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Abstract—While emerging accelerator-centric architectures of-
fer orders-of-magnitude performance and energy improvements,
use cases and adoption can be limited by their rigid program-
ming model. A unified virtual address space between the host
CPU cores and customized accelerators can largely improve
the programmability, which necessitates hardware support for
address translation. However, supporting address translation for
customized accelerators with low overhead is nontrivial. Prior
studies either assume an infinite-sized TLB and zero page walk
latency, or rely on a slow IOMMU for correctness and safety
which penalizes the overall system performance.

To provide efficient address translation support for
accelerator-centric architectures, we examine the memory access
behavior of customized accelerators to drive the TLB augmen-
tation and MMU designs. First, to support bulk transfers of
consecutive data between the scratchpad memory of customized
accelerators and the memory system, we present a relatively small
private TLB design to provide low-latency caching of translations
to each accelerator. Second, to compensate the effects of the
widely used data tiling techniques, we design a shared level-
two TLB to serve private TLB misses on common virtual pages,
eliminating duplicate page walks from accelerators working on
neighboring data tiles that are mapped to the same physical
page. This two-level TLB design effectively reduces page walks by
75.8% on average. Finally, instead of implementing a dedicated
MMU which introduces additional hardware complexity, we
propose simply leveraging the host per-core MMU for efficient
page walk handling. This mechanism is based on our insight that
the existing MMU cache in the CPU MMU satisfies the demand of
customized accelerators with minimal overhead. Our evaluation
demonstrates that the combined approach incurs only 6.4%
performance overhead compared to the ideal address translation.

I. INTRODUCTION

In light of the failure of Dennard scaling and recent slow-
down of Moore’s law, the computer architecture community
has proposed many heterogeneous systems that combine con-
ventional processors with a rich set of customized accelerators
onto the same die [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
Such accelerator-centric architectures trade dark, unpowered
silicon [11], [12] area for customized accelerators that of-
fer orders-of-magnitude performance and energy gains com-
pared to general-purpose cores. These accelerators are usually
application-specific implementations of a particular function-
ality, and can range from simple tasks (e.g., a multiply-
accumulate operation) to complex applications (e.g., medical
imaging [13], database management [14], Memcached [15],
[16]).

While such architectures promise tremendous perfor-
mance/watt targets, system architects face a multitude of new
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1. Inefficient TLB Support.
TLBs are not specialized to 
provide low-latency and 
capture page locality.

2. High Page Walk Latency.
On an IOTLB miss, four main 
memory accesses are required 
to walk the page table.

Fig. 1. Problems in current address translation support for accelerator-centric
architectures in an IOMMU-only configuration

problems, including but not limited to i) how to integrate
customized accelerators into the existing memory hierarchies
and operating systems, ii) how to efficiently offload algorithm
kernels from general-purpose cores to customized accelerators.
One of the key challenges involved is the memory management
between the host CPU cores and accelerators. For conventional
physically addressed accelerators, if the application lives in
the user space, an offload process requires copying data
across different privilege levels to/from the accelerator and
manually maintaining data consistency. Additional overhead
in data replication and OS intervention is inevitable, which
may diminish the gain of customization [17]. Zero-copy avoids
copying buffers via operating system support. However, pro-
gramming with special APIs and carefully managing buffers
can be a giant pain for developers.

While accelerators in current heterogeneous systems have
limited support for virtual addresses, industry initiatives, such
as the Heterogeneous System Architecture (HSA) foundation,
are proposing to shift towards a unified virtual address between
the host CPU and accelerators [18]. In this model, instead of
maintaining two copies of data in both host and device address
spaces, only a single allocation is necessary. As a consequence,
an offload process simply requires passing the virtual pointer
to the shared data to/from the accelerator. This has a variety
of benefits, including the elimination of explicit data copying,
increased performance of fine-grained memory accesses, the
support for cache coherence and memory protection.

Unfortunately, the benefits of unified virtual address also
come at a cost. A key requirement of virtually addressed accel-
erators is the hardware support for virtual-to-physical address
translation. Commercial CPUs and SoCs have introduced I/O
memory management units (IOMMUs) [19], [20], [21], [22]
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Fig. 2. Performance of the baseline IOMMU approach relative to ideal address
translation

to allow loosely-coupled devices to handle virtual addresses,
as is shown in Figure 1. These IOMMUs have I/O translation
lookaside buffers (IOTLBs) and logic to walk the page table,
which can provide address translation support for customized
accelerators. However, an naive IOMMU configuration cannot
meet the requirement of today’s high-performance customized
accelerators as it lacks efficient TLB support and excessively
long latency is incurred to walk the page table on IOTLB
misses. Figure 2 shows that the performance of the base-
line IOMMU approach achieves only 12.3% of the ideal
address translation where all translation requests hit in an
ideal TLB1, leaving a huge performance gap for improvement.
Recent advances in IOMMU enable translation caching in
devices [22]. However, designing efficient TLBs for high-
performance accelerators is non-trivial and should be carefully
studied. Prototypes in prior studies encounter the challenge of
virtual address support [15], [16], [23], [24] as well. However,
their focus is mainly on the design and performance tuning
of accelerators, with either the underlying address translation
approach not detailed or the performance impact not evaluated.

In this paper, our goal is to provide an efficient address
translation support for heterogeneous customized accelerator-
centric architectures. The hope is that such design can enable
a unified virtual address space between host CPU cores and
accelerators with modest hardware modification and low per-
formance overhead compared to the ideal address translation.

