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Abstract. We make use of the algebraic theory that has been used to study the complexity
of constraint satisfaction problems, to investigate tractable quantified boolean formulas. We
present a pair of results: the first is a new and simple algebraic proof of the tractability
of quantified 2-satisfiability; the second is a purely algebraic characterization of models for
quantified Horn formulas that were given by Büning, Subramani, and Zhao, and described
proof-theoretically.

1 Introduction

An instance of the generalized satisfiability problem is a set of constraints, where a constraint is
a relation over the two-element domain {0, 1} paired with a variable tuple having the same arity
as the relation; the question is to decide whether or not there is a 0 − 1 assignment to all of
the variables satisfying all of the constraints. A constraint is satisfied under an assignment if the
variable tuple mapped under the assignment falls into the corresponding relation. Schaefer was the
first to consider the generalized satisfiability problem [22]. He proved a now famous complexity
classification theorem, showing that for any constraint language–a set of relations that can be used
to express constraints–the generalized satisfiability problem over that constraint language is either
in P or is NP-complete. This result has spawned a number of extensions and generalizations (see for
example [14]). Analogous classification theorems have been proven for variants of the satisfiability
problem such as quantified satisfiability [14]; also, there has been much recent work on establishing
a complexity classification theorem for the general constraint satisfaction problem (CSP), in which
relations over domains of size greater than two are permitted.

In the nineties, an algebraic viewpoint on constraints was established that made it possible to
approach the task of performing CSP complexity classification using tools from universal algebra
[20, 18]; this viewpoint has produced a rich line of results, including [19, 15, 7, 4–6, 8, 3]. One fruit
of this viewpoint has been a perspective on the tractable cases of satisfiability established by
Schaefer’s theorem, which include 2-satisfiability and Horn satisfiability. For instance, an exact
algebraic characterization of CSPs where it is possible to “go from local to global consistency” has
been given [19]; the 2-satisfiability problem yields the simplest non-trivial example from this class
of CSPs.

In this paper, we demonstrate that the algebraic viewpoint that has been used to study the
complexity of generalized satisfiability and the CSP can be used to derive new and interesting
results concerning the quantified satisfiability problem–despite the fact that the complexity classi-
fication program for which the algebraic viewpoint was originally developed, has been completed
in the two-element case (for both standard satisfiability [22] and quantified satisfiability [14]). It
is our hope that this paper will stimulate further work on satisfiability that utilizes this algebraic
viewpoint.

We present two results, one on quantified 2-satisfiability and the other on quantified Horn
satisfiability; these two particular cases of the quantified satisfiability problem are known to be
tractable [1, 21, 10]. Our results are as follows.



Looking Algebraically at Tractable Quantified Boolean Formulas 225

First, we give a new algebraic proof that quantified 2-satisfiability is tractable in polynomial
time. In particular, we analyze an algorithm of Gent and Rowley [17]. From an implementation
standpoint, this algorithm is extremely simple (and in the spirit of an algorithm for 2-satisfiability
given by Del Val [16]): other than simple manipulations such as setting and removing variables,
the only conceptual primitive used is unit resolution. We establish the correctness of this algorithm
via a relatively simple and succinct proof which, unlike the proof of correctness given in [17], does
not rely on the theory developed in [1]. In fact, we establish a more widely applicable result:
we give a generalization of the algorithm given in [17] and demonstrate that it yields a general,
algebraic sufficient condition for the tractability of the quantified constraint satisfaction problem.
Our presentation of this new tractability result is self-contained, though the result was inspired by
ideas in [13].

Second, we give a purely algebraic characterization of models for quantified boolean Horn
formulas that were identified by Büning, Subramani, and Zhao [11]. They demonstrated that any
true quantified Horn formula has a model of a particularly simple form–where every existentially
quantified variable is set to either a constant or a conjunction of universally quantified variables.
For any true quantified Horn formula Φ, they identified a model of this form described using the
clauses derivable from Φ in Q-unit-resolution, a proof system known to be sound and complete for
quantified Horn formulas [10]. We give an equivalent description of the models that they identified
by making use of the semilattice structure possessed by the models of a quantified Horn formula,
along with some natural homomorphisms among quantified Horn formulas that we introduce.

