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ABSTRACT

The urban facility, one of the most important seeviproviders is usually
represented by sets of points in GIS applicati@isguPOIl (Point of Interest) model
associated with certain human social activitiese khowledge about distribution
intensity and pattern of facility POIs is of gresgnificance in spatial analysis,
including urban planning, business location chogsind social recommendations.
Kernel Density Estimation (KDE), an efficient sgatstatistics tool for facilitating
the processes above, plays an important role itiabmkensity evaluation, because
KDE method considers the decay impact of servicesalows the enrichment of
the information from a very simple input scatteotplo a smooth output density
surface. However, the traditional KDE is mainly édon the Euclidean distance,
ignoring the fact that in urban street network $eevice function of POI is carried
out over a network-constrained structure, rathantin a Euclidean continuous
space. Aiming at this question, this study prop@esemputational method of KDE
on a network and adopts a new visualization methpdsing 3-D “wall” surface.
Some real conditional factors are also taken irdooant in this study, such as
traffic capacity, road direction and facility difesnce. In practical works the
proposed method is implemented in real POI da@hienzhen city, China to depict
the distribution characteristic of services unaepacts of multi-factors.
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RESUMO
No ambiente urbano, os prestadores de servicosimp@tantes sdo normalmente
representados por um conjunto de pontos em apésaGdS utilizando o modelo
POI (ponto de interesse), associado a certas afig&l sociais. O conhecimento
sobre a intensidade e o padrdo de distribuicdofatakdades - POIs (Pontos de
interesse) é de grande importancia na andlise ie§paciuindo o planeamento
urbano, a escolha do local de negdcios e certasnedacdes sociais. Rernel
Density EstimationfKDE) é uma eficiente ferramenta de estatistiqgza@sal para
facilitar os processos apontados acima, e deserapenh papel importante na
avaliacdo da densidade espacial, porque o0 métode &@hsidera o impacto da
deterioracdo dos servicos e permite o enriquecimélas informacdes de uma
forma muito simples, utilizando um grafico de digd®, tendo como saida uma
superficie de densidade. No entanto, o KDE tradaibaseia-se principalmente na
distancia euclidiana, ignorando o fato de que mke ngaria urbana a funcdo de
servico POl materializa-se em uma estrutura contdgdes de rede, ao invés de ser
num espaco continuo euclidiano. Visando equaci@ssa questdo, o presente
estudo propée um método computacional do KDE em reda e adota um novo
método de visualizagéo, utilizando uma superfiperéde” 3D. Alguns fatores reais
condicionantes também sao levados em conta nesioesais como a capacidade
de trafego e a mao de direcéo de estradas. De forat@a, o método proposto é
implementado sobre dados reais POl da cidade dezBée, na China, para
descrever a caracteristica de distribuicdo de@m\gob impactos de multifatores.
Palavras-chave: Densidade Kernel de Redes; Andlise de Redes;(P@itos de
Interesse); Estatistica Espacial.

1. INTRODUCTION

Urban facilities, as the carrier of material flopgpulation flow, traffic flow
and information flow to provide various services bgcio-economic activities,
become the foundation of characterizing urban leags and function. For
example, banks, insurance companies and fashiailsreire usually observed in
urban CBD (Central Business District). In a GlSiemvment, urban facility is often
represented by an abstracted point which does opsider its area coverage,
extension shape, distribution direction and otheongetric characteristics in 2D
space. In this sense, the urban facility can beesgmted by POI (Point of Interest)
feature, which plays an important role in LBS (Liiea Based Service)
technologies. The POI feature usually distributesai cluster pattern and the
intensive degree usually needs a method to evallia interpretation of the way
such points are being dispersed or clustered ioespave drawn plenty of research
interests in fields such as urban ecology, sociglegonomics and urban planning
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904 The visualization and analysis of urban facilityl®0sing...

and management (ANTIKAINEN, 2005; LOWE, 2005; LUSERI and WEIBEL,
2013).

There exists a wide range of methods to analyzk pamt distribution density
and point pattern and can be generally classifiei itwo broad categories
(BAILEY et al., 1995): (1) The method for analyzifigst-order properties, which
measure the variation in the mean value of theapgatint pattern across the space
(intensity), (2) The method for exploring seconder properties, which examine
the spatial interaction (dependence) structureodftgfacilities for spatial patterns.
The previous includes methods such as Quadrat sisalVoronoi-based density
estimation and Kernel Density Estimation (KDE), lehihe latter includes other
geostatistical methods, such as Ripley’s K-functiBetis's G-statistic and Moran’s
| function. Among these methods, KDE is one of thest popular methods for
analyzing the underlying properties of point evemis only because of its easy-to-
understand and easy-to-implement, but also becafises reflection of spatial
heterogeneous of geographic process and its cgpafcidentifying local spatial
character (ELGAMMAL et al., 2002; FLAHAUT et al.0@3; SHEATHER et al.,
1991; STEENBERGHEN et al., 2004, 2010).

The purpose of KDE is to generate a smooth dessitiace of point events
over space by computing event intensity as dens#tymation, and further to
discover the spatial heterogeneity or inconsistentythe geographic process.
Essentially, such estimator is based on Tobl&itst Law of Geographywhich
states “Everything is related to everything elsd,rear things are more related than
distant things” (TOBLER et al., 1979). Hence inl+earld scenarios, the kernel
estimator is usually used for spatial analyses amicuous phenomena including
traffic hazards, environmental pollution and urlfacility impacts (BAILEY et al.,
1995; BORRUSO et al., 2003, 2005, 2008; XIE et21108).