By examining the memory access behavior of customized
accelerators, we propose an efficient hardware support for
address translation tailored to the specific challenges and
opportunities of accelerator-centric architectures that includes:
1) Private TLBs. Unlike conventional CPUs and GPUs,

customized accelerators typically exhibit bulk transfers of
consecutive data when loading data into the scratchpad
memory and writing data back to the memory system.
Therefore, a relatively small (16-32 entries) and low-latency
private TLB can not only allow accelerators to save trips
to IOMMU, but also capture the page access locality. On
average, a private TLB with 32 entries can reduce 30.4% of
the page walks compared to the IOMMU-only baseline, and

1Detailed experimental setup is described in Section III. More analysis of
this gap is presented in Section IV-A.

improves the performance from 12.3% (IOMMU baseline)
to 23.3% of the ideal address translation.

2) A Shared TLB. Data tiling techniques are widely used in
customized accelerators to improve the data reuse within
each tile and the parallelism between tiles. Due to capacity
limit of each accelerator’s scratchpad memory, this usually
breaks the contiguous memory region within a physical
page into multiple data tiles that are mapped to different
accelerator instances for parallelism. In light of this, we
present a shared level-two TLB design to filter translation
requests on common pages so that duplicate page walks
will not be triggered from accelerator instances working
on neighboring data tiles. Our evaluation shows that a
two-level TLB design with a 512-entry shared TLB can
reduce page walks by 75.8% on average, and improves the
performance to 51.8% of the ideal address translation.

3) Host Page Walks. As accelerators are sensitive to long
memory latency, the excessively long latency of page
walks that cannot be filtered by TLBs degrades the system
performance. While enhancing the IOMMU with MMU
caches or introducing a dedicated MMU for accelerators
are viable approaches [25], [26], better opportunities lie in
the coordination between the host core and the accelerators
invoked by it. The idea is that by extending the per-core
MMU to provide an interface, accelerators operating within
the same application’s virtual address space can offload
TLB misses to the page walker of the host core MMU. The
benefits come in three ways: first, the page walk latency
can be significantly reduced due to the presence of MMU
caches [27], [28], [29] in the host core MMU; second,
prefetching effects can be achieved due to the support of
data cache as loading one cacheline effectively brings in
multiple page table entries; third, cold misses in the MMU
cache and data cache can be minimized since it is likely
that the host core has already touched the data structure
before offloading so that corresponding resources have been
warmed-up. The experimental results show the host page
walk reduces the average page walk latency to 58 cycles
across different benchmarks, and the combined approach
bridges the performance gap to 6.4% compared to the ideal
address translation.
The rest of this paper is organized as follows. Section II

characterizes address translation behaviors of customized ac-
celerators to motivate our design. Section III explains our
simulation methodology and workloads. Section IV details the
design and evaluation of the proposed architectural support for
address translation. Section V discusses more use cases. Sec-
tion VI summarizes related work and Section VII concludes
the paper.

II. CHARACTERIZATION OF CUSTOMIZED ACCELERATORS

A. Accelerator-Centric Architectures

We present an overview of the baseline accelerator-centric
architecture used throughout this paper in Figure 1. In this
architecture, CPU cores and loosely-coupled accelerators share
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Fig. 3. A detailed look at an accelerator connecting with system IOMMU
(baseline)

the physical memory. Each CPU core has its own TLB and
MMU, while all accelerators share an IOMMU that has an
IOTLB inside it. A CPU core can launch one or more accel-
erators by offloading a task to them for superior performance
and energy efficiency. Launching multiple accelerators can
exploit data parallelism by assigning accelerators to different
data partitions, which we call tiles.

The details of a customized accelerator are shown in Fig-
ure 3. In contrast to general-purpose CPU cores or GPUs,
accelerators do not use instructions and feature customized
registers and datapaths with deep pipelines [8]. Scratchpad
memory (SPM) is predominantly used by customized accel-
erators instead of hardware-managed caches, and data layout
optimization techniques such as data tiling is often applied for
increased performance. A memory interface such as a DMA
(direct memory access) is often used to transfer data between
the SPM and the memory system.

Due to these microarchitectural differences, customized ac-
celerators exhibit distinct memory access behaviors compared
to CPUs and GPUs. To drive our design, we characterize such
behaviors in the following subsections: the bulk transfer of
consecutive data, the impact of data tiling, and the sensitivity
to address translation latency.

B. Bulk Transfer of Consecutive Data
The performance and energy gains of customized acceler-

ators are largely due to the removal of instructions through
specialization and deep pipelining [8]. To guarantee a high
throughput for such customized pipelines—processing one
input data every II (pipeline initialization interval) cycles,
where II is usually one or two—the entire input data must
be available in the SPM to provide register-like accessibility.
Therefore, the execution process of customized accelerators
typically has three phases: reading data from the memory
system to the SPM in bulk for local handling, pipelined
processing on local data, and then writing output data back
to the memory system. Such bulky reads and writes appear
as multiple streams of consecutive accesses in the memory
system, which exhibit good memory page locality and high
memory bandwidth utilization.

To demonstrate such characteristics, we plot the the trace
of virtual pages that trigger TLB misses in BlackScholes
in Figure 4 (our simulation methodology and workloads are
detailed in Section III). We can see that the TLB miss behavior

2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20

Cycles 1e7

0x54000000

0x54400000

0x54800000

0x54c00000

0x55000000

0x55400000

0x55800000

V
ir

tu
a
l 
A

d
d
re

ss

Fig. 4. TLB miss behavior of BlackScholes
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Fig. 5. TLB miss trace of a single execution from BlackScholes

is extremely regular, which is different from the more random
accesses in CPU or GPU applications. As accelerators feature
customized deep pipeline without multithreading or context
switching, the page divergence is only determined by the
number of input data arrays and the dimentionality of each
array. Figure 5 confirms this by showing the TLB miss trace
in a single execution of BlackScholes, which accesses six one-
dimensional input arrays and one output array. In addition, we
can see that TLB misses typically happen at the beginning of
the bulky data read and write phases, followed by large number
of TLB hits. Therefore, high hit rates can be expected from
TLBs with sufficient capacity.

