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Fig. 1. A single sample per pixel (spp) comparison of indirect illumination rendered using ReSTIR Path Tracing (PT) [Lin et al. 2022] with and without our
sample mutations. By performing even a single mutation per sample, our approach can suppress correlation artifacts that may arise within ReSTIR samplers
due to spatiotemporal reuse. Mutations improve visual fidelity of both rendered and denoised results (with the OptiX denoiser [NVIDIA 2017]) while leaving
mean squared error unchanged.

Monte Carlo rendering algorithms often utilize correlations between pixels

to improve efficiency and enhance image quality. For real-time applications

in particular, repeated reservoir resampling offers a powerful framework to

reuse samples both spatially in an image and temporally across multiple

frames. While such techniques achieve equal-error up to 100× faster for real-
time direct lighting [Bitterli et al. 2020] and global illumination [Ouyang

et al. 2021; Lin et al. 2021], they are still far from optimal. For instance,

spatiotemporal resampling often introduces noticeable correlation artifacts,

while reservoirs holding more than one sample suffer from impoverishment

in the form of duplicate samples. We demonstrate how interleaving Markov
Chain Monte Carlo (MCMC) mutations with reservoir resampling helps

alleviate these issues, especially in scenes with glossy materials and difficult-

to-sample lighting. Moreover, our approach does not introduce any bias, and

in practice we find considerable improvement in image quality with just a

single mutation per reservoir sample in each frame.
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1 INTRODUCTION
The efficiency of rendering algorithms often hinges on their ability

to effectively evaluate similar integrals by reusing samples across

pixels [Ward et al. 1988; Jensen 1996; Veach and Guibas 1997; Keller

1997]. In real-time path tracing, sample reuse becomes more critical

since tracing rays is computationally intensive even on high-end

consumer GPUs [Kilgariff et al. 2018]. Moreover, while existing

denoisers drastically improve image quality even at low sample

counts [Chaitanya et al. 2017; Schied et al. 2017, 2018; Kozlowski

and Cheblokov 2021; NVIDIA 2022], they are unable to reconstruct

features missing from their input samples. Thus, sample reuse across

pixels is often the only means to improve sampling quality given

limited computational budgets. Compared to methods that generate

independent samples, reuse is also at times the only practical ap-

proach to render challenging scenes with caustics and tricky lighting

[Hachisuka and Jensen 2009; Veach and Guibas 1997].
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Random Replay Shift Reconnection Shift

Hybrid (Random Replay + Reconnection) Shift

Fig. 2. Glossy scenes with difficult-to-sample lighting rendered using Re-
STIR PT often contain correlation artifacts irrespective of the selected
shift mapping strategy (reviewed in Section 4.3 and Lin et al. [2022, Sec-
tion 7]). Artifacts result from suboptimal importance sampling and over-
enthusiastically sharing a few high-contribution samples between pixels.

Recent sampling algorithms for real-time ray tracing achieve mas-

sive speedups in scenes with complex illumination by sharing sam-

ples spatially within an image and temporally across frames [Bitterli

et al. 2020; Ouyang et al. 2021; Lin et al. 2021, 2022]. These so-called

ReSTIR1 based techniques select # high-contribution samples from

a larger streamed candidate pool of size" . They do so by reformu-

lating resampled importance sampling (RIS) [Talbot et al. 2005] in
terms of weighted reservoir sampling (WRS) [Chao 1982]. While RIS

effectively produces samples in proportion to an arbitrary target

function (e.g., the integrand of the rendering equation), WRS makes

resampling efficient by reducing storage costs from $ (") to $ (# ).
Repeated resampling across pixels then helps distribute important

samples over several frames for estimation.

Though ReSTIR derives impressive efficiency gains from corre-

lated sampling, the benefits of repeated resampling are not indefinite.

When only a few high-contribution samples have been identified,

iterative spatial reuse creates blotchy artifacts as several pixels reuse

the same sample (Figure 12, top row). Such undersampling artifacts

eventually fade away with temporal reuse over several frames, using

a user-specified parameter to balance pixel error with correlations

from sample reuse (Figure 4). Unfortunately, simply emphasizing

error reduction via greater reuse adds lag under camera movement

with dynamically changing lighting and geometry (Section 2.4), and

introduces distracting low-frequency artifacts (Figures 2 and 3) akin

to those in photon mapping [Hachisuka and Jensen 2009], Metrop-

olis Light Transport (MLT) [Veach and Guibas 1997] and Virtual

Point Light (VPL) methods [Dachsbacher et al. 2014].

As spatiotemporal correlations are difficult to quantify, resolving

artifacts is challenging. For instance, popular denoisers that com-

pute first- and second-order moments (e.g., Schied et al. [2017]) are

1
acronym for Reservoir-based Spatio-Temporal Importance Resampling

sample impoverishment 
0

357

Fig. 3. Reservoir resampling suffers from sample impoverishment as it be-
comes more difficult to sample light-carrying paths. Top row, le� to right: The
Veach Ajar scene rendered using ReSTIR PT (random replay shift) at 1 spp
with the door’s angle decreasing. Bo�om row: Heat maps visualize duplicate
samples in 20 × 20 pixel neighborhoods. Black represents no duplicates,
while white indicates the number of identical samples in a neighborhood.

less effective given imprecise variance estimates with correlated

samples. For ReSTIR, trying to reduce such artifacts by increasing

the reservoir size # is also ineffective, as resampling with replace-
ment [Chao 1982] produces duplicate samples in the presence of

strong correlations (see Wyman and Panteleev [2021, Figure 19]).