Note that most methods of point pattern analysiduding KDE method, work
under the Euclidean (or 2D planar) space. It's thasa the assumption that
geographic phenomenon occurs in an infinitely hoemegus and isotropic space, in
which events can be located at any locations aratiadpseparation between
locations is measured by the Euclidean distanceweder, this planar space
hypothesis is probably ill-suited (BORRUSO et 2003; MILLER et al., 1994), as
the urban environment is not so homogeneous andromibut characterized by
network-constrained structures. The real situaitioarban infrastructure is that the
service function of facility is often carried outder a network-constrained structure
around street path to output service function.dfutilize the Euclidean space based
method in a network, the conclusion will be biadeok example, Yamada and Thill
(2004) illustrated how planar K-function analysisaynlead to over-detecting
clustered patterns with a typical example of nekaanstrained point processes, i.e
vehicle crash distribution. They also proposed tavoik K-function to resolve this
problem. Lu and Chen (2007) reach the same quesithnanother human-induced
event, i.e. vehicle steals. The network K-functimeffective for examining whether
a given point distribution differs from a randonstdibution in networks, yet like
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other global measures (e.g. Getis’s G-statisticyaWs 1) it does not reveal the
location of clusters within distribution.

Aiming at network spatial phenomena, we have tvebhnéues to analyze the
event intensity at a finer scale: the local spatigbcorrelation method (FLAHAUT
et al.,, 2003; STEENBERGHEN et al., 2004; GETISlet2008) and the network
Kernel Density Estimation (BORRUSO et al., 20030202008; OKABE et al.,
2009b). For example, Flahaut et al. (2003) trewdr stretch of a certain length as
basic spatial unitsBSU3$ and count the number of accidents occurred ih B&tJs
Then Euclidean distances are computed betB&is and local Moran’s | measure
is used for detecting significant clusters. In thaése the computation method of
planar distance metric does not consider the speatare of street networks such
as connectivity and restriction of travel manneesi8es, the local-autocorrelation
method requires the division of space into bagitistical units of equal size, which
is available in planar space, but in network spghet is variable, because too short
units are often generated by irregular alignmers nétwork.

Attempts to resolve this dilemma have resulted hia hetwork KDE. For
example, Borruso (2008) proposed a modified KDEnfeal as Network Density
Estimation, or NDE for short) to analyze patterfipaint events distributed over a
network. He considered the kernel as a densitytimmcbased on the network
distance. By analyzing the resultant intensity gratt, it is possible to identify
potential “hotspot” clusters along networks. Howehies study still used 2-D grid
cells and the outcome is still mapped onto a 2-BliHean space. Shiode (2008)
pointed out that using square grid in such casesdistort the representation of the
distribution on a network. Hence a network-baseadgat method is proposed for a
more accurate aggregation. Recently, the KDE mebased on the network-based
quadrat has been extensively explored and it i stider investigation in
methodological aspects as well as in concrete egins (OKABE et al., 2006a,
2006b, 2009b; XIE et al., 2008, 2013).

Aiming at the special nature of urban facility unaetwork space, this study
attempts to present a computational method of mtwdE for spatial density
evaluation, and develop a new density visualizatethod using 3-D “wall”
surface. The purpose of this study is to discolerurban hierarchical structure by
density evaluation. The method starts with tesetighe network into a set of 1-D
quadrats to aggregate density value of point fasli Then supported by the stream
flowing simulation, the algorithm makes the streapread from each focused
quadrat to neighbor quadrats based on the netwopdidgy. In the process above
the quadrats which streams go through are weigatedrding to the number of
steps to them. Compared to the previous algoritiBGRRUSO et al., 2008;
OKABE et al., 2009b), the method in this study agdits of repeat computation in
searching shortest-path with minimum weight, anso ahas the advantages of
simple operation and easy calculation. The studg alvestigates: (1) the impacts
on density calculation from three common constsimamely, traffic direction,
traffic capacity and facility weight (e.g., floorem and merchandise categories); (2)
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a new visualization strategy of facility POIls fongroving the identification of the
typical “linear” clusters along roadways.

The remainder of the paper is organized as follo8&ction 2 presents the
extension of KDE from the Euclidean space to thsvaek space and describes the
impacts of realistic constraints on network KDE.eTpractical implementation of
the methodology is detailed in Section 3 along witiroducing of a 3-D
visualization strategy. In Section 4, we preseoase study with a real-world street
network and four sets of selected facility POlsnally Section 5 presents
conclusions.

2. EXTENSION OF DENSITY ESTIMATION: FROM EUCLIDEAN SPACE
TO NETWORK SPACE
Spatial density is the property that describes gpatial distribution in an

intensive or sparse pattern in quantity. The dgrestimation tries to evaluate the
density value to represent the local distributiatemsity. Compared with simple
observation of a distribution in dot maps, the éwidemsity often acts as a refined
analysis to discover the deep information behiregbographical phenomenon, for
example, to detect the crime or accident ‘hotspe@samine the cluster of business
activities.