2 Tractability of Quantified 2-Satisfiability

The following is the basic terminology of quantified constraint satisfaction that we will use in this
section. A constraint is an expression R(v1, . . . , vk) where each vi is a variable, and R ⊆ Bk is an
arity k relation over a finite domain B. The constraint R(v1, . . . , vk) is true under an interpretation
f : V → B defined on the variables vi if (f(v1), . . . , f(vk)) ∈ R. A quantified formula (over domain
B) is an expression of the form Q1v1 . . . Qnvnφ where each Qi is a quantifier from the set {∀,∃}
and where φ is a conjunction of constraints over the variables {v1, . . . , vn}. A constraint language
is defined to be a set of relations over the same domain. The quantified constraint satisfaction
problem over a constraint language Γ , denoted by QCSP(Γ ), is the problem of deciding, given as
input a quantified formula Φ having relations from Γ , whether or not Φ is true.

We now review some of the key elements of the algebraic viewpoint that has been fruitful in
the study of constraint satisfaction [20, 18]. The central notion of this viewpoint is the concept of
polymorphism. Let f : Bm → B be an m-ary operation on B, let R be a relation over B, and let
k denote the arity of R. We say that f is a polymorphism of R, or that R is invariant under f , if
for all (not necessarily distinct) tuples (b1

1, . . . , b
1
k), . . . , (bm

1 , . . . , bm
k ) in R, the tuple

(f(b1
1, . . . , b

m
1 ), . . . , f(b1

k, . . . , bm
k ))

belongs also to R. For example, let T be the binary boolean relation

{(0, 0), (0, 1), (1, 1)}

having the property that the constraint T (u, v) is equivalent to the clause (¬u ∨ v), and let maj :
{0, 1}3 → {0, 1} be the ternary majority function on {0, 1}. It is not difficult to verify that maj is
a polymorphism of T . In fact, it is known that a boolean relation R is invariant under maj if and
only if any constraint over R is equivalent to a 2-satisfiability formula.

In general, there is an intimate relationship between polymorphisms and conjunctive formulas:
it has been shown that the complexity of QCSP(Γ ) is determined by the set of all polymorphisms
common to all relations in Γ , denoted by Pol(Γ ). More precisely, if Γ1 and Γ2 are finite constraint
languages such that Pol(Γ1) and Pol(Γ2) contain the same functions, then QCSP(Γ1) and QCSP(Γ2)
are reducible to each other via polynomial-time many-one reductions [2]. Furthermore, the liter-
ature contains many results that link the complexity of CSP(Γ ) and QCSP(Γ ) with the presence
(or absence) of functions of certain types in Pol(Γ ).3 As an example, it is known that the presence
3 By CSP(Γ ), we denote the standard CSP over Γ–that is, the restriction of QCSP(Γ ) to formulas having

only existential quantifiers.



226 Hubie Chen and Vı́ctor Dalmau

in Pol(Γ ) of the ternary dual discriminator function t : B3 → B defined by

t(x, y, z) =
{

x if x = y
z otherwise

implies that QCSP(Γ ) is solvable in polynomial time [2]. This implies the tractability of quantified
2-satisfiability, since the dual discriminator function over a two-element domain {0, 1} is equivalent
to the maj function; however, the proof given in [2] is fairly involved.

In this section, we will use an algebraic approach slightly different from the polymorphism-based
approach. Our approach is based on a new notion called the extended set polymorphism, which we
have studied also in the context of CSP complexity [13]. Let R be a relation, say k-ary, over a domain
B. An extended set function f is any function with domain P(B)×B and range B. (Here, we use
P(B) to denote the set containing all non-empty subsets of B, that is, the power set of B excluding
the empty set.) We say that an extended set function f is an extended set polymorphism of R (or,
R is invariant under f) if for every m ≥ 1 and all tuples (b1

1, . . . , b
1
k), . . . , (bm

1 , . . . , bm
k ), (c1, . . . , ck)

in R, the tuple
(f({b1

1, . . . , b
m
1 }, c1), . . . , f({b1

k, . . . , bm
k }, ck))

belongs also to R. As an example, consider again the boolean relation T as defined above, and let
g : P({0, 1} × {0, 1} → {0, 1} be defined as

g(S, b) =
{

s if |S| = 1 and S = {s}
b otherwise

It is immediate to verify that g is an extended set polymorphism of T . Indeed, with a little bit of
effort it can be proven that a relation R is invariant under g if and only if any constraint over R
is equivalent to a 2-satisfiability formula.