Inspired by work on Sequential Monte Carlo (SMC) [Doucet et al.
2001] and Population Monte Carlo (PMC) [Cappé et al. 2004], we

demonstrate that interleaving MCMC mutations with reservoir re-

sampling (Section 3) helps alleviate correlations and impoverish-

ment, especially in scenes with glossy materials and difficult light-

ing. Unlike MLT where mutations drive information sharing across

pixels, our mutations instead primarily mitigate artifacts caused
by spatiotemporal reuse, with little-to-no visual impact in scenes

where artifacts do not arise (Figure 13). Our approach highlights the

complementary strengths of resampling and mutations for real-time

rendering: resampling identifies samples with large contributions

proportional to a pixel’s target distribution, while mutations di-

versify the resampled population by locally perturbing samples in

proportion to the same target distribution. Furthermore, like Veach

and Guibas [1997]’s bias elimination strategy for MLT, we show

that resampling eliminates the need for any burn-in period with

Metropolis–Hastings (MH) mutations [Metropolis et al. 1953; Hast-

ings 1970] (Section 2.5, Appendix A). This drives considerable image

quality improvements from even a single mutation per frame for

each reservoir sample (Figures 1, 7, 9 and 11).

From an implementation perspective, our approach requires only

simple additions to existing ReSTIR algorithms (see Algorithm 3)—

we mutate reservoir samples using Metropolis–Hastings and an

appropriate target function every frame after temporal reuse. This

is immediately followed by an adjustment to each mutated sample’s

contribution weight to maintain detailed balance and ensure unbiased
estimation. Overall, our contributions include:

• Demonstrating how to incorporate MCMC mutations within

ReSTIR samplers to lessen correlation artifacts from spa-

tiotemporal resampling.
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� Showing how to adjust the RIS contribution weight of mu-
tated samples in an unbiased fashion for further resampling.

� Situating ReSTIR in the broader family of techniques that
jointly apply resampling and mutations to sampling problems,
such as MLT, SMC and PMC (see Table 2).

Though mutations can help produce images with better visual
�delity, we observe that, similar to blue-noise sampling [Mitchell
1987; Georgiev and Fajardo 2016; Heitz and Belcour 2019], they do
not necessarily reduce error (Figure 9). This is true both in scenes
with di�cult-to-sample lighting (Figure 12,top row), as well as in
scenes with ample lighting and di�use materials where resampling
easily �nds important samples (Figure 13). Moreover, despite the
e�ectiveness of mutations in scenes with strong correlations, we
show in the supplemental document that with our current approach,
even in�nite mutations cannot eliminate correlations entirely.

We start with the key building blocks of our approach in the next
section, and postpone discussion about related work to Section 6
for better context when comparing with our method.

2 BACKGROUND
The rendering equation [Kajiya 1986] gives the outgoing radiance
! out leaving a point~ in the directionl . Expressed as an integral
over directions, it is

! out¹~• l º = ! e¹~• l º ¸
¹

( 2
! in ¹~• l 8º d¹~• l• l 8º jcos\ 8j dl 8” (1)

Here! e is the emitted radiance,! in ¹~• l 8º is the incoming radiance
from the directionl 8, d¹~• l• l 8º is the BSDF and\ 8 is the angle
betweenl 8 and the surface normal at~. Absent participating me-
dia, the incident radiance! in is de�ned recursively as! in ¹~• l 8º =
! out¹C¹~• l 8º•� l 8º; the functionC¹~• l 8º returns the point on the
closest surface from~ in direction l 8. Integrating over the sphere
of directions( 2 then gives the total radiance scattered towardsl ;
the rendering equation can be estimated with Monte Carlo as

! out¹~• l º � ! e¹~• l º ¸
1
#

#Õ

8=1

! in ¹~• l 8º d¹~• l• l 8º jcos\ 8j
?¹l 8º

• (2)

where?¹l 8º is the probability density function (PDF) with respect
to solid angle used to sample incident directionsl 8.

As in Kajiya's formulation, sometimes it is more convenient to re-
formulate Equation 1 over surfaces. To keep the discussion indepen-
dent of the choice of formulation, we use

¯

 5¹Gº dGto generically

represent the integral we want to evaluate with
 as its domain.
This integral can likewise be estimated using

b�MC :
1
#

#Õ

8=1

5¹G8º
?¹G8º

• (3)

whereG8 are independent random samples drawn from anysource
PDF? that is non-zero on the support of5. In rendering, one often
draws samples proportional to individual terms of the rendering
equation to reduce variance (e.g., the BSDFd). To perform even bet-
ter importance sampling, ReSTIR instead uses RIS to draw samples
approximatelyproportional to the product of multiple terms in the
integrand (e.g., ! in � d � jcos\ j).

We review RIS and generalized RIS next (Sections 2.1 and 2.2); Sec-
tion 2.3 discusses a streaming RIS implementation via reservoir sam-
pling. Section 2.4 then describes how correlations arise within Re-
STIR due to resampling. Section 2.5 reviews the Metropolis�Hastings
algorithm we use in Section 3 to resolve correlation artifacts.

