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ABSTRACT 
The urban facility, one of the most important service providers is usually 
represented by sets of points in GIS applications using POI (Point of Interest) model 
associated with certain human social activities. The knowledge about distribution 
intensity and pattern of facility POIs is of great significance in spatial analysis, 
including urban planning, business location choosing and social recommendations. 
Kernel Density Estimation (KDE), an efficient spatial statistics tool for facilitating 
the processes above, plays an important role in spatial density evaluation, because 
KDE method considers the decay impact of services and allows the enrichment of 
the information from a very simple input scatter plot to a smooth output density 
surface. However, the traditional KDE is mainly based on the Euclidean distance, 
ignoring the fact that in urban street network the service function of POI is carried 
out over a network-constrained structure, rather than in a Euclidean continuous 
space. Aiming at this question, this study proposes a computational method of KDE 
on a network and adopts a new visualization method by using 3-D “wall” surface. 
Some real conditional factors are also taken into account in this study, such as 
traffic capacity, road direction and facility difference. In practical works the 
proposed method is implemented in real POI data in Shenzhen city, China to depict 
the distribution characteristic of services under impacts of multi-factors. 
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RESUMO 
No ambiente urbano, os prestadores de serviços mais importantes são normalmente 
representados por um conjunto de pontos em aplicações GIS utilizando o modelo 
POI (ponto de interesse), associado a certas atividades sociais. O conhecimento 
sobre a intensidade e o padrão de distribuição das facilidades - POIs (Pontos de 
interesse) é de grande importância na análise espacial, incluindo o planeamento 
urbano, a escolha do local de negócios e certas recomendações sociais. A Kernel 
Density Estimation (KDE) é uma eficiente ferramenta de estatística espacial para 
facilitar os processos apontados acima, e desempenha um papel importante na 
avaliação da densidade espacial, porque o método KDE considera o impacto da 
deterioração dos serviços e permite o enriquecimento das informações de uma 
forma muito simples, utilizando um gráfico de dispersão, tendo como saída uma 
superfície de densidade. No entanto, o KDE tradicional baseia-se principalmente na 
distância euclidiana, ignorando o fato de que na rede viária urbana a função de 
serviço POI materializa-se em uma estrutura com limitações de rede, ao invés de ser 
num espaço contínuo euclidiano. Visando equacionar essa questão, o presente 
estudo propõe um método computacional do KDE em uma rede e adota um novo 
método de visualização, utilizando uma superfície "parede" 3D. Alguns fatores reais 
condicionantes também são levados em conta neste estudo, tais como a capacidade 
de tráfego e a mão de direção de estradas. De forma prática, o método proposto é 
implementado sobre dados reais POI da cidade de Shenzhen, na China, para 
descrever a característica de distribuição de serviços sob impactos de multifatores. 
Palavras-chave: Densidade Kernel de Redes; Análise de Redes; POI (Pontos de 
Interesse); Estatística Espacial. 
 
 
1. INTRODUCTION 

Urban facilities, as the carrier of material flow, population flow, traffic flow 
and information flow to provide various services by socio-economic activities, 
become the foundation of characterizing urban landscape and function. For 
example, banks, insurance companies and fashion retails are usually observed in 
urban CBD (Central Business District). In a GIS environment, urban facility is often 
represented by an abstracted point which does not consider its area coverage, 
extension shape, distribution direction and other geometric characteristics in 2D 
space. In this sense, the urban facility can be represented by POI (Point of Interest) 
feature, which plays an important role in LBS (Location Based Service) 
technologies. The POI feature usually distributes in a cluster pattern and the 
intensive degree usually needs a method to evaluate. The interpretation of the way 
such points are being dispersed or clustered in space have drawn plenty of research 
interests in fields such as urban ecology, sociology, economics and urban planning 
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and management (ANTIKAINEN, 2005; LOWE, 2005; LÜSCHER and WEIBEL, 
2013).  

There exists a wide range of methods to analyze such point distribution density 
and point pattern and can be generally classified into two broad categories 
(BAILEY et al., 1995): (1) The method for analyzing first-order properties, which 
measure the variation in the mean value of the spatial point pattern across the space 
(intensity), (2) The method for exploring second-order properties, which examine 
the spatial interaction (dependence) structure of point facilities for spatial patterns. 
The previous includes methods such as Quadrat analysis, Voronoi-based density 
estimation and Kernel Density Estimation (KDE), while the latter includes other 
geostatistical methods, such as Ripley’s K-function, Getis’s G-statistic and Moran’s 
I function. Among these methods, KDE is one of the most popular methods for 
analyzing the underlying properties of point events not only because of its easy-to-
understand and easy-to-implement, but also because of its reflection of spatial 
heterogeneous of geographic process and its capacity of identifying local spatial 
character (ELGAMMAL et al., 2002; FLAHAUT et al., 2003; SHEATHER et al., 
1991; STEENBERGHEN et al., 2004, 2010).  

The purpose of KDE is to generate a smooth density surface of point events 
over space by computing event intensity as density estimation, and further to 
discover the spatial heterogeneity or inconsistency of the geographic process. 
Essentially, such estimator is based on Tobler’s First Law of Geography which 
states “Everything is related to everything else, but near things are more related than 
distant things” (TOBLER et al., 1979). Hence in real-world scenarios, the kernel 
estimator is usually used for spatial analyses on continuous phenomena including 
traffic hazards, environmental pollution and urban facility impacts (BAILEY et al., 
1995; BORRUSO et al., 2003, 2005, 2008; XIE et al., 2008). 