As with regular polymorphisms, we will say that a constraint language Γ is invariant under an
extended set function f if every relation in Γ is invariant under f . We have the following general
tractability result.

Theorem 1. Let Γ be a constraint language over domain B invariant under an extended set
function f : P(B) × B → B such that f(B, b) = b = f({b}, c) for all b, c ∈ B. Then, QCSP(Γ ) is
solvable in polynomial time.

We can derive the tractability of quantified 2-satisfiability from Theorem 1 and the fact that the
set of satisfying assignments of a 2-clause is invariant under the extended set function g described
above. In fact, we can derive from Theorem 1 the tractability of any constraint language Γ invariant
under the dual discriminator function t : B3 → B described above.

The algorithm used to establish Theorem 1 makes use of the notion of arc consistency. We say
that a conjunction of constraints φ is arc consistent if when R(w1, . . . , wk), R′(w′

1, . . . , w
′
k′) are two

constraints in φ such that wi = w′
j , then the projection of R onto the ith coordinate is equal to

the projection of R′ onto the jth coordinate. This common projection is called the domain of the
variable wi = w′

j . We say that arc consistency can be established on a conjunction of constraints
if there is an equivalent conjunction of constraints that is arc consistent and where no variable
has empty domain. It is well-known that testing to see if arc consistency can be established is
performable in polynomial time.

The algorithm (for Theorem 1), which generalizes the algorithm for quantified 2-satisfiability
given in [17], is as follows. In each step of the algorithm, the outermost quantified variable is
eliminated. Let Φ = Q1v1 . . . Qnvnφ be a quantified formula. First suppose that Q1 is an existential
quantifier. In this case, the algorithm attempts to find a value b in the domain B such that arc
consistency can be established on φ[v1 = b] where every universal variable has a full domain, that
is, domain equal to B. If there is no such value, the formula Φ is false. Otherwise, the algorithm
sets v1 to such a value, and continues. Next, suppose that Q1 is a universal quantifier. In this case,
the algorithm attempts to ensure that for every value b in the domain B, arc consistency can be
established on φ[v1 = b] where every universal variable (other than v1) has a full domain. If there
is any such value where this is not the case, the formula is false. Otherwise, the algorithm sets v1

to any value, and continues.
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To prove the correctness of this algorithm (for QCSP(Γ ) satisfying the hypothesis of Theorem
1), we use the following characterization of true quantified formulas: a quantified formula Φ =
Q1v1 . . . Qnvnφ is true if there is a set S of satisfying assignments for φ satisfying the two following
properties:

(a) For every partial assignment α to the universal variables, there exists an extension β of α in
S.

(b) Suppose that α, β ∈ S are two assignments such that for every universal variable y preceding
an existential variable x, we have that α(y) = β(y). Then, it holds that α(x) = β(x).

Proof. We establish the correctness of the algorithm by proving that whenever a variable is elim-
inated, truth of the formula is preserved. To demonstrate this, it suffices to prove the following
fact: for any b, b′ ∈ B, if arc consistency can be established on φ[v1 = b] where every universal
variable (coming after v1) has full domain, and Φ[v1 = b′] is true, then Φ[v1 = b] is true. Let S ′ be
a set of satisfying assignments for φ[v1 = b′] with the above two properties. Let V denote the set of
variables {v1, . . . , vn}. By definition of arc consistency, there exists a mapping a : V → P(B) such
that a(v1) = {b}, a(y) = B for all universal variables y, and for any constraint R(w1, . . . , wk) in φ,
there are tuples (b1

1, . . . , b
1
k), . . . , (bm

1 , . . . , bm
k ) ∈ R where a(wi) = {b1

i , . . . , b
m
i } for all i = 1, . . . , k.