2.1 Resampled Importance Sampling (RIS)
RIS [Talbot et al. 2005; Lin et al. 2022] enablesunbiasedestimation
and sample generation from a non-negative target function?̂ with
an unknown normalization factor

¯

 ?̂¹~º d~. It does so by rewriting

the standard Monte Carlo estimator from Equation 3 as

1
#

#Õ

8=1

5¹G8º
?̂¹G8º

� ¹



?̂¹~º d~

�
” (4)

The normalization factor is estimated by generating" � 1 candi-
date samplesy = f~1• ” ” ” •~" g from a source PDF@that may be
suboptimal but easy to sample from (e.g., @/ d), yielding

1
#

#Õ

8=1

5¹G8º
?̂¹G8º

©

«

1
"

"Õ

9=1

?̂¹~9º

@¹~9º
ª
®
¬

” (5)

The samplesx = fG1• ” ” ” • G# g in turn are selected by randomly
choosing an index92 f 1• ” ” ” • "g, # times, from the candidate pool
y with discrete probabilities:

P¹9j yº =
F ¹~9º

Í "
: =1F ¹~: º

” (6)

Here theresampling weightF for each candidate~9 is given by

F ¹~9º =
1
"

?̂¹~9º, ¹~9º• (7)

where, : 1•@¹~9º is called the(unbiased) contribution weightfor
~9. The selected samplesG8 are likewise given contribution weights

b, ¹G8º :
1

?̂¹G8º
©

«

"Õ

9=1

F ¹~9º
ª
®
¬

(8)

that assume the role of a reciprocal PDF, though these weights are
only unbiased estimates for elements of the resampled setx. This is
because the parenthesized term for the normalization factor of?̂ is
itself an estimator that has variance. EachG82x is also distributed
only approximately in proportion to?̂ (i.e., ?̂ is sampled perfectly
only in the limit as" ! 1 ). Since we resamplewith replacement,
the setx can contain duplicate samples, which re�ects that samples
are selected in proportion tô?. With this setup, Talbot [2005] shows
that the RIS estimator

b�RIS :
1
#

#Õ

8=1

5¹G8º b, ¹G8º (9)

is unbiased as long aŝ? and@are non-zero on the support of5, i.e.,

E»b�RIS¼=
¹



5¹Gº dG” (10)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: October 2023.



1:4 ˆ Rohan Sawhney, Daqi Lin, Markus Ke�unen, Benedikt Bi�erli, Ravi Ramamoorthi, Chris Wyman, and Ma� Pharr

Combining with Multiple Importance Sampling (MIS).There are
often several reasonable sampling strategies available in rendering,
e.g., BSDF or light sampling. MIS [Veach and Guibas 1995b] allows
multiple strategies to be combined robustly within RIS [Talbot 2005].
When each candidate~9has its own source PDF@9, then MIS weights
generalize the parenthesized term in Equation 5 with

"Õ

9=1

< 9¹~9º
?̂¹~9º

@9¹~9º
” (11)

Here,< 9 � 0 is the MIS weight for the9th sampling technique.
These weights must form a partition of unity,i.e.,

Í "
9=1< 9¹~º = 1. A

common choice is thebalance heuristic< 9¹~º = @9¹~º•
Í "

: =1@: ¹~º
[Veach and Guibas 1995b]. With MIS, the resampling weight in
Equation 7 becomes:

F ¹~9º = < 9¹~9º?̂¹~9º, ¹~9º• where , ¹~9º =
1

@9¹~9º
” (12)

Notice we recover< 9 = 1•" when source PDFs are the same for
each sample~9. MIS weights play an important role in ReSTIR�
beyond reducing noise in the resampling weights, they also remove
bias when the supports of the source and target distributions do not
match integrand5's support (see Section 4 in Bitterli et al. [2020]
and Section 5 in Lin et al. [2022] for further details).

In practice, using RIS with the balance heuristic is costly, as all
sampling strategies (i.e., the source PDFs) must be evaluated for
each candidate sample~9. Bitterli [2022, Chapter 9.1.3] provides
a similarly robust but more e�cient heuristic calledPairwise MIS,
which only requires$ ¹" º PDF evaluations over the entire candidate
pool. We use pairwise MIS when the number of sampling strategies
" is greater than2 (e.g., during spatial resampling in ReSTIR; see
Section 2.4); otherwise we use the balance heuristic.

2.2 Generalized Resampled Importance Sampling (GRIS)
So far we assumed the resampling inputs~9 � @9 share a common
integration domain
 with integrand 5. This assumption may no
longer hold when reusing spatially or temporally across an image
(as in ReSTIR), and depends on the integral formulation used for
the rendering equation. For instance, ReSTIR applied to global il-
lumination [Ouyang et al. 2021; Lin et al. 2022] generates samples
from PDFs with respect to solid angle. Reuse across pixels therefore
requires a change of integration domain, necessitating a correction
term in the resampling weights [Ouyang et al. 2021, Equation 11].
ReSTIR for direct lighting [Bitterli et al. 2020] instead integrates
over the surface of all lights, ensuring
 is �xed across samples.

Recent work by Lin et al. [2022] generalizes RIS to use candidate
samples~9 originating from di�erent domains
 9. It achieves this
via shift mapping, i.e., a bijective transformation of samples from
one pixel to corresponding samples on another pixel [Lehtinen et al.
2013]. In particular, if
 denotes the domain of integration for5, and
( 9 : 
 9 ! 
 are shifts that map~9 2 
 9 to the modi�ed sample
~0

9 2 
 , then the resampling weight for~9 becomes

F ¹~9º = < 9¹~0
9º?̂¹~0

9º, ¹~9º �

�
�
�
�
�

m~09
m~9

�
�
�
�
�
• (13)

ALGORITHM 1: Weighted reservoir sampling (# = 1)

1: classReservoir
2: G œ •output sample
3: Fsum  0 •sum of resampling weights
4: "  0 •number of samples seen so far
5: c,  0 •contribution weight (set in Algorithm 2)
6: function update(~• F)
7: Fsum  Fsum ¸ F
8: "  " ¸ 1
9: if rand() Ÿ ¹F •Fsumº then

10: G ~

where the Jacobian determinantjm~09•m~9j accounts for the change
of integration domain from
 9 to 
 . (Jacobians also appear in MIS
weights< 9; see Appendix B). The rest of the RIS procedure in Sec-
tion 2.1 remains unchanged�substituting these resampling weights
to Equation 8 provides the contribution weight for the selected~0

9.
Various shift mappings have been proposed to maximize the

similarity between~0
9 and~9 such thatjm~09•m~9j � 1 [Hua et al.