This type of regularity is also observed for a string-
matching application and is reported to be common for a
wide range of applications such as image processing and
graphics [30]. We think that this characteristic is determined by
the fundamental microarchitecture rather than the application
domain. Such regular access behavior presents opportunities
for relatively simple designs in supporting address translation
for accelerator-centric architectures.

C. Impact of Data Tiling

Data tiling techniques are widely used on customized accel-
erators, which groups data points into tiles that are executed
atomically. As a consequence, each data tile can be mapped to
a different accelerator to maximize the parallelism. Also, data
tiling can improve data locality for the accelerator pipeline,
leading to an increased computation to communication ratio.
This also enables the use of double (ping-pong) buffering.

While the input data array could span several memory
pages, the tile size of each input data is usually smaller than a

3
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Fig. 6. Rectangular tiling on a 32× 32× 32 data array into 16× 16× 16
tiles. Each tile accesses 16 pages and can be mapped to a different accelerator
for parallel processing.

memory page due to limited SPM resources, especially for
high-dimensional arrays. As a result, neighboring tiles are
likely to be in the same memory page. These tiles, once
mapped to different accelerators, will trigger multiple address
translation requests on the same virtual page. Figure 6 shows
a simple example of tiling on a 32× 32× 32 input float array
with 16 × 16 × 16 tile size, producing 8 tiles in total. This
example is derived from the medical imaging applications,
while the sizes are picked for illustration purposes only. As
the first two dimensions can be exactly fit into a 4KB page,
32 pages in total are allocated for the input data. Processing
one tile needs to access 16 of the 32 pages. However, mapping
each tile to a different accelerator will trigger 16 × 8 = 128
address translation requests, which is 4 times more than the
minimum 32 requests. Such duplication in address translation
requests must be resolved so that additional translation service
latency can be avoided. The simple coalescing logic used in
GPUs would not be sufficient because concurrently running
accelerators are not designed to execute in lockstep.

D. Address Translation Latency Sensitivity

While CPUs expose memory-level parallelism (MLP) using
large instruction windows and GPUs leverage their extensive
multithreading to issue bursts of memory references, accel-
erators generally lack architectural support for fine-grained
latency hiding. As discussed earlier, the performance of cus-
tomized accelerators relies on predictable accesses to the
local SPM. Therefore, the computation pipeline cannot start
until the entire input data tile is ready. To alleviate this
problem, double buffering techniques are commonly used to
overlap communication with computation: processing on one
buffer while transferring data on the other. However, such
coarse-grained techniques require a careful design to balance
communication and computation, and can be ineffective in
tolerating long-latency memory operations, especially page
walks on TLB misses.

To further demonstrate latency sensitivity, we run sim-
ulations with varied address translation latencies added to
each memory reference. Figure 7 presents the performance
slowdown of LPCIP and the geometric mean slowdown over
all benchmarks from additional latency. In general, address
translation latency within 8 cycles can be tolerated by double
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Fig. 7. Geometric mean slowdown over all benchmarks with varied address
translation latencies, with LPCIP being the most sensitive benchmark

buffering. Any additional latency beyond 16 cycles signifi-
cantly degrades overall system performance. LPCIP shows the
highest sensitivity to additional cycles among all benchmarks
since the accelerator issues dynamic memory accesses during
the pipelined processing which is beyond the coverage of
double buffering. While GPUs are reported to be able to
tolerate 600 additional memory access cycles with a maximum
slowdown of only 5% [32], the performance of accelerators
will be decreased by 5x with the same additional cycles.

Such immense sensitivity poses serious challenges to de-
signing an efficient address translation support for accelerators:
(1) TLBs must be carefully designed to provide low access
latency, (2) as page walks incur long latency which could be
a few hundred cycles, TLB structures must be effective in
reducing the number of page walks, (3) for page walks that
cannot be avoided, page walker must be optimized for lower
latency.

III. SIMULATION METHODOLOGY

Simulation. We use PARADE [33], an open-source cycle-
accurate full-system simulator to evaluate the accelerator-
centric architecture. PARADE extends the gem5 [34] simulator
with high-level synthesis support [35] to accurately model the
accelerator module, including the customized data path, the
associated SPM and the DMA interface. We use CACTI [36]
to estimate the area of TLB structures based on 32nm process
technology.

We model an 8-issue out-of-order X86-64 CPU core at
2GHz with 32KB L1 instruction and data cache, 2MB L2
cache and a per-core MMU. We implement a wide spectrum
of accelerators, as shown in Table I, where each accelerator
can issue 64 outstanding memory requests and has double
buffering support to overlap communication with computation.
The host core and accelerators share 2GB DDR3 DRAM on
four memory channels. We extend PARADE to model an
IOMMU with a 32-entry IOTLB [37]. To study the overhead
of address translation, we model an ideal address translation
in the simulator with infinite-sized TLBs and zero page walk
latency for accelerators. We assume 4KB page size is used in
the system for the best compatibility. The impact of using large
pages will be discussed in Section V-B. Table II summarizes
the major parameters used in our simulation.
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TABLE I
BENCHMARK DESCRIPTIONS WITH INPUT SIZES AND NUMBER OF HETEROGENEOUS ACCELERATORS. [13]

Domain Application Algorithmic Functionality Input Size Acc Types2

Medical
Imaging

Deblur Total variation minimization and deconvolution
128 slices of images, each
image of size 128× 128

4
Denoise Total variation minimization 2
Registration Linear algebra and optimizations 2
Segmentation Dense linear algebra, and spectral methods 1

Commercial
from PARSEC
[31]

BlackScholes Stock option price prediction using floating point math 256K sets of option data 1
StreamCluster Clustering and vector arithmetic 64K 32-dimensional streams 5
Swaptions Computing swaption prices by Monte Carlo simulation 8K sets of option data 4

Computer
Vision

Disparity Map Calculate sums of absolute differences and integral
image representations using vector arithmetic