2.1 Density Estimation

The analysis over a density surface is based oretignologies of spatial
smoothing and spatial interpolation (JONES, 199QAILEY et al.,, 1995).
Conventionally, three methods of density analysé&veh been widely used in
geographical analysis domain: (1) Quadrat analy8j)sVoronoi-based analysis and
(3) KDE method. Quadrat analysis drapes a gridqofaésized and homogeneous
cells (i.e. quadrats) over the study area and satmet number of event points falling
in each cell to describe the spatial distributigoronoi-based method also needs to
divide the study region into sub-regions correspugdo the partitioning cells in
Voronoi construction. A Voronoi diagram is the [it@ohing of the plane into N
polygonal regions, each of which is associated witlgiven point. The region
associated with a point is the locus of points elds that point on some criterion
than to any other given point (GOLD, 1991, 1994y. &mputing the Voronoi
polygons of a point set, the region of influenceeath event can be achieved and
the reciprocal of sub-regional area can be compatedhe density value of the
Voronoi sub-region (YAN and WEIBEL, 2008).

Since a density value is calculated as an attribfiteach sub-region (quadrat
or Voronoi sub-region), it is therefore possibledpresent the spatial distribution by
means of homogenous and easily comparable areag sisch as choropleth map
visualization. However the former two methods has@me disadvantages in
practical applications: (1) the restriction thate tithosen quadrat must keep
appropriate size, makes the loss of informatiomfithe interior grid distribution,
and that is also the problem facing the Voronoieblaanalysis; (2) the nature of
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geographical continuity across the boundary of mgien is not remained as the
method doesn't take into account the distributiorthe neighborhood of grid cell.
The use of KDE can improve the above situationsEKiovides an estimation of
the intensity in each point of the grid by means“wibving three-dimensional
functions that weight events within its sphere pfluence according to their
distance from the point at which the intensity &ngy estimated” (GATRELL et al.
1996). With the weight function, the intensity ircall is related to the distributions
in neighbor cells. Although KDE still requires these of a grid of square
superimposed cells, but as long as the mesh sgrma#l enough, a smooth estimate
of a density can be obtained for minimizing theabimsses of information. Figure
1 shows the effect of these three methods on tme skata. It can be observed that
the advantage of KDE lies in that it allows estiimatof the density at any location
in the study region (O’ SULLIVAN and UNWIN, 2003).
The general form of a kernel density estimatoxjzressed as:

PSENCLT)

i=1 h

wheref(s) is the density measured at locat®i the search radius (bandwidth) of
the KDE (only events withih are used to estimatgs)), ¢; the observed event point,
k() the weight of event; at distancel(s, ¢) to locations. The KDE usually models
the so-called kernel functiok, as a function of the ratio betwed¢s, ¢) andh, so
that the “distance decay effect” can be taken awoount in density estimation. In
fitting with Tobler's first law of geography each local weighted process is
estimated with events whose influence decays wisitadce, distances that are
commonly defined as straight line or Euclidean @iFegl(b)).

Figure 1 - lllustration of three common methodsdensity estimation in planar
space: (a) Quadrat analysis; (b) Kernel densitynasion; (c) Voronoi-based

analysis.
° . ° ® 3 .c ®
(@) (b)
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The evaluation of KDE requires two parameters: Bhadwidthh and the
kernel functionk, which determines the weighting of the pointsthis study, we
use the Quartic kernel function (Equation 2) whistone of the most commonly
used functions:

k(d(S’C))ZE(]_— (d(svzc)) ) (2)
h 4 h

where functiork and parameters c, hare the same of that in Equation 1.

According to researches (BAILEY et al., 1995; BORRQJet al., 2003, 2005,
2008; XIE et al., 2008), the kernel function hasdiimpact on the evaluation result.
Alternatively the selection of bandwidth is a mandluential factor capable of
affecting the statistical results by controllingetlsmoothness of the estimated
density. The bandwidth control behaves as thatidrger the bandwidth will get
smoother resultant density distribution. In realthere are two factors to decide the
choice of bandwidth. One is the spatial scale aradteer is the degree of dispersion
between events. A small bandwidth can reveal leffalcts in the distribution and
the larger bandwidth can reflect more clearly “lspbts” at a global scale. For
sparse distribution events, the larger bandwidtiei®mmended, as a narrower one
will not provide much more information than the plm observation of event
distribution in a dot-map or scatter plot.

Both Quadrat analysis and Voronoi-based analysis diensity evaluation
ignore the intensity changes within each cell davis leading to abrupt changes
between adjacent cells. On the contrary, the metiemkd on KDE resolves the
guestion of abrupt changes around the neighbomtlg n density evaluation. The
process of progressively transmitting center irnitgnisy KDE takes into account
“distance decay effect”, which satisfies fimst law of geographyRelatively to the
other two methods, the KDE method has greater fiatén infrastructure planning
and urban analysis (O’ SULLIVAN and UNWIN, 2003).