2019, Section 3]. We describe the shift mappings we use in Section 4.

2.3 Weighted Reservoir Sampling (WRS)
WRS [Chao 1982] facilitates e�cient RIS implementations using
a single pass over elements in a streamf~1• ” ” ” •~" g to select a
random sample. As in Section 2.1, each stream element has an asso-
ciated resampling weightF . The basic idea is to process the stream
one element at a time, and to select�from the< Ÿ " elements
processed so far�a sample~9 with probability F ¹~9º•

Í <
: =1F ¹~: º.

The next stream element~< ¸ 1 then replaces~9 with probability
F ¹~< ¸ 1º•

Í < ¸ 1
: =1 F ¹~: º. The stream length" need not be known

ahead of time, and WRS can be used to select# ¡ 1 samples if
needed [Wyman 2021, Chapter 22.6].

WRS reduces the storage needed for resampling to$ ¹# º. A light-
weight data structure called areservoiris typically used to process
the stream and store the selected samples, the stream length" and
the weight sum

Í "
9=1F ¹~9º; see Algorithm 1.

2.4 Reservoir-based Spatiotemporal Resampling
ReSTIR applies RIS and WRS in achainedfashion within and across
pixels of an image. The �rst key idea is to approximately importance
sample multiple terms in the rendering equation's integrand through
a per-pixel target function?̂. The second is to reuse samples from
neighboring pixels to exploit the similarity between their target
functions. The algorithm performs four steps every frame:

(1) (Initial resampling)Select# samples from a candidate pool
of " samples at each pixel. Equations 12 and 8 provide the
resampling and contribution weights for the candidate and
selected samples respectively. A reservoir stores the selected
samples and theirestimatedcontribution weights.

(2) (Temporal resampling)Use Algorithm 2 to reuse samples
across two corresponding pixels in consecutive framesCand
C� 1. The resampling weight for each sample is computed
using the contribution weight already stored in its reservoir.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: October 2023.
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ALGORITHM 2: Combining two reservoirs for temporal reuse (# = 1)

Input: ReservoirsA8 andA9 for pixels8and 9from framesCandC� 1
(resp.), and a cap for the sample count inA9

Output: A combined reservoirBfor frameC
1: function combineTemporalReservoirs(8• 9• A8• A9• " cap)
2: •Cap con�dence weight forA9

3: A9”"  min¹A9”"• " capº
4: •Compute resampling weight for sample inA8

5: G8  A8”G
6: < 8  computeMis¹G8• ?̂8• A8”"• ?̂9• A9”" º •Equation 31
7: F8  < 8 � ?̂8¹G8º � A8”c, •Equation 12
8: •Shift sample inA9 to pixel8and compute its resampling weight

9: G0
9• jmG09•mG9 j  shiftMap ¹A9”G• 9• 8º •Section 4

10: < 9  computeMis¹G0
9• ?̂9• A9”"• ?̂8• A8”" º •Equation 32

11: F 9  < 9 � ?̂8¹G0
9º � A9”c, � jmG09•mG9 j •Equation 13

12: •Combine weighted samples into a single reservoir

13: ReservoirB
14: B”update ¹G8• F8º
15: B”update ¹G0

9• F9º
16: B”"  A8”" ¸ A9”"
17: B”c,  1

?̂8¹B”Gº B”Fsum •Equation 8
18: return B

(3) (Spatial resampling)For each pixel, select random reservoirs
from a small spatial neighborhood and merge them into the
pixel's reservoir. This is similar to Algorithm 2 and can be
repeated multiple times; for reference see Bitterli et al. [2020,
Algorithm 4] and Ouyang et al. [2021, Algorithm 2].

(4) (Final shading)Use Equation 9 to compute each pixel's color.

Spatiotemporal reuse gives each pixel access to a large population
of samples from its local neighborhood. As a result, ReSTIR quickly
�nds samples that make large contributions to pixels, using MIS
weights and shift mappings to ensure unbiased estimation within
the pixel where samples are reused. Nonetheless, gains from shar-
ing samples are not inde�nite, and correlation artifacts may arise
from undersampling, imperfect shift mappings, and wrongly set
parameters. For instance, performing multiple rounds of spatial re-
sampling with too small a pixel radius can lead to blotchy artifacts.
This happens when RIS identi�es too few samples to e�ectively
importance sample the integrand,e.g., due to di�cult-to-sample
lighting. Likewise, inadequately designed shift mappings may intro-
duce geometric singularities into a sample's resampling weight via
the Jacobian determinant, causing the sample to be widely reused.

During temporal resampling, one must cap the stream length"
of a temporally reused sample (Algorithm 2,line 3) to guarantee
convergence�not doing so results in convergence to a wrong result
[Lin et al. 2022, Section 6.4]. Unfortunately, the ideal" cap cannot
always be determined in a scene-agnostic way�small caps inade-
quately utilize the temporal history and result in higher variance
(Lin et al. [2022, Figure 9]), while large caps increase correlation. In
particular, increasing" cap decreases the relative weight and hence
selection probability of newly proposed samples, while arti�cially
in�ating a reservoir sample's importance. As a result, an outlier
reservoir sample's estimated contribution weight must �rst decay
to match a pixel's actual value. Unfortunately, the outlier may be

Fig. 4. Parameters for ReSTIR sample reuse can be di�icult to set in a scene
agnostic way. For instance, a small" cap inadequately exploits prior samples,
leading to noise (le� ), while a large" capvalue introduces correlations (right).
Our approach o�ers greater leeway in se�ing parameter values that trade
noise for correlation (see Figures 11 and 12).

spread between neighboring pixels before it is replaced. This can
lead to visible correlation artifacts and sample impoverishment over
multiple frames (see Figure 4). We use the Metropolis-Hastings
algorithm, described next, to address these issues in ReSTIR.