Images pairs of size 64× 64 4
8× 8 window, 64 max. disparity

LPCIP Desc Log-polar forward transformation of image patch
around each feature

128K features from 1images of size 640× 480

Computer
Navigation

EKF SLAM Partial derivative, covariance,
and spherical coordinate computations 128K sets of sensor data 2

Robot
Localization

Monte Carlo Localization using probabilistic model
and particle filter 128K sets of sensor data 1

TABLE II
PARAMETERS OF THE BASELINE ARCHITECTURE

Component Parameters

CPU 1 X86-64 OoO core @ 2GHz
8-wide issue, 32KB L1, 2MB L2

Accelerator
4 instances of each accelerator
64 outstanding memory references
Double buffering enabled

IOMMU 4KB page, 32-entry IOTLB
DRAM 2GB, 4 channels, DDR3-1600

Workloads. To provide a quantitative evaluation of our ad-
dress translation proposal, we use a wide range of applica-
tions that are open-sourced together with PARADE. These
applications can be categorized into four domains: medical
imaging, computer vision, computer navigation and commer-
cial benchmarks from PARSEC [31]. A brief description of
each application, its input size and the number of different
accelerator types involved is specified in Table I. Each appli-
cation may call one or more types of accelerators to perform
different functionalities corresponding to the algorithm in
various phases. In total, we implement 25 types of accelerators
2. To achieve maximum performance, multiple instances of the
same type can be invoked by the host to process in parallel. By
default, we use four instances of each type in our evaluation
unless otherwise specified. There will be no more than 20
active accelerators while others will be powered off depending
on which applications are running.

IV. DESIGN AND EVALUATION OF ADDRESS
TRANSLATION SUPPORT

The goal of this paper is to design an efficient address
translation support for accelerator-centric architectures. After
carefully examining the distinct memory access behaviors of
customized accelerators in Section II, we propose the corre-
sponding TLB and MMU designs with quantitative evaluations
step by step.

2Some of the types are shared across different applications. For example, the
Racian accelerator is shared by Deblur and Denoise; the Gaussian accelerator
is shared by Deblur and Registration.

A. Gap between the Baseline IOMMU Approach and the Ideal
Address Translation

Figure 2 shows the performance of the baseline IOMMU
approach relative to the ideal address translation with infinite-
sized TLBs and zero page walk latency. As an IOMMU-only
configuration requires each memory reference to be translated
by the centralized hardware interface, performance suffers
from frequent trips to the IOMMU. On one hand, benchmarks
with large page reuse distances, such as the medical imaging
applications, experience IOTLB thrashing due to the limited
capacity. In such cases, IOTLB cannot provide effective trans-
lation caching, leading to a large number of long-latency page
walks. On the other hand, while the IOTLB may satisfy the
demand of some benchmarks with small page reuse distances,
such as computer navigation applications, the IOMMU lacks
efficient page walk handling, which significantly degrades sys-
tem performance on IOTLB misses. As a result, the IOMMU
approach achieves only an average of 12.3% relative to the
performance of the ideal address translation, leaving a huge
performance gap.

In order to bridge the performance gap, we propose to
reduce the address translation overhead in three steps: (1) pro-
viding low-latency access to translation caching by allowing
customized accelerators to store physical addresses locally in
TLBs, (2) reducing the number of page walks by exploiting
page sharing between accelerators resulted from data tiling,
and (3) minimizing the page walk latency by offloading the
page walk request to the host core MMU. We detail our
designs and evaluations in the following subsections.

B. Private TLBs

To enable more capable devices such as accelerators, recent
IOMMU proposals allow IO devices to cache address trans-
lation in devices [22]. This reduces the address translation
latency on TLB hits and relies on the page walker in IOMMU
on TLB misses. However, the performance impact and design
tradeoffs are not scrutinized in the literature.

5
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Fig. 8. Performance for benchmarks other than medical imaging with various
private TLB sizes, assuming fixed access latency.

1) Implementation

TLB sizes. While a large TLB may have higher hit rate,
smaller TLB sizes are preferable in providing lower access
latency, since customized accelerators are very sensitive to the
address translation latency. Moreover, TLBs are reported to
be power-hungry and even TLB hits consume a significant
amount of dynamic energy [38]. Thus TLB sizes must be
carefully chosen.

Commercial CPUs currently implement 64-entry per-core
L1 TLBs and recent GPU studies [25], [26] introduce 64-
128 entry post-coalescer TLBs. As illustrated in Section II-B,
customized accelerators have much more regular and less
divergent access patterns compared to general-purpose CPUs
and GPUs, which advocates for a relatively small private TLB
size for shorter access latency and lower energy consumption.
Next we quantitatively evaluate the performance effects of
various private TLB sizes. We assume a least-recently-used
(LRU) replacement policy to capture locality.

a) Private TLB size for all benchmarks except medical
imaging applications: Figure 8 illustrates that all seven eval-
uated benchmarks greatly benefit from adding private TLBs.
In general, small TLB sizes such as 16-32 entries suffice
to achieve most of the improved performance. The cause of
this gain is twofold: (1) accelerators benefit from reduced
access time to locally cached translations; (2) even though
the capacity is not enlarged compared to the 32-entry IOTLB,
accelerators enjoy private TLB resource rather than sharing the
IOTLB. LPCIP receives the largest performance improvement
from having a private TLB. This matches the observation that
it has the highest sensitivity to address translation latency due
to dynamic memory references during pipelined processing,
since providing a low-latency private TLB greatly reduces
pipeline stalls.

b) Private TLB size for medical imaging applications:
Figure 9 shows the evaluation on the four medical imaging
benchmarks. These benchmarks have larger memory footprint
with more input array references, and the three-dimensional
access pattern (accessing multiple pages per array reference
as demonstrated in Figure 6) further stresses the capacity of
private TLBs. While apparently 256-entry achieves the best
performance for the four, the increased TLB access time would
decease performance for other benchmarks, especially latency-
sensitive ones such as LPCIP. In addition, a large TLB will
also consume more energy.
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Fig. 9. Performance for medical imaging benchmarks with various private
TLB sizes, assuming fixed access latency.