2.2 Kernel Density Estimation on Networks

Given a homogeneous space, the traditional plai Kuperimposes a bell-
shaped weighted function over any location withrigoic property. This function is
easy to implement but difficult to reflect the aadtudistribution of urban
phenomenon, because human activities within urlteasaare usually constrained
under network path in planar space (YAMADA and TH|L2007). Local space
within the search radius essentially belongs to Hphere of influence of
geographical phenomena. In 2-D Euclidean spacégtspof influence” is a circular
part of the homogenous plane. However in a netwgpdce it is a set of path, for
example, in urban analysis the sphere of influeasis as a service area of facility
depending upon traffic routes.
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When KDE method expended from 2D Euclidean spaaeetwork space, the
network KDE still preserves the principle néar events more related than distant
events, but the distance concept changes. Morgbeeevent context behaves as
subset of network. To illustrate the restrictivene$ network structurefigure 2
shows an example in which the triangle stands doilify, the square the sample
location and the solid line the edge of the netwétrkan be noted that the distance
in planar KDE is measured in terms of Euclideanadise, while in network KDE it
is replaced by route distance. As illustrated Figure 2 the planar method
overestimates the clustering tendency with threeatlons within the search
bandwidth, where zero in the case of network method

Figure 2 - lllustration of the comparison betweles planar KDE and network KDE.

[J: Location
/\: Facility
h: The bandwidth
0 L} 0 0
h
{J J 3 J
Planar KDE Network KDE

To analyze the distribution of facility POls, thkoice of search bandwidth
depends on three main factors, namely the datd téweetail, the size of sample
points and the coverage of service functionalityatidition to the first two generic
factors (presented in Section 2.1), the servicetfanality also has a significant
influence on the determination of the parametaref@mple, shopping mall usually
has a larger service area than retail store, andehe larger bandwidth is fit for the
distribution analysis of shopping mall's service.

Figure 3 shows an ordinary model of kernel functiometworks, which is
widely used by most researches (BORRUSO et al.8;2B(E et al., 2008, 2013;
OKABE et al.,, 2009b). Note that the distance instlicenario is symmetrical
without considering heterogeneous traffic condaiodowever in real applications,
several constraints such as street direction,id¢raffpacity and properties of facility
objects, also impose a great influence on theilligion of service. For example,
the service area for parking lot has to considerdleal traffic conditions; the target
area in market competition for mall service needsdnsider the size of the malls.
For real applications of network KDE, it is necegsategrate different factors to
improve the common method.
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Figure 3 — The ordinary model of kernel functiorainetwork.

d(s,c)

( )

2.3 Constrained Network KDE

2.3.1 Road direction

The traffic restriction, such as one-way regulatigreatly affects the service
area of facilities. For example, the KFC’s delivegrvice chooses the optimal route
from store to consumers considering traffic dir@cti Okabe et al. (2009a)
introducesinward and outward distances for measuring the accessibility in a
directed network. In terms of the two distance mstrwe also assign the network
KDE into two typesinward andoutward KDE. This means that the network KDE
is based on the shortest paths which either leadrtb the eventsirfward) or
departure from the eventoutward. Inward KDE usually is associated with
facilities such as parking lots, supermarket anspftal, whileoutwardKDE is used
for other facilities such as fire stations and fiagtd chains. Formally Equation 3
and Equation 4 show thiaward kernel function and theutward kernel function,
respectively, where the distandés, c)is referred to as theward distance ta, and
d(c, s)is referred to as theutwarddistance front. Based on the directed distances,
Figure 4 shows an illustrative example of the directed kerfunctions. It is
observed that distances and densities on a diremtudork are asymmetrical, i.e.
d(s, c)=d(c, s)and _ does not always hold. The model functions

k(—— )

are useful as they allow the analysis of a realldvourban environment
characterized by the presence of different funeiiaiirections.

d(sc)) I((d(c 9

E(d(:")) =§(1_(d(szc» ) @
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‘R(d(cl S)) =E(l— (d(C:ZS)) ) 4)
h 4 h

Figure 4 - The model of kernel function in s diegthetwork. (ajnward kernel
function; (b)outwardkernel function.

One-way road: = One-way road:

Two-way road: {— Two-way road:

(b)

2.3.2 Traffic capacity

The distance between two locations in a road nétwousually defined by the
distance of their shortest path. However, this kifidlistance measure would hide
the fact that the facility may take longer timeptovide service to its nearest people
than other ones due to heterogeneous traffic cgp&ci., the number of lanes and
speed limit. Travel time is sometimes a more megninand reliable distance
measure for network KDE in constrained networksréfore Equation 5 shows the
form of kernel function using the measure of tratmele. Traffic capacity can be
affected by many factors such as urban planningtaaffic congestion in business
time. For description simplicity, the kernel furmti in Figure 5 just uses road
classes as the indicator of traffic capacity. Adaog to the transformation
management department in China, the road gradesigikd with respect to usage
mission, transport function, traffic volume and.dtacan reflect the traffic capacity
of roads in some way. The higher grade the roathésfaster travel speed vehicles
can achieve and thus a smaller value of travel {imee d(s, c) could be used for
calculating density. As shown in Figure 5, Greyr tiaie represents ordinary kernel
function treating all roads as minor road, whilekdaair line represents constrained
kernel function considering the effects of hetermgms traffic condition. It is
observed that traffic capacity affects the serapea of the facility, and also makes
locations on main road weighted stronger thandhatinor road for calculating the
overall density. The constrained density valuesignmametrical on both sides of the
central point event (i.&), but the result simulation reflects the actuatrithution of
service along the local roadways.
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di(sc). 3, (d(s9) )
a9 3-8

h 4 h

where h, is measured in terms of travel timg#(s, c)is the travel time between
locations and event.