2.5 Metropolis�Hastings (MH)
Like RIS, the MH [Metropolis et al. 1953; Hastings 1970] algo-
rithm generates a set of samples distributed proportionally to a
non-negative and possibly unnormalized target function?̂. While
RIS uses resampling to achieve this goal, MH instead constructs a
Markov chainthat has a stationary distribution proportional tô?.
In more detail, given an initial sampleG0 2 
 , MH incrementally
constructs a sequence of random samplesG0• G1• G2• ”””as follows:

(1) For : � 0, generate a candidate sampleI : by applying a
randommutationto the current sampleG: in the chain,i.e.,
sampleI : from aproposal density) ¹G: ! I : º.

(2) Compute an acceptance probability for the candidateI : :

0¹G: ! I : º : min

 

1•
?̂¹I : º ) ¹I : ! G: º

?̂¹G: º ) ¹G: ! I : º

!

” (14)

(3) SetG: ¸ 1 = I : with probability 0; otherwise setG: ¸ 1 = G: .

The acceptance probability0¹G: ! I : º ensures that samples
are distributed proportional to the target function̂?. Thedetailed
balancecondition guarantees the existence of the Markov chain's
stationary distribution by requiring the transition density between
any two sample values to be equal:

?̂¹G: º) ¹G: ! I : º0¹G: ! I : º = ?̂¹I : º) ¹I : ! G: º0¹I : ! G: º”
(15)

To generate the correct distribution from all inputs, Markov chains
must beergodic. This can be guaranteed easily with mutations that
always propose candidate samples over the entire support of?̂, i.e.,
) ¹G: ! I : º ¡ 0 for all G: andI : where?̂¹G: º ¡ 0 and?̂¹I : º ¡ 0.
Even with this constraint, there is still much freedom in choosing
mutation strategies�Section 4 describes the strategies we use.
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Fig. 5. Our approach introduces Metropolis-Hastings mutations as an ad-
ditional block into the larger ReSTIR algorithm for spatiotemporal sample
reuse. Samples are mutated within each pixel a�er temporal resampling
(Algorithm 2) to mitigate correlation artifacts and sample impoverishment.

Unlike RIS, MH does not estimate the value of integrals. It does
however produce valid samples from its target function which can be
used by a secondary estimator such as RIS for estimation (Section 3).

Eliminating start-up bias.MH assumes the initial sampleG0 is
generated with probability density proportional tô?; using a sample
not from this distribution results instart-up bias. A typical solution
runs the Markov chain for several iterations until the initial state
is �forgotten�, i.e., discarding several early samples generated by
MH. Sadly, the length of thisburn-inperiod is tricky to determine
as it depends on the initial sample value and its actual distribution.
Veach [1998, Chapter 11.3.1] instead proposed resamplingG0 from
" candidate samplesy = f~1• ” ” ” •~" ggenerated using an easy-to-
sample source PDF (much like Section 2.1). Equations 6 and 7 then
provide the discrete probabilities and resampling weights (resp.)
needed to select a candidate,i.e., G0 = ~9 for some92 f1• ” ” ” • "g.
Contributions of mutated samples initialized fromG0 are weighted
by Equation 8 to guarantee unbiasedness. Our mutations likewise
leverage ReSTIR's built-in resampling to avoid start-up bias.

3 METHOD
Sample selection with RIS from a target distribution improves with
larger populations of candidate samples. ReSTIR provides access
to a sizable candidate pool for resampling through spatiotemporal
reuse, enabling it to quickly identify high-contribution samples via
RIS. However, at times ReSTIR extensively reuses a few samples
over multiple frames due to imperfect importance sampling and
suboptimal parameters, with no mechanism to easily diversify an
existing population of high-contribution samples.

Inspired by Sequential and Population Monte Carlo techniques
(Section 6), we interleave reservoir resampling with MCMC muta-
tions to mitigate correlations and sample impoverishment caused
by spatiotemporal reuse. Our key observation is that mutating reser-
voir samples with thesameper-pixel target function as RIS helps
to quickly decorrelate the resampled population, especially when
it contains outliers. In Algorithm 3, we use Metropolis-Hastings to
locally perturb temporal reservoir samples selected by Algorithm 2;
interleaving with resampling then diversi�es the samples ReSTIR
shares between pixels. We discuss key aspects of our work next,
starting with how to modify mutated samples' contribution weights
to guarantee unbiased results.

ALGORITHM 3: Mutate sample via Metropolis-Hastings

Input: Pixel i, reservoirA8 from Algorithm 2, and iteration count
Output: ReservoirA8 with its sample mutated in proportion tô?8

1: function mutateSample(8• A8, iters)
2: I  metropolisHastings ¹A8”G•?̂8• itersº •Section 2.5

3: A8”c,  ?̂8¹A8”Gº
?̂8¹I º � A8”c, •Equation 16

4: A8”G I
5: return A8

Modi�ed contribution weights.A contribution weight b, (Equa-
tion 8) estimates the reciprocal value of the target PDF?̂•

¯

 ?̂ that

a sample is approximately distributed according to.b, is needed to
compute resampling weights for combining reservoirs (Algorithm 2,
lines 7and11) and to estimate per-pixel shading (Equation 9).