Non-blocking design. Most CPUs and GPUs use blocking
TLBs since the latency can be hidden with wide MLP. In
contrast, accelerators are sensitive to long TLB miss latencies.
Blocking accesses on TLB misses will stall the data transfer,
reducing the memory bandwidth utilization which results in
performance degradation. In light of this, our design provides
non-blocking hit-under-miss support to overlap TLB miss with
hits to other entries.
Correctness issues. In practice, correctness issues including
page faults and TLB shootdowns [39] have negligible effects
on the experimental results. We discuss them here for imple-
mentation purposes. While page faults can be handled by the
IOMMU, accelerator private TLBs must support TLB shoot-
downs from the system. In a multi-core-accelerator system,
if the mapping of memory pages are changed, all sharers
of the virtual memory are notified to invalidate TLBs using
TLB shootdown inter-processor interrupts (IPIs). We assume
shootdowns are supported between CPU TLBs and the IOTLB
based on this approach. We also extend IOMMU to send
invalidation to accelerator private TLBs to flush stale values.

2) Evaluation

We find that low TLB access latency provided by local
translation caching is key to the performance of customized
accelerators. While the optimal TLB size appears to be
application-specific, we choose 32-entry for balance between
latency and capacity for our benchmarks, and also lower area
and power consumption. On average, the 32-entry private TLB
achieves 23.3% of the ideal address translation performance,
one step up from the 12.3% IOMMU baseline, with an
area overhead of around 0.7% to each accelerator. Further
improvements are possible by customizing TLB sizes and
supporting miss-under-miss targeting individual applications.
We leave these for future work.

C. A Shared Level-Two TLB

Figure 10 depicts the basic structure of our two-level TLB
design, and illustrates two orthogonal benefits provided from
adding a shared TLB. First, the requested entry is previously
inserted to the shared TLB by a request from the same acceler-
ator. This is the case when the private TLB size is not sufficient
to capture the reuse distance so that the requested entry is
evicted from the private TLB earlier. Specifically, medical
imaging benchmarks would benefit from having a large shared
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TLB. Second, the requested entry is previously inserted to
the shared TLB by a request from another accelerator. This
case is common when data tile size is smaller than a memory
page and neighboring tiles within a memory page are mapped
to different accelerators (illustrated in Section II-C). Once an
entry is brought into the shared TLB by one accelerator, it is
immediately available to other accelerators, leading to shared
TLB hits. Requests that also miss in the shared TLB need to
access IOMMU for page table walking.

1) Implementation

TLB size. While our design trades capacity for lower access
latency in private TLBs, we provide relatively larger capacity
in the shared TLB to avoid thrashing. Based on the evaluation
of performance impact of private TLB sizes, we assume a
512-entry shared TLB for the four-accelerator-instances case,
where LRU replacement policy is used. Though it virtually
provides a 128-entry level-two TLB for each sharer, a shared
TLB is more flexible in allocating resources to a specific
sharer, resulting in improved performance.
Non-blocking design. Similar to the private TLBs, our shared
TLB design also provides non-blocking hit-under-miss support
to overlap TLB miss with hit accesses to other entries.
Inclusion policy. In order to reap the benefits of aforemen-
tioned use cases, entries requested by an accelerator must be
inserted in both the private and the shared TLB. We adopt
the approach in [40] to implement a mostly-inclusive policy,
where each TLB is allowed to make independent replacement
decisions. This relaxes the coordination between private and
shared TLBs and simplifies the control logic.
Placement. We provide a centralized shared level-two TLB
not tied to any of the accelerators. This requires each ac-
celerator to send requests through the interconnect to access
the shared TLB which adds additional latency. However, we
find the benefit completely outweighs the added access latency
for the current configuration. Much larger TLB sizes or more
sharers (we will discuss this in Section V-A) could benefit from
a banked design, but such use cases are not well established.
Correctness issues. In addition to the TLB shootdown support
in private TLBs, the shared TLB also needs to be checked for
invalidation. The reason is in a mostly-inclusive policy, entries
that are previously brought in can be present in both levels.

2) Evaluation

In contrast to private TLBs where low access latency is the
key, the shared TLB mainly aims to reduce the number of
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privateTLB twoLevelTLB ideal twoLevelTLB

Fig. 11. Page walk reduction compared to the IOMMU baseline3

page walks in two ways: (1) providing a larger capacity to
capture the page locality for applications which is difficult to
achieve in private TLBs without sacrificing access latency, (2)
reducing TLB misses on common virtual pages by enabling
translation sharing between concurrent accelerators.

Figure 11 sheds light upon the page walk reduction3 in
our two-level TLB design. Compared to private TLBs only,
adding a shared TLB consistently reduces the overall number
of page walk requests. For medical imaging benchmarks,
especially Deblur, Denoise and Registration, which suffer from
insufficient private TLB capacity, the shared TLB significantly
cuts the number of page walks by providing more resource.
For benchmarks that already find enough entries in private
TLBs, such as Segmentation and BlackScholes, the shared
TLB reduces the number of page walks by decreasing TLB
misses on common virtual pages, which is due to data tiling
effects. In general, the two-level TLB design achieves 76.8%
page walk reduction compared to the IOMMU-only approach,
leaving only a small gap to an ideal two-level TLB. The 512-
entry shared TLB only incurs around 0.3% area overhead to
the four sharing accelerators. StreamCluster and DisparityMap
involve multiple iterations over the same input data using
different types of accelerators. The result shows a gap between
the 512-entry case and the ideal case because the size of
input data exceeds the reach of the 512-entry TLB, but has
no problem fitting in the infinite-sized TLB which eliminates
cold misses at the beginning of each iteration.