Note that most methods of point pattern analysis, including KDE method, work 
under the Euclidean (or 2D planar) space. It’s based on the assumption that 
geographic phenomenon occurs in an infinitely homogeneous and isotropic space, in 
which events can be located at any locations and spatial separation between 
locations is measured by the Euclidean distance. However, this planar space 
hypothesis is probably ill-suited (BORRUSO et al., 2003; MILLER et al., 1994), as 
the urban environment is not so homogeneous and uniform but characterized by 
network-constrained structures. The real situation in urban infrastructure is that the 
service function of facility is often carried out under a network-constrained structure 
around street path to output service function. If we utilize the Euclidean space based 
method in a network, the conclusion will be biased. For example, Yamada and Thill 
(2004) illustrated how planar K-function analysis may lead to over-detecting 
clustered patterns with a typical example of network-constrained point processes, i.e 
vehicle crash distribution. They also proposed a network K-function to resolve this 
problem. Lu and Chen (2007) reach the same question with another human-induced 
event, i.e. vehicle steals. The network K-function is effective for examining whether 
a given point distribution differs from a random distribution in networks, yet like 
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other global measures (e.g. Getis’s G-statistic, Moran’s I) it does not reveal the 
location of clusters within distribution. 

Aiming at network spatial phenomena, we have two techniques to analyze the 
event intensity at a finer scale: the local spatial-autocorrelation method (FLAHAUT 
et al., 2003; STEENBERGHEN et al., 2004; GETIS et al., 2008) and the network 
Kernel Density Estimation (BORRUSO et al., 2003, 2005, 2008; OKABE et al., 
2009b). For example, Flahaut et al. (2003) treat linear stretch of a certain length as 
basic spatial units (BSUs) and count the number of accidents occurred in each BSUs. 
Then Euclidean distances are computed between BSUs, and local Moran’s I measure 
is used for detecting significant clusters. In this case the computation method of 
planar distance metric does not consider the special nature of street networks such 
as connectivity and restriction of travel manner. Besides, the local-autocorrelation 
method requires the division of space into basic statistical units of equal size, which 
is available in planar space, but in network space that is variable, because too short 
units are often generated by irregular alignment of a network.   

Attempts to resolve this dilemma have resulted in the network KDE. For 
example, Borruso (2008) proposed a modified KDE (termed as Network Density 
Estimation, or NDE for short) to analyze patterns of point events distributed over a 
network. He considered the kernel as a density function based on the network 
distance. By analyzing the resultant intensity patterns, it is possible to identify 
potential “hotspot” clusters along networks. However his study still used 2-D grid 
cells and the outcome is still mapped onto a 2-D Euclidean space. Shiode (2008) 
pointed out that using square grid in such cases may distort the representation of the 
distribution on a network. Hence a network-based quadrat method is proposed for a 
more accurate aggregation. Recently, the KDE method based on the network-based 
quadrat has been extensively explored and it is still under investigation in 
methodological aspects as well as in concrete applications (OKABE et al., 2006a, 
2006b, 2009b; XIE et al., 2008, 2013).  

Aiming at the special nature of urban facility under network space, this study 
attempts to present a computational method of network KDE for spatial density 
evaluation, and develop a new density visualization method using 3-D “wall” 
surface. The purpose of this study is to discover the urban hierarchical structure by 
density evaluation. The method starts with tessellating the network into a set of 1-D 
quadrats to aggregate density value of point facilities. Then supported by the stream 
flowing simulation, the algorithm makes the stream spread from each focused 
quadrat to neighbor quadrats based on the network topology. In the process above 
the quadrats which streams go through are weighted according to the number of 
steps to them. Compared to the previous algorithms (BORRUSO et al., 2008; 
OKABE et al., 2009b), the method in this study avoids lots of repeat computation in 
searching shortest-path with minimum weight, and also has the advantages of 
simple operation and easy calculation. The study also investigates: (1) the impacts 
on density calculation from three common constraints, namely, traffic direction, 
traffic capacity and facility weight (e.g., floor area and merchandise categories); (2) 
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a new visualization strategy of facility POIs for improving the identification of the 
typical “linear” clusters along roadways.  

The remainder of the paper is organized as follows: Section 2 presents the 
extension of KDE from the Euclidean space to the network space and describes the 
impacts of realistic constraints on network KDE. The practical implementation of 
the methodology is detailed in Section 3 along with introducing of a 3-D 
visualization strategy. In Section 4, we present a case study with a real-world street 
network and four sets of selected facility POIs. Finally Section 5 presents 
conclusions.  
 
2. EXTENSION OF DENSITY ESTIMATION: FROM EUCLIDEAN SPACE 

TO NETWORK SPACE 
Spatial density is the property that describes the spatial distribution in an 

intensive or sparse pattern in quantity. The density estimation tries to evaluate the 
density value to represent the local distribution intensity. Compared with simple 
observation of a distribution in dot maps, the event density often acts as a refined 
analysis to discover the deep information behind the geographical phenomenon, for 
example, to detect the crime or accident ‘hotspots’, examine the cluster of business 
activities.  