Contribution weights are sample dependent. Thus, a sample that
undergoes mutation cannot reuse the weight associated with its
original state,i.e., a mutated sample's contribution weight should
provide an unbiased estimate for the sample's reciprocal target
PDF. Our key contribution is to show that the unbiased contribution
weight for any mutated sampleG: , from a Markov chainG0• ”””• G: • ”””,
can be computed via the relation

b, ¹G: º =
?̂¹G0º

?̂¹G: º
b, ¹G0º” (16)

Equation 16 does not depend on samples betweenG0 andG: in the
Markov chain and imposes no constraints on computingb, ¹G0º,
which can arise from prior resampling, runs of MH, or a mix of the
two. This provides �exibility in where and when to mutate samples
during ReSTIR (as long as mutations are con�ned to a given pixel).

One can get an intuitive feel for Equation 16 by substituting in
the expression forb, ¹G0º from Equation 8:

b, ¹G: º =
H HH?̂¹G0º

?̂¹G: º
�

1
H HH?̂¹G0º

©

«

"Õ

9=1

F ¹~9º
ª
®
¬

=
1

?̂¹G: º
©

«

"Õ

9=1

F ¹~9º
ª
®
¬

” (17)

Notice that the estimated normalization factor for̂?, i.e., the sum
of weightsF , remains unchanged for both the initial and mutated
samplesG0 andG: . This normalization factor arises via RISprior to
performing mutations (e.g., Algorithm 2,lines 14-15). Meanwhile,
MH treats the resampling weights as �xed, simply redistributing a
reservoir's sample population proportionally to the per-pixel target
function ?̂. Equation 16 then encodes any required correction to a
sample's contribution weight to account for the sample mutation�
unlike temporal and spatial resampling which reuse samples across
di�erent pixels, this equation does not contain any MIS weight or
shift mapping as there is no change of integration domain, with
samples only mutated within̂?'s support.

Start-up bias.Algorithm 3 does not require a burn-in period for
mutations, even though the samples used to initialize MH are not dis-
tributed exactly according tô?. This is because we use the unbiased
contribution weights of mutated samples for subsequent steps in
ReSTIR, including when computing shading and resampling weights
for further reuse. This approach eliminates start-up bias completely
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for any mutated sampleG: and function5 by ensuring

E»5¹G: º b, ¹G: º¼=
¹



5¹Gº dG” (18)

Appendix A provides a formal proof. Note that avoiding start-up bias
does not imply samples generated using MH are well-distributed
according to?̂. However, since we initialize MH using reservoir
samples that are already distributed roughly proportional to the
target function from resampling, our method does not rely on MH
to �nd important samples (see Figure 13)�rather it decorrelates and
diversi�es outlier samples by mutating them locally in proportion
to ?̂ and adjusting their estimated contribution weight accordingly.

When to perform mutations?Temporal reservoirs often contain
stale samples, as ReSTIR assigns higher relative importance to ex-
isting samples. We therefore mutate samples output by Algorithm 2
within each pixel (Figure 5), using the same per-pixel target func-
tion as RIS for the current frame. Mutating samples randomly after
temporal resampling diversi�es the inputs to spatial resampling,
protecting against possibly escalating amounts of sample impover-
ishment caused by repeated reuse.

Applying Algorithm 3 within each pixel to mutate samples after
the initial or spatial resampling steps in ReSTIR (Section 2.4) is
possible but not required. Like mutations, initial resampling serves
to rejuvenate the sample population every frame (by introducing
new independent samples into the population). Samples from spatial
resampling are stored for future reuse; mutating them proportional
to the current target function would cause them to lag by one frame.

Finally, Algorithm 3 places no restrictions on MH iteration count.
To improve runtime performance, one could adaptively specify mu-
tation counts per pixel (including no mutations) using, for instance,
local correlation estimates. We leave development of such heuristics
to future work and use a �xed, user-speci�ed number of iterations.

4 IMPLEMENTATION DETAILS
We perform mutations for both direct and indirect illumination in
ReSTIR using Kelemen et al. [2002]'sprimary sample space (PSS)
parameterization. This conveniently allows applying mutations di-
rectly to random number sequences used to generate light-carrying
paths, while constraining path vertices to remain on the scene man-
ifold. Moreover, it simpli�es use of certain shift mappings in ReSTIR
PT,e.g., therandom replayshift [Lin et al. 2022, Section 7.2].

In this section, we represent samples with a path vertex notation
�x = »x0•x1• ” ” ” •x: ¼ 2
 : ¹Mº , with 
 : ¹Mº the space of all paths
of length: on the scene manifoldM (e.g., : = 2 for direct lighting).
Each path�x is uniquely determined2 by a vector of random numbers
�u = »D0•D1 ” ” ”¼ 2 »0•1¼$ ¹: º . We use( to denote a shift mapping
from a base path�x in one pixel to an o�set path�y in another pixel,i.e.,
( ¹»x0•x1• ” ” ” •x: ¼º= »y0•y1• ” ” ” •y: ¼. Mutated paths and random
numbers are represented using�z and �v (resp.).

2As in Bitterli et al. [2017], we bijectively map between paths and their random numbers
by padding paths with extra dimensions.

Fig. 6. During temporal resampling, the hybrid shi� in ReSTIR PT connects
the o�set path for frame Cto the base path from frameC� 1 when it
encounters two consecutive di�use verticesx3•x4; prior to that it reuses
random numbers from the base path to trace rays. Our reconnection vertex
mutation then perturbs the reconnection vertexy4 in the o�set path.