K'(

Figure 5 - The traffic-capacity constrained kerfiogiction. Grey hair line represents

ordinary kernel function while dark hair line repeats constrained kernel function.
d,(s,c)

k'(———)

t

/
Minor road

2.3.3 Event difference

In some situations, besides the facility locatitthve non-spatial characteristics
(e.g. the prices of goods at the stores, the diteecstores, etc) of facility POIs have
impacts on the service area distribution. Facdlited different types could have
different attractions for people and sometimes twegions sharing a similar
distribution of POIs could still have different gee areas. For example, a region
containing supermarket POls is more attractiveottsamers than other ones mainly
containing retail stores.

Hence we formalize the weighted kernel functiorthia form of Equation 6,
where location is weighted by combining its distufice.d(s, ¢) from the facility
and the weight (i.e) of the facility. As shown ifrigure 6, the larger the weight of a
facility is, the more the neighbor locations ardghiged for calculating the overall
density.

d(sc)

(d(S 9)’ ) (6)

k'( ,X) ——g(x)(

whereg(x) is referred to as the density weight imposed bilifg's importance.

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 204np.902-926, out-dez, 2014.



Wenhao Yu and Tinghua Ai 913

Figure 6 - The weighted kernel function. Grey hiaie represents an ordinary kernel
function withg(x)=1, while dark hair line represents a weighted kefaettion with

9(x)>1.

d(s,c)

k'( ,X)

3. IMPLEMENTATION AND VISUALIZATION

3.1 Computational Algorithm

In spatial network analysis, some researches ssiébkabe et al. (2009b) and
Xie et al. (2008, 2010) tend to use a linear bapatial unit (BSU rather than a
planar unit in network kernel density estimatiome$e methods are most effective
when applied to a micro-scale data set, becausdiffieeence between the network
distance and the Euclidean distance becomes mygmdicant when dealing with a
data set of a finer scale. However, due to the edatipnal complexity of the
shortest-path distance calculation, these methoglsirme-consuming. To improve
the method, this section introduces a new algorghpported by an operator HD
sequential expansionThe idea is inspired by the natural phenomenaen Water
flow extends along certain linear channels untivas at the boundary of “sphere of
influence” or at the end of route. The algorithns lihe advantage that the time
consuming GIS tasks (e.g. comparing for distandgsotential shortest-paths) are
avoided, and replaced with a linear time operatfunch operation is analogous to
the dilation operator developed in mathematical phology (HEIJMANS et al,
1990).

For the network-based quadrats, we defineaséive-setas the current active
expanding quadrat set, which act as the boundandrqts for the next flow
expansion. For each quadrat, we define three atésbto record its density related
information: (1) thesteps-lengthwhich stores the number of steps of expansion
from event points; (2) thBow-sourcerepresenting the event point which the flow
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comes from; (3) theensity-valuavhich stores the density value calculated with the
selected kernel function.

The basic algorithm is presented as follows:

(1) Divide the road network into a set of basic linesits (BSUs) of a
defined network length. The intersection point of twhBSUs is called
LBSN Road intersections are alwayBSN.

(2) Create d.BSUbased linear reference system by establishingnétvork
topological relationship betwedrBSUs, as well as betwedrBSUs and
LBSN.

(3) Define a search bandwidth measured with the number of steps of flow
expansion. The bandwidth can also be measuredrnrstef the shortest-
path network distance by using the produdt ahdLBSU'slengthl.

(4) Project facility POIs ontoLBSUs, by nearest distance search. Those
LBSWs with one or more facilities assigned to them wentified as
sourceLBSUs (acting as the source of stream flow). Initidte humeric
attribute steps-lengthof each LBSU as « (infinity) and the attribute
density-valueas 0.

(5) Initiate setactive-setFor eachsourcelLBSU, push it intoactive-set and
assign its attributeteps-lengtfas 0. For each elementéctive-setrecord
its attributeflow-sourcethe facility ID;

(6) For each element imctive-set calculate its density by repeating the
expansioroperation (stepa-€) until theactive-seis null (see Figure 7):

a. For current elemertg generate its next neighborib@SUson the basis of
the network topology, and store them in a temposatpext-LBSUs
b. Record the number of steps next-LBSUsas their attributesteps-
length, and transform the attributiow-sourceof elementq to next-
LBSUs.
c. RemovelLBSU from next-LBSUsTf its steps-lengths larger than the
bandwidthh.
d. Calculate the density by using tteteps-lengthand the constrained
function §(s)), and add it to the attributkensity-valueof next-LBSUSs.
e. Remove elemer out of active-setand pushext-LBSUsnto active-
set

The computational time of 1-D sequential expanstgorithm is mainly in

the following steps. First, for dividing the roaétwork into basic linear units, it
runs in time of orde©(n) wheren is the number of road segments. Second, based
on the LBSUbased linear reference system, the computationatiem in the
distance calculating depends on the number ofitiaddOls. If that number isn,

then this order is dominated &y(m) Hence we realize that the order of the total
computational time is dominated I(m+n), which confirms the hypotheses that
the proposed method is manageable in practice.afgtiraditional algorithms
mostly are based on Dijkstra’s algorithm for thempaitation of shortest paths
(BORRUSO et al., 2008; OKABE et al., 2009b).
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Figure 7 -1-D sequential expansialgorithm supported by the stream flowing
simulation. (a) example of a road network with liaciP (using the network-based
Quadrat method); (b) distance calculation througd step expansion; (c) distance
calculation through two step expansion; (d) stogpie operation when the number
of steps from theource LBSUo the boundar{:BSUs is equal to or larger than the

search bandwidth (h =3 LBSU3.