Let S be the set of assignments h : V \ {v1} → B of the form h(v) = f(a(v), h′(v)) where h′ ∈ S ′.
It is straightforward to verify that S evidences the truth of Φ[v1 = b]. ut

3 Quantified Horn Formulas and BSZ models

In this section, we give a purely algebraic characterization of the models for true quantified Horn
formulas provided in [11], which we call BSZ models.

Before proceeding, we introduce some basic terminology and notation for this section. We will
often, for sake of notation, restrict attention to quantified formulas of the form ∀y1∃x1 . . .∀yn∃xnφ,
that is, formulas where there is a strict alternation between universal and existential quantifiers.
In our quantified formulas, φ will always denote a boolean formula in conjunctive normal form,
that is, a conjunction of clauses. Recall that a conjunction of clauses φ is a Horn formula if all of
its clauses contain at most one positive literal. We define an existential unit clause to be a clause
C such that there is exactly one existential literal l ∈ C, the literal l is a postive literal, and all
literals in C \ {l} come before l in the quantification order of the formula in which C appears.

A strategy for a quantified formula Φ = ∀y1∃x1 . . .∀yn∃xnφ is a sequence of mappings {σi :
{0, 1}i → {0, 1}}i∈[n], where [n] denotes the set containing the first n positive integers, {1, . . . , n}.
A strategy {σi : {0, 1}i → {0, 1}}i∈[n] is a model of Φ if for all a1, . . . , an ∈ {0, 1}, it holds that
the assignment mapping yi to ai and xi to σi(a1, . . . , ai) (for all i ∈ [n]) satisfies φ. We consider a
quantified formula Φ to be true if it has a model, and use MΦ to denote the set of all models of Φ.

Before defining the BSZ model for a quantified Horn formula, we need to introduce the following
proof system for quantified Horn formulas.

Definition 2. [10] The Q-unit-resolution proof system is defined as follows:
Let Φ = Q1v1 . . . Qmvmφ be a quantified boolean formula.

– For any clause C ∈ φ, Φ ` C.
– If Φ ` C, Φ ` C ′, C is an existential unit clause with existential variable x, and C ′ is a clause

containing ¬x, then Φ ` (C ∪ C ′) \ {x,¬x}.
– If Φ ` C and l ∈ C is a literal over a universal variable coming after all other literals in C in

the quantification order, then Φ ` C \ {l}.

It has been shown that this proof system is sound and complete for the class of all quantified
Horn formulas [10]: for any quantified Horn formula Φ, the empty clause is derivable from Φ (that
is, Φ ` ∅) if and only if Φ is false. Having defined this proof system, we can now define the BSZ
model for a quantified Horn formula Φ, which is described in terms of the clauses derivable from
Φ.
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Definition 3. [11] The BSZ model of a true quantified Horn formula Φ = ∀y1∃x1 . . .∀yn∃xnφ
is defined as follows. Let U denote the set of all existential variables x such that there exists an
existential unit clause C where x ∈ C and Φ ` C. For an existential variable x, let W (x) denote
the set containing all sets of negative universal literals C such that C ∪ {x} is an existential unit
clause derivable from Φ (using Q-unit-resolution); and, let V (x) denote the set ∩C∈W (x)C.

The BSZ model of Φ is the model {σi}i∈[n] such that

σi(y1, . . . , yi) =

 0 if xi /∈ U
∧l∈V (xi)¬l if xi ∈ U, V (xi) 6= ∅
1 if xi ∈ U, V (xi) = ∅

In what follows, we give a purely algebraic characterization of the BSZ model of a true quantified
Horn formula. We first observe that if for any two models Σ = {σi : {0, 1}i → {0, 1}}i∈[n],
Σ′ = {σ′

i : {0, 1}i → {0, 1}}i∈[n] of a quantified Horn formula Φ, the strategy Σ ∧ Σ′ defined
as {σi ∧ σ′

i}i∈[n] can be verified to also be a model for Φ. This follows from the fact that the
operation ∧ is a polymorphism of any Horn clause: when φ is a Horn clause (or more generally,
a conjunction of Horn clauses) over a variable set V , and f : V → {0, 1} and f ′ : V → {0, 1} are
interpretations both satisfying φ, the interpretation f ∧f ′ also satisfies φ. Because the operation ∧
(applied to strategies as above) is associative, commutative, and idempotent, we have the following
observation.