 
2.1 Density Estimation 

The analysis over a density surface is based on the technologies of spatial 
smoothing and spatial interpolation (JONES, 1990; BAILEY et al., 1995). 
Conventionally, three methods of density analysis have been widely used in 
geographical analysis domain: (1) Quadrat analysis; (2) Voronoi-based analysis and 
(3) KDE method. Quadrat analysis drapes a grid of equal-sized and homogeneous 
cells (i.e. quadrats) over the study area and counts the number of event points falling 
in each cell to describe the spatial distribution. Voronoi-based method also needs to 
divide the study region into sub-regions corresponding to the partitioning cells in 
Voronoi construction. A Voronoi diagram is the partitioning of the plane into N 
polygonal regions, each of which is associated with a given point. The region 
associated with a point is the locus of points closer to that point on some criterion 
than to any other given point (GOLD, 1991, 1994). By computing the Voronoi 
polygons of a point set, the region of influence of each event can be achieved and 
the reciprocal of sub-regional area can be computed as the density value of the 
Voronoi sub-region (YAN and WEIBEL, 2008).  

Since a density value is calculated as an attribute of each sub-region (quadrat 
or Voronoi sub-region), it is therefore possible to represent the spatial distribution by 
means of homogenous and easily comparable areas using such as choropleth map 
visualization. However the former two methods have some disadvantages in 
practical applications: (1) the restriction that the chosen quadrat must keep 
appropriate size, makes the loss of information from the interior grid distribution, 
and that is also the problem facing the Voronoi-based analysis; (2) the nature of 
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geographical continuity across the boundary of sub-region is not remained as the 
method doesn’t take into account the distribution in the neighborhood of grid cell. 
The use of KDE can improve the above situations. KDE provides an estimation of 
the intensity in each point of the grid by means of “moving three-dimensional 
functions that weight events within its sphere of influence according to their 
distance from the point at which the intensity is being estimated” (GATRELL et al. 
1996). With the weight function, the intensity in a cell is related to the distributions 
in neighbor cells. Although KDE still requires the use of a grid of square 
superimposed cells, but as long as the mesh size is small enough, a smooth estimate 
of a density can be obtained for minimizing the above losses of information. Figure 
1 shows the effect of these three methods on the same data. It can be observed that 
the advantage of KDE lies in that it allows estimation of the density at any location 
in the study region (O’ SULLIVAN and UNWIN, 2003). 

The general form of a kernel density estimator is expressed as: 
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where f(s) is the density measured at location s, h the search radius (bandwidth) of 
the KDE (only events within h are used to estimate f(s)), ci the observed event point, 
k( ) the weight of event ci at distance d(s, ci) to location s. The KDE usually models 
the so-called kernel function, k, as a function of the ratio between d(s, ci) and h, so 
that the “distance decay effect” can be taken into account in density estimation. In 
fitting with Tobler’s first law of geography, each local weighted process is 
estimated with events whose influence decays with distance, distances that are 
commonly defined as straight line or Euclidean (Figure 1(b)).  
 

Figure 1 - Illustration of three common methods for density estimation in planar 
space: (a) Quadrat analysis; (b) Kernel density estimation; (c) Voronoi-based 

analysis. 

   
                 (a)                     (b)                       (c)  
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The evaluation of KDE requires two parameters: The bandwidth h and the 
kernel function k, which determines the weighting of the points. In this study, we 
use the Quartic kernel function (Equation 2) which is one of the most commonly 
used functions:  
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where function k and parameters s, c, h are the same of that in Equation 1. 

According to researches (BAILEY et al., 1995; BORRUSO et al., 2003, 2005, 
2008; XIE et al., 2008), the kernel function has little impact on the evaluation result. 
Alternatively the selection of bandwidth is a more influential factor capable of 
affecting the statistical results by controlling the smoothness of the estimated 
density. The bandwidth control behaves as that the larger the bandwidth will get 
smoother resultant density distribution. In reality, there are two factors to decide the 
choice of bandwidth. One is the spatial scale and another is the degree of dispersion 
between events. A small bandwidth can reveal local effects in the distribution and 
the larger bandwidth can reflect more clearly “hot spots” at a global scale. For 
sparse distribution events, the larger bandwidth is recommended, as a narrower one 
will not provide much more information than the simple observation of event 
distribution in a dot-map or scatter plot.  

Both Quadrat analysis and Voronoi-based analysis for density evaluation 
ignore the intensity changes within each cell division, leading to abrupt changes 
between adjacent cells. On the contrary, the method based on KDE resolves the 
question of abrupt changes around the neighboring cells in density evaluation. The 
process of progressively transmitting center intensity by KDE takes into account 
“distance decay effect”, which satisfies the first law of geography. Relatively to the 
other two methods, the KDE method has greater potential in infrastructure planning 
and urban analysis (O’ SULLIVAN and UNWIN, 2003). 