41
olep i 1P
(a) (b)
h=3
op op
(© (d)

They work by visiting nodes in the network, stagtiwith the event's start
node, and then iteratively examine the closestypbexamined node, and add its
successors to the set of nodes to be examinede $ah iteration has to compare
all nodes whose shortest path to the start nodakeown, the algorithms will take
a very long time to compute the network distancgpidally for the vector-based
algorithms under graph theory, the time compleigt® (mn+klogk), wherek is
the number of road intersections. It can be ndted the 1-D sequential expansion
algorithm is more efficient than the previous oimeterms of time complexity- that
is, m+n< mn+klogk for m, r>2 and, in the practicen andn are large numbers.
Furthermore for the network of Shenzhen (37932 edgwd 26247 nodes, 1654
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facility points, 160000LBSU$ the total computation time on a modern computer
was about half a minute by using our method, whyieghwas about two minutes by
using the method in OKABE et al. (2009b).

3.2 3-D Visualization of Density Surface

To visualize the third dimension information (seti@idata) in 2D space, we
usually apply the vertical surface to obtain a 3Bpping effect. Borruso (2008)
presented the intensity of a point pattern by medirsssmoothed three-dimensional
surface that represents the estimated densitymgtom the network but also on the
region in which the network is embedded. In sucbuaiization approach, 2-D
guadrats are used to exhaustively fill out therentianar area in the result surface,
and which has no difference to the traditional &lmation technique in planar KDE
researches. As the context of facility POls is tedaas the network space, this
approach is likely to miss out the “linear” chametics of service distributions
observed on or along a road network. Now that tbensity value of event becomes
an attribute of the divided linear unit in our madh it is better to represent the
density patterns by means of homogenous and cotripdiaear features. And, in
the real world, there are many events that cannlagyzed in terms of the density
along the line segments forming the network. Exasmphclude car accidents on
streets, street crime sites on sidewalks, leakgai®m and oil pipelines, seabirds
located along a coastline, and also facilities tedalongside streets. In real-world
applications, the density of the events mentioneava is usually reported as the
number of points over a defined linear unit rattiexn over an area unit, such as
accidents per mile for traffic management. EssHytithe visual variables
associated with drawing linear features mainly udel three elements, namely,
color, width and height. It can be realized by gsia variable or a certain
combination of two and even all three of them. His tsection a new visualization
strategy combining the line color and height is pmsed to extract useful
information from POI data more simple and effedtive

More specifically, withsequential expansiooperator, the density value of
POls is firstly assigned to eatiBSU as itsz value (i.e. height attribute), and then
based on the height of eatBSU the original 1-D road network is extruded into a
3-D wall-like network, in which peaks (i.e. high Mg represent the presence of
clusters or “hot spots” in the distribution of seas. To make the visual effect more
obvious and intuitive, thd BSUs are also rendered through a colour-thematic
representation (Figure 8).

Knowledge about distribution of services can helg tdecision makers
calibrate the urban planning of a city and devefapure strategies of cities’
development. In order to facilitate these procesbesdensity representation can be
further improved by using the administrative zonimgap of the city as the
background. A real-world implementation will be geeted in Section 4 with
choosing the Shenzhen city in China as the stuely.ar
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Figure 8 - Three-dimensional visualization of theensity surface in (a) a small
region and (b) a large region.

e -

e S

(b)

4. CASE STUDY-THE ANALYSIS OF FACILITY POIS PATTERNS IN
SHENZHEN CITY, CHINA

4.1 Experiment Data
The data for this study include a real transpatathetwork system in the

Shenzhen city, China, with facility POls for 20Bdure 9).

Figure 9 - Study area, the constrained road netandkthe 2013 facility POIs data:
(a) Garbage and Sewage Station, (b) Library, (c)kB&d) Gas Station.

(a) Garbage and Sewage Station

/ T

(b) Library

Y e

(c) Bank (d) Gas Station
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The network contains 37932 edges and 26247 nodesediges are classified
into three levels, namely the main, the secondadythe ordinary street, depending
on the average travel speed. According to the speaey from the transformation
management department, we take the speed 60 k@/kmvh, and 20 km/h for
three levels streets respectively, and correspgrtii@ weight o BSUlength of the
street is set as 3.0, 2.0, and 1.0 respectivelyognthe network streets, some
streets belong to one-way traffic. The total lengttthe network is approximately
8000 km. Besides we consider the category typeudiiey ‘Garbage and Sewage
Station’, ‘Library’, ‘Bank’ and ‘Gas Station’, abé facility type in our experiments,
and these facilities have 417, 215, 1575 and 3@ miints, respectively. Due to the
different natures of the data involved, these P&hskts mostly cluster in various
spatial distribution patterns within the city. Thmposed algorithm is implemented
in a GIS environment, developed with Microsoft \GsC++ 6.0.