4.1 Primary sample space
The PSS parameterization reformulates the acceptance probability
in Equation 14 in terms of acontribution function� as follows:

0¹ �u ! �vº : min
�
1•

� ¹ �vº ) ¹ �v ! �uº
� ¹ �uº ) ¹ �u ! �vº

�
” (19)

For us� ¹ �uº : ?̂¹ �y¹ �uºº•@¹�y¹ �uºº, where?̂ is the per-pixel target
function (also used for resampling) and@is the sampling PDF for
generating�y from the random numbers�u 3 (with mutated path�z
likewise generated from�v). As suggested by Kelemen et al. [2002],
we compute�v by perturbing each element of�u with Gaussian noise.
We useB= B2 exp¹� log¹B2•B1º* º as our perturbation amount with
* � » 0•1º andB2 ¹B1•B2¼.

4.2 Direct Lighting
Our ReSTIR DI mutations perturb the directions of reservoir samples
via their random numbers. For direct lighting, path�y = »y0•y1•y2¼
and its PDF@¹�yº equals?d ¹l º jcos\ j•jy2� y1j2, where?d is the PDF
for importance sampling the BSDFd, l is the unit vector fromy1 to
y2, and\ is the angle betweenl and the geometric surface normal at
y2. The PDF@¹�zº is de�ned analogously as?d ¹aºjcosqj•jz2 � y1j2

with direction a pointing from y1 to mutated vertexz2; q is the
angle betweena and the surface normal atz2. Random numbers for
the starting MH sampley2 are recovered by inverting the sampling
procedure for directionl [Bitterli et al. 2017]. Since this mutation
is symmetric, the transition kernels in Equation 19 cancel.

4.3 Indirect Illumination
For ReSTIR PT, our mutation strategies build on shift maps. Unlike
a mutation, a shift mapping deterministically perturbs a base path�x
through one pixel into an o�set path�y through another pixelduring
resampling (e.g., Algorithm 2,line 9). For instance, arandom replay
(RR)shift reuses the random numbers that generate�x to trace �y.
Since tracing a full path is expensive, a reconnection is often used to
connect the o�set path to the base path at a given index8, i.e.,y9 = x9
for 9 � 8. Connecting paths immediately with8 = 2 is called the
3The starting unmutated path�y for MH could have been generated in ReSTIR from one
of many sampling schemes (e.g., light or BSDF sampling), or over multiple rounds of
resampling. Here, we do not require the random numbers�u that originally generated
�y; Sections 4.2 and 4.3 discuss the�u we use for mutations.
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reconnection (R)shift. Compared to random replay, reconnections are
often better at producing paths with similar contributions for di�use
surfaces. But reconnectingy8� 2•y8� 1 to x8 on a glossy surface can
introduce paths with near-zero throughput, or introduce geometric
singularities wheny8� 1 andx8 are too close.

We use Lin et al.'s [2022]hybrid (H)shift strategy (see Figure 6) to
evaluate mutations in ReSTIR PT for all our results except Figure 8
where we use random replay. This shift mapping postpones recon-
nection using random replay until certain connectability conditions
are met (e.g., surface roughness and distance between vertices).

Mutation strategies.As with direct lighting, one way to mutate a
path is to perturb the random numbers used to generate it. Like a
random replay shift, this approach expensively requires tracing a
full path for each proposed mutation (which may be rejected). We
refer to this mutation as afull path (FP)mutation.

A more computationally e�cient approach mutates the o�set
path with random replay up to the reconnection vertexy8 = x8, and
then connects to the base path starting atx8̧ 1 instead (the full path
is mutated if a reconnection is not possible). We observe that this
partial path (PP)mutation strategy is not only faster, but also has
higher acceptance (70%vs.40%on the scene from Figure 1) as it min-
imizes changes to the geometry of high-contribution paths selected
via resampling. Moreover, its paths have similar contributions to
the o�set paths it mutates. Note that mutating path vertices with
random replay until the reconnection tox8̧ 1 can cause connectabil-
ity conditions for the hybrid shift to fail. We reject such mutated
samples by de�ning their transition PDF to be 0.

Taking a step further, our �nal strategy mutates only the reconnec-
tion vertexy8 (Figure 6) while keeping the rest of the o�set path un-
changed, i.e.,»z0• ” ” ” •z: ¼= »y0•y1• ” ” ” •y8� 1•z8•x8̧ 1• ” ” ” •x: ¼, where
y8� 1 connects toz8 with mutated random numbers. We found this
reconnection vertex (RV)mutation only slightly less e�ective at reduc-
ing correlations. It is, however, signi�cantly faster when performing
multiple mutations, as only rays fromy8� 1 to z8 andz8 to x8̧ 1 need
to be traced. We use this mutation to generate results in Section 5,
unless noted otherwise. Figure 10 compares the e�ectiveness of
these mutation strategies.

Finally, note that the transition kernels) ¹ �v ! �uº and) ¹ �u ! �vº
are no longer symmetric when o�set paths contain a reconnection
vertex. In Appendix C, we show that their ratio equals:

) ¹ �v ! �uº
) ¹ �u ! �vº

=
jcosqj
jcos\ j

jy8̧ 1 � y8j
2

jy8̧ 1 � z8j2
?¹a8� 1•a8º
?¹l 8� 1• l 8º

?¹a8• l 8̧ 1º
?¹l 8• l 8̧ 1º

• (20)

wherel 8� 1• l 8andl 8̧ 1 are unit vectors fromy8� 1 to y8, y8 to y8̧ 1¹=
x8̧ 1º and y8̧ 1 to y8̧ 2¹= x8̧ 2º respectively,a8� 1 anda8 are unit
vectors fromy8� 1 to z8 and z8 to y8̧ 1, \ is the angle betweenl 8
and the surface normal aty8̧ 1, q is the angle betweena8 and the
surface normal aty8̧ 1, and? is the solid angle PDF used to sample
an outgoing direction. Any mutations applied to random numbers
for the subpath»y0•y1• ” ” ” •y8� 1¼do not factor in the ratio as they
are symmetric.