 
2.2 Kernel Density Estimation on Networks 

Given a homogeneous space, the traditional planar KDE superimposes a bell-
shaped weighted function over any location with isotropic property. This function is 
easy to implement but difficult to reflect the actual distribution of urban 
phenomenon, because human activities within urban areas are usually constrained 
under network path in planar space (YAMADA and THILL, 2007). Local space 
within the search radius essentially belongs to the sphere of influence of 
geographical phenomena. In 2-D Euclidean space, “sphere of influence” is a circular 
part of the homogenous plane. However in a network space it is a set of path, for 
example, in urban analysis the sphere of influence acts as a service area of facility 
depending upon traffic routes. 
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When KDE method expended from 2D Euclidean space to network space, the 
network KDE still preserves the principle of near events more related than distant 
events, but the distance concept changes. Moreover the event context behaves as 
subset of network. To illustrate the restrictiveness of network structure, Figure 2 
shows an example in which the triangle stands for facility, the square the sample 
location and the solid line the edge of the network. It can be noted that the distance 
in planar KDE is measured in terms of Euclidean distance, while in network KDE it 
is replaced by route distance. As illustrated in Figure 2 the planar method 
overestimates the clustering tendency with three locations within the search 
bandwidth, where zero in the case of network method. 
 
Figure 2 - Illustration of the comparison between the planar KDE and network KDE. 

 
 

To analyze the distribution of facility POIs, the choice of search bandwidth h 
depends on three main factors, namely the data level of detail, the size of sample 
points and the coverage of service functionality. In addition to the first two generic 
factors (presented in Section 2.1), the service functionality also has a significant 
influence on the determination of the parameter, for example, shopping mall usually 
has a larger service area than retail store, and hence a larger bandwidth is fit for the 
distribution analysis of shopping mall’s service.  

Figure 3 shows an ordinary model of kernel function in networks, which is 
widely used by most researches (BORRUSO et al., 2008; XIE et al., 2008, 2013; 
OKABE et al., 2009b). Note that the distance in this scenario is symmetrical 
without considering heterogeneous traffic conditions. However in real applications, 
several constraints such as street direction, traffic capacity and properties of facility 
objects, also impose a great influence on the distribution of service. For example, 
the service area for parking lot has to consider the local traffic conditions; the target 
area in market competition for mall service needs to consider the size of the malls. 
For real applications of network KDE, it is necessary integrate different factors to 
improve the common method.   
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Figure 3 – The ordinary model of kernel function in a network. 

 
 
 
2.3 Constrained Network KDE  
 
2.3.1 Road direction 

The traffic restriction, such as one-way regulation, greatly affects the service 
area of facilities. For example, the KFC’s delivery service chooses the optimal route 
from store to consumers considering traffic direction. Okabe et al. (2009a) 
introduces inward and outward distances for measuring the accessibility in a 
directed network. In terms of the two distance metrics, we also assign the network 
KDE into two types: inward and outward KDE. This means that the network KDE 
is based on the shortest paths which either lead toward the events (inward) or 
departure from the events (outward). Inward KDE usually is associated with 
facilities such as parking lots, supermarket and hospital, while outward KDE is used 
for other facilities such as fire stations and fast food chains. Formally Equation 3 
and Equation 4 show the inward kernel function and the outward kernel function, 
respectively, where the distance d(s, c) is referred to as the inward distance to c, and 
d(c, s) is referred to as the outward distance from c. Based on the directed distances, 
Figure 4 shows an illustrative example of the directed kernel functions. It is 
observed that distances and densities on a directed network are asymmetrical, i.e. 
d(s, c) = d(c, s) and 
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 does not always hold. The model functions 

are useful as they allow the analysis of a real-world urban environment 
characterized by the presence of different functional directions.  
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Figure 4 - The model of kernel function in s directed network. (a) inward kernel 

function; (b) outward kernel function. 

  
       (a)             (b)   

 
2.3.2 Traffic capacity 

The distance between two locations in a road network is usually defined by the 
distance of their shortest path. However, this kind of distance measure would hide 
the fact that the facility may take longer time to provide service to its nearest people 
than other ones due to heterogeneous traffic capacity, e.g., the number of lanes and 
speed limit. Travel time is sometimes a more meaningful and reliable distance 
measure for network KDE in constrained networks. Therefore Equation 5 shows the 
form of kernel function using the measure of travel time. Traffic capacity can be 
affected by many factors such as urban planning and traffic congestion in business 
time. For description simplicity, the kernel function in Figure 5 just uses road 
classes as the indicator of traffic capacity. According to the transformation 
management department in China, the road grade is designed with respect to usage 
mission, transport function, traffic volume and etc. It can reflect the traffic capacity 
of roads in some way. The higher grade the road is, the faster travel speed vehicles 
can achieve and thus a smaller value of travel time (i.e., dt(s, c)) could be used for 
calculating density. As shown in Figure 5, Grey hair line represents ordinary kernel 
function treating all roads as minor road, while dark hair line represents constrained 
kernel function considering the effects of heterogeneous traffic condition. It is 
observed that traffic capacity affects the service area of the facility, and also makes 
locations on main road weighted stronger than that on minor road for calculating the 
overall density. The constrained density value is asymmetrical on both sides of the 
central point event (i.e. c), but the result simulation reflects the actual distribution of 
service along the local roadways. 
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where ht is measured in terms of travel time, dt(s, c) is the travel time between 
location s and event c. 
 
Figure 5 - The traffic-capacity constrained kernel function. Grey hair line represents 
ordinary kernel function while dark hair line represents constrained kernel function. 