To further isolate the effect of page sharing caused by data
tiling, we run simulations with infinite-sized private TLBs
so that the capacity issue is eliminated. Figure 12 shows
the page walk reduction by adding a 512-entry shared TLB
to infinite-sized private TLBs. As infinite-sized private TLBs
leave only cold misses, the shared TLB exploits page sharing
among those misses and filters duplicate ones, resulting in a
41.7% reduction on average. Notice that not all benchmarks
greatly benefit from having a shared TLB, which is due to
the different tiling mechanism of each application. While
developing a TLB-aware tiling mechanism could potentially

3Note that the number of page walks does not equal to the number of
translation requests even in the IOMMU case, since the IOTLB can filter part
of them.
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with shared TLB

Fig. 12. Page walk reduction from adding a 512-entry shared TLB to infinite-
sized private TLBs

reduce duplicate TLB misses, it is not easy to do so when the
input data size and tile size are user-defined and thus can be
arbitrary. We leave this for future work.

The reminder of the page walks is due to cold TLB
misses, where alternating TLB sizes or organization can not
make a difference. Therefore, we propose an efficient page
walk handling mechanism to minimize the latency penalty
introduced by those page walks.

D. Host Page Walks

As the IOMMU is not capable of delivering efficient page
walks, the performance of accelerators still suffer from exces-
sive long page walk latency even with reduced number of page
walks. While providing a dedicated full-blown MMU support
for accelerators could potentially alleviate this problem, there
may not be a need to establish a new piece of hardware es-
pecially when off-the-shelf resources can be readily leveraged
by accelerators.

This opportunity lies in the coordination between the ac-
celerators and the host core that launches them. After the
computation task has been offloaded from the host core to
accelerators, a common practice is to put the host core into
spinning so that the core can react immediately to any status
change of the accelerators. As a result, during the execution
of accelerators, the host core MMU and data cache is less
stressed, which can be utilized to service translation requests
from the accelerators invoked by this core. By offloading page
walk operations to the host core MMU, the following benefits
can be achieved:

First, the MMU cache support is provided from the host
core MMU. Commercial CPUs have introduced MMU caches
to store upper level entries in page walks [27], [29]. The
page walker accesses the MMU cache to determine if one or
more levels of walks can be skipped before issuing memory
references. As characterized in Section II-B, accelerators have
extremely regular page access behaviors with small page
divergence. Therefore, the MMU cache can potentially work
very well with accelerators by capturing the good locality
in upper levels of the page table. We expect that the MMU
cache is able to skip all three non-leaf page table accesses
for the majority of time, leaving only one memory reference

required for each page walk. We assume an AMD-style page
walk cache [27] in this paper, which stores entries in a data
cache fashion. However, other implementations such as Intel’s
paging structure cache [29] could provide similar benefits.

Second, PTE (page table entry) locality within a cacheline
provides an opportunity to amortize the cost of memory
accesses over more table walks. Unlike the IOMMU, the
CPU MMU has data cache support, which means a PTE is
first brought from the DRAM to the data cache and then
to the MMU. Future access to the same entry, if misses in
the MMU cache, could still hit in the data cache with much
lower latency than a DRAM access. More importantly, as one
cacheline could contain eight PTEs, one DRAM access for
a PTE potentially prefetches seven consecutive ones, so that
future references to these PTEs could be cache hits. While
this may not benefit CPU or GPU applications with large page
divergence, we have shown that the regularity of accelerator
TLB misses could permit improvement through prefetching.

Third, resources are likely warmed up by previous host
core operations within the same application’s virtual address
space. Since a unified virtual address space permits a close
coordination between the host core and the accelerators, both
can work on the same data with either general-purpose ma-
nipulation or high-performance specialization. Therefore, the
host core operations could very well warmup the resources for
accelerators. Specifically, a TLB miss triggered by the host
core brings both upper-level entries to the MMU cache and
PTEs to the data cache, leading to reduced page walk latency
for accelerators in the near future. While the previous two
benefits can also be obtained through any dedicated MMU
with an MMU cache and data cache, this benefit is unique to
host page walks.

1) Implementation

Modifications to accelerator TLBs. In addition to the accel-
erator ID bits in each TLB entry, the shared TLB also needs to
store the host process (or context) ID within each entry. On a
shared TLB miss, a translation service request with the virtual
address and the process ID is sent through the interconnect to
the host core operating within the same virtual address space.
Modifications to host MMUs. The host core MMU must
be able to distinguish accelerator page walk requests from the
core requests, so that PTEs can be sent back to the accelerator
shared TLB instead of being inserted into the host core TLBs
after page walking. As CPU MMUs are typically designed to
handle one single page walk at a time, a separate port and
request queue for accelerator page walk requests are required
to buffer multiple requests. An analysis on the number of
outstanding shared TLB misses is presented in Section V-A.
Demultiplexer logic is also required for the MMU to send
responses with the requested PTE back to the accelerator
shared TLB.
Correctness issues. In contrast to implementing a dedicated
MMU for accelerators where coordination with the host core
MMU is required on page fault handling, our approach re-
quires no additional support for system-level correctness issue.
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If a page walk returns a NULL pointer on the virtual address
requested by accelerators, the faulting address is written to the
core’s CR2 register and an interrupt is raised. The core can
proceed with normal page fault handling process without the
knowledge of the requester of the faulting address. The MMU
is signaled once the OS has written the page table with the
correct translation. And then the MMU finishes the page walk
to send the requested PTE to the accelerator shared TLB. The
support for TLB shootdowns work the same as in the IOMMU
case.