To reveal hot spots at a relatively finer scale,@s used as the basic unit
length in the experiments. The kernel function emos a quartic one. Through
several simulations and taking into account thatlémgth of the unit is 40 m and
that the mean length of the road segments is y@in21these four POI datasets are
then tested at fixed search bandwidths of 300 n@ A0 300 m and 300 m,
respectively. This setting enables the densityltésuetain enough details, as well
as to reflect the overall trend of spatial disttibn of services. Actually in other
related applications, a 300 m bandwidth was aledl tis analyze local effects in an
urban environment (THURSTAIN- GOODWIN and UNWIN, &) BORRUSO,
2008). Also note that the bandwidth for Libraryalé larger than the others, and
this is because the Library POls are distributedemgparsely. Our simulation
experiments of Library showed that other narrowandwidths such as 300 m
produce a density surface with too many individipgaks and valleys”. As Okabe
et al. (2009b) presented, a larger bandwidth igofitthe visualization of a more
general trend over the study region, especiallytferobservation of dispersed POls
data.

4.2 Results

Figure 10shows the resultant intensity distributions, whate visualized by
using the method presented in Section 3.2. In tkases, each linear basic unit is
extruded into a “wall” character using an extrusi@iue, which is achieved from
the unit's density estimation. “Peaks” consisted high “walls” highlight the
hotspots of similar functions, while “valleys” irwdite the absence of services.

Among them, Figure 10)Japresents the intensity distribution of Garbage and
Sewage Station service. We observe that the fumatipattern of the facility
belongs to a type of random distribution in netveods the heights of the density
“walls” remain almost unchanged along the netw@#sides “walls” mainly appear
in the areas of dense road segments which usualyha main densely populated
regions of the city (i.e. Northwest, Southwest, tBpdorth and Northeast regions).
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As one of the categories of municipal facility, Gage and Sewage Station is
closely related with city’s daily life. The facilis distributed uniformly in the city
can provide service to the urban population livinglifferent regions, and thereby
can help clean up garbage and recycling, and ectema urban environment.

Figure 10 - Three-dimensional visualization of th&tributions of services by using
the proposed network KDE (40-0BSUlength, Quartic kernel), with ESRI
ArcScene: (a) Garbage and Sewage Station (300+mmhsbandwidth), (b) Library
(400-m search bandwidth), (c) Bank (300-m searctuédth), (d) Gas Station
(300-m search bandwidth).

a) Garbage and Sewage Station (300-m search battgjwi

356
Roads
Kilometers

5

(c) Bank (300-m search bandwidth)
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(d) Gas Station (300-m search bandwidth)

Except for the sanitation facilities, urban managalso need to balance the
requirements of the entire urban space when deterquithe location of Library.
Figure 10(B shows the intensity distribution of Library semjicwhere “walls”
mainly appear in the areas of Shenzhen of the Kasth South, and West. Although
the original “walls” have been stretched, the dbistiion of density symbols still
remains low without “hot spots” appeared. So we edmthe conclusion that the
distribution pattern of Library in Shenzhen belongs a type of dispersed
distribution. Since Library usually has a wide cage of service, this type of
dispersed distribution meets the cultural needthefmajority of residents, and is
benefit for avoiding the excessive waste of urbasources. Actually the
visualization of POIls density can be a useful insnt to identify the best
locations for installing new public facilities, suas Garbage and Sewage Station,
Library and Hospital. In particular, urban plannensuld appreciate such
information extracted from precise detection of t‘hepots” or “absences of
services”. Once “absences of services” are idedtjfurban planner can examine
what factors around the “absences of services’rituie to the patterns and can
develop effective strategies for improving the @yabf life on the whole urban
space.

Figure 10(g presents the intensity distribution of Bank PQliss evident that
the POlIs tend to be concentrated in the southatropthe city of Shenzhen that, as
shown, presents two evident peaks. Such concantraéin be used to delineate the
shape and extensions of the Central Business @igfiBD), since the CBD is
located in the central part of a city, togetherhwitarticular activities, as banks,
offices, hotels, cinemas and theatres (HAGGETT, 020Hence the simple
observation of Figure 10(c) suggests that two esrdeexist in Shenzhen with high
intensity of commercial activities. Also, some mimtusters appear in other parts of
the city, where usually located at major road seetions or at minor settlements,
following a South-North orientation in the west tpaf the city and also along two
South-North axis in the South-Northwest and Soutintieast parts of the city.
From an overall perspective, the patterns of dgmaknt in Shenzhen are not so
homogeneous and uniform but a polycentric structuith three elongated axis
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developed (i.e. three South-North axis in the wesiddle and east parts of
Shenzhen). In fact, according to the Shenzhen Cememsive Plan (2010-2020),
the government planners hope that by 2020, the iitapb service functions are
undertaken in other several centers instead ofijusie traditional special economic
zone (south part of Shenzhen). Given present trehdsurban development and its
functions evolve as its original planning.