 
 
2.3.3 Event difference 

In some situations, besides the facility location, the non-spatial characteristics 
(e.g. the prices of goods at the stores, the size of the stores, etc) of facility POIs have 
impacts on the service area distribution. Facilities of different types could have 
different attractions for people and sometimes two regions sharing a similar 
distribution of POIs could still have different service areas. For example, a region 
containing supermarket POIs is more attractive to consumers than other ones mainly 
containing retail stores.  

Hence we formalize the weighted kernel function in the form of Equation 6, 
where location is weighted by combining its distance (i.e. d(s, c)) from the facility 
and the weight (i.e. x) of the facility. As shown in Figure 6, the larger the weight of a 
facility is, the more the neighbor locations are weighted for calculating the overall 
density. 
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where g(x) is referred to as the density weight imposed by facility’s importance. 
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Figure 6 - The weighted kernel function. Grey hair line represents an ordinary kernel 
function with g(x)=1, while dark hair line represents a weighted kernel function with 

g(x)>1. 

 
 
 
3. IMPLEMENTATION AND VISUALIZATION 
 
3.1 Computational Algorithm 

In spatial network analysis, some researches such as Okabe et al. (2009b) and 
Xie et al. (2008, 2010) tend to use a linear basic spatial unit (LBSU) rather than a 
planar unit in network kernel density estimation. These methods are most effective 
when applied to a micro-scale data set, because the difference between the network 
distance and the Euclidean distance becomes more significant when dealing with a 
data set of a finer scale. However, due to the computational complexity of the 
shortest-path distance calculation, these methods are time-consuming. To improve 
the method, this section introduces a new algorithm supported by an operator of 1-D 
sequential expansion. The idea is inspired by the natural phenomenon that water 
flow extends along certain linear channels until arrives at the boundary of “sphere of 
influence” or at the end of route. The algorithm has the advantage that the time 
consuming GIS tasks (e.g. comparing for distances of potential shortest-paths) are 
avoided, and replaced with a linear time operation. Such operation is analogous to 
the dilation operator developed in mathematical morphology (HEIJMANS et al, 
1990). 

For the network-based quadrats, we define set active-set as the current active 
expanding quadrat set, which act as the boundary quadrats for the next flow 
expansion. For each quadrat, we define three attributes to record its density related 
information: (1) the steps-length which stores the number of steps of expansion 
from event points; (2) the flow-source representing the event point which the flow 
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comes from; (3) the density-value which stores the density value calculated with the 
selected kernel function.  

The basic algorithm is presented as follows: 
(1) Divide the road network into a set of basic linear units (LBSUs) of a 

defined network length l. The intersection point of two LBSUs is called 
LBSN. Road intersections are always LBSNs. 

(2) Create a LBSU-based linear reference system by establishing the network 
topological relationship between LBSUs, as well as between LBSUs and 
LBSNs. 

(3) Define a search bandwidth h, measured with the number of steps of flow 
expansion. The bandwidth can also be measured in terms of the shortest-
path network distance by using the product of h and LBSU’s length l.  

(4) Project facility POIs onto LBSUs, by nearest distance search. Those 
LBSUs with one or more facilities assigned to them are identified as 
source LBSUs (acting as the source of stream flow). Initiate the numeric 
attribute steps-length of each LBSU as ∞ (infinity)  and the attribute 
density-value as 0. 

(5) Initiate set active-set. For each source LBSU, push it into active-set, and 
assign its attribute steps-length as 0. For each element in active-set, record 
its attribute flow-source the facility ID; 

(6) For each element in active-set, calculate its density by repeating the 
expansion operation (steps a-e) until the active-set is null (see Figure 7): 

    a. For current element q generate its next neighboring LBSUs on the basis of 
the network topology, and store them in a temporary set next-LBSUs. 

b. Record the number of steps to next-LBSUs as their attribute steps-
length, and transform the attribute flow-source of element q to next-
LBSUs.  

c. Remove LBSU from next-LBSUs if its steps-length is larger than the 
bandwidth h. 

    d. Calculate the density by using the steps-length and the constrained 
function (f’(s)), and add it to the attribute density-value of next-LBSUs. 

e. Remove element q out of active-set and push next-LBSUs into active-
set. 

 The computational time of 1-D sequential expansion algorithm is mainly in 
the following steps. First, for dividing the road network into basic linear units, it 
runs in time of order O(n) where n is the number of road segments. Second, based 
on the LBSU-based linear reference system, the computational burden in the 
distance calculating depends on the number of facility POIs. If that number is m, 
then this order is dominated by O(m). Hence we realize that the order of the total 
computational time is dominated by O(m+n), which confirms the hypotheses that 
the proposed method is manageable in practice. Actually traditional algorithms 
mostly are based on Dijkstra’s algorithm for the computation of shortest paths 
(BORRUSO et al., 2008; OKABE et al., 2009b). 
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Figure 7 - 1-D sequential expansion algorithm supported by the stream flowing 

simulation. (a) example of a road network with facility P (using the network-based 
Quadrat method); (b) distance calculation through one step expansion; (c) distance 

calculation through two step expansion; (d) stopping the operation when the number 
of steps from the source LBSU to the boundary LBSUs is equal to or larger than the 

search bandwidth h (h =3 LBSUs). 