2) Evaluation

To evaluate the effects of host page walks, we simulate an
8KB page walk cache with 3-cycle access latency, and a 2MB
data cache with 20-cycle latency. If the PTE request misses in
the data cache, it is forwarded to the off-chip DRAM which
typically takes more than 200 cycles. We faithfully simulate
the interconnect delays in a mesh topology.

We first evaluate the capability of the host core MMU by
showing the average latency of page walks that are triggered
by accelerators. Figure 13 shows that the host core MMU
consistently provides low-latency page walks across all bench-
marks, with an average of only 58 cycles. Given the latency
of four consecutive data cache accesses is 80 cycles plus
interconnect delays, most page walks should be a combination
of MMU cache hits and data cache hits, with DRAM access
only in rare cases. This is partly due to the warmup effects
where cold misses in both MMU cache and data cache are
minimized. Based on this, it is difficult for a dedicated MMU
to provide even lower page walk latency than the host core
MMU.

We further analyze the average translation latency of each
design to relate to our latency sensitivity study. As shown
in Figure 14(a), the average translation latency across all
benchmarks for designs with private TLBs and two-level TLB
is 101.1 and 27.7 cycles, respectively. This level of translation
latency, if uniformly distributed, should not result in more than
50% performance slowdown according to Figure 7. However,
as shown in Figure 14(b), the average translation latency of
the requests that trigger page walks is well above 1000 cycles
for the two designs that uses an IOMMU. This is due to
both long page walk latency and queueing latency when there
are multiple outstanding page walk requests. With such long
latencies added to the runtime, accelerators become completely
ineffective in latency hiding, even on shorter latencies which
could otherwise be tolerated by double buffering. In contrast,
host page walks reduce page walk latencies and meanwhile
minimize the variance of address translation latency. There-
fore, the overall performance benefits from a much lower
average address translation latency (3.2 cycles) and decreased
level of variations.

E. Summary: Two-level TLB and Host Page Walks

Overall design. In summary, to provide an efficient address
translation support for accelerator-centric architectures, we
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Fig. 13. Average page walk latency when offloading page walks to the host
core MMU
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Fig. 14. Average translation latency of (a) all requests; (b) requests that
actually trigger page walks

TABLE III
CONFIGURATION OF OUR PROPOSED ADDRESS TRANSLATION SUPPORT

Component Parameters
Private TLBs 32-entry, 1-cycle access latency
Shared TLB 512-entry, 3-cycle access latency
Host MMU 4KB page, 8KB page walk cache [28]
Interconnect Mesh, 4-stage routers

first enhance the IOMMU approach by designing a low-
latency private TLB for each accelerator. Second, we present a
shared level-two TLB design to enable page sharing between
accelerators, reducing duplicate TLB misses. The two-level
TLB design effectively reduces number of page walks by
76.8%. Finally, we propose to offload page walk request to the
host core MMU so that we can efficiently handle page walks
with an average latency of 58 cycles. Table III summarizes the
parameters of key components in our design.

Overall system performance. Figure 15 compares the perfor-
mance of different designs against the ideal address translation.
Note that the first three designs rely on the IOMMU for
page walks which could take more than 900 cycles. Our
proposed three designs, as shown in Figure 15 achieve 23.3%,
51.8% and 93.6% of the ideal address translation performance,
respectively, while the IOMMU baseline only achieves 12.3%
of the ideal performance. The performance gap between our
combined approach (two-level TLB with host page walks) and
the ideal address translation is reduced to 6.4% on average,
which is in the range deemed acceptable in the CPU world
(5-15% overhead of runtime [27], [41], [40], [42]).
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Fig. 15. Total execution time normalized to ideal address translation

V. DISCUSSION

A. Impact of More Accelerators

While we have shown that significant performance improve-
ment can be achieved for four accelerator instances by sharing
resources including the level-two TLB and host MMU, it
is possible that resource contention with too many sharers
results in performance slowdown. Specifically, since CPU
MMUs typically handle one page walk at a time, the host
core MMU can potentially become a bottleneck as the number
of outstanding shared TLB misses increases. To evaluate the
impact of launching more accelerators by the same host core,
we run simulations with 16 accelerator instances in the system
with the same configuration summarized in Table III.

We compare the average number of outstanding shared TLB
misses4 for the 4-instance and 16-instance cases in Figure 16.
Our shared TLB provides consistent filtering effect, requiring
on average only 1.3 and 4.9 outstanding page walks at the
same time in the 4-instance and 16-instance cases, respectively.
While more outstanding requests lead to longer waiting time,
subsequent requests are likely to hit in the page walk cache and
data cache due the regular page access pattern, thus requiring
less service time. Using a dedicated MMU with threaded
page walker [26] could reduce the waiting time. However,
the performance improvement may not justify the additional
hardware complexity even for GPUs [25].

Figure 17 presents the overall performance of our proposed
address translation support relative to the ideal address trans-
lation when there are 16 accelerator instances. We can see that
even with the same amount of shared resource, launching 16
accelerator instances does not have a significant impact over
the efficiency of address translation, with the overhead being
7.7% on average. While even more active accelerators promise
greater parallelism, we already observe diminishing returns
in the 16-instance case, as the interconnect and memory
bandwidth is saturating.

Another way of having more active accelerators in the
system is by launching multiple accelerators using multiple
CPU cores. However, the page walker in each core MMU

4As TLB misses are generally sparse during the execution, we only sample
the number when there is at least one TLB miss.
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Fig. 16. The average number of outstanding shared TLB misses of the 4-
instance and 16-instance cases
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Fig. 17. Performance of launching 16 accelerator instances relative to ideal
address translation

will not experience higher pressure in such scenario since our
mechanism requires that accelerators only offload TLB misses
to the host core that operates within the same application’s
virtual address space. A larger shared TLB may be required
for more sharers where a banked placement could be more
efficient. We leave this for future work.