Reservoir storage.Lin et al. [2022, Section 8.2] note ReSTIR PT
stores additional data in the reservoir from Algorithm 1, speci�cally
a seed for random replay and the resampled path's reconnection
vertex. For the full and partial path mutation strategies, we need

Fig. 7. Correlation artifacts o�en do not disappear simply by using more
samples, justifying the overhead of performing mutations.

the path's entire random number sequence since PSS mutations
transform this sequence�as a result, the sequence cannot be regen-
erated from its original seed. This increases the reservoir size as
path length grows. Luckily, the reconnection vertex mutation avoids
this overhead, only mutating random numbers that samplez8 from
the �xed o�set vertex y8� 1. As in ReSTIR DI, we recover random
numbers fory8 by inverting the sampling of directiony8� y8� 1. The
only additional information we store is the o�set vertexy8̧ 1 (which
connects to mutated vertexz8).

5 RESULTS AND DISCUSSION
We prototyped our method in the open-source Falcor rendering
framework [Kallweit et al. 2022]. All results use a GeForce RTX 3090
GPU at 1920� 1080 resolution. Our direct lighting implementation
uses the same settings as Bitterli et al. [2020],i.e., initial candidate
samples" = 32, spatial reuse radius of 30 pixels from the current
pixel, and" cap = 20. For indirect illumination, we set" = 32and
the spatial reuse radius to 20 similar to Lin et al. [2022], but use a
longer temporal history with" cap = 50(unless noted otherwise).
Our supplementary video shows 1 spp results for all our scenes;
Table 1 gives single frame timings.

As we show in Figure 1 and Figures 7�12, short-range correlation
artifacts are noticeably reduced in scenes with glossy materials
and di�cult lighting with just 1�5 mutations; further mutations
have diminishing returns in improving image quality (Figures 9 and
10). Mutation cost overhead is generally less than simply increasing
sample count (Figure 7), and recent denoisers [NVIDIA 2017] provide
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Fig. 8. Mutations mitigate sample impoverishment in ReSTIR by diversifying
the sample population. The bo�om row visualizes duplicate samples in20� 20
pixel neighborhoods on the scene from Figure 3. The supplemental video
shows improvements in an animation as the door's angle is decreased.

considerably better results with our decorrelated samples (Figure 1).
Figure 8 shows mutations greatly reduce sample impoverishment,
with fewer reservoirs sharing the exact same sample realizations.

Compared to standard path tracing, ReSTIR is much faster at
achieving equal-error via correlated sampling for real-time direct
[Bitterli et al. 2020, Figure 8] and global illumination [Lin et al. 2022,
Figure 13]. Mutations however provide only marginal improvements
in mean squared error in ReSTIR samplers (Figures 9 and 13), with-
out ever negatively impacting results. Akin to blue-noise dithering
[Georgiev and Fajardo 2016; Heitz and Belcour 2019], our image
quality improves despite errors having similar magnitudes. The rea-
son is mutating within a pixel leaves the sum of resampling weight
unchanged in Equation 17, and these weights ultimately control RIS
estimator variance (Equation 9). Mutations do slightly reduce vari-
ance, as they indirectly alter resampling weights offuture samples
thanks to spatiotemporal reuse of the new, more diverse sample pop-
ulation; the supplementary document has more details. In Figures
11 and 12 we also ablate" cap values to show the greater leeway
our approach o�ers for this parameter, allowing use of larger values
to trade noise for correlation.

Since ReSTIR often su�ers from correlation artifacts, we quan-
tify improvements in correlation by computing sample covariance
between pixels, which naturally generalizes sample variance. This
metric measures the joint variability of two random variables (e.g.,
whether error in two pixels varies similarly). For pixels8and 9in
image� , sample covariance Cov¹8• 9º between8and 9is given by

Cov¹8• 9º =
1

 � 1

 Õ

: =1

�
�:8 � ��8

� �
�: 9 � �� 9

�
• (21)

Fig. 9. Sample mutations reduce short range correlation artifacts produced
by ReSTIR, with even 1-5 mutations providing noticeable improvements in
image quality (measured in the bo�om le� using average radial covariance).
Mutations typically have li�le impact on mean squared error (shown in the
bo�om right at equal spp), as we perturb samples only within each pixel.

Fig. 10. Reduction in covariance depends on the mutation strategy, as in any
MCMC technique.Le�: On the Kitchen (Figure 9), we get smaller covariance
using the hybrid shi� with partial path or reconnection vertex mutations
as they minimize changes to paths selected by resampling.Right:In the
Victorian house (Figure 12,bo�om row), reconnection vertex mutations are
less e�ective as fewer paths are reconnected due to a lack of consecutive
di�use vertices, whereas partial path mutations just perturb the entire path.

where is the number of images used to estimate covariance (we
use = 100), and�� is the average of images. To capture the joint
variability of a pixel with its local neighborhood, in our experiments
we average covariance estimates over boxes of a given radius cen-
tered at each pixel. We then further average over the entire image
to get a single number. Figure 9 (bottom left) shows average radial
covariance decreases with increasing spatial radius. This is expected
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