 
They work by visiting nodes in the network, starting with the event’s start 

node, and then iteratively examine the closest not-yet-examined node, and add its 
successors to the set of nodes to be examined. Since each iteration has to compare 
all nodes whose shortest path to the start node is unknown, the algorithms will take 
a very long time to compute the network distance. Typically for the vector-based 
algorithms under graph theory, the time complexity is O (mn+klog k), where k is 

the number of road intersections. It can be noted that the 1-D sequential expansion 
algorithm is more efficient than the previous ones in terms of time complexity- that 
is, m+n< mn+klogk for m, n>2 and, in the practice m and n are large numbers. 
Furthermore for the network of Shenzhen (37932 edges and 26247 nodes, 1654 

  
   (a)      (b)  

  
   (c)      (d)  
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facility points, 160000 LBSUs) the total computation time on a modern computer 
was about half a minute by using our method, which yet was about two minutes by 
using the method in OKABE et al. (2009b). 

 
3.2  3-D Visualization of Density Surface 

To visualize the third dimension information (semantic data) in 2D space, we 
usually apply the vertical surface to obtain a 3D mapping effect. Borruso (2008) 
presented the intensity of a point pattern by means of a smoothed three-dimensional 
surface that represents the estimated density not only on the network but also on the 
region in which the network is embedded. In such visualization approach, 2-D 
quadrats are used to exhaustively fill out the entire planar area in the result surface, 
and which has no difference to the traditional visualization technique in planar KDE 
researches. As the context of facility POIs is treated as the network space, this 
approach is likely to miss out the “linear” characteristics of service distributions 
observed on or along a road network. Now that the intensity value of event becomes 
an attribute of the divided linear unit in our method, it is better to represent the 
density patterns by means of homogenous and comparable linear features. And, in 
the real world, there are many events that can be analyzed in terms of the density 
along the line segments forming the network. Examples include car accidents on 
streets, street crime sites on sidewalks, leaks in gas and oil pipelines, seabirds 
located along a coastline, and also facilities located alongside streets. In real-world 
applications, the density of the events mentioned above is usually reported as the 
number of points over a defined linear unit rather than over an area unit, such as 
accidents per mile for traffic management. Essentially the visual variables 
associated with drawing linear features mainly include three elements, namely, 
color, width and height. It can be realized by using a variable or a certain 
combination of two and even all three of them. In this section a new visualization 
strategy combining the line color and height is proposed to extract useful 
information from POI data more simple and effectively. 

More specifically, with sequential expansion operator, the density value of 
POIs is firstly assigned to each LBSU as its z value (i.e. height attribute), and then 
based on the height of each LBSU, the original 1-D road network is extruded into a 
3-D wall-like network, in which peaks (i.e. high walls) represent the presence of 
clusters or “hot spots” in the distribution of services. To make the visual effect more 
obvious and intuitive, the LBSUs are also rendered through a colour-thematic 
representation (Figure 8).  

Knowledge about distribution of services can help the decision makers 
calibrate the urban planning of a city and develop future strategies of cities’ 
development. In order to facilitate these processes, the density representation can be 
further improved by using the administrative zoning map of the city as the 
background. A real-world implementation will be presented in Section 4 with 
choosing the Shenzhen city in China as the study area. 
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Figure 8 - Three-dimensional visualization of the intensity surface in (a) a small 
region and (b) a large region. 

  
(a)                                                          (b) 

 
4. CASE STUDY-THE ANALYSIS OF FACILITY POIS PATTERNS IN 

SHENZHEN CITY, CHINA 
 

4.1 Experiment Data 
The data for this study include a real transportation network system in the 

Shenzhen city, China, with facility POIs for 2013 (Figure 9).  
 

 
Figure 9 - Study area, the constrained road network and the 2013 facility POIs data: 

(a) Garbage and Sewage Station, (b) Library, (c) Bank, (d) Gas Station. 

  
  (a) Garbage and Sewage Station (b) Library 

  
(c) Bank (d) Gas Station 
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The network contains 37932 edges and 26247 nodes. The edges are classified 

into three levels, namely the main, the secondary and the ordinary street, depending 
on the average travel speed. According to the speed survey from the transformation 
management department, we take the speed 60 km/h, 40 km/h, and 20 km/h for 
three levels streets respectively, and corresponding the weight of LBSU length of the 
street is set as 3.0, 2.0, and 1.0 respectively. Among the network streets, some 
streets belong to one-way traffic. The total length of the network is approximately 
8000 km. Besides we consider the category type including ‘Garbage and Sewage 
Station’, ‘Library’, ‘Bank’ and ‘Gas Station’, as the facility type in our experiments, 
and these facilities have 417, 215, 1575 and 300 data points, respectively. Due to the 
different natures of the data involved, these POI datasets mostly cluster in various 
spatial distribution patterns within the city. The proposed algorithm is implemented 
in a GIS environment, developed with Microsoft Visual C++ 6.0. 