Generally central functions such as financial amdegainment functions
present a region-intensive distribution. It must bewever noticed that the
alignment of Gas Station service is distributechglthe main roads as observed in
the data intensity distribution (Figure 10(d)). Véan particularly notice an
increasing density and its elongation along thenmaads and their parallel streets,
showing a typical transportation structure of camide rings of the Beltway.
Comparing with the facilities of other types, Gdat®n relies more on the local
traffic conditions and hence its distribution of\see is presented to be closer to the
spatial patterns of city road network. In addititpeaks” in Figure 10(dtend to
appear in the outskirts of the central region dm €BD highlights a crater-like
shape in the distribution. In reality, central dpamts including high rents,
competition of land use and traffic congestion lias Station locating in the CBD
of the urban area. Given that the roads, whichaarthe boundary of the central
region, mainly take on the transportation functiemsntegrate the CBD with the
outside, hence most of refueling services are gewvialong the boundary of the
central region rather than inside it. In the resaittor, it is crucial to perform a solid
analysis of the spatial dispersion of venders (etail facilities) because this spatial
dispersion may be helpful in determining sitesrfeswv commercial establishments.
For this reason, further decision making for Gati®t site location selection can
be aided by combining the analysis of the intengisgribution of the venders who
provide the service in the specific market.

4.3 Comparison of Ordinary Network KDE and Constrained Network KDE

Figure 11 shows a small portion of the study area,Shenzhen, where one-
way traffic is indicated with arrow symbols, andd# levels streets is treated the
same way as shown in Figure 9. Besides, we congidemweights of the Hotel
points with their star rating. That is, one-stavpistar and three-star hotels are
assigned weights of 1, 2 and 3 respectively iretenating of density.

Figure 12 shows the density results obtained bycoustrained network KDE
and by ordinary network KDE side by side, both vatlquartic kernel and a 300-m
search bandwidth. Our constrained KDE uses theceodata constrained by the
factors showed in Figure 11. The ordinary KDE seat Hotels as one-star hotel,
and all roads as ordinary road and two-way tragioce the results of Figure 12 are
estimated for the same data, this comparison givgsod reference for identifying
some of the important properties of the estimators.
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Figure 11 - The characteristics of the Hotel po{atsimple Hotel’s 1-3 star rating)
and of the network (road direction and road gral@)southern part of Shenzhen,

China.
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Figure 12 - The comparison of the estimated dengity (a) an ordinary estimator
and (b) a constrained estimator. Squares highdighkénces of services where the
road direction is not inconsistent with the drivisigection to Hotel. Blue circles

indicate where the density values are increasedusecof high star Hotels and high

grade road. Red circle indicates where the depsittern is not changed.

(a) Result by traditional estimator

(b) Result by constrained estimator
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In general, both KDE can present the density pattérHotels along street
networks. Figure 12b demonstrates clearly how thasily values along the
network become sensitive to geographical consgafgveral observations can be
made from a more detailed comparison. First, tliénary KDE ideally calculates
the densities on the both sides of Hotels. On thrary, our constrained KDE
ensures the densities being kept only on the rédelséde of Hotels. That is, when
the network quadrat obtained density value, theimdgidirection from its location
to the Hotel is also allowed by the road directifrsuch accessibility constraint is
not met, the density value would be cut out (higjitéd by the squares in Figure
12b, where portions correspond to density valuese veait out). Our algorithm
considered human behavior feature (driving fronrenitrlocation to hotel) in the
real world and hence provided a better solution.

Second, the advantageous of accessibility wasrhettected in our approach
than in ordinary KDE. That is, out algorithm retaihe trend that the density value
on a high grade road becomes higher as driver rleedgime to reach its target
locations (highlighted by the the blue circles igufe 12b). This characteristic was
not respected by ordinary KDE in the correspondiegments.

The third observation is that our constrained KDé&ights density values based
on Hotel's star rating, which is an important iratir of Hotel's attractiveness.
Such setting in our algorithm can ensure densitiues standing out in the
gathering areas for high star-rated hotels (see lalge circle in the northwest of
Figure 12b). Also note that, the red circle in Fegd2b highlights a region where
points and local network are not constrained by atmer factors, and thus such
“hot spot” resembles the result by ordinary KDE.r@uethod takes into account
geographical features beyond individual objects,itscan deal with realistic
datasets better than ordinary KDE.

5. CONCLUSIONS

By using facility POIs dataset, this study presérganethod to study the urban
characteristics of facility context distributiondadiscover its behaviors at different
functions (municipal services, cultural serviced éinancial services) in a city. The
present research makes four main contributions:

- Refining the search functions of traditional KelrDensity Estimation for
analyzing regularity or clustering in the distrilomt of events, using network
distances rather than Euclidean ones;

- Taking into account practical and real factore.(itraffic capacity, road
direction, and facility difference) which are udefand desirable for real-world
scenarios;

- Developing a simple and efficient algorithm based 1-D sequential
expansion to compute network distance in denstiynaion;

- Building a visualization strategy using 3-D syrsb¢graduated colors and
height), which present the intensity surface aseamuding “wall” extending on
paths.
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We evaluate this approach with Shenzhen road nktand the related POI
datasets of 2013 statistics. According to the esttenstudies, the proposed method
allows the visualization of the functional urbarvieonment by means of a density
surface. The discovered functional patterns camp lpelople easily understand a
complex metropolitan area, benefiting a variety apiplications, such as urban
planning, location choose for a business, attradiivertisements casting and social
recommendations. In the future, we will furtherdstuthe evolving of a city by
comparing the distributions of services in diffdrgears. Besides, because traffic
congestions change over time, it would be intemgstd discover spatio-temporal
distribution patterns.
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