Proposition 4. For all quantified Horn formulas Φ, (MΦ,∧) is a semilattice.

For any quantified Horn formula Φ = ∀y1∃x1 . . .∀yn∃xnφ, let Φ[yk] be the formula obtained from
Φ by removing all universal variables yi from the quantifier prefix, except for yk, and instantiating
all instances of variables yi (with i 6= k) in φ with the value 1. We define a mapping dyk

from the
set of strategies for Φ to the set of strategies for Φ[yk] as follows. When Σ = {σi}i∈[n] is a strategy
for Φ, define dyk

(Σ) to be the strategy Σ′ = {σ′
i}i∈[n] for Φ[yk] such that for i < k, it holds that

σ′
i = σi(1, . . . , 1), and for i ≥ k, it holds that σ′

i(yk) = σi(1, . . . , 1, yk, 1, . . . , 1), where in the right
hand side expression, the kth coordinate contains yk, and all other coordinates contain 1. It is clear
that if Σ is a model of Φ, then dyk

(Σ) is a model of Φ[yk]. We define d to be the mapping taking
a strategy Σ of Φ to the n-tuple (dy1(Σ), . . . ,dyn

(Σ)), and call d the deconstruction mapping, as
it deconstructs a model for Φ into models for the various Φ[yk].

Interestingly, given models for the various φyk
, we can construct a model for φ. Let r be the

mapping taking an n-tuple of strategies (Σ1, . . . , Σn), where Σk = {σk
i }i∈[n] is a strategy for φyk

,
to the strategy Σ = {σi : {0, 1}i → {0, 1}}i∈[n] for φ, where for i ∈ [n], the mapping σi is defined
by

σi(y1, . . . , yi) = (σ1
i (y1) ∧ . . . ∧ σi

i(yi)) ∧ (σi+1
i ∧ . . . ∧ σn

i ).

We call r the reconstruction mapping. We have the following result concerning the deconstruction
and reconstruction mappings.

Theorem 5. For all quantified Horn formulas Φ = ∀y1∃x1 . . .∀yn∃xnφ,

– the deconstruction mapping d is a homomorphism from the semilattice (MΦ,∧) to the semi-
lattice (MΦ[y1],∧)× · · · × (MΦ[yn],∧); and,

– the reconstruction mapping r is a homomorphism from the semilattice (MΦ[y1],∧) × · · · ×
(MΦ[yn],∧) to the semilattice (MΦ,∧).

From Theorem 5, we can deduce the following corollary: if for a quantified Horn formula Φ =
∀y1∃x1 . . .∀yn∃xnφ it holds that all of the formulas Φ[y1], . . . , Φ[yn] are true, then Φ itself is true.
This fact was observed, for instance, in [10]; however, the proof of Theorem 5 gives a purely
algebraic justification of it.

It is well-known that every semilattice (S,⊕) has a maximal element m such that m⊕s = s⊕m =
m for all s ∈ S. For every quantified Horn formula Φ, we let ΥΦ denote the maximal element of
(MΦ,∧). Notice that for the pointwise ordering ≤ on functions where 1 ≤ 0, when Σ = {σi}i∈[n]

is a model of Φ and {υi}i∈[n] denotes ΥΦ, it holds that σi ≤ υi, for all i ∈ [n]. The model ΥΦ is
rather canonical, but is not (in general) equal to the BSZ model. However, there is an intimate
relationship between these two models that we can give, in terms of the two homomorphisms
defined: deconstructing the model ΥΦ and then reconstructing the resulting models yields the BSZ
model.
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Theorem 6. For all true quantified Horn formulas Φ, it holds that the BSZ model of Φ is equal
to r(d(ΥΦ)).

Theorem 6 gives a purely algebraic characterization of the BSZ model which, as we have seen,
was originally defined proof-theoretically.
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