To reveal hot spots at a relatively finer scale, 40 m is used as the basic unit 
length in the experiments. The kernel function chosen is a quartic one. Through 
several simulations and taking into account that the length of the unit is 40 m and 
that the mean length of the road segments is yet 210 m, these four POI datasets are 
then tested at fixed search bandwidths of 300 m, 400 m, 300 m and 300 m, 
respectively. This setting enables the density result to retain enough details, as well 
as to reflect the overall trend of spatial distribution of services. Actually in other 
related applications, a 300 m bandwidth was also used to analyze local effects in an 
urban environment (THURSTAIN- GOODWIN and UNWIN, 2000; BORRUSO, 
2008). Also note that the bandwidth for Library data is larger than the others, and 
this is because the Library POIs are distributed more sparsely. Our simulation 
experiments of Library showed that other narrower bandwidths such as 300 m 
produce a density surface with too many individual “peaks and valleys”. As Okabe 
et al. (2009b) presented, a larger bandwidth is fit for the visualization of a more 
general trend over the study region, especially for the observation of dispersed POIs 
data. 

 
4.2 Results 

Figure 10 shows the resultant intensity distributions, which are visualized by 
using the method presented in Section 3.2. In these cases, each linear basic unit is 
extruded into a “wall” character using an extrusion value, which is achieved from 
the unit’s density estimation. “Peaks” consisted of high “walls” highlight the 
hotspots of similar functions, while “valleys” indicate the absence of services.  

Among them, Figure 10(a) presents the intensity distribution of Garbage and 
Sewage Station service. We observe that the functional pattern of the facility 
belongs to a type of random distribution in networks as the heights of the density 
“walls” remain almost unchanged along the network. Besides “walls” mainly appear 
in the areas of dense road segments which usually are the main densely populated 
regions of the city (i.e. Northwest, Southwest, South, North and Northeast regions). 
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As one of the categories of municipal facility, Garbage and Sewage Station is 
closely related with city’s daily life. The facilities distributed uniformly in the city 
can provide service to the urban population living in different regions, and thereby 
can help clean up garbage and recycling, and ensure clean urban environment.  
 
Figure 10 - Three-dimensional visualization of the distributions of services by using 

the proposed network KDE (40-m LBSU length, Quartic kernel), with ESRI 
ArcScene: (a) Garbage and Sewage Station (300-m search bandwidth), (b) Library 

(400-m search bandwidth), (c) Bank (300-m search bandwidth), (d) Gas Station 
(300-m search bandwidth). 

 
(a) Garbage and Sewage Station (300-m search bandwidth) 

 
(b) Library (400-m search bandwidth) 

 
(c) Bank (300-m search bandwidth) 
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(d) Gas Station (300-m search bandwidth) 

 
Except for the sanitation facilities, urban managers also need to balance the 

requirements of the entire urban space when determining the location of Library. 
Figure 10(b) shows the intensity distribution of Library service, where “walls” 
mainly appear in the areas of Shenzhen of the Northeast, South, and West. Although 
the original “walls” have been stretched, the distribution of density symbols still 
remains low without “hot spots” appeared. So we come to the conclusion that the 
distribution pattern of Library in Shenzhen belongs to a type of dispersed 
distribution. Since Library usually has a wide coverage of service, this type of 
dispersed distribution meets the cultural needs of the majority of residents, and is 
benefit for avoiding the excessive waste of urban resources. Actually the 
visualization of POIs density can be a useful instrument to identify the best 
locations for installing new public facilities, such as Garbage and Sewage Station, 
Library and Hospital. In particular, urban planners would appreciate such 
information extracted from precise detection of “hot spots” or “absences of 
services”. Once “absences of services” are identified, urban planner can examine 
what factors around the “absences of services” contribute to the patterns and can 
develop effective strategies for improving the quality of life on the whole urban 
space.  

Figure 10(c) presents the intensity distribution of Bank POIs. It is evident that 
the POIs tend to be concentrated in the southern part of the city of Shenzhen that, as 
shown, presents two evident peaks. Such concentration can be used to delineate the 
shape and extensions of the Central Business District (CBD), since the CBD is 
located in the central part of a city, together with particular activities, as banks, 
offices, hotels, cinemas and theatres (HAGGETT, 2000). Hence the simple 
observation of Figure 10(c) suggests that two centers coexist in Shenzhen with high 
intensity of commercial activities. Also, some minor clusters appear in other parts of 
the city, where usually located at major road intersections or at minor settlements, 
following a South-North orientation in the west part of the city and also along two 
South-North axis in the South-Northwest and South-Northeast parts of the city. 
From an overall perspective, the patterns of development in Shenzhen are not so 
homogeneous and uniform but a polycentric structure with three elongated axis 
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developed (i.e. three South-North axis in the west, middle and east parts of 
Shenzhen). In fact, according to the Shenzhen Comprehensive Plan (2010-2020), 
the government planners hope that by 2020, the important service functions are 
undertaken in other several centers instead of just in the traditional special economic 
zone (south part of Shenzhen). Given present trends, the urban development and its 
functions evolve as its original planning. 

Generally central functions such as financial and entertainment functions 
present a region-intensive distribution. It must be however noticed that the 
alignment of Gas Station service is distributed along the main roads as observed in 
the data intensity distribution (Figure 10(d)). We can particularly notice an 
increasing density and its elongation along the main roads and their parallel streets, 
showing a typical transportation structure of concentric rings of the Beltway. 
Comparing with the facilities of other types, Gas Station relies more on the local 
traffic conditions and hence its distribution of service is presented to be closer to the 
spatial patterns of city road network. In addition “peaks” in Figure 10(d) tend to 
appear in the outskirts of the central region and the CBD highlights a crater-like 
shape in the distribution. In reality, central constraints including high rents, 
competition of land use and traffic congestion limit Gas Station locating in the CBD 
of the urban area. Given that the roads, which are at the boundary of the central 
region, mainly take on the transportation functions to integrate the CBD with the 
outside, hence most of refueling services are provided along the boundary of the 
central region rather than inside it. In the retail sector, it is crucial to perform a solid 
analysis of the spatial dispersion of venders (i.e. retail facilities) because this spatial 
dispersion may be helpful in determining sites for new commercial establishments. 
For this reason, further decision making for Gas Station site location selection can 
be aided by combining the analysis of the intensity distribution of the venders who 
provide the service in the specific market.  
 