B. Large Pages

Large pages [43] can potentially reduce TLB misses by
enlarging TLB reach and speedup misses by requiring less
accesses to memory while walking the page table. To reduce
memory management overhead, the OS with Transparent Huge
Page [44] support can automatically construct large pages by
allocating contiguous baseline pages aligned at the large page
size. As a result, developers no longer need to identify the
data that could benefit from using large pages and explicitly
request the allocation of large pages.

As we have shown that accelerators typically feature bulk
transfers of consecutive data and are sensitive to long memory
latencies, large pages are expected to improve the overall
performance of accelerators by reducing TLB misses and page
walk latencies. We believe this approach is orthogonal to ours
and can be readily applied to the proposed two-level TLB
and host page walk design. It is worthwhile to note that the
page sharing effect resulted from tiling of high-dimensional
data will become more significant under large pages, leading
to increased number of TLB misses on common pages. Our
shared TLB design is shown to be effective in alleviating this
issue.
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VI. RELATED WORK

Address Translation on CPUs. To meet the ever increasing
memory demands of memory intensive applications, commer-
cial CPUs have included one or more levels of TLBs [4], [45]
and private low-latency caches [28], [29] in the per-core MMU
to accelerate address translation. These MMU caches have
been shown to greatly increase performance for CPU applica-
tions across different implementations [27]. TLB augmentation
has long been studied in the community. Prefetching [46], [47],
[48] techniques are proposed to speculate on PTEs that will be
referenced in the future. While such techniques benefit appli-
cations with regular page access patterns, additional hardware
such as a prefetching table is typically required. Shared last-
level TLBs [40] and shared MMU caches [49] are proposed for
multicores to accelerate multithreaded applications by sharing
translations between cores. The energy overheads of TLB
resources is also studied [38], advocating for energy-efficient
TLBs. A software mechanism has also been proposed for
address translation on CPUs [50].
Address Translation on GPUs. A recent IOMMU tuto-
rial [22] presents a detailed introduction to the IOMMU design
within the AMD fused CPU-GPUs, with a key focus on its
functionality and security. Though it also enables translation
caching in devices, no detail or quantitative evaluation is
revealed. To provide hardware support for virtual memory
and page faults on GPUs, [25], [26] propose GPU MMU
designs consisting of post-coalescer TLBs and logic to walk
the page table. As GPUs can potentially require hundreds of
translations per cycle due to high parallelism in the architec-
ture, [25] uses 4-ported private TLBs and improved page walk
scheduling whereas [26] uses highly threaded page walker to
serve bursts of TLB misses. ActivePointers [51] introduce a
software address translation layer on GPUs that supports page
fault handling without CPU involvement. However, system
abstractions for GPUs are required.

Based on our characterization of customized accelerators,
we differentiate the address translation requirements between
customized accelerators and GPUs in three ways. First, accel-
erators do not use instructions and have much more regular
consecutive access patterns compared to GPUs, which enables
a simpler private TLB design. Second, the page sharing
effect between accelerators cannot be resolved using the same
coalescing structure as in GPU since accelerators are not
designed to execute in lockstep. Instead, a shared TLB design
is tailored to compensate the impact of data tiling. Third,
while GPUs average 60 concurrent TLB misses [26], we have
shown that accelerators have far less outstanding TLB misses,
below 5 on average even with 16 active accelerator instances
in the system, after filtering by the two-level TLB. Therefore,
host page walks with the existing MMU cache and data cache
support suffice to provide low page walk latency. Our result
shows that the average page walk latency is only 58 cycles.
Current Virtual Memory Support for Accelerators. Some
initial efforts have been made to support address translation for
customized accelerators. The prototype of Intel-Altera hetero-

geneous architecture research platform [52] uses a static 1024-
entry TLB with 2MB page size to support virtual address for
user-defined accelerators. Similar approach is also adopted in
the design of a Memcached accelerator [15]. Such static TLB
approach requires allocation of pinned memory and kernel
driver intervention on TLB refills. As a result, programmers
need to work with special APIs and manually manage various
buffers, which can be a giant pain. Xilinx Zynq SoC provides
a coherent interface between the ARM Cortex-A9 processor
and FPGA programmable logic through the accelerator co-
herency port [53]. While prototypes in [23], [24] are based
on this platform, the address translation mechanism is not
detailed. [16] assumes a system MMU support for the designed
hardware accelerator. However, the impact on performance
is not studied. [54] studies system co-design of cache-based
accelerators but only with a simplified address translation
model.

Modern processors are equipped with IOMMUs [19], [21],
[22] to provide address translation support for loosely-coupled
devices including customized accelerators and GPUs. rI-
OMMU [55] improves the throughput for devices that em-
ploy circular ring buffers such as network and PCIe SSD
controllers, but is not intended for customized accelerators
with more complex memory behaviors. With unified address
space, [56] proposes a sandboxing mechanism to protect the
system against improper memory accesses. While we choose
an IOMMU configuration as the baseline in this paper for its
generality, the key insights of this work are applicable to other
platforms with modest adjustments.

VII. CONCLUSION

The goal of this paper is to provide simple but efficient
address translation support for accelerator-centric architec-
tures. We propose a two-level TLB design and host page
walks tailored to the specific challenges and opportunities of
customized accelerators. We find that a relatively small and
low-latency private TLB with 32 entries for each accelerator
reduces page walks by 30.4% compared to the IOMMU
baseline. Adding a shared 512-entry TLB eliminates 75.8%
in total of page walks by exploiting page sharing resulted
from data tiling. Moreover, by simply offloading page walk
requests to the host core MMU, the average page walk latency
can be reduced to 58 cycles. Our evaluation shows that the
combined approach achieves 93.6% of the performance of the
ideal address translation.

This paper is the first to provide hardware support for
a unified virtual address space between the host CPU and
customized accelerators with marginal overhead. We hope that
this paper could stimulate future research in this area and
facilitate the adoption of customized accelerators.
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