (60.4%). Email-Server may seem at first glance
displaying high accuracy but the low accuracy for the rule complement set (Acc-) points to the existence
of false negatives. EPP starts with 61.6% accuracy, ending with 80% accuracy at a time window of 20
minutes.

In general, the accuracy for the best rule in a time window of 20 minutes is above 80%; we take this as
encouraging evidence that counting event types before the occurrence of a target event results in relevant
features for classification.

The fact that longer time windows result in better accuracy may seem counterintuitive. Normally, any
form of time-series analysis gives less weight to events happening farther away in the past. But notice that



Rule Induction Of Computer Events

Tab. 2: Accuracy of best rule (x100%) using different time windows.

Event Type 1 min. 5 min.
Acc [ Acc(+) | Acc(-) [ Support | Acc [ Acc(+) | Acc(-) | Support
Node-Down 82.4 52.4 89.1 36.4 97.2 95.3 87.6 49.3
CRT URL Time-Out 59.7 60.2 52.6 92.4 65.2 62.7 71.6 91.7
Email Sever 96.0 92.0 10.0 92.0 97.2 88.1 10.0 90.9
EPP Event 61.6 63.3 31.2 85.8 73.2 52.2 67.2 58.3
10 min. 20 min.
Acc | Acc(+) | Acc(-) | Support | Acc [ Acc(+) | Acc(-) [ Support
Node-Down 96.5 86.6 92.9 34.2 99.0 94.5 92.5 49.7
CRT URL Time-Out 60.9 55.4 68.9 74.1 87.5 60.4 44.9 58.3
Email Server 97.2 88.1 10.0 90.9 94.5 98.1 0.0 96.3
EPP Event 76.6 53.3 65.6 47.7 80.5 62.2 85.2 54.4

Tab. 3: Average accuracy (x100%) using different values for K (y= 20 min.)

Event Type Average Accuracy
K=5]K=10 [ K=15 | K=20
Node-Down 98.6 98.4 97.7 97.5
CRT URL Time-Out 78.8 78.6 78.6 78.8
Email Sever 94.5 94.5 88.3 87.6
EPP Event 76.3 78.3 79.1 79.5

the size of the time window plays a role in capturing more information about what triggers a target event.
Our results simply indicate that those events showing some form of correlation to a target event are expected
to occur 20 minutes or more before the occurrence of the target event; events too close to the target event
represent only a subset of those events relevant for prediction. In other words, longer time windows result in
improved accuracy because there is more information contained on each window about the set of conditions
preceding target events.

5.3 Results Varying the Number of Rules

Our next experiments measure the average accuracy of all K rules output by the system. Results are depicted
in Table 3. We report on the first type of accuracy only (Acc)'. We keep the size of the time window fixed
at y= 20 min. and vary the number of rules as follows: K € {5, 10, 15, 20}.

Table 3 shows little variation in the average accuracy of the best rules as K increases. Node-Down
looses about one percent point. CRT URL Time-Out remains at about the same level (78.6%-78.8%), while
Email-Server looses about 7%. EPP shows, surprisingly, an increase in average accuracy of about 3%.
This indicates that the beam-search strategy described in Section 4 may miss relevant monomials. But the
advantage obtained with a beam-search is a means to overcome the exponential growth of the search space
as the depth of the search increases (Figure 4).

We conclude that the quality of the set of rules produced by our system shows little variation when K is
kept in the range [1,20]. For most practical applications, this range of values seems appropriate to provide
evidence about the conditions preceding a target event.

5.4 Results After Creating a Safe-Window

Our last experiments test the following idea. If the best rule output by our system were to be used for
prediction of target events, could we create a safe-window between the prediction and the occurrence of a
target event to allow corrective actions to take place? To answer this question we modified our algorithm
for transforming the event set into a classification problem (Section 3) by adding a new parameter (3. This
parameter indicates the size of a time window placed right before a target event in which no event counts
are made (to allow for corrective actions). Let t; be the time at which target event Xi occurs &= Fﬁme(f(i)).
The modified algorithm counts all event types occurring before X;, starting at time t; — y and ending at time

T The other two types of accuracy, Acc(+) and Acc(-), are meaningful when evaluating a single rule.



Ricardo Vilalta, Sheng Ma, and Joseph Hellerstein

Tab. 4: Accuracy of best rule (x100%) using different safe windows (y = 20 min.)

Event Type B =1min. B=5min. 3 =10 min.
Acc [ Acc(+) | Acc(y) Acc [ Acc(+) | Acc(-) | Acc [ Acc(+) [ Acc(y)
Node-Down 85.1 18.8 89.2 75.0 42.3 61.3 67.2 50.7 49.7
CRT URL Time-Out 80.0 67.9 395 79.5 75.5 22.2 90.4 85.5 195
Email Sever 94.5 98.1 00.0 98.1 88.1 10.0 98.1 98.1 00.0
EPP Event 83.0 66.3 65.6 78.8 41.5 99.2 73.6 44.8 72.0

ti — B. The result is a safe-window of size 8 before X;. The goal of our experiments is to measure the degree
of accuracy loss stemming from the introduction of this safe-window.

Our results are shown in Table 4. We keep the size of the time window fixed at y = 20 minutes and vary
the safe window 3 € {1min.,5min.,10min.}. For Node-Down, a safe-window of B = 1 minute lowers the
accuracy from 99.0% to 85.1%; a further decrease is observed when 3 = 10 minutes. The same effect is
observed on EPP, although the accuracy when 3 = 1 minute is higher that the case when no safe-window
exists (Table 1). CRT URL Time-Out shows a similar decrease in accuracy but a sudden increase happens
when (3 = 10 minutes. This may simply indicate that the relevant features correlating to the target event are
located between 10-20 minutes before the target event; the safe-window helps to isolate those features. A
similar decrease and increase in accuracy is observed on Email-Server.