4.3 Comparison of Ordinary Network KDE and Constrained Network KDE 

Figure 11 shows a small portion of the study area, i.e. Shenzhen, where one-
way traffic is indicated with arrow symbols, and three levels streets is treated the 
same way as shown in Figure 9. Besides, we consider the weights of the Hotel 
points with their star rating. That is, one-star, two-star and three-star hotels are 
assigned weights of 1, 2 and 3 respectively in the estimating of density.  

Figure 12 shows the density results obtained by our constrained network KDE 
and by ordinary network KDE side by side, both with a quartic kernel and a 300-m 
search bandwidth. Our constrained KDE uses the source data constrained by the 
factors showed in Figure 11. The ordinary KDE treats all Hotels as one-star hotel, 
and all roads as ordinary road and two-way traffic. Since the results of Figure 12 are 
estimated for the same data, this comparison gives a good reference for identifying 
some of the important properties of the estimators. 
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Figure 11 - The characteristics of the Hotel points (a simple Hotel’s 1-3 star rating) 
and of the network (road direction and road grade) in a southern part of Shenzhen, 

China. 

 
 

Figure 12 - The comparison of the estimated density with (a) an ordinary estimator 
and (b) a constrained estimator. Squares highlight absences of services where the 
road direction is not inconsistent with the driving direction to Hotel. Blue circles 

indicate where the density values are increased because of high star Hotels and high 
grade road. Red circle indicates where the density pattern is not changed. 

 
 (a) Result by traditional estimator  

 
(b) Result by constrained estimator  
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In general, both KDE can present the density pattern of Hotels along street 
networks. Figure 12b demonstrates clearly how the density values along the 
network become sensitive to geographical constraints. Several observations can be 
made from a more detailed comparison. First, the ordinary KDE ideally calculates 
the densities on the both sides of Hotels. On the contrary, our constrained KDE 
ensures the densities being kept only on the reachable side of Hotels. That is, when 
the network quadrat obtained density value, the driving direction from its location 
to the Hotel is also allowed by the road direction. If such accessibility constraint is 
not met, the density value would be cut out (highlighted by the squares in Figure 
12b, where portions correspond to density values were cut out). Our algorithm 
considered human behavior feature (driving from current location to hotel) in the 
real world and hence provided a better solution.  

Second, the advantageous of accessibility was better reflected in our approach 
than in ordinary KDE. That is, out algorithm retains the trend that the density value 
on a high grade road becomes higher as driver needs less time to reach its target 
locations (highlighted by the the blue circles in Figure 12b). This characteristic was 
not respected by ordinary KDE in the corresponding segments.  

The third observation is that our constrained KDE weights density values based 
on Hotel’s star rating, which is an important indicator of Hotel’s attractiveness. 
Such setting in our algorithm can ensure density values standing out in the 
gathering areas for high star-rated hotels (see also blue circle in the northwest of 
Figure 12b). Also note that, the red circle in Figure 12b highlights a region where 
points and local network are not constrained by any other factors, and thus such 
“hot spot” resembles the result by ordinary KDE. Our method takes into account 
geographical features beyond individual objects, so it can deal with realistic 
datasets better than ordinary KDE.  

  
5. CONCLUSIONS 

By using facility POIs dataset, this study presented a method to study the urban 
characteristics of facility context distribution and discover its behaviors at different 
functions (municipal services, cultural services and financial services) in a city. The 
present research makes four main contributions:  

- Refining the search functions of traditional Kernel Density Estimation for 
analyzing regularity or clustering in the distribution of events, using network 
distances rather than Euclidean ones;  

- Taking into account practical and real factors (i.e. traffic capacity, road 
direction, and facility difference) which are useful and desirable for real-world 
scenarios;  

- Developing a simple and efficient algorithm based on 1-D sequential 
expansion to compute network distance in density estimation;  

- Building a visualization strategy using 3-D symbols (graduated colors and 
height), which present the intensity surface as an extruding “wall” extending on 
paths.  



The visualization and analysis of urban facility POIs using... 

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 20, no 4, p.902-926, out-dez, 2014. 

9 2 4 

We evaluate this approach with Shenzhen road network and the related POI 
datasets of 2013 statistics. According to the extensive studies, the proposed method 
allows the visualization of the functional urban environment by means of a density 
surface. The discovered functional patterns can help people easily understand a 
complex metropolitan area, benefiting a variety of applications, such as urban 
planning, location choose for a business, attractive advertisements casting and social 
recommendations. In the future, we will further study the evolving of a city by 
comparing the distributions of services in different years. Besides, because traffic 
congestions change over time, it would be interesting to discover spatio-temporal 
distribution patterns. 
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