Except for the case in which a safe-window becomes useful at isolating relevant features for the prediction
of a target event, one should expect a decrease in accuracy as the size of 3 grows higher. In some cases,
however, it is clear that a safe-window can be implemented without loss of accuracy (and even with gains
in accuracy). Thus, the implementation of a safe-window must be done according to the target event under
analysis.

6 Summary and Conclusions

We propose a system that generates a set of rules correlating a (user-defined) target event with those events
occurring before the target event within a specified time window interval. Our approach divides in two
steps: 1) transform the event dataset into a classification problem by labeling vectors characterizing target
events as positive and non-target events as negative (Section 3); 2) generate a set of rules by conducting a
beam-search over the space of rule antecedents or monomials using strong pruning techniques (Section 4).
We report on a series of experiments designed to assess the quality of the rules induced by our system
(Section 5). In terms of predictive accuracy, the best rule is generally above 80% when the time window
is 20 minutes wide. Our results show little variation in terms of predictive accuracy when the number of
rules varies in the range [5 — 20]. In addition, we show the feasibility of adding a safe-window before the
occurrence of a target event; this allows for corrective actions to take place. A safe-window is expected to
generate a loss in predictive accuracy unless it is able to isolate those features that are relevant to the target
event.

Our approach aims at generating a set of rules to facilitate the understanding of the conditions preceding
the occurrence of a target event. The induced set of rules do not constitute a model for prediction. Even
though our experimental results show cases where predictive accuracy for the best single rule can be as
high as 99% (Section 5), a single rule can hardly qualify as a full classification model. One line of future
research is to take the rules produced by our current system and use them to generate a full classification
model. A possibility is to select the best induced rule and place it at each node of a decision tree [VBR97].
Another possibility is to construct a rule-based system from our set of induced rules [BHM98].

Our characterization of the conditions preceding a target event (Section 3) looks at the time and type
of the events occurring before the target event. We ignore other features, such as the host generating the
event, that may help to further increase the quality of the rules due to the improved granularity of the
data. Assume the characterization of an event using event-type and host. For large computer networks,
the resulting number of possible (event-type, host) pairs may be unmanageable. Future work will explore
possible mechanisms for characterizing events using multiple features.



Rule Induction Of Computer Events

References
[AMSt96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of as-

[BHMO98]

[BMS99]

[Cat91]

[JC99]

[Koh95]

[Qui94]

[Rym93]

[VBR97]

[VOO00]

[Web93]

[Web95]

[Web00]

[WK90]

[WL94]

[Wol96]

sociation rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pp. 307-328. AAAI Press, Menlo Park,
CA., 1996.

Liu Bing, Wynne Hsu, and Yiming Ma. Integrating classification and association rule min-
ing. In Proceeding of the Fourth International Conference on Knowledge Discovery and Data
Mining, pp. 80-96, New York, NY, 1998. AAAI Press.

Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets: Generalizing
association rules to correlations. In Data Mining and Knowledge Discovery, volume 2, pp.
39-68, 1999.

J. Catlett. On changing continuous attributes into ordered discrete attributes. In European
Workshop on Machine Learning, pp. 164-178. Springer-Verlag, 1991.

David Jensen and Paul Cohen. Multiple comparisons in induction algorithms. In Machine
Learning (in press). Boston, MA: Kluwer, 1999.

R. Kohavi. A study of cross validation and bootstrap for accuracy estimation and model selec-
tion. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
pp. 1137-1143. Morgan Kaufmann, 1995.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc.,
1994,

R. Rymon. An SE-tree based characterization of the induction problem. In Proceedings of the
Tenth International Conference on Machine Learning, pp. 268-275. San Francisco: Morgan
Kaufmann, 1993.

R. Vilalta, G. Blix, and L. A. Rendell. Global data analysis and the fragmentation problem
in decision tree induction. In 9th European Conference on Machine Learning, pp. 312-326.
Lecture Notes in Artificial Intelligence, Vol. XXX, Springer-Verlag, Heidelberg, Available:
http://www.research.ibm.com/people/v/vilalta, 1997.

R. Vilalta and D. Oblinger. A quantification of distance-bias between evaluation metrics in
classification. In Proceedings of the 17th International Conference on Machine Learning, pp.
1087-1094. Morgan Kaufman, 2000.

G. I. Webb. Systematic search for categorical attribute-value data-driven machine learning. In
N. Foo and C. Rowles, editors, Proceedings of the Sixth Australian Joint Artificial Intelligence
Conference, pp. 342-347, Singapore, 1993. World Scientific.

G. |. Webb. Opus: An efficient admissible algorithm for unordered search. Journal of Artificial
Intelligence Research, 3:431-435, 1995.

G. I. Webb. Efficient search for association rules. In In Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 99-107, 2000.

S. M. Weiss and C. A. Kulikowski. Computer Systems That Learn. Morgan Kaufmann Pub-
lishers, Inc., San Mateo, CA, 1990.

A.P. White and W.Z. Liu. Bias in information-based measures in decision tree induction. Ma-
chine Learning, 15:321-329, 1994.

D. Wolpert. The lack of a priori distinctions between learning algorithms and the existence of
a priori distinctions between learning algorithms. Neural Computation, 8:1341-142, 